22,205 research outputs found

    Improving the resilience of post-disaster water distribution systems using a dynamic optimization framework

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Improving the resilience of water distribution systems (WDSs) to handle natural disasters (e.g., earthquakes) is a critical step towards sustainable urban water management. This requires the water utility to be able to respond quickly to such disaster events and in an organized manner, to prioritize the use of available resources to restore service rapidly whilst minimizing the negative impacts. Many methods have been developed to evaluate the WDS resilience, but few efforts are made so far to improve resilience of a post-disaster WDS through identifying optimal sequencing of recovery actions. To address this gap, a new dynamic optimization framework is proposed here where the resilience of a post-disaster WDS is evaluated using six different metrics. A tailored Genetic Algorithm is developed to solve the complex optimization problem driven by these metrics. The proposed framework is demonstrated using a real-world WDS with 6,064 pipes. Results obtained show that the proposed framework successfully identifies near-optimal sequencing of recovery actions for this complex WDS. The gained insights, conditional on the specific attributes of the case study, include: (i) the near-optimal sequencing of recovery strategy heavily depends on the damage properties of the WDS, (ii) replacements of damaged elements tend to be scheduled at the intermediate-late stages of the recovery process due to their long operation time, and (iii) interventions to damaged pipe elements near critical facilities (e.g., hospitals) should not be necessarily the first priority to recover due to complex hydraulic interactions within the WDS

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the article’s research methodology and research contribution. Finally, we identify potential future research directions

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    A review of lean and agile management in humanitarian supply chains: analysing the pre-disaster and post-disaster phases and future directions

    Get PDF
    Disasters have quadrupled over the last two decades leading to unprecedented loss of life. The objective of disaster-focussed humanitarian supply chains (HSCs) is to ensure saving maximum lives with limited resources; despite severe uncertainties. Therefore, significant research has investigated lean and agile in HSCs; to effectively source and speedily deploy resources, with minimum wastage; in each disaster life-cycle phase. However, the literature and research findings are currently highly disjointed regarding how lean and agile principles may be aligned with different HSC activities in the disaster management lifecycle; and do not provide a collective understanding for practitioners and researchers. This paper reviews and organises the literature on HSCs in relation to lean and agile paradigms, focussing on the pre-disaster (mitigation and preparedness) and post-disaster (response and recovery) phases. Findings reveal, all phases benefit from both lean and agile, with agile benefitting the response phase most. The phases are inter-dependent and identifying optimum decoupling points for lean and agile principles are crucial. Majority research has focussed on individual or a couple of phases. Therefore, authors recommend research on integrating the functions of the different phases by employing lean and agile principles, to generate rapid response, economies of scale and cost minimisation

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Transportation Network Resiliency: A Study of Self-Annealing

    Get PDF
    Transportation networks, as important lifelines linking communities and goods, are indispensable for the smooth functioning of society. These networks are, however, fragile and vulnerable to natural and manmade disasters, which can disrupt their vital functionality. The role of the transportation sector becomes more crucial during disasters due to its role in pre-disaster evacuation as well as post-disaster recovery. The ability of transportation systems to retain performance during and after disasters undergoing little to no loss and their ability to return to the normal state of operation quickly after disasters defines their resilience. Authorities need to understand the degree of resilience within the transportation system under their jurisdiction and plan for improvements. In this research, attempts have been made to deal with resilience in quantitative ways to provide defensible data to decision makers to support investment strategies. Total loss in the network performance can be quantified by dealing with the variation of network performance over time after disasters and the network resilience can be measured by the ability to minimize this loss. It has been shown that robust networks retain better performance after disruptions and recovery works, which follow optimized recovery paths, in spite of constraints of resources and time, help to minimize the total losses and enhance the network resilience. The objective of this research is to create a conceptual framework to quantify resilience and discuss quantitatively the properties determining resilience of transportation networks. The concepts presented are applied to a test network to illustrate the mathematical procedures. Such methods can help decision makers analyze relative improvements in resiliency as a consequence of proposed project alternatives and help to perform benefit-cost analysis for such projects

    The Challenges and Obstacles of Post-Disaster Road Infrastructure Reconstruction in the Pre-Construction Phase

    Get PDF
    Purpose The reconstruction of road infrastructure in the post-disaster context require different approach when compared with road projects in the normal development context. Disaster recovery projects are seen as having their own unique identity, particularly due to stakeholder issues, resource challenges, capability issues, and even long-term reliability concerns. This paper invites a discussion regarding the challenges and obstacles identified in the reconstruction of road infrastructure in a post-disaster reconstruction setting, and focuses the discussion on the pre-construction phase. Design/ Methodology/ Approach The challenges and obstacles presented in this paper are based on the literature and the empirical evidence collected from the research in three case study districts in Aceh, Indonesia. Twenty-eight face-to-face semi-structured interviews were conducted with stakeholders of road infrastructure at the local, provincial and national level, and represented by respondents from the public works, planning agency, disaster management agency, consultant, contractors, and donor agencies. The findings were triangulated with the literature and consulted with five experts in the road infrastructure and disaster reconstruction area. Findings The identified challenges and obstacles are divided into three groups of discussion; planning and programming, road design, and procurement. Whilst some of these challenges are not unique to post-disaster context, the scale of the risks had been undermined. Originality/ value This paper identifies the challenges and obstacles of a road project in the post-disaster setting from the pre-construction perspective. Identification of these challenges and obstacles may help improve the implementation of post-disaster road infrastructure reconstruction projects in future recovery projects, particularly in the developing world
    • 

    corecore