87 research outputs found

    New bounds on RAKE structures for DS-CDMA over frequency-selective Rayleigh fading channels

    Get PDF
    An upper bound is derived for the probability of error in an asynchronous binary direct-sequence spread-spectrum multiple-access communications system operating over frequency selective Rayleigh fading channels. A coherent RAKE receiver with predetection selective diversity combining is considered. The performance of a multipath-combining receiver is determined for the case of multiple interfering transmitters. Furthermore, the performance of the system is determined in terms of parameters of the signature sequences. These parameters can be used as guides in selecting sequences for the system. The bounds agree with the exponential portion of a normal distribution in which the interfering interference components subtract from the signal amplitude. The results obtained are verified by simulation.Peer ReviewedPostprint (published version

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Spread-Spectrum Random-Access Communications for HF Channels

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryOffice of Naval Research / N00014-80-C-080

    Performance of asynchronous orthogonal multicarrier CDMA system in frequency selective fading channel

    Get PDF
    An asynchronous multicarrier (MC) direct-sequence (DS) code-division multiple-access (CDMA) scheme for the uplink of the mobile communication system operating in a frequency selective fading channel is analyzed. Bit error rate performance of the system with either equal-gain combining or maximum-ratio combining is obtained. Numerical results indicate that the system performs better than that of the conventional DS-CDMA system and another MC-DS-CDMA system.published_or_final_versio

    Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation

    Get PDF
    As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels

    Relay communications over frequency-selective fading channels

    Get PDF
    Wireless communications over long distances can be assisted by a third radio acting as a relay. If the relay is placed close to the source, then the source-relay link will be characterized as a fairly benign additive white Gaussian noise (AWGN) channel. However, the long distance link from relay to destination is susceptible to frequency-selective fading. This thesis explores the design and analysis of a particular relay communication system characterized by a low power source, a relay that is close to the source, and a frequency-selective channel from relay to destination. Because the direct link from source to destination is very weak, it is not exploited, but rather communications is via a traditional two-hop process.;Link design is based on the high speed download packet access (HSDPA) standard, which uses a combination of turbo coding, hybrid-ARQ, and multicode CDMA. To provide further diversity, the relay-destination link uses a secondary spreading code, rake reception, and multiple receive antennas. An extensive analysis was conducted to study the influence of a wide variety of link configurations and channel conditions. The study was accelerated through the use of a quasi-analytical approach based on the concept of information-outage, which allows the link to be simulated without requiring a turbo decoder

    A new spreading scheme for convolutionally coded CDMA communication in a Rayleigh-fading channel

    Get PDF
    There has been increased interest in the use of direct-sequence code-division multiple-access (DS/CDMA) for wireless communication systems. We find that the asymptotic bit-error probability (BEP), P_b, of a convolutionally coded code-division multiple-access (CDMA) system in a frequency-selective Rayleigh-fading channel depends on the length of the shortest error event path and the product of symbol distances along that path. Based on this observation, we propose a new spreading scheme that maximizes the length of the shortest error event path. It is shown that the proposed scheme yields an improvement of 1.0-1.3 dB at P_b = 10^(-5) over the conventional convolutionally coded CDMA system, and even a higher improvement can be achieved as the required BEP is decreased

    Suboptimal maximum-likelihood multiuser detection of synchronous CDMA on frequency-selective multipath channels

    Full text link
    • 

    corecore