2,217 research outputs found

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1

    A real-time human-robot interaction system based on gestures for assistive scenarios

    Get PDF
    Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.Postprint (author's final draft

    Mobile Pointing Task in the Physical World: Balancing Focus and Performance while Disambiguating

    Get PDF
    International audienceWe address the problem of mobile distal selection of physical objects when pointing at them in augmented environments. We focus on the disambiguation step needed when several objects are selected with a rough pointing gesture. A usual disambiguation technique forces the users to switch their focus from the physical world to a list displayed on a handheld device's screen. In this paper, we explore the balance between change of users' focus and performance. We present two novel interaction techniques allowing the users to maintain their focus in the physical world. Both use a cycling mechanism, respectively performed with a wrist rolling gesture for P2Roll or with a finger sliding gesture for P2Slide. A user experiment showed that keeping users' focus in the physical world outperforms techniques that require the users to switch their focus to a digital representation distant from the physical objects, when disambiguating up to 8 objects

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Sound for Fantasy and Freedom

    Get PDF
    Sound is an integral part of our everyday lives. Sound tells us about physical events in the environ- ment, and we use our voices to share ideas and emotions through sound. When navigating the world on a day-to-day basis, most of us use a balanced mix of stimuli from our eyes, ears and other senses to get along. We do this totally naturally and without effort. In the design of computer game experiences, traditionally, most attention has been given to vision rather than the balanced mix of stimuli from our eyes, ears and other senses most of us use to navigate the world on a day to day basis. The risk is that this emphasis neglects types of interaction with the game needed to create an immersive experience. This chapter summarizes the relationship between sound properties, GameFlow and immersive experience and discusses two projects in which Interactive Institute, Sonic Studio has balanced perceptual stimuli and game mechanics to inspire and create new game concepts that liberate users and their imagination

    Programmatic and Direct Manipulation, Together at Last

    Full text link
    Direct manipulation interfaces and programmatic systems have distinct and complementary strengths. The former provide intuitive, immediate visual feedback and enable rapid prototyping, whereas the latter enable complex, reusable abstractions. Unfortunately, existing systems typically force users into just one of these two interaction modes. We present a system called Sketch-n-Sketch that integrates programmatic and direct manipulation for the particular domain of Scalable Vector Graphics (SVG). In Sketch-n-Sketch, the user writes a program to generate an output SVG canvas. Then the user may directly manipulate the canvas while the system immediately infers a program update in order to match the changes to the output, a workflow we call live synchronization. To achieve this, we propose (i) a technique called trace-based program synthesis that takes program execution history into account in order to constrain the search space and (ii) heuristics for dealing with ambiguities. Based on our experience with examples spanning 2,000 lines of code and from the results of a preliminary user study, we believe that Sketch-n-Sketch provides a novel workflow that can augment traditional programming systems. Our approach may serve as the basis for live synchronization in other application domains, as well as a starting point for yet more ambitious ways of combining programmatic and direct manipulation.Comment: PLDI 2016 Paper + Supplementary Appendice
    • …
    corecore