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Abstract

Relay Communications Over Frequency-Selective Fading Channels
by

John Paul Mazzie
Master of Science in Electrical Engineering

West Virginia University
Matthew C. Valenti, Ph.D., Chair

Wireless communications over long distances can be assisted by a third radio acting
as a relay. If the relay is placed close to the source, then the source-relay link will be
characterized as a fairly benign additive white Gaussian noise (AWGN) channel. However,
the long distance link from relay to destination is susceptible to frequency-selective fading.
This thesis explores the design and analysis of a particular relay communication system
characterized by a low power source, a relay that is close to the source, and a frequency-
selective channel from relay to destination. Because the direct link from source to destination
is very weak, it is not exploited, but rather communications is via a traditional two-hop
process.

Link design is based on the high speed download packet access (HSDPA) standard, which
uses a combination of turbo coding, hybrid-ARQ), and multicode CDMA. To provide further
diversity, the relay-destination link uses a secondary spreading code, rake reception, and
multiple receive antennas. An extensive analysis was conducted to study the influence of
a wide variety of link configurations and channel conditions. The study was accelerated
through the use of a quasi-analytical approach based on the concept of information-outage,
which allows the link to be simulated without requiring a turbo decoder.
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Notation

We use the following notation and symbols throughout this thesis.

()t
B[]
p(X)
p[X]
F(X)
PrlE]
R{}
S{-}
z{-}
-[1]
-(iT)
N
N,

Transpose

Expectation operator

Probability density function (pdf) of a random variable X
Probability mass function (pmf) of a discrete random variable X
Cumulative Distribution Function (CDF) of a random variable X
Probability of some event FE

Real part of the argument

Imaginary part of the argument

Z-transform of the argument

time index of discrete time sequence

time index of continuous time signal

Gaussian Distribution

Complex Gaussian Distribution

Bold lower case letters denote row vectors.

1X



Chapter 1

Introduction

1.1 Introduction

Wireless communications over long distances is difficult, but the addition of relays to the
system can help to increase performance. Long distance links are likely to also likely to have
a frequency-selective channel, on top of the free space losses. The system we are analyzing is
a two-hop system involving a low power source, a relay close to the source, and a destination
which is much farther away. Since the first link is so short, it will act like an additive white
Gaussian noise channel, while the second, longer, link will be frequency-selective.

Figure 1.1 shows a relaying system, which contains three nodes. The first node is the
source, which will produce information, for instance imagery or video, and transmit to the
relay. The second node is the relay, which transmits the data received from the source and
sends it to the third node, the destination. This system is optimized for the transmission
of the images and video taken at the source. The signal sent from the source to relay is
relatively weak, but since the distance between the source and the relay is so close, there
is little attenuation so will be sufficient for reliable detection. The relay is equipped with a
high power amplifier in order to transmit data to the destination at a higher power.

The source of this system has one antenna to transmit data with, which is pointed to
the relay. The relay has a receive antenna aimed at the source, and another antenna pointed
toward the destination. The relay node is close to the source while the destination is very

far away from the source. The destination has multiple receive antennas (up to 3 for this
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Source to Relay
Relay to Destination

Source to Destination (Possible Future Use)

Source

Destination

Figure 1.1: Diagram of Relay System

thesis), which could be spaced widely apart.

The source begins the process by transmitting uncompressed images over the high-speed
short distance link to the relay. These transmissions are done using turbo coding, direct-
sequence spread spectrum (DSSS), and two different modulation types (QPSK or 16-QAM),
at three different throughput rates (2.7 Mbps, 5.4 Mbps, or 7.56 Mbps). The images (frames
of video) are assumed to be 256 by 256 pixels in size, with 4 bits of resolution, and will be
displayed in greyscale, at framerates of 10, 20, or 28 frames per second (fps).
After the initial transmission from the source is received at the relay, lossless image

compression is performed. The compacted (lossless compression) data, which will vary in

size, is sent over a link, which will be turbo coded, and use DSSS with either QPSK or

16-QAM modulation. The main difference between this link and the one from source to

relay is that it will use hybrid-ARQ (HARQ). The reason that HARQ is used on the link

from relay to destination, is due to the fact that it experiences fading. The performance will
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benefit from the added time diversity provided by using HARQ.

This works by the destination decoding each transmission from the relay, and checking the
embedded cyclic redundancy check (CRC) code to determine if uncorrected errors occurred.
If errors were detected, the destination will send a request to the relay for a retransmission.
Because there could be data retransmissions and the frame size variability due to compaction,
the frame rate will not be constant, like in the first link. In the analysis, discussed later in
Section 5.2, the frame rate is determined as a function of signal-to-noise ratio for different
channel conditions, link configurations, and receiver implementations.

Both links in this system use technology based on the high-speed downlink packet access
(HSDPA) standard, which is used by the wireless cell phone industry to provide high speed
download access to subscribers. By basing the system on HSDPA commercial standard,
the concept is more likely to be used in the commercial world, and can use devices widely
available from different vendors.

Capacity theorems for relay channels are presented in [2] and [3] considers coded systems
performance over block fading channels. Also, [4] explores a block-OFDMA method for
relay assisted transmission on frequency-selective fading channels. Cooperative diversity in
wireless networks is demonstrated in [5] and [6] and Hybrid-ARQ over relaying channels is

presented in [7].

1.2 Thesis Outline

The main contribution is the application of information-outage analysis to a two-hop
network that accounts for frequency-selective fading and hybrid-ARQ signaling. This type of
analysis is used to significantly increase the run-time of simulations for many different channel
conditions and receiver configurations. The increase in speed in turn allows the selection of
channel conditions and receiver configurations for use in turbo decoded simulations, which
are much slower but give results of actual performance.

Chapter 2 contains a quick review of digital communications, and a description of the
fading channel. Even though it is assumed that the short link from source to relay is an

additive white Gaussian noise (AWGN) channel, this simplistic approach is not realistic for
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the longer link between relay and destination. A description of the implementation of the
frequency-selective fading channel model (based on the models described in [8]) along with
validation (based on [9]) is also included in this chapter.

While the links are both based on HSDPA, there is a problem with it for the longer link
from relay to destination. The spreading codes that are used (Walsh Codes with a spreading
factor of 16), do not have very good resistance to intersymbol interference (ISI) that occurs on
frequency-selective channels. In order to counteract this, a couple of options are proposed.
One is to use equalization at the receiver, but this would increase the complexity of the
receiver, while not giving the frequency diversity provided by having a wider bandwidth.
Another option is to increase the transmitted bandwidth, by using a secondary spreading
code. The Barker code with a spreading factor of 11 was chosen to increase the RF bandwidth
to around 50 MHz, and also because it has good autocorrelation properties. Since a Barker
code is used, this allows the use of a rake receiver to provide more diversity at the destination.
These cumulative effects are also discussed in Chapter 2.

The first section of Chapter 3 provides an overview of the HSDPA standard, while the
successive sections talk about the link from source to relay and the image processing that
occurs at the relay. The link from source to relay, including HSDPA parameters, are part
of section 3.2. The bit error rate performance of this link over four different configurations,
which support different video frame rates, are shown. A non-negligible bit error is assumed
to exist on this link, and example images sent over this link that shows the impact of
uncorrected errors on the image, and are shown.

Section 3.3 describes the image processing of the relay. Once the images are received at
the relay from the source, compaction (lossless compression) will be performed on it before
forwarding to the destination. The proposal for this compression is the Lempel-Ziv-Welch
(LZW) algorithm for lossless compression. The compression is performed on each frame of
video, without trying to exploit correlation between images.

Chapter 4 is devoted to the concept of using information-outage probability (IOP) to
speed up simulation runtime. These simulation results will be used in order to provide link
scheme and receiver designs to more accurately simulate using the frame error rate (FER)

of the turbo code. The runtime of a full turbo-decoded system modulation is long, causing
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problems when trying to determine system models for use. The proposal of Section 4.1 is to
remove the turbo decoder and generate information-outage curves, where the justification
is that turbo codes are capacity approaching. Section 4.2 describes how the throughput of
the system is determined using the frame error rate of the system or information outage
probability curve.

The link from relay to destination is described in Chapter 5. This link, like that of source
to relay, is also based on the HSDPA standard, but will operate in hybrid-ARQ mode. If the
destination receives a codeword that it cannot decode, a retransmission will be requested.
According to the standard, a maximum of four transmissions (including the initial) will be
attempted. If all four attempts are made without success, the system will give up and move
on to the next transmission. Extensive simulation results for the relay to destination link
are shown, mostly using the IOP concept from Chapter 4.1. These results are in terms
of information outage curves with comparison to the full turbo decoded system, as well as
throughput for both types of simulations when hybrid-ARQ is used. The effects of having
multiple antennas for the destination, as well as the number of fingers on the rake receivers,
and the channel model parameters (signal decorrelation time 7y, and frequency-selective
bandwidth fj) are explored.

In Section 6.1, the results of the link analysis of Chapter 5 are summarized and conclusions
are made. Also, in Section 6.2, possible ways to use the weak link from source to destination
in order to improve performance are contemplated, though it appears too weak to exploit

easily.



Chapter 2

System and Channel Model

2.1 Signal-Space Model of Digital Communications

Innovations over the last several decades in hardware and digital signal processing have
made digital communication systems cheaper, faster, and more power efficient than analog
communication systems. Also digital modulation has many advantages to analog modulation,
such as high spectral efficiency, powerful error correction, as well as improved security and

privacy.

2.1.1 Communication System Model

Figure 2.1 shows the basic representation of a digital communications system. The input

of the system could be analog (audio, video) or digital (morse code), with a finite number

Input

Output

Figure 2.1: Communications System Model
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of output characters. In a digital communication system, the input message needs to be
converted into binary digits (if necessary) and compressed. This representation of the input
message (m), which is the output of the source encoder, will result in little or no redundancy.

Once the output from the source encoder, called the information sequence, is obtained it
is sent to the channel encoder. The channel encoder is used to introduce redundancy into the
system, which will help the receiver reduce the effects of noise and interference introduced
during transmission through the channel. This added redundancy increased the reliability
of the received data, making the output more accurate. The encoder adds this redundancy,
by taking the k bits of data in the information sequence and converting it to an n length
codeword (c). The ratio of k/n is called the code rate, and lets us know how efficient the
code is.

Next, the codeword is sent to the digital modulator, which is the interface to the com-
munication channel. The digital modulator’s purpose is to map the codeword onto signal
waveforms. A simple example would be a system that sends one bit of information at a time,
where bit 1 would be mapped to waveform s;(¢) and bit 0 is mapped to waveform so(t). This
simple modulation is called binary modulation, but more sophisticated mapping can be cre-
ated, which are capable of sending a larger number of bits in each waveform. If the system
would like to send b coded bits at a time, M = 2° distinct waveforms s;(t),i = 0,1,..., M — 1
are required to send that data. This is called M-ary modulation, where M > 2.

From the digital modulator, the waveforms are sent over channel, which is a physical
medium connecting the transmitter and receiver. When communications is wireless the
medium is usually the atmosphere and a pair of antennas, while wired communications
uses copper lines, fiber optics, or other physical media. The channel generally adds random
artifacts to the signal being sent over them, which cause corruptions. There are many factors
that can play into this corruption, such as thermal noise, lightning, or even other systems
communicating over the same medium.

When the message is received, the digital demodulator takes the corrupted transmitted
waveform (r(t)), and attempts to convert back to the b coded bits that were input into the
digital modulator. These coded bits (&) are then sent to the channel decoder, which then

attempts to reconstruct the information sequence () from knowledge about the code used
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and the redundancy added by the channel encoder to the transmitted data.

After the information sequence () is obtained from the channel decoder, it is then sent
to the source decoder. The source decoder is where the original source signal is reconstructed.
This reconstruction is only an approximation of the original source, due to the distortions
introduced by the source encoder and channel decoder. The differences between the original
and the reconstruction are a measure of the distortion of the communication system.

The performance of the system is measured by how many errors occur in the decoded
information sequence (). The average probability of a bit error at the output of the
decoder is actually the performance of the demodulator-decoder combination. In this way
the probability of error is a function of the characteristics of the code, modulation type,

transmit power, channel characteristics, and demodulation and decoding methods [10].

2.1.2 Representation of Digital Signals

The building block of representing digital signals is the basis. Using a Gram-Schmidt
orthonormalization technique, any set of M real signals S = {s1(t), s2(t), ..., spr(t)} can be
represented by a linear combination of N < M orthonormal basis functions represented by
{p1(t), P2(t), ..., on(t)}. These signals contained in the set S are defined over [0,7) and have
finite energy. The signal can now be expressed, s;(t) € S, in terms of its basis function

representation as
N
i=1

where
T
o= [ oo (2.2
0
is a real valued coeflicient that represents the projection of s;(t) on the basis function ¢;(t).
The number of basis functions N = M only when the signals s;(t) are orthogonal, otherwise
N< M [1]
Each signal can also be represented s;(¢) using a signal vector s; = [s;1, Si2, ..., Sin|. If the
basis functions are also placed into a vector ¢ = [¢1(t), pa(t), ..., dn(t)], the original signal

can be determined by

sty =s;i- (@) T,0<t <1, (2.3)
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#.0

& 40

Figure 2.2: QPSK Signal Space Representation

s(t) (t) = s(H)A(t)el® + n(t)

A()el0 n(o)

Figure 2.3: Model of Flat Fading Channel

where (¢)T denotes the transpose of ¢. An example using Quadrature Phase Shift Keying
(QPSK) modulation, can be seen in Figure 2.2, where the signals can be represented as

S1 = [1,0], Sg = [0, 1], S3 = [—1,0], and Sy = [O, —1]

2.2 Fading Channel

When signals are passed over long distances, or along cluttered paths, such as mountain-
ous or urban environments, signal fading often occurs. Figure 2.3 shows a model describing

a flat fading channel where A(t) is the amplitude fading coefficient,f(t) is the phase of the
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fading channel, and n(t) is additive white Gaussian noise (AWGN). In a system where only
AWGN is involved, and there is no fading, the fading coefficient A(¢) would be set to 1, and
0(t) to 0. In a channel where flat fading is involved the fading coefficient would have its
own statistical distribution, such as Rician or Rayleigh distributions. This fading is caused
by multipath components of the signal which reach the receiver at different times, with
different powers and phases. This can cause constructive interference as well as destructive

interference, which will amplify the signal or attenuate the signal at the receiver, respectively

).

2.2.1 Flat Fading

In flat fading the bandwidth of the signal modulation is small in comparison to the
coherence bandwidth, also known as the frequency-selective bandwidth, of the channel (f).
This means that the attenuation of the channel is generally flat over the bandwidth of the
signal. When this type of fading occurs the effect can be represented mathematically by
multiplication of the transmitted signal and the fading factor of the communication channel.

So, the real transmitted signal can be represented by
sr(t) = R{s;(t)e’"} (2.4)

where s;(t) is the modulated symbol, and w, is the carrier angular frequency. The received

signal of a flat fading channel in the absence of noise can then be expressed by
sp(t) = R{A)eWs;(t)er!} (2.5)

where A(t) is the time varying amplitude of the communication channel, and 0(¢) is the
phase of the channel. The in-phase (I(t)) and quadrature-phase (Q(t)) components of the

channel gain are represented as
I(t) = R{A(t)e?? D} = A(t) cos((1)) (2.6)

Q1) = S{AW) D} = A(t)sin(6(1)) (2.7)
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2.2.2 Frequency-Selective Fading

Frequency-selective fading occurs when the bandwidth of the modulated signal is large in
comparison to the coherence bandwidth of the channel. This channel cannot be represented
by a multiplication factor on the transmitted signal, but must be represented by a time-
varying linear filter. In this model, the received signal is expressed by the convolution of
the complex envelope of the transmitted signal from Equation 2.4 and the channel impulse

response function in absence of noise is shown as
sp(t) = R{r(t)e/*'} (2.8)

r(t) = / si(t — T)h(t,T)dr (2.9)
0
where r(t) is the complex envelope of the received signal, and h(t,7) is the time-varying
impulse response of the communication channel.
The frequency-selective bandwidth (fj) is the main benchmark to determine how frequency-

selective a channel is. The equation to determine fj is

fo=1/2m0y) (2.10)

where o, is the standard deviation of signal time delay jitter that comes from angular scat-
tering. The value of f; shows what the maximum modulation rate that the channel supports
negligible intersymbol interference (ISI). Small values of fy are indicative of sever frequency-

selectivity, while large values correspond to flat fading. This comparison is shown in Figure

2.4.

2.3 Channel Simulator

2.3.1 Implementation

The implementation of the following simulator is derived from the model of Bogusch [§]

and Dana [9].
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Narrowband Signal Wideband Signal
(Flat Fading) (Frequency Selective)

Af

Figure 2.4: [1] Frequency-Selective Bandwidth Comparison

Flat Fading Model

The flat fading simulator is based on the fact that the fading factor of the channel is
multiplicative. For this to be true, the time-varying frequency response of the communication

channel H (t,w), which for flat-fading channels is
H(t,w) = A(t)e’® (2.11)

needs to be independent of frequency over the signal bandwidth, and A(t, 7) is the impulse

of the channel to an impulse at time ¢, which for flat fading is
h(t,7) = A(t)e??D5(7) (2.12)

where 0(7) is the Dirac delta function.

When this channel impulse response is used, it can be seen that the convolution performed
in Equation 2.9 becomes a multiplication between the complex envelope of the modulated
signal and the complex fading process. (Equation 2.11). This multiplication yields the result

in Equation 2.5,which can be rewritten as
sr(t) = A(t)R{si(t)} cos(6(t)) cos(wet) — A(t)R{s;(t)} sin(0(t)) sin(w.t) (2.13)
Equation 2.13 can be rewritten in terms of the In-phase (/(t)) and Quadrature-phase (Q(t))

sr(t) = I(t)R{s;(t)} cos(wet) + Q(t)R{s;(t)} cos(w.t + 7/2) (2.14)
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Figure 2.5: Rayleigh Flat Fading Simulator (f~*)

where I(t) and Q(t) are defined in Equations 2.6 and 2.7, respectively.

13

These equations show that flat fading received signals can be simulated relatively simply.

It can be done by generating two copies of the transmitted signal m(t), shifting the phase

of one of the copies by 90 degrees, and passing the signal and the phase-shifted signal

through two product modulators. I(t) and Q(t), the modulating waveforms, represent the

fading channel. Since any statistical model can be used on these waveforms, the simulator

is not limited to a specific type of channel, as long as it can be shown as narrowband and

nonselective over the signal bandwidth.

By using a statistical approach we can start with two zero-mean white Gaussian random

processes, that are statistically independent, but have the same variance.

With a given

fading power spectrum, white Gaussian noise can be filtered to give desired second-order

statistics.
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The processes I(t) and Q(t) can be correlated in some way. The correlation depends
on the particular channel model. A common model is Clarke’s model [11] for which the
autocorrelation of (t) and Q(t) will each be R(7) = Jo(27 f.7). However, this model does
not lend itself to simple implementation. In this thesis, we instead use a model where the

power spectral density may be:

. 4TRC
S(f) - 1 + 2(27TTRCf)2 + (27TTRCf)4 (215)
or
S(f) = ———ore (2.16)

3(1+ (2m7Ref)?)?
If the PSD of a fading process is 2.15, then it is called f~* fading, while if it is 2.16 it is called
f~% fading. The f~* spectrum can be generated by passing white Gaussian noise through two
cascaded single pole filters, while the =% spectrum requires three filters. Without including
a direct link from the input to the output, this statistical model will produce Rayleigh fading
statistics, later this link will be discussed. Figure 2.5 shows a block diagram of the resulting
f~* fading simulator.

In the software implementation of this simulator, a Gaussian random number generator
with distribution A/(0,1) can be used to generate both parts of the white Gaussian noise

with desired variance o2 by

z = (g1 +jga)o (2.17)

where ¢g; and go are independent zero-mean samples from a white Gaussian process. The

single-pole RC filters can be implemented using the recursive relationship
Yk = aYk—1 + by (2.18)

where y;, is the current output of the filter, y;_; is the previous output, x; is the current
input, and k is the sampling index. The quantities a and b are filter coefficients, where a is
determined by the filter time constant and b is determined by the filter gain. This is shown

in Equations 2.19 and 2.20 for f=* and Equations 2.19 and 2.21 for f~6.

_ Ts

a=e "rRC (2.19)
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Figure 2.6: Rician Flat Fading Simulator (f~%)

b= [%r (2.20)

1

1 — 2\5 6

b= # (2.21)
(1+ 4a? + a*)

where 7o is the RC filter time constant and 7T is the sampling time interval. The time

constant Tro is obtained by

The = % (2.22)

where 7y is the decorrelation time, and 3 is a constant depending on the spectrum used. For
[, B = 2.146193 and for f~% B = 2.90463. The normalized signal decorrelation of 7o/7
should generally be between 20 and 100.

Four our implementation we combined the multiple pole filters by first taking the Z-
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transform of the difference equation of the single-pole filter:

Z{yr — ayr—1 = by}

Y(Z)(1—az™) = X(Z)b (2.23)
Y(2) _ b

X(Z) (1—az™h

Since the single pole filters are cascaded, we can square the result of Equation 2.23 for f—*

and cube it for f=¢. This will result in the following for f=*:

bZ
H(2) = (1 —2az"1' + a?272) (224)
or for f~6:
H(Z) = b (2.25)

(1 —3az"1 4 3a?272 — a3273)
where H(Z) =Y (Z)/X(Z). The resulting difference equations

Y — 2ayp—1 + a’yp—o = b’xy (2.26)

for f=* fading and
Yk — 3ayr-1 + 3a’ye_s — @’ Yp_s = b1y (2.27)
for =5 fading.
As mentioned earlier, the presence of a direct path in the channel produces Rician statis-
tics. Since part of the signal is going directly to the output Rician systems are generally less
taxing than Rayleigh. This new configuration is shown in Figure 2.6.

As shown in Figure 2.6 the direct line of sight component of the system is shown as

V. = VPRl - S5V (2.28)
where Py is the mean signal power of the input. The power in the random components of
the system is reduced by the power in the line of sight component, so the variance of the

in-phase and quadrature-phase components is calculated by

o = %[1— \/1— 53] (2.29)

In the simulator the power of the input signal is normalized so P, is set to unity. An example
of results from the simulator can be seen in Figures 2.7 and 2.8. Sy is the scintillation index
and is always between 1 and 0, where Sy = 0 has no random components and S5 = 1 has no

line of sight components (Rayleigh Fading), and the values in between have Rician statistics.
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Figure 2.7: Power Amplitude of Rayleigh Fading Channel (S, = 1, f~*, and 7,/T} = 100)
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Figure 2.8: Phase of Rayleigh Fading Channel (S, = 1, f~4, and 75/T, = 100)
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Frequency-Selective Fading Model

In order to generate frequency-selective fading, many flat-fading processes must be run
in parallel and properly processed and combined. For the model proposed in this thesis, the

power delay profile can be expressed as
SA(7) = 27 foe 20Ty (7) (2.30)

where fj is the frequency-selective bandwidth of the channel, u(7) is the unit-step function,
and 7 is the excess delay. Since Equation 2.30 is a continuous function of 7, in order to

simulate the system it is sampled at sample period Ty,

=

S(1) = Ped(T — 7%) (2.31)

e
Il

where K is the required number of delay samples, 7, = kT, is the delay of the k™ sample,
and Py is the mean signal power. Py is obtained by integrating over one sample of Equation
2.30 giving

Py = e 7ok — g2 fomin (2.32)

and K is obtained by finding the minimum number of samples which contain the fraction

P, of the total received signal power. In particular K is found by K =1 — Fr;(;}%;:)-‘, where

the ceiling operator is used to guarantee that K is an integer. The parameters P, and T in
this simulator are selectable and for results shown later, they were chosen to be P, = 0.99

and T, = %, where T is the chip period, which results in

(2.33)

el

fOTc
The impulse response of the channel which has the sampled power delay profile of Equa-
tion 2.31 is
K-1
h(t;7) = Z Prcp(t)o(1 — %) (2.34)
k=0

where ¢ (t) are unit power complex Gaussian processes (N.). In the model of Wide-Sense
Stationary Uncorrelated Scattering (WSSUS) in [12], the K multi-path components in 2.34

are mutually uncorrelated processes with identical power spectrums.
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For Rician fading, the processes cx(t) could have nonzero-mean, but since this thesis is
focusing on Rayleigh fading (S4 = 1), they have zero-mean. These processes also depend on
the fading model, which in this implementation could be f=* or f=%, but the focus is f~*,
which has a fading power spectrum given by Equation 2.15 where 7gz¢ is Equation 2.28 and
3 = 2.146193.

After the HSDPA chip waveform is spread, it is shaped using a raised-cosine rolloff (RC)
pulse shaping filter, which is added into our signal model. The impulse response of this RC
filter is from [13] and shown by

where « is the rolloff factor defined in the HSDPA standard [14], as oo = 0.22.

The resulting channel will be a cascade of the pulse-shaping filter, with impulse response
from Equation 2.35, and the actual channel, with impulse response from Equation 2.34.
This equivalent channel can be represented by a convolution of these two impulse responses

resulting in a new impulse response

f(t;1) = xge(T)*h(t;T)

= .%‘Rc(T) * Z_ Pka(t)5(T — Tk> (236)
k=0
= 2_: Pkck(t)fL‘Rc(T — Tk)

where the last step assumes that c(t) changes slowly with respect to the chip period T..

As is indicated in the last term of Equation 2.36, there is some ISI. If left alone this ISI
will cause severe quality loss in the signal,but the frequency-selectivity of the channel can
be used as a type of diversity, if the processing is done properly. The received signal can be
processed through an equalizer, or a rake receiver. The equalizer implementation is typical
of commercial HSDPA setups, which is due to the Walsh codes that are used having poor
autocorrelation properties not cooperative with rake receiving.

Proposal of not using the typical 5 GHz signal bandwidth limitation of commercial HS-

DPA, would allow for a secondary spread of the signal. The additional spreading will allow
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for the elimination of an equalizer and to be able to process using a rake receiver. A length

11 Barker code is proposed as the secondary spreader, represented by the sequence
Xpe = [+1,+1,+1, -1, -1, —1,+1, -1, —1,+1, —1] (2.37)

Use of the barker code increases the chip rate and signal bandwidth by a factor for 11, so that
the bandwidth will now be 11(1+a)R. = 51.5 MHz, where R. = 3.84 Mchips/second as indi-
cated by the HSDPA standard. Also, Barker codes are known to have good autocorrelation
properties.

By using this code, with good spreading properties, signal components separated by at
least one chip period T, can be resolved. The use of an L-fingered chip matched rake receiver,
with L between 1 and 4, is used to reconcile the signal. The gain of the channel g(t) of
the [ signal finger, 0 < [ < L — 1, is found by sending the signal through a chip-matched
filter and sampling the output with delay (7T,.. The complex channel gain now seen by the

I finger is
alt) = f(t:7) (2:38)
K—1
- Y VRalraelT ~ )
k=0

The fingers of the rake receiver are interdependent, even though the K fading processes cx(t)
are independent. This is due to the bandlimiting effect of the pulse shaping filter.
Maximal Ratio Combining (MRC) is used on the output of the L fingers, and gives a

real valued channel amplitude gain

amro(t) = (2.39)

This gain is sampled at the symbol rate R,, where the channel amplitude gain of the i
signal becomes

amrclil = amre(iTs)

L

= Sl (2.0

~
o

T
)
=
.
[\

_ VEBewlilere (1T, — 1)
\

T
=)
i
o
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where c;[i] is the i sample of the process c;(t) when sampled at the symbol rate.

Equation 2.40 describes how the channel is simulated. A total of K independent fading
simulators are run in parallel, producing the sequences ¢ [i]. Each fading sequence is a zero-
mean complex Gaussian process with power spectrum given by Equation 2.15 and sampled
at the symbol rate. For each finger of the rake receiver, the K channel gain samples are
combined by sampling Equation 2.38 at the symbol rate. The L fingers are then MRC
combined according to Equation 2.39.

In our problem, we can use multiple antennas on the ground. Where () is the number
of ground antennas used. Assuming the () antennas are widely spaced so as to have the
fading seen by each be statistically independent, the signals can be combined in many ways.
If the antennas are connected to L-branch rake receivers, the system could be shown as a
(@) L-branch rake receiver. However, this method requires information to be shared among
the ) antennas, and would be difficult if the antennas are space far apart. If the system
combines the signals from the antennas after demodulation, it would require less information
to be shared.

Using this method, the output of each antenna’s rake receiver will first be passed through
a demodulator whose implementation will be shown in Section 4.1 Equation 4.1. Let /\gq) be
the log likelihood ratio (LLR) of the j code bit ¢; at the output of the ¢"* demodulator of
the antenna. The LLRs from the ) antennas are then combined by simple addition forming

the overall LLR

?

A=Y A (2.41)

q

Il
=)

This combined LLR is then passed through the decoder as usual. If an outage analysis is
being performed, mutual information is measured between the input codeword and LLR as
defined in Equation 2.41. This implementation is beneficial because most of the processing
can be placed close to the antenna, such as channel estimation, synchronization, rake re-
ception, and demodulation. Central processing would only need to be performed for turbo

decoding and decompression of the images.
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Figure 2.9: Cumulative Distribution Function of Rician Fading, f~* Doppler Spectrum, and
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2.3.2 Validation

The validation of our fading model is performed using statistical models from [9].

Cumulative Distribution Function

The cumulative distribution function (CDF) is defined as the probability that the random
process will have a value less than the functions argument. The CDF of P, where P is the

instantaneous power of the fading channel, is identified as

o0

F(P) = ZO r2(n1+ ¥ (1 f{R)ny (n .y ffg) (2.42)

where, R is the Rician Index defined as y/1 — S%, P is the Power of the fading channel, T'(-)

is the gamma function, and 7(-) is the incomplete gamma function. This is a form of the
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Marcum Q-Function, and can be evaluated by [10]

F(P)=1-G (ﬁ[) (2.43)

and in Rayleigh fading this can be reduced to
F(P)=1-¢" (2.44)

where both of these equations are evaluated when the mean power Fj is normalized to 1.
To determine the CDF of our simulated channel the total number of samples below a

give power level is divided by the total number of samples generated shown
F(P) =ni/N (2.45)

where P; is the power level threshold, n; is the number of samples below that threshold, and
N is the total number of samples in the simulated channel. This equation will approximate
the calculated value from Equation 2.42 as long as N is sufficiently large. The comparison

between our simulator and the calculated value is shown in Figure 2.9.

Mean Level Crossing Rate

The mean level crossing rate is the average number of times per some interval T' the
fading channel crosses a given power level. The calculated value for Rician fading statistics

is given as

(N(P,T)) = A (Z) ﬂLe—’ffﬁfo (Wﬁ) (2.46)

70
where A is a constant depending on the frequency spectrum used. A = 1.5176 for f—*
A = 1.1858 for f7%. In order to get the mean crossing rate in only one direction Equation
2.46 will be divided by 2.

When determining the mean level crossing rate per 7y by calculating the number of
times the fading channel crosses a certain power threshold FP;. This number is then divided
by the total number of samples N, and multiplied by the ratio 75/7; (normalized signal
decorrelation), which is 100 for the simulations shown as

niTO/Ts

<N(Pz',To)> = N

(2.47)
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where Equation 2.47 can be divided by 2 in order to get level crossing only in one direction.

The comparison of the simulator and the calculated value is shown in Figure 2.10.

Mean Fade Duration

The mean fade duration, is the amount of time over the interval the power P of the

simulator is below a given power threshold. This is can be computed by

(Tpur (P)) = % (2.48)

Equation 2.48 can also be used to determine the simulated mean fade duration also, by

changing the function to be in terms of P;. A comparison is shown in Figure 2.11
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Chapter 3

Source to Relay Link

3.1 HSDPA Overview

Both link designs in this system (Source to relay, and relay to destination) are based
on High-Speed Downlink Packet Access (HSDPA) Technology. HSDPA is a standard for
high-speed downlink access currently used in third generation (3G) cellular phone systems,
and is currently deployed by AT&T with peak downlink data rate of 3.6 Mbps. T-Mobile
is also in the process of deploying this type of system. HSDPA is part of the Universal
Mobile Telecommunications System (UMTS) group of standards, developed by the European
Telecommunications Standards Institute (ETSI) and promoted by the Third Generation
Partnership Project (3GPP). The standards documents used to develop this thesis are 25.212
[15], which shows the baseband processing and turbo coding, 25.213 [16], which shows the
spreading and modulation, and 25.104 [14], which shows the radio requirements, including
the chip shaping filter already shown in Section 2.3.1 Equation 2.35. Document 25.101 [17]
is also used, and gives standardized reference link designs that will be used on the second
link of the system (relay to destination).

A high level diagram of the baseband processing done by an HSDPA transmitter is shown
in Figure 3.1. In the HSDPA standard, time is separated into frames called transmission
time intervals (TTIs), which are each 2 msec long. Once data message is turbo encoded,
modulated, and spread during each TTI.

Before turbo encoding, a 24-bit cyclic redundancy check (CRC) is added to the end of



John P. Mazzie Chapter 3. Source to Relay Link 27

RF

Figure 3.1: Baseband processing at HSDPA transmitter

the data. This CRC is used by the receiver to detect uncorrected errors. The turbo encoder,
has an internal bit interleaver that can be set to any length between 40 and 5114, including
the bounds. If the CRC-encoded message is longer than 5114 bits, it must be broken up
into equal length code blocks. If the number of bits in the CRC-encoded message are not
divisible by the number of code blocks required, some filler bits will be added to the message
before they are broken apart. Also, a maximum of 5 code blocks can be sent over each TTI.

After the equal length code blocks are obtained, each one is passed to the turbo encoder
represented in Figure 3.2. The encoder is made up of two recursive systematic convolutional
(RSC) built-in encoders, and a turbo interleaver (described previously). The RSC encoders
produce a sting of parity bits (Z; and Z! from Figure 3.2), that are combined with the
systematic data stream (X; in Figure 3.2), and triple the length of the code block. After
the block is encoded 12 tail bits are attached to the end, where these bits are obtained by
throwing the switch in Figure 3.2, and running the system for three extra cycles. The code

rate, as a result of this process, is
K

R = K112 (3.1)
where K is the length of the segmented code block.

If a code rate different from the result in Equation 3.1 is required, it can be adjusted
through rate matching. This process creates higher rates by puncturing code bits and lower

rates by repeating code bits. The turbo encoded blocks are passed through a rate-matching
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Figure 3.2: UMTS Turbo Encoder

processer, as shown in Figure 3.1, which will give the desired code rate. These rate-matched
code blocks are modulated and spread. The HSDPA standard uses direct sequence spread-
spectrum (DSSS) with a chip rate of R, = 3.84 Mchips/sec, and supports both QPSK and
16-QAM (Quadrature Amplitude Modulation).

The signal is spread using one or more Walsh codes of length 16, of which there are
16. Also, the set of Walsh codes is mutually orthogonal, which effectively separates the
channel into 16 orthogonal subchannels. These subchannels are called physical channels
in the HSDPA standard. One channel is always reserved as a pilot channel, to help with
coherent reception and channel estimation. Any or all of the remaining 15 channels may be
used to transmit the rate-matched code blocks, as long as there are an integer number of
physical channels per code block. In Figure 3.1, the rate-matched code blocks are mapped
to the P physical channels, where 1 < P < 15. In previous generation DSSS systems only
one code was allowed per user.

Each physical channel can be modulated using either QPSK or 16-QAM, but all P
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channels must use the same modulation. The symbol rate (Rs) for each physical channel is

R,

R, = ¢
16

(3.2)

where for our purposes R. = 3.84 Mchips/sec, making R, = 240 kbaud. This will make
the overall symbol rate for the link 240P kbaud. Since each TTI is 2 msec long, there are
480 symbols per physical channel per TTI. When QPSK (2 bits per symbol) modulation
is used, 2(480) = 960 code bits per physical channel per TTI can be transferred. Also,
when 16-QAM (4 bits per symbol) modulation is used, 4(480) = 1920 code bits per physical
channel per TTI can be transferred. The maximum theoretical rate that code bits can be
transmitted when using 16-QAM and all 15 available physical channels is 15(1920)/(2 msec)
= 14.4 Mbps. The actual data rate will be lower, due to rate matching and the number of
physical channels used, but can be calculated by dividing the number of data bits encoded
per TTI by 2 msec.

As shown in Figure 3.1, the spread physical channels are summed and then passed to
the RF modulator. Before RF modulation, the spread and code modulated symbols are
passed through a chip shaping filter. This chip-shaping is done through the use of RC pulse
shaping as described in Equation 2.35, where o = 0.22. This results in RF bandwidth of
R.(1 4 a) ~ 4.7 MHz. Multiple HSDPA links can be supported in a typical cell network,
and would be separated using 5 MHz channel spacings.

HSDPA also has the option of using Hybrid Auto Repeat-Request (HARQ). This al-
lows a retransmission request by sending a negative acknowledgement (NACK) back to the
transmitter, if a receiver is not able to correct a received TTI. The correction of the code per-
formed by the receiver can be checked using the CRC error detection code that was attached
before it was transmitted.

If a NACK is sent and retransmission is to be performed, there are two separate modes
that the system can operate in. One mode has the receiver send the exact same encoded
TTI, and the receiver will combine the retransmitted packet with the original by adding the
code bit log-likelihood ratios before passing to the turbo decoder. This mode is called Chase
Combining (CC). Also, the transmitter could encode the message differently and a different

set of parity bits can be sent. This can be done by having the rate-matching processor
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Figure 3.3: 16-QAM Signal Constellation

puncture a different set of bits than was punctured in the original. This mode is called
incremental redundancy (IR).

If this first retransmission fails, another could be requested, and if that also fails, then
a third would be requested, giving a total of four transmissions. While more requests could
theoretically be made, the standard 25.101 [17] limits the number of HARQ attempts to
four.

The way in which constellation symbols are labeled with code bits is called a symbol-
labeling map. This labeling has no performance impact on QPSK, due to every signal having
2 neighbors as shown in Figure 2.2, but 16-QAM is highly susceptible to this mapping. In
the mapping for QAM, points on the interior each have four neighbors, making them more
vulnerable to noise, than border points, who have two neighbors if they are a corner point and
three otherwise. This can be seen in Figure 3.3, and means that the error rate of the signals

will not be equal. When the system is run in IR mode, and using 16-QAM modulation,
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Figure 3.4: H-Set 6 HARQ Interleaving with 6 processes

diversity can be added through mapping rearrangement, which will use a different 16-QAM
labeling map for each IR retransmission. This strategy is based on that fact that if the
mapping used in a previous transmission was “bad” for the codeword sent, a rearranged
mapping may be better to use for the retransmission.

Due to delays from propagation and processing, there will be a non-negligible delay from
the time from transmission of the TTI to the reception of the ACK/NACK. To more ef-
ficiently use the channel, HSDPA allows for the interleaving of multiple HARQ processes.
For instance, the H-Set 6 reference design of 25.101 [17], allows 6 HARQ processes to run
concurrently with an inter-TTI distance of 1 as shown in Figure 3.4. In this design, the
transmitter can service 5 other ARQ processes while waiting for the ACK/NACK of a par-
ticular TTI. This allows for a 10 msec delay between the end of the transmission for a TTI
until it must be retransmitted, where this delay must account for the round-trip propagation
delay, receiver processing time, and the transmitters processing of the ACK/NACK.

The use of HARQ is not proposed for the link between source and relay, because the
close distance does not allow enough time for a retransmission. However, because of these
shorter distances one turbo coded transmission should be sufficient. For the longer link from
relay to destination, HARQ will be used because more time will be available allowing for

additional time diversity to help compensate for possible severe fading in the link.
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Figure 3.5: 256 by 256 grey-scale image using 4 bit quantization

3.2 Source to Relay Link

The source of the system contains a sensor for taking grey-scale images with a pixel
resolution of 256 by 256 using 4 bits of quantization. An example of an image taken in this
way is shown in Figure 3.5. The size of images taken using this method are 262,144 bits, and
will also be stamped with the time taken, along with the location, orientation, and identity
of the source. Instead of sending the full location information with each image, only the
differences from the last transmission will be sent. This information was assumed that it
would only increase the size of the image packet to 270 kbits.

The link design from source to relay is based on the HSDPA standard, as discussed in
Section 3.1. The theoretical limit of the HSDPA data rate is 14.4 Mbps, but that is only
achievable by turning off turbo code (performed by puncturing all parity bits during rate-
matching), using no HARQ), the 16-QAM modulation, and using the maximum number of
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# Physical Channels P=14
Required Data Rate 2.7 Mbps
Message Bits per TTI (Data Rate)(2 msec) | 5400 bits
Post CRC Message Length 5424 bits
Required # Code Blocks 2
Code Block Length 2712 bits
Post Encoding and Rate Matching

Turbo Codeword Length 6720 bits
# Physical Channels per Codeword 7
Code Rate e Bﬂzfiii?fﬁﬁﬁgiﬁﬁd Lengimy | V-4018

Table 3.1: QPSK at 10 fps Video Transmission Rate

# Physical Channels P=15
Required Data Rate 5.4 Mbps
Message Bits per TTI (Data Rate)(2 msec) | 10800 bits
Post CRC Message Length 10824 bits
Required # Code Blocks 3
Code Block Length 3608 bits
Post Encoding and Rate Matching

Turbo Codeword Length 4800 bits
# Physical Channels per Codeword 5
Code Rate mreg B%EZZ()I(gjiﬁ?j B Length) 0.75

Table 3.2: QPSK at 20 fps Video Transmission Rate

Walsh codes (15 due to only having a maximum of 15 available physical channels). This type
of link would provide no protection from errors. By using the turbo code and transmitting
at a lower data rate error performance can be improved greatly.

Four link configurations were considered, that can achieve video rates of between 10 and
28 frames per second (fps). None of these links use HARQ), so the video frame rate will be
kept constant. These links are described in Tables 3.1, 3.2, 3.3, and 3.4.

Higher video rates could be supported, but not as efficiently. For examples, in order to
obtain a frame rate of 29 fps, the message would have to be split into four code blocks. Each
code block would be mapped to 3 physical channels causing only 12 of the 15 available to be
used. In the end, the turbo code would operate at the code rate of 0.68. This would be an

increase in code rate by approximately 30%, while the increase in frames per second would
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# Physical Channels P=15
Required Data Rate 5.4 Mbps
Message Bits per TTI (Data Rate)(2 msec) | 10800 bits
Post CRC Message Length 10824 bits
Required # Code Blocks 3
Code Block Length 3608 bits
Post Encoding and Rate Matching

Turbo Codeword Length 9600 bits
# Physical Channels per Codeword D
Code Rate Message Bits per TTT 0.375

(# Code Blocks)(Turbo Codeword Length)

Table 3.3: 16-QAM at 20 fps Video Transmission Rate

# Physical Channels P=15
Required Data Rate 7.56 Mbps
Message Bits per TTI (Data Rate)(2 msec) | 15120 bits
Post CRC Message Length 15144 bits
Required # Code Blocks 3
Code Block Length 5048 bits
Post Encoding and Rate Matching

Turbo Codeword Length 9600 bits
# Physical Channels per Codeword 5t
Code Rato Message Bits per TTT 05250

(# Code Blocks)(Turbo Codeword Length)

Table 3.4: 16-QAM at 28 fps Video Transmission Rate

34



John P. Mazzie Chapter 3. Source to Relay Link 35

only be about 3%.

The four links described in Tables 3.1 to 3.4 were simulated over an AWGN channel. The
turbo decoder ran 14 iterations of either the log-MAP or max-log-MAP decoding algorithm
[18]. Generally, the performance of log-MAP decoding will be better than max-log-MAP,
but is more complex to implement. The CRC code is used to half the decoder once the
codeword is corrected, removing over-iteration.

Figure 3.6 shows the performance of two QPSK-based links. The figure shows the bit
error rate (BER) as a function of E;/N,. For the 10 fps system, using log-MAP decoding
provides a 0.4 dB improvement over max-log-MAP, while the increase in the 20 fps system
is only approximately 0.2 dB. In order to double the framerate from 10 to 20 fps requires a
more than doubling of the power (Increase of 4.6 dB). A slight error floor develops for the
20 fps system at BER 1075, which can be attributed to the rate-matching processer needing
to puncture a large number of parity bits, causing the code to weaken.

Figure 3.7 shows the performance of two 16-QAM based links, that can achieve rates of
20 fps and 28 fps. In comparison to the 20 fps QPSK-based link (also pictured in Figure
3.7), the 20 fps QAM-based system does have better performance. The 20 fps QAM-based
system also shows a flattening error floor, but remains steaper than the floor of the QPSK-
base system. This is attributed to the QAM-based system operating at a lower code rate
than the QPSK-based system, which requires fewer parity bits to be punctured by the rate-
matching processor. To increase from 20 to 28 fps, a 2.6 dB increase in transmit power is
required.

An example of the images from Figure 3.5 transmitted over this link at two different bit
error rates are shown in Figure 3.8. The received images are shown for BER = 1072 and BER
= 1073, The quality of the 1072 BER image is poor as bit errors make it appear that there
are more stars in the image than there actually are. But, as the BER starts to go below 1073,
the images look sufficient. This error rate can be achieved using the QPSK-based system at

10 fps, requiring the Fy/Ny > —0.3 dB, with log-MAP decoding.
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(a) Error Rate = 102 (b) Error Rate = 1073

Figure 3.8: Comparison of received images at different error rates

3.3 Image Processing

When the images are decoded at the relay, they are then compressed. Through experi-
mentation, images such as the one in Figure 3.5, are easily compacted (lossless compression),
using the Lempel-Ziv-Welch (LZW) compaction algorithm. The Tagged image File Format
(TIFF) is capable of this kind of compaction, while the Joint Photographic Experts Group
(JPEG) uses lossy compression. By compressing the image in Figure 3.5 into a TIFF file
with LZW compaction, the file is reduced in size from 32,768 bytes to 8,722 bytes, a 73%
reduction in size. Because the compression is lossless the new image looks exactly the same
as that in Figure 3.5.

The effectiveness of the TIFF format with LZW compaction is very dependent on the
number of bits of resolution in the original image. In our original image we only used 4 bits
of resolution, but the same image with 8 bits of resolution is used the file size is only reduced
from 65,536 bytes to 47,750 bytes, which is only a 27% reduction in size. The data rate
would have to increase by a factor of >5 in order to double the number of bits of resolution.

The amount of compression that can be performed also depends on the error rate from
the source to relay, since errors get compressed too. If there are errors over the link from

source to relay, the compressed image is likely to not be compressable to 27% of its original
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size. For instance, when BER is 1072 as in Figure 3.8(a), the compressed image is 26,820
bytes, while if the BER is 1072 as in Figure 3.8(a), the compressed image is 19,414 bytes. So
when there are errors in the link, there isn’t as much to gain from the compaction of LZW. In
this thesis, it is assumed that the average compressed image size is 20 kbytes, which allows

for non-negligible bit error rate in the link from source to relay.



39

Chapter 4

Information-Outage Analysis

4.1 Information-Outage

In order to analyze the link from the source to the relay, only eight simulations need to be
run (4 link types and 2 decoding algorithms), but in order to analyze the link from relay to
destination many more simulations will need to be run. The reasons for the extra simulations
are because the link from relay to destination will use HARQ), causing each codeword to be
decoded up to four times. The channel for this link is also frequency-selective and time
correlated, so simulations for different channel conditions will need to be performed. There
can also be up to three antennas on the ground each using a rake receiver with up to four
fingers. This link will be discussed in Chapter 5

The use of information-outage probability (IOP) as an approximation to the frame error
rate of using the actual turbo code, is proposed in order to speed up simulation results.
Information-outage probability is defined as the probability that the mutual information
falls below the transmission rate [19].

Figure 4.1 shows the IOP concept. The turbo decoder shown in this figure generates a

codeword vector ¢ of length n by taking the length k£ message vector and passing through

n
logy M

symbol vector x, where M is the size of the signal set (four for QPSK and 16 for 16-QAM).

the rate R = k/n turbo decoder. This vector is then modulated to produce a length

The modulated codeword is sent through the channel (AWGN or Fadinig), which produces

the output y. This vector y is then passed through a demodulator that determines the log
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count
errors

turbo
decoding

Figure 4.1: Information-Outage Probability Concept

likelihood ratio (LLR) A by determining the LLR A; of each code bit. The LLR of the j™
code bit is calculated using [20]

3 plyl)

P’I“[Cj = x’ESJ(.l)

—log—2
TS bl

:17’68](-0)

(4.1)

were SJ(-l) is the set of M/2 symbols in the constellation whose value is 1 in the ;™ bit, SJ(O)
is the set of M/2 symbols in the constellation whose value is 0 in the j bit, and p(y|x’) is
the probability that signal vector y is received when symbol x’ is sent.

For both types of simulations (IOP and FER), the process described is the same. In
Figure 4.1, the simulation resulting in FER is marked by dashed lines. In this type of
simulation, the LLR vector A is passed to the turbo decoder which outputs the decoded
data bits. These bits and then compared to the data originally sent, and counted in order
to produce bit error (BER) and frame error rate (FER) curves.

The simulation that results in IOP curves bypasses this decoder. It passes the LLRs into
a unit that measures the average mutual information I between the code bits of ¢ and the
LLRs of the individual bits of A. The mutual information I between the j* code bit and its
corresponding LLR ), is found by [20]

I; = 1+ logy p(c;|A)) (4.2)
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where p(c;|A;) is the probability that the code bit is ¢; given that the LLR is \;. Equation

4.2 can be calculated in the log domain using [21]

max*(0, A\;(—1)%)

I, =1 4.
J + 1H(2) ( 3)
where the max*(-,-) is defined as [18]
max(z,y) = log(e® + €¥) (4.4)

= max(z,y) + log(1 4 e =)

Once the mutual information is found for each of the n code bits, the average mutual infor-

mation I for the codeword can be calculated using
B
I==>"1 (4.5)

Since information-outage occurs when the average mutual information is below the code

rate R, the outage probability is determined by
Py = Pr[I < R] (4.6)

In order to show how well the IOP concept works, simulations comparing IOP and log-
map turbo decoded systems were generated for configurations #1 shown in Table 3.1, #3
shown in Table 3.3, and #4 shown in Table 3.4 from Section 3.1. The comparison between
the results using IOP and FER are shown in Figure 4.2. All of these simulations were over
AWGN channels, and used 14 log-map decoding iterations. The IOP and FER curves agree
very closely. For configuration #1 (QPSK 10fps) the two curves are separated by 0.75 dB
at an error rate of 1072, while configurations #3 and #4 (16-QAM @ 20 fps and 28 fps,
respectively) have a separation of 1.1 dB at the same error rate. It is also shown that IOP
is a good indicator of the steepness of the curve, but doesn’t predict the flattening part.

Figure 4.3 shows the speedup in simulation time obtained by using the IOP concept.
This figure was generated by simulating configuration #4 (16-QAM 28 fps), by using IOP,
log-MAP decoding, and max-log-MAP decoding, and shows the number of TTIs that can be
simulated on a 2.13 GHz Intel processor. The IOP simulation runs 23 and 17 times faster

than the log-MAP and max-log-MAP decoding, respectively, at low SNR. The distance



John P. Mazzie Chapter 4. Information-Outage Analysis

10 . v 3
i | !
\ i ':
i i :
100 ! i '\ :
| ! :
i i :
i i !
- i | !
10 ¢ i i ! E
i [ !
i i | !
w [ [ !
-3 i [ !
10 ¢ ; i QAM I QAM E
i 20 fps 128 fps
| @PSK [ ';
i 10 fps i !
10" ! ' ll E
| og- MAP ! ! -,
_.—— info-outage : : ;
[ i '»
L | L L : | Il
6 -4 -2 0 2 4 6 8
EJN, in dB

Figure 4.2: Comparison of IOP and FER over three AWGN Channels

decreases at higher SNR due to the decoder not needing all 14 iterations in order to decode

the message (stops decoding when CRC check passes).

4.2 Throughput

From the FER and IOP curves, throughput of the system at any given signal-to-noise
Ratio (SNR) point can be determined. This can be done by calculating the probability of a
success for each number of HARQ transmissions, and using the pmf generated to determine

the percentage of the maximum throughput transferred through the system. The probability

of a success on any given HARQ transmission can be calculated by

ARQi—1
PrgnplARQ:] = (1 = FERsnr(ARQ))( [ (FERsnr(5)))

j=1

(4.7)

42
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Figure 4.3: Comparison of simulation runtime

if ARQ; > 1, but by
PTSNR[ARQi] = 1 — FERSNR<ARQZ) (48)

if ARQ; = 1, where ARQ); is the number of transmissions before a successful decoding (or
no outage), and FERgyr(ARQ;) is the frame error rate (or outage probability depending on
which simulation is run), where the FER (chance of outage) is equal to chance that HAQR
transmission ARQ); is unsuccessful.

Because this system only transmits the message up to four times, the probability mass

function (pmf) generated using the above method will not sum to one, so must be normalized
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to make it a valid pmf. This is done by using Equation 4.9

ARQI\I(L:];
> PronglARQ;)5(ARQ — j)
j=1
ARQ]\/Ia:E

Z Prsnr[ARQ;]
=1

psnr[ARQ] = (4.9)

where the numerator is the pmf before normalization, J is the Dirac delta function, and the
denominator is the sum of all the probabilities in the previous pmf.

Once a valid pmf is generated the expected number of ARQ transmissions for a given
SNR point can be determined using

ARQMaz
ESNR[ARQ]: Z pSNR[ARQi]i (4-10)

i=1
where ARQ) 4. is the maximum number of HARQ transmissions allowed in the system.

Next, the percentage of the maximum throughput on the link can then be calculated

1 — FERgyr(MARQ)
Esyr[ARQ)]

MARQ is the highest ARQ from the FER Curve for that SNR point plus one except for

throughputsyr % = (4.11)

when the highest is equal to ARQ 4., in which case it is set equal to ARG prqz, which in
this system is 4the highest is 4. In these simulations, the simulation for any given FER
(outage) curve is stopped once the minimum FER is reached, so some SNR points will not
have results for all numbers of HARQ transmissions. Figures 5.1 and 5.2 show results for a

system that will be discussed in Section 5.2.
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Chapter 5

Relay to Destination Link

5.1 Modulation and Coding Schemes

The link from relay to destination, like the link from source to relay, is based on the
HSDPA standard that was described in Section 3.1. This link, though, operates over much
longer distances and over frequency-selective fading channels, like that described in Section
2.3.1. In order to counter the effects of the fading channel, HARQ is used on the relay
to destination link, which also adds time diversity to the system. If the first transmission
cannot be decoded by the destination, up to three retransmissions can be requested. The
four total transmissions are encoded slightly differently based on the incremental redundancy
(IR) operating mode. In IR mode, a different set of code bits are punctured during each
rate-matching process. Also, if 16-QAM modulation is used, the symbol-labeling map is
rearranged, which provides signal constellation diversity.

Since the link between relay and destination will have a long round-trip propagation time
for the feedback (ACK/NACK), the system will run several processes in parallel such as was
shown in Figure 3.4. The reference 25.101 [17] calls for six parallel processes, which would
be able to account for time in a system with 1500 km transmission distance. If the distance
would need to be increased, more HARQ processes could be used. The use of parallel HARQ
processes adds a high level of time diversity to the system by making the effective duration
of a single codeword very long, when retransmissions are taken into account. This also has

the added benefit of helping with long signal decorrelation times.
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# Physical Channels 5
Message Bits per TTI 3202 bits
Maximum Data Rate (With no HARQ Retransmissions) 1.601 Mbps
CRC Coded Bit Length 3226
# Code Blocks 1
Post Encoding and Rate Matching Turbo

Codeword Length (For Each Code Block) 9690 bits
Incremental Redundancy Buffer Size 9600 bits
# of Permanently Punctured Bits 90

# bits selected from IR Buffer

per transmission 4800 bits
Code Rate per Transmission F Code B]l\gs;z%; gﬁi?ﬁ;ﬂ% Baffer) 0.6671

Table 5.1: MCS 1 - H-Set 3 QPSK

# Physical Channels 4
Message Bits per TTI 4664 bits
Maximum Data Rate (With no HARQ Retransmissions) 2.332 Mbps
CRC Coded Bit Length 4688

# Code Blocks 1
Post Encoding and Rate Matching Turbo

Codeword Length (For Each Code Block) 14076 bits
Incremental Redundancy Buffer Size 9600 bits
# of Permanently Punctured Bits 44776

# bits selected from IR Buffer

per transmission 7680 bits
Code Rate per Transmission F Code B%szz;’(g; gﬁi’}i’;g}% Baffer) 0.6073

Table 5.2: MCS 2 - H-Set 3 16-QAM

In this thesis, four modulation and coding schemes (MCS) are simulated,which are from
the 25.101 [17] reference standard. In the 25.101 document they are named H-Set-3-QPSK,
H-Set-3-QAM, H-Set-6-QPSK, and H-Set-6-QAM. In this thesis they have been renamed
them MCS 1, MCS 2, MCS 3, and MCS 4, respectively. A description of these schemes are
found in Tables 5.1, 5.2, 5.3, and 5.4.
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# Physical Channels 10
Message Bits per T'TI 6438 bits
Maximum Data Rate (With no HARQ Retransmissions) 3.219 Mbps
CRC Coded Bit Length 6462
# Code Blocks 2
Post Encoding and Rate Matching Turbo
Codeword Length (For Each Code Block) 9705 bits
Incremental Redundancy Buffer Size 9600 bits
# of Permanently Punctured Bits 105
# bits selected from IR Buffer
per transmission 4800 bits
Code Rate per Transmission F Code B%jzz?(g; gﬁ’}i’;gﬁ; Baffe) 0.6706

Table 5.3: MCS 3 - H-Set 6 QPSK
# Physical Channels 8
Message Bits per TTI 9377 bits
Maximum Data Rate (With no HARQ Retransmissions) 4.689 Mbps
CRC Coded Bit Length 9401 (Padded with 1 bit)
# Code Blocks 2
Post Encoding and Rate Matching Turbo
Codeword Length (For Each Code Block) 14115 bits
Incremental Redundancy Buffer Size 9600 bits
# of Permanently Punctured Bits 4515
# bits selected from IR Buffer
per transmission 7680 bits
Code Rate per Transmission Message Bits per TT1 0.6105

Table 5.4: MCS 4 - H-Set 6 QAM
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5.2 Link Analysis

An example simulation was run using MCS 1 as described in Table 5.1, using the channel
condition parameters fy/R. = 0.1 (normalized frequency-selective bandwidth), 7o/Ts = 100
(normalized signal decorrelation time), and receiver configuration (Q = 3 antennas each
using a four fingered rake receiver using 14 log-MAP demodulation iterations. Since R, =
11(3.84) = 42.24 Mchips/sec (Barker Code Length * Original Chip Rate), and Ry = 240
kbaud, the frequency-selective bandwidth fy = 4.224 MHz, and the decorrelation time 7y =
417 psec. Even though the simulator keeps track of the BER, the FER is more relevant to
the HARQ system. This is due to the fact that the frame is retransmitted no matter how
many bit errors occur.

The FER for each HARQ transmission of MCS 1 over the specified fading channel is
illustrated in Figure 5.1. For comparison purposes, the IOP of these links were also sim-
ulated using the methods of Section 4.1, and is also shown. As can be seen in the figure,
energy efficiency is improved after each successive HARQ) transmission, but with diminishing
returns. This improvement is due to the fact that the effective code rate is being reduced.
IOP is also a good predictor of the actual system performance, usually being between 1 and
2 dB better than the FER of the actual turbo code.

Since there can be a variable number of HARQ transmissions, the data rate of the
system is also variable. One performance metric for the system is throughput, which is the
average number of bits per second that is sent over the link. This simulator also keeps track
of throughput, but using the methodology described in Section 4.2. Figure 5.2, shows the
throughput (in Mbps) of MCS 1 using the same channel parameters used to create Figure 5.1.
Throughput can be determined by simulating either the FER or IOP, where a retransmission
is performed whenever there is an information-outage. Using the IOP simulation is shown
again to be a good predictor of the actual turbo decoded results.

In order to analyze performance on all four MCS schemes over different channel conditions
and receiver configurations, many simulations had to be run. The different parameters that

were used in these simulations are:

e MCS Scheme : 1, 2, 3, and 4
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e # of Rake Fingers: 1, 2, 3, and 4
e +# of Receive Antennas: 1, 2, and 3
e Normalized Signal Decorrelation Times: 75/Ts = 100, 200, and 400
e Normalized Frequency-Selective Bandwidths: fo/R. = 0.05, 0.1, and 0.2

This list requires that 432 simulations are run, and since the runtime of simulations using
the turbo decoder run much slower it would be time prohibitive. Since the IOP simulations
are a good predictor of the FER simulation results and run much faster, IOP is used to
generate initial results. Once the initial results are generated, certain designs and be chosen
to be simulated using the turbo decoder in order to get more accurate results.

The 431 simulations were run using the IOP concept from Section 4.1, over two months
on eight computers. The main results of these simulations are shown on Figures 5.3, 5.4,
5.5, and 5.6. These figures show the expected frame rate of the video as a function of
SNR (Es/Ny), which is calculated by dividing the throughput by 160,000 (8 bits/byte * 20
kbytes/frame), since our average image size was assumed to be 20 kbytes.

The influence of the number of rake receiver fingers and the number of antennas is shown
in Figure 5.3. This simulation was run using MCS 1, with channel parameters normal-
ized frequency-selective bandwidth fy/R. = 0.1 and a normalized signal decorrelation time
70/Ts = 100. The rake receiver was compared to have between one and four fingers, on either
one or three receive antennas. As can be seen in Figure 5.3, there is a 6 dB gain for using
four fingers over one when using one antenna, and a 4 dB gain when using three antennas.
Also, when four fingers are used, there is a 5.5 dB gain when using three antennas over one.

The throughput of the four different MCS types are shown in Figure 5.4. The channel
configuration used for this simulation was a frequency-selective bandwidth fo/R. = 0.1,
and normalized signal decorrelation time 7y/7; = 100, with receiver configuration L = 4
fingered rake receiver, and () = 3 antennas. As can be seen in the Figure, MCS 3 and 4 are
generally more efficient than MCS 1 and 2, which also is seen in other channel conditions.
The efficiency increase can be attributed to MCSs 3 and 4 use of double the physical channels
as MCS 1 and 2, respectively. From this observation it is preferable to simulate MCSs 3 and
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Figure 5.5: Influence of Signal Decorrelation Time on System

4 over MCSs 1 and 2 without even performing the turbo decoding simulation. Also, from
this figure we can see that at low SNR MCS 3 is more efficient than MCS 4, except for a
small region —3 < FE,/Ny < —1 dB, while MCS 4 is preferable for F,/Ny > 3.5dB.

Figure 5.5 shows how the normalized signal decorrelation time affects the system. For
this system, the channel condition held constant was the normalized frequency-selective
bandwidth of fy/R. = 0.1, using L = 4 fingers for each rake receiver, and () = 3 antennas,
while the normalized signal decorrelation time was varied. The results for all four MCS
systems are shown for normalized decorrelation times 79/7s = {100,200,400}. With a
normalized decorrelation time of 400, the longest absolute decorrelation time 75 will be
1.67 msec, almost an entire TTI (2 msec). Even though the channel can produce longer
decorrelation times, the effect of these longer times will be reduced by using multiple HARQ

processes as in Figure 3.4. In Figure 3.4, the system uses 6 processes interleaved in a round-
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Figure 5.6: Influence of Frequency-Selective Bandwidth on System

robin, allowing the system to handle signal decorrelation times on the order of 10 msec.
Longer decorrelation times can be resisted even more by adding other HARQ processes, but
this will increase complexity and the latency of the system.

Figure 5.6 shows how the normalized frequency-selective bandwidth affects the system.
For this system, the channel condition parameter held constant was the normalized signal
decorrelation time 79/Ts; = 100, using L = 4 fingers for each rake receiver, and @) = 3
antennas, while the normalized frequency-selective bandwidth was varied. The results for
all four MCS systems are shown for normalized decorrelation times fo/R. = {0.05,0.1,0.2}.
This figure shows that as fo/R. is increased, so is performance. The gain from increasing
fo/ R from 0.05 to 0.1 is about 2 dB, while the increase from 0.1 to 0.2 is about 0.5 dB. The
large gain, from fy/R. = 0.05 to fo/R. = 0.1, is due to the channel becoming less dispersive

as the frequency-selective bandwidth becomes larger. As can be seen from Equation 2.33
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Figure 5.7: Comparison of IOP and log-MAP Decoded system throughputs

in Section 2.3.1, the number of taps K = 16 in a half chip spaced delay line model when
fo/R. = 0.1, while K = 31 when fy/R, = 0.05. When using a four fingered rake receiver,
most of the energy in the fy/R., = 0.1 case can be captured, while a significant amount of
the energy in the fo/R. = 0.05 case is received after delay 7 = 37,, making it not obtainable
by the rake receiver. More fingers would always be used to counter for narrower frequency-
selective bandwidths, but may required a longer spreading code.

Figures 5.3 to 5.6 show the different effects that the conditions of the channel (signal
deccorelation time, and frequency-selective bandwidth), and receiver configurations (# of
antennas, # fingers on rake receiver, MCS scheme) have on the system. These results
were generated using the IOP concept, but simulations of actual turbo decoding should be
performed once sets of parameters are identified.

A comparison of the throughput (in fps), using IOP and actual turbo coding with 14
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iterations of log-MAP decoding, is shown in Figure 5.7. Curves were generated for all four
MCS schemes, with normalized frequency-selectivity fy/R. = 0.1, normalized decorrelation
time 79/Ts = 100, L = 4 fingered rake receiver, and () = 3 antennas. The performance of
the IOP simulation is shown to be approximately 1 to 2 dB better than that simulated by
the turbo code.

For the actual turbo decoded system MCS 3 is the best system for all SNRs lower than
Es/Ny = 4 dB, which differs from the observation of only the IOP curves as discussed
previously. This shows that while information-outage is a good predictor of performance, it

is important to simulate the actual turbo decoded system.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

From the previous simulation results, recommendations for link configurations can be
made. First, it is suggested that MCS 3 be used for the relay to destination link, as it
appears to be the best link for 20 fps or less according to Figure 5.7. Since the link from
relay to destination will be limited to 20 fps, the need for a faster link from source to relay
is unnecessary. It is recommended to use link 3 (20 fps using 16-QAM) when conditions are
well enough, and link 1 (10fps using QPSK) when conditions are poorer.

This proposed configuration for link and receiver appears to be resistant to many condi-
tions on the relay to destination link. The use of H-Set 6 (6 interleaved HARQ processes,
with 4 possible transmissions) allows for a maximum decorrelation time of about (4)(6)(2
msec) = 48 msec (max # transmissions)(# interleaved processes)(TTI duration). If the
number of interleaved processes are increased this time can be increased. This combined
with the secondary spreading of the Barker code, four-finger rake receiver, and three desti-
nation antennas allows a frequency-selective bandwidth of approximately one-tenth of the
signal bandwidth to be handled. Narrower bandwidths can be handled using more fingers
on the rake receiver, but the number of fingers is limited by the length of the secondary
spreading code (11 due to use of the Barker-11 code). A longer spreading code could also be

used, which would enable the increase in the maximum number of fingers on the receiver.
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Figure 6.1: Histogram of Bit Errors for 1 million turbo codewords over AWGN channel

6.2 Suggestions for Future Work

As can be seen in Figure 1.1, some of the original signal sent from source to relay will
end up at the destination. This signal will be very weak in comparison to the information
sent from the relay to the destination. Some reasons for this are that the original intent of
this signal was to travel over a much shorter distance to the relay, which will give it a much
larger free space path loss. Also, the antenna on the source is most likely pointed toward
the relay making the antennas at the destination off the boresight of the source antennas.
Since the antennas at the destination most likely have a higher gain than the antennas on
the relay, some of this loss can be compensated for.

Methods of exploiting this extra information, would help to improve the overall perfor-
mance of the system. One method that may be useful would be to decode the information

from the source and relay and perform some type of combining of the data. Also in our
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simulations, when an error did occur the most common number of bit errors were four. A
histogram showing the number of errors can be seen in Figure 6.1. The system may then
be able to take the lowest four LLRs of the data and flip the bits that correspond to those
LLRs, in order to increase performance. This process could also be performed at the relay

though, and not necessarily at the destination.
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