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ABSTRACT

A brief summary of the results obtained in research sponsored by the 

Naval Research Laboratory under Contract N00014-80-C-0802 is presented.

The research covered several problems in the area of spread-spectrum random- 

access communications for fading channels. The results are applicable to 

the Navy’s intra-task-force communications network.
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SUMMARY OF RESEARCH RESULTS

Our work in spread-spectrum communications that was supported by this 

contract focused on the performance of slow-frequency-hopped (SFH) spread- 

spectrum communications. A variety of channel models were considered to 

reflect varying degrees of amplitude fading and selectivity. Of primary 

interest is the class of slow, nonselective, Rician fading channels in 

which there are two components of the received signal: a non-faded or

direct-path component and a faded or scatter component. The scatter com

ponent is assumed to undergo slow, nonselective, Rayleigh fading in this 

model, so that the Rayleigh fading channel is obtained as a special case 

(no direct-path component). In addition to the received signal, additive 

white Gaussian noise is present at the front end of the receiver, so the 

non-faded additive white Gaussian noise channel is also obtained as a 

special case of the general model (no scatter component). The effects of 

selective fading were also considered, especially frequency-selectivity 

which produces intersymbol interference. Details of the various channel 

models are described in Appendix A.

Several bounds and approximations for the bit error probability in a 

SFH spread-spectrum multiple-access system are presented in Appendix A and 
in [1]—[3]. Both FSK and DPSK data modulation and selective and nonselec

tive fading channels are considered. These results are very general in 
nature and can be adapted to a wide range of systems and channel models.

A specific problem that can arise in a system like the intra-task- 

force (ITF) communications network is due to the possibility of a specular 

multipath signal with a relative delay greater than the dwell time of the 

frequency hopper. This problem, although not addressed specifically in
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Appendix A, can be analyzed by the results developed in our research. The 

results of Appendix A are applicable to a system in which there are K simul

taneous SFH signals. If there are Kf simultaneous transmitters and if each 

signal produces one nonselective Rician faded component plus one specular 

multipath component, then there are K=2K' interfering signals. If the 

relative delay of the specular multipath component exceeds the dwell time 

then the bounds and approximations given in Appendix A apply with K = 2 K ’.

In such a system there are K-l = 2K’-1 interfering signals for each receiver.
Application of the results of Appendix A to such a system is illustrated 

by the data of Table 1. The only reason for presenting numerical results for 

this special situation is that perhaps larger values of K are of interest 

than for a system without the specular multipath components. The results of 

Table 1 are for the same model as described in Appendix A, and the notation 

is exactly as used in Table 2 of Appendix A. The approximation P~ given invj
Table 1 is a new result (obtained after [4] was submitted for publication), 

which we believe to be slightly more accurate than the approximation pj^ 

described in Appendix A. Both and p !^ are for channels with fading 

which is slow relative to the hopping rate (case (i) described on page 10 

of Appendix A).

The methods and results developed in Appendix A can also be applied to 
determine the probability of error in a coded SFH spread-spectrum system.

For a fully interleaved system these results can be applied directly. This 

is because the interleaving breaks up the error bursts due to the fading 

and multiple access interference, in which case the bit error probability 

is the performance measure of interest. Thus, for interleaved systems the 

performance of various codes can be determined from the results given in 

Appendix A and published data on the performance of the codes for the binary 

memoryless channel.



3

Table 1. Bit error probability for nonselective Rayleigh 
fading and specular multipath.

II H* O /-N = 5), q = 100, and N, : b = 10
&/Nq (dB) PL PG PA pu

6 0.161 0.175 0.182 0.199
8 0.118 0.131 0.137 0.156

10 0.085 0.096 0.102 0.123
12 0.060 0.071 0.076 0.098
15 0.036 0.046 0.051 0.074
20 0.018 0.028 0.032 0.056oo 0.009 0.019 0.023 0.047

K = 20 (K* - 10), q - 100, and N, b = 10
&/Nq (dB) ?L PG PA pu

6 0.153 0.187 0.193 0.230
8 0.115 0.145 0.151 0.192
10 0.085 0.113 0.118 0.162
12 0.063 0.089 0.093 0.140
15 0.042 0.066 0.069 0.119
20 0.025 0.049 0.052 0.103OO 0.018 0.041 0.043 0.095

K = 50 (K1 =25), q = 250, and N, b = 10
5/Nq (dB) PL PG PA pu

6 0.157 0.188 0.191 0.227
8 0.119 0.147 0.149 0.189
10 0.088 0.114 0.116 0.158
12 0.066 0.090 0.091 0.136
15 0.044 0.067 0.068 0.114
20 0.028 0.050 0.050 0.098OO 0.020 0.043 0.041 0.090

i 2. Bit error probabilities for uncoded and coded SFH
systems with nonselective Rayleigh fading.
(K - 15, q - 1000, and Nb = 40)

S/Nq (dB) PA pb
-2 -114 4.OX 10 * 1.1X 10

16 2.7X10-2 1.1X 10“f
18 1.9 X 10 n 1.7 X 10 “
20 1.3X10-2 4.0X 10~l*
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For a system without full interleaving the bit errors are not indepen

dent and thus the bit error probability does not completely describe the 

channel performance. However, we have evaluated the performance of certain 

Reed-Solomon codes with partial interleaving, and typical results are given 

in Table 2. The approximation P^ to the probability of error for an uncoded 

system is compared with the bit error probability P^ for a system which uses 

a (255,127) Reed-Solomon code with partial interleaving. Notice that for 

values of I/Nq greater than 18 dB, the coded system gives several orders 

of magnitude improvement in the bit error rate. Further work on the perfor

mance of coded SFH spread-spectrum systems is in progress (primarily under 
other sponsorship).

The data in Table 2 gives a comparison between the performance of uncoded 

and Reed-Solomon coded systems. Another interesting comparison is the perfor

mance of a Reed-Solomon coded SFH system for two different sets of assumptions 

on the frequency hopping and interleaving: (i) no frequency hopping and no

interleaving vs. (ii) frequency hopping with interleaving of the code symbols. 

The channel model that we consider for this comparison is the very slow, 

nonselective Rayleigh fading channel. In case (i) we assume that the instan

taneous power in the received signal is constant for the duration of the code 

word, but in case (ii) the instantaneous power is constant for the duration 
of a code symbol but (because of hopping and interleaving) the power levels 

for different symbols in the same code word are independent. In Table 3 

numerical values for the block error probability are presented for the (31,15) 

and (255,127) Reed-Solomon codes. The probabilities P^^ and pf,"^ are the 

block error probabilities for cases (i) and (ii), respectively. The data 

is for a system with only one transmitter (K=l) in order to isolate the 

effects of fading from the effects of multiple-access interference.
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Table

a)

b)

3. Block error 
system with

probabilities for a coded SFH 
nonselective Rayleigh fading.

(31,15) Reed Solomon code

2/Nq (dB) p(i)
E

p(ii)
E

20
22
24
26
30

8.29X 10~^ 
5.31X 10~i 
3.39X 10  ̂
2.15 X 10  ̂
8.63X 10

8.44X 10"^ 
2.50 X 10""o 
5.92x10 I 
1 . 2 1  x 1 0 ^  
3.97X 10

(255,127) Reed Solomon code

ä/NQ (dB) p(ii)
E

15
16
17
18
19
20

2.85X 10 
2.34X 10
1.90X 10 
1.55 X 10' 
1.25X 10 
1.01X 10

8.86 X 10 
1.50X 10 
3.52X 10 
1.53X 10 
1.65X 10 
5.62X 10
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A significant area of progress in the random-access area under this 

contract has been the design and analysis of retransmission control poli

cies for a random-access broadcast channel [5]-[7], [9] . The policies can 

be implemented in a distributed fashion. Analysis of delay and throughput 

is provided in these papers using the concept of local Poisson approxima

tion which is introduced in these papers.

Versions of the recursive retransmission control policies which are 

relatively insensitive to the traffic statistics, and modifications which 

reduce feedback information requirements are also reported in [5] .

It is proven in [ 7] that the retransmission policies in [5] provide 

stable throughput at rates of up to e  ̂packets per slot. Moreover, a 

general methodology for proving such stability results is provided in [7] 

and the methods are also applied in [7] to prove a strong stability property 

of G/G/l queues which is of general interest for queueing network studies.

Even though the papers [5]—[7], [9] do not deal explicitly with a 

spread-spectrum system, they were developed for spread-spectrum applica

tions because these papers assume that channel feedback information is very 

limited, which is characteristic of spread-spectrum systems. Indeed, in 

the appendices of this report the traffic intensity vs. packet error prob

ability tradeoff (Appendix B) and a possible implementation of recursive 

retransmission procedures as in [5] (Appendix C) are each given in the 

context of a FH-system such as the Navy’s intra-task-force communications 
network.

In Appendix D some results from [9] are summarized. In this paper 

the delay/throughput tradeoff of a random-access system is studied under 

the assumption of a very limited amount of feedback. It is found that
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there is a potential for instabilities if the feedback information is 
insufficient.

In [8] we developed a numerical method for finding the invariant 

distribution for a class of Markov processes. The method is useful for 

performance evaluation of certain random access strategies, as shown in 

[10]. In Appendix E the method of [8] is outlined and some of the results
from [10] are summarized.
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I. INTRODUCTION
Several communications systems currently being developed have the 

following common features. Frequency-hopped spread-spectrum modulation is 

employed with a hopping rate not greater than the data rate. Multiple-access 

capability is required, because with high probability two or more terminals 

will be transmitting simultaneously. During transmission the spread-spectrum 
signals encounter severe fading, which causes reduced signal strength and may 

produce intersymbol interference or other dispersive effects. These systems 
are described in current terminology as slow-frequency-hopped (SFH) spread- 
spectrum multiple-access (SSMA) communications systems with fading channels.

In this paper we present bounds and approximations for the average 

probability of error for SFH/SSMA communications over fading channels. Two 

important classes of fading models are considered: the class of nonselective

Rician fading channels--which includes the additive white Gaussian noise 

channel and the nonselective Rayleigh fading channel as special cases--and the 

selective wide-sense-stationary uncorrelated-scattering fading channel. The 

data modulation is binary frequency-shift keying (FSK), but many of the results 
apply to differential phase-shift-keying (DPSK) as well. Noncoherent demodula

tion of the data is employed, partly because we do not require coherent frequency 

hopping and dehopping. The communications network is assumed to be asynchronous; 

that is, a given terminal makes no attempt to coordinate its transmissions with 
those of other terminals. This may be due to the lack of an accurate timing 

reference or because of the variation in propagation times among the different 

communication paths in the network. The point here is that even if the trans
mitters have a common clock they cannot adjust their transmission times to 
provide coordinated arrival times at all of the receivers in the network.
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In the analysis of SFH/SSMA systems there are two approaches to the 

modeling of the frequency hopping patterns: general random-process models may 

be employed or specific (deterministic) sets of hopping patterns may be con

sidered. The random-process models are often used in an attempt to match 

certain characteristics of extremely complex hopping patterns which have very 
long periods. Also random-process models serve as substitutes for deterministic 

models when the communications engineer is given little or no information about 

the structure of the hopping patterns to be used in the system. Both random 

patterns and a special class of deterministic patterns (based on Reed-Solomon 
codes) are considered in this paper.

The results obtained in this paper are bounds and approximations for the 

bit error probability. These results are useful for both uncoded FH/SSMA 
systems and fully-interleaved coded FH/SSMA systems. For coded systems which 

employ random-error-correcting codes, full interleaving is usually necessary for 
satisfactory performance. We have also obtained results (similar to those pre

sented in Section III) on the probability of error for FH/SSMA systems which 

employ certain burst-error-correcting codes and "partial interleaving", but this 
topic is beyond the scope of the present paper.

A brief outline of the paper is as follows. The model for the SFH/SSMA 

system is presented in Section II where our models for the various subsystems 

and signals are described. The effect of nonselective fading on the probability 
of error in a SFH/SSMA system is considered in Section III. A more precise 

analysis is given in Section IV for the special case in which the channel 
exhibits nonselective Rayleigh fading. Finally, selective fading is considered
in Section V.
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II. SYSTEM MODEL

The transmitter for the slow-frequency-hopped spread-spectrum signal 
is shown in Figure 1. There are K such transmitters in the spread-spectrum 

multiple-access system. The k-th data signal bk (t) is a sequence of 

positive and negative rectangular pulses of duration T. The amplitude of 

the X-th pulse for the k-th signal is denoted by (i.e., b, (t) = b ^

for JiT £ t < (X+1)T), and b^) ±3 either +1 or -1 for each k and j&. The

data signal bk (t) is the input to an FSK modulator, and the corresponding 
output is

ck(t) = cos{2iT[fc +bk(t)A]t + 9 k (t)} (1)

where A is one-half the spacing between the two FSK tones. The signal

0k (t) is the phase signal introduced by the FSK modulator; that is, if
(IOb g = m then 9, (t) = 9, for JIT £ t < (j£+l)T where 9. is the phase of

the tone at frequency f + mA for m = +1 or m = -1.

The FSK signal is then frequency-hopped according to the k-th hopping 
pattern fk (t) which is derived from a sequence (f^ = ..., f f ̂
according to

fk (t) = fjk), jTh S t <  (j+l)Th . (2)

The parameter T^ is the time between hops (also called the dwell time).

For slow-frequency-hopping T^ is an integer multiple of T. The frequencies
(k)f) are all from the set S - 1 £ n £ q) which is ordered such that

<  vn+]_ f°r each n. Let A' be the minimum spacing between the frequencies 

in the set S, and let ■ T^/T be the number of data bits per hop.
The band-pass filter shown in Figure 1 removes unwanted frequency 

components present at the output of the multiplier. The signal at the



I--------------------------------------------1

Frequency Hopper

Figure 1. Transmitter Model.
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output of the filter is

sk (t) = 72P cos[2TTfk (t)t + cpk (t)], (3)

where

\(t) = fc + bk (t)A + fk (t) (4)

and

^k(t) = 9k (t) + ak (t)* (5)

The signal c*k (t) represents the phase shifts introduced by the frequency

hopper as it switches from one frequency to another. Accordingly, <*k (t)

is constant on the time intervals that f. (t) is constant. Letk J
denote the value of c*k (t) on the interval [jT^, (j+l)!^).

The quantity P that appears in (3) is the power of the k-th signal 

at the receiver in the absence of fading. In order to account for fading, 
we will multiply P by a suitable factor to obtain the average power in 

the received signal. For simplicity we have assumed that the signals 

sk (t) all have the same power. However, as we will point out later, we 

obtain error probability bounds that are valid even if the power levels 
are not equal.

Since we are considering an asynchronous multiple-access system, we 

allow an arbitrary time delay rk for the k-th communication link (l£k£K). 
Thus the received signals are sk (t-Tk)> 1 £ k £ K. For the random hopping 
patterns that will be considered in subsequent sections, it is sufficient 
to consider time delays modulo T^. In order to allow for the possibility 

of deterministic periodic hopping patterns, we consider time delays modulo 

NT^ where N is the period of the patterns for deterministic hopping 

patterns or N= 1 for random hopping patterns. Thus we may restrict
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attention to time delays in the range 0 S Similarly we are

only concerned with phase angles modulo 2tt, so we may restrict attention 
to phase angles in the interval [0,2tt] .

The analysis presented in this paper does not account for adjacent 

channel interference in the frequency-hopping system or for interference 

between the two FSK tones of a given signal. Instead we are primarily 

concerned with multiple-access interference and the effects of fading such 
as intersymbol interference and reduced signal strength. In order to 

focus on multiple-access interference and fading, we made certain simpli

fying assumptions concerning the frequency spacings A and A'. It is enough 
for our purposes to have

A' »  A + T“1 (6a)
and

A »  T“1. (6b)

However, it is possible to relax these conditions somewhat, expecially for 

nonselective fading. For example if the fading is nonselective then it is 

sufficient to replace the constraint A »  t "1 by the condition A = m/2T 
positive integer m (the case m = l  is of greatest interest). In the 

absence of time-selective fading our results are valid if A' is about 

3 (A + T 1) or larger, and they are likely to be fairly good approximations 
even if A' « 2 (A + T )̂. However, frequency dispersion can expand the 

signal bandwidths so that A' »  A + T-1 is needed for time-selective 
fading.

Under our assumptions, the frequency band that contains the signals
s, (t) is approximately the band from f + v. • A to f + v  + A. The K c 1 c q
center of this band is at frequency f' * f + J(v -v..), The (one-sided)C C C[ i.
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bandwidth W is approximately + 2A. Under our assumptions
W « vq - Vi ^ (q-l)A' .

In the absence of fading and noise the received signal is given by

K
S(t) = z S (t - Tt). (7)

k=l K

We focus our attention on the receiver for the i-th signal, and in doing

so we may select the time reference such that j. = 0. The variables rl k
are then delays (modulo NT^) relative to this time reference.

The receiver for the i-th signal is shown in Figure 2. The received

signal s(t), which is a faded version of s(t), is the input to the first

band-pass filter. This filter has center frequency approximately f’ and

bandwidth approximately W so s(t) is passed without distortion. This

filter is followed by the i-th dehopper which is synchronized in frequency
and time to the i-th frequency-hopping signal f^t). The dehopper

introduces a phase signal (3̂ (t) which is analogous to the phase signal

a^Ct) introduced by the frequency hopper. The phase signal p (t) is

constant during the time intervals between hops (i.e., when f (t) is

constant). The constant value of p.(t) for jT, £ t < (i+l)T, is denoted byi n  h J
8 (1)

The time delays, phase angles, and data symbols are modeled as 
mutually independent random variables each of which is uniformly distributed 
on the appropriate set (cf. [4] or [6]). The random time delays are the 

random variables t *̂ The random phase angles that are of primary interest 

are ®k,mJ * and An feature of our model for asynchronous
spread-spectrum multiple-access systems is that addition of phase angles 

is modulo-2rr addition. This feature is critical to our assertions concerning



r

L
Binary FSK Demodulator

Figure 2. Receiver Model.
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the distributions and the statistical independence of the phase angles (the 
basis for these assertions is given on pp. 159-160 of [6]).

The output of the dehopper is then passed through a band-pass filter 

which is designed to remove certain unwanted signals such as the double

frequency components of the i-th signal itself, the sum and difference 

frequency components due to the other K-l signals (except, of course, those 
that happen to be at the same frequency as the i-th signal), and the 

thermal noise that is outside the frequency band occupied by the i-th 

signal. The bandwidth B of this band-pass filter is less than A 1 but 

usually larger than 2 (A + t ’1). If (A + T*1) «  B < A' then the thermal 

noise present at the output of the band-pass filter which follows the 

dehopper has a bandwidth larger than that of the FSK demodulator. This 
simplifies the analysis of the demodulator.

As shown in Figure 2 the FSK demodulator has two branches. Each branch 
~2forms a statistic R where m = 1 corresponds to the upper branch and m = -l 

corresponds to the lower branch. Each of these two branches has two 

components. In the in-phase component the signal is multiplied by 

cos[2rr(fc + mA)t], and the quadrature component it is multiplied by 
sin[2TT(fc + mA)t].

Consider the reception of the data bit b ^ .  The outputs of the
Xj

in-phase components of the two branches are given by

U+1)T
(8)

for m = + 1, where rd (t) is the output of the band-pass filter which

follows the i-th dehopper (i.e., rd (t) is the input to the i-th FSK
demodulator). Notice that in general Z depends on both i and i.c ,m
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However, if the random hopping patterns are stationary and identically
distributed and the fading process is stationary and not frequency

selective, then the distribution of the random variable Z will not dependc,m r
on either i or i. In case the hopping patterns are deterministic or the
fading is frequency selective then we provide upper bounds on the

probability of error which are independent of i and i. The outputs of

the quadrature components of the two branches are denoted by Z fors,m
m = + 1. The random variables Z , which are defined by (8) with — s,m j \ /

cos[•] replaced by sin[*], have the same properties as Zc ,m
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III. PERFORMANCE OF FH/SSMA SYSTEM WITH NONSELECTIVE FADING

The channels considered in this section are the nonselective slow- 

fading channels. For the frequency-hopped spread-spectrum system described 
in the previous section this means that the signal at the input to the 

first band-pass filter in the i-th receiver (see Figure 2) is

K
r(t) = n(t) + E y, (t-j,), (9)

k=l * *

where for XT £ t < (X+1)T the signal yk (t) Is given by

yk (t) = V2P A^k) cos[2TTfk (t)t+ipk (t) 00 ( 10)

The thermal noise n(t) is white Gaussian noise with spectral density 

^Nq . Notice from comparisons of (9) and (10) with (7) and (3), respectively, 

that yk (t) is a faded version of sk (t) and,in the absence of noise,r(t) is 
s(t) = 2k_^ (t - t which is a faded version of s(t).

The amplitude of the fading signal yk (t) during the time interval
(k)XT £ t < (X+1)T is represented by a nonnegative random variable A. , andX/

the phase shift due to the fading is denoted by $;■ . In this section thez
only assumption that we make concerning the signal amplitudes is that they
are constant during the data bit interval. The sequence of amplitudes
/ A 00 \  A 00 A 00 A 00 , . ,(Â  ) = ...,A_^ , Aq , A£ , ... may be any stationary random sequence.
In particular we place no restrictions on the statistical dependence of

amplitudes in different data bit intervals. Consider the set

{A^k  ̂: jN^ £ X < (j+l)N^} of amplitudes for the data bits that are

transmitted during the j-th hopping interval [jT^, (j+l)Tk). This interval
nocontains the data bits b^ ' for jN^ £ X <  (j+l)N^. Among the cases of



10

Ck) GOinterest are the two extreme cases (i) A; = A v J for all i and m in theZ m
Ck) Ck)same hopping interval and (ii) A^ and A^ ' are independent if i ± m 

but l and m are in the same hopping interval. Case (i) corresponds a 

system with no interleaving and a channel with slow fading relative to the 

hopping rate. An example of case (ii) arises in a system which is fully 

interleaved (e.g. if a random-error-correcting code is to be employed). 

Although these are the two specific cases of greatest interest, there is 

no need to restrict attention to such special cases in this section. 

Similarly, we impose no restrictions on the phase sequence ); allXi
that is required is a constant value for the phase during the data bit 

intervals. Notice from (1)- (5) that for iT i t < (X+1)T the phase of the 
signal in (10) is given by

®,(k) = 9,i k,m + “j
00 $ 0 0J& * ( 11)

where j is the integer part of X/N^. Under quite general conditions the 
Ck)phase ' is uniformly distributed on [0,2tt] because the addition in (11)ii

is modulo-2rr. For example, it is enough to assume that one of the phase 

angles which appears on the right-hand side of (11) is uniformly distributed 
and that they are mutually independent (see pp. 159-160 of [6] for the 
rationale for this statement).

There are two different phenomena which contributed to errors in the 
system under consideration. First, even in the absence of noise and fading, 

errors may occur in a frequency-hopped spread-spectrum multiple-access 
system when a signal is hopped to a frequency slot that is occupied by 

another signal. Whenever two different signals simultaneously occupy one 

frequency slot we say a hit occurs. Second, even in the absence of hits, 
errors may occur due to the fading and additive noise. The first step in
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analyzing the overall probability of error is to evaluate the probability 

of a hit for various types of hopping patterns.

A. Probability of a Hit

Consider as before the i-th receiver during reception of the 4-th 

data bit. For a nonselective fading channel we say that a hit from the 

k-th signal occurs during the 4-th data bit if

V ' - V  ■ fi (t> (12)

for at least one value of t in the 4-th data bit interval [4T,(4+1)T).

As pointed out in Section II, we can let N = 1 in considering stationary 

random hopping patterns. It follows that the probability ̂  ; of a hit 
from the k-th signal during the 4-th data bit interval does not depend
on 4 for such patterns. If the K hopping patterns { (f ) : 1 £ k £ k}

(k)are also mutually independent and identically distributed then 9^ does 

not depend on k either, and hence we denote it by 9 for such patterns.

We first consider two different models for stationary random hopping

patterns and give the value of 9 for each case.
(k)Suppose the random process (f) ) is a stationary Markov process with

transition probabilities given by

P(f?° = V lf?° - v ) - (q-1)'1 (13)v j+1 n1 j r

for 1 :£ n £ q, l £ r £ q ,  and n i r. It follows that for these patterns

p(fj + i = fj(k)) = 0 (14)

and hence
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9 “ i (1 + • (15)

(k)Because of (13) the process (fj- ;) is a random process with first-order 

distribution given by

P(f ik) - V ) - q'1, 1 S n S q.\ j ir n ^ ( 16)

If instead of (13) we consider random hopping patterns for which f ;(k)j+1(k) (k)is independent of fj1 and the distribution of fj* ' is given by (16) for 

each j, then (14) should be replaced by

= f{k)) = q”2 , (17)

and thus the probability of a hit is

(18)

Notice that

9*\<1 + %> (19)

and if q is large then

9" \ v * % (20)

(cf. equation (15)). Thus for large q these memoryless hopping patterns 
give approximately the same probability of a hit as the first-order Markov
patterns.
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In general for a set of deterministic hopping patterns the probability 

' depends on both k and l. One set of deterministic hopping patterns that 
has very good properties is derived from a Reed-Solomon code, so we refer to 

it as a set of Reed-Solomon (RS) patterns [7]. Given a prime number q of 
frequency slots, the particular set of RS patterns of interest here consists 

of N - q-1 sequences of period N (of course we can always choose a subset if 

fewer patterns are needed). Each sequence is nonrepeating; 

that is, for each sequence (f^), 6(fj,fn) = 0 for n ^ j and 0 ^  n ^  N-l, 

where

u = v

u + v . (21)

The property of RS patterns that is of primary importance here is that for
/jC(k)N , /£(iKany two patterns (f̂  ) and (f^ ),

N"1 ... ...
E 6(fW , f ) ' ) < l  (22)
n=0 n 2

s .

for each j. Property (22) is actually valid for any set of nonrepeating 

patterns.

Since is uniform on [0,NT^] for k ^ i, then it follows from (22) that

p(k)
jt <  9 =Th + T NTh = 1 A  <l + i? (23)

(k)Actually (22) implies the stronger statement that either ̂  = 0 or
Since the number of frequency slots q is larger than the0 ( k )  «  

l

: ( k )period N = q-1, then it is possible to choose the hopping pattern (f^ )

such that s o for N, different values of l in the range 0 < l < NN, .i b b
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Notice that for large q

9 -  \ <1 + ^ >  (24> 

is a good approximation for the upper bound (cf. (15) and (20)).

Of primary interest for our subsequent analysis is the probability
A
9^ of one or more hits from the K-l signals (corresponding to k ^ i) during

A
the X-th data bit interval. For stationary random patterns 9^ does not

Adepend on l so we denote it by 9. If the patterns are also mutually 

independent and identically distributed then

9 = 1 - (1 -•l?)K"1 , (25)

where 9 is the probability of a hit from a given signal. For the first-order 

Markov patterns (25) and (15) imply

9 = 1 - £l - i (l+^-)}K'1 . (26)q «b

If the patterns are sequences of independent random variables (i.e. 
memoryless patterns) satisfying (16) then

9 = 1 - Cl - £[l+^-(l-h]}K'X • (27)q iNb q

Next we consider the probability of one or more hits in the A-th 

data bit interval for deterministic patterns. Since the random variables 

t ^, k ^ i, are mutually independent, then for any deterministic hopping 
patterns

9.= 1- (28)



15

For RS patterns (23) implies

5  $  = 1 -  [ 1 - 0  ]K_1 -  1 -  [1 -  ^ r r  ( l + 5 - ) } K' 1 . (29)
b

Awhere the symbol 9 is used to denote an upper bound. Notice from (27) and 
(29) that for large q

1 - £l - i(l + i-)}K_1 (30)q iNb

for the sequences of independent random elements and the RS sequences.

Notice from (26) that the expression given in (30) is the exact value of 9 
for the first-order Markov patterns.

B . Bounds and Approximations for the Probability of Error

For a nonselective fading channel the bit error probability P ine
a slow-frequency-hopped spread-spectrum multiple-access communications system 
can be written as

Pe,X * V 1 -*1> + *l,t 9% (31)

where Pq is the conditional probability of error for the X-th bit given that 

there are no hits and P^ ^ is the conditional probability of error for the 

X-th data bit given there is at least one hit. Notice that Pq does not 

depend on X. In general P^ ^ depends on X but, as will be seen from the 

numerical results, it is sufficient for many purposes to use the bounds
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Recall that for stationary random hopping patterns &  ̂ does not depend
A ^on i (and hence it is denoted by £>) . For RS patterns ^  depends on Ji but its 

*upper bound given by (29) does not. Hence for all of these patterns we 

have the lower bound

Pe)jt* PL = V 1 ' ^  (32>

and the upper bound

Pe,i£ P u ‘ PL + ^  = P0 + ( % - P0>^ (33)

where £ is given by (26), (27), or (29), depending on which type of hopping 

patterns are employed. The lower bound is the same as we previously presented 

in [5], but the upper bound of (33) is a slight improvement of the upper 

bound presented in [5].
It is tempting to use P ^ Pn in place of (32), and we certainlye,x u

believe this tighter lower bound to be valid for independent time delays, 

data streams, and hopping patterns. Under these conditions it is 
intuitively clear that multiple-access interference cannot decrease the 
average probability of error. However, the lower bound of (32) has the 

advantage that it holds under more general conditions (such as for dependent 

time delays, data streams, and hopping patterns).
The bounds given in (32) and (33) are valid even if the power levels are 

not the same for the various signals or the hopping patterns are statistically 

dependent. As might be expected, the imposition of additional restrictions 

on the system leads to more precise results. In Section IV we present such 

results for a more restrictive channel model. However, even with the full 
generality of the nonselective fading channel model considered in this 

section, we can improve the lower bound and obtain a useful approximation 

if we consider equal power signals and add certain constraints on the
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hopping patterns and the binary data streams. The hopping patterns are 

assumed to be stationary, mutually independent, identically distributed random 

patterns, and the data sequences are stationary, memoryless, independent
norandom sequences with distribution given by P(b^ = m) = \ for m = +l and m=-l.

The lower bound can be improved for such systems by providing a nonzero
A

lower bound for the term ^ of (31). One such bound is obtained as follows.

Consider the conditional probability of error in the 4-th data bit given a 

"full" hit from the k-th signal (i.e., given that (12) holds for all t in 

[i-T, (X+1)T)) and given the k-th signal transmits -b^^ for the two consecutive 

bit intervals of interest. This conditional probability of error is equal to %. 
The conditional probability of a "full" hit (given a hit has occurred) is not 
smaller than (N^-l)/(N^ +1), and the probability of two consecutive transmissions 
of a particular tone is %. Finally, we use the fact that (25) implies

* (K-l)i>(l-<?)K*2,

which is just the statement that the probability of one or more hits is not less 
than the probability of exactly one hit. From the above we conclude that

( V 15 K-2
p i . A *  8(5^1) <K-i>*a-*>K 2  >

so that the improved lower bound is
~ A (Nh*l) V ?

Pe,i2 P L = PL + - 5 ( ^ ) ( K-1^ 1 - ^ (34)

We use tilde (~ ) to denote bounds and approximations which are valid for the 

restricted class of systems only (i.e., equal power signals, memoryless 

independent data sequences, independent hopping patterns).
An approximation which is valid under the same conditions is
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pe  ̂~ PA = pL + % (%+p 0)(K-1)6>(1 -<?)K"2 . (35)

This approximation is very accurate whenever q/K is large because it is 

based on the assumption that the probability of a multiple hit (i.e. hits 

from two or more signals in a given data bit interval) is negligibly small 

in comparison to the probability of a hit from only one signal.

Comparisons of the bounds and the approximation are given in Table 1 for 

various values of Pq , K, q, and N^. The hopping patterns are the first-order 

Markov patterns for the data in Table 1, but in view of (30) the results 

would not be significantly different for the other patterns described above.

C . The Nonselective Rician Fading Channel

The bounds and approximation given in (32)-(35) can be 
applied to any particular nonselective fading channel by substituting the 

appropriate expression for Pq in these results. In this section we consider 
the Rician nonselective fading model in which each transmitted signal results 

in a received signal that is the sum of a nonfaded version of the trans

mitted signal and a (nonselective) Rayleigh faded version of the transmitted 

signal. The difference in the propagation times for these two components 

is sufficiently small compared with the data bit duration T that the overall 

channel is nonselective. This model is discussed in [9] where the nonfaded 
component is called the fixed or specular component and the Rayleigh-faded 

component is called the random or scatter component. In some applications 
the nonfaded component arises from a direct path between the transmitter 

and the faded component arises from a reflection.



Table 1. Lower bounds, approximation, and upper bound 
on the probability of error for a FH/SSMA 
system.

a)

b)

c)

K = 15,

po

q = 1000, 

PL

and = 

PL

10

PA pu
0.100 0.098 0.100 0.103 0.106
0.050 0.049 0.051 0.053 0.057
0.030 0.030 0.031 0.034 0.037
0.020 0.020 0.021 0.024 0.027
0.010 0.010 0.011 0.014 0.017
0.005 0.005 0.006 0.009 0.013

K = 15, 

po

q = 100, 

PL

and = 5 

PL PA pu
0.100 0.084 0.096 0.128 0.162
0.050 0.042 0.054 0.081 0.120
0.030 0.025 0.037 0.063 0.103
0.020 0.017 0.029 0.054 0.095
0.010 0.008 0.020 0.045 0.086
0.005 0.004 0.016 0.041 0.082

K = 25, q = 250, and N, =
D

20
po PL PL PA PA
0.100 0.09Q 0.100 0.118 0.138
0.050 0.045 0.056 0.070 0.093
0.030 0.027 0.037 0.051 0.075
0.020 0.018 0.028 0.042 0.066
0.010 0.009 0.019 0.032 0.057
0.005 0.005 0.015 0.027 0.053
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The amplitude S of the sum of the two components of the received signal

is a random variable with a Rician distribution (see [8] or [9]). Since we

are interested in the conditional probability of error given there are no

hits, we can assume in all that follows that only the components of the

i-th signal are present at the i-th receiver (during the data bit interval

under consideration). Let p be the normalized bit energy to noise density 
2ratio, so that S p is the actual received energy to noise density ratio.

2Hence for noncoherent FSK the probability of error given S = a is \ exp(-%a p). 
For the Rician channel the density function f for the amplitude S isD

is the zero-th order modified Bessel function. The average probability of

fg(a) = (a/a2)exp[-%(a2 + a 2)/CT2}l0(a a/o2) (36)

for a > 0, where a represents the strength of the nonfaded component,
22a is the expected value of the strength of the faded component, and IQ

2

*j!ferror for noncoherent FSK is [9]

os

= exp[-^ g2p/(<T2p + l)} 
2(<72p +1)

(37)

If 5 denotes the average energy per bit in the received signal then

A = <S/NQ = (a2 + 2a2)p .

2Let v denote the ratio of the power in the faded component to the 

power in the unfaded component; that is, y2 = 2a2/a^

Corresponding results for binary DPSK are obtained by replacing p 
by 2p in (37).

(38)
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Then we can write

2
Pn = , (Y +2X) exp[-A/[v2A + 2(v2 + l)]} . (39)

Y A  + 2(y +1)

2 2 2 2Two limiting cases of interest are a = 0  and a =0. If cr = 0 (y =0)

then there is no faded component, and the channel is just an additive white
2Gaussian noise channel. In this case A = a p, and the probability of error 

reduces to

PQ = h exp[-^ A} . (40)

2 2 If a = 0  the channel is a nonselective Rayleigh fading channel, A = 2a p ,

and the probability of error is

P0 A + 2 (41)

An examination of (39) as a function of y shows that for y = 10 the

probability of error for Rician fading is nearly the same as for Rayleigh
-2 2fading. For example, if A is 12 dB then Pq is 1.81 X 10 for y = 0,

4.41 x 10”  ̂for y2 * 0-1» 4.53 x 10 ^ for y^ = 1-0, and 5.58 x 10  ̂for
2 2 - 2  y =10.0. The value of Pq for Rayleigh fading (y = ») is 5.60 x 10

In order to apply (36)-(41) to the slow-frequency-hopped spread-spectrum

multiple-access system, consider first the expressions (9) and (10) for the
00received signal. The amplitudes A, ' are random variables with a density 

function of the form given in (36). In general the parameters a and a may 

depend on i, in which case A and y also depend on i. The probability Pq 
then depends on i and is given by (37) with a and a replaced by and a^ 

or by (39) with y and A replaced by y^ and A^. It follows from (9) and (10) 
that the parameter p is given by p = PT/Nq .
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The next step is to substitute for Pq in (32)-(35) using the expressions

(37) or (39). If Pq depends on i the bounds of (32) and (33) are valid, but
of course they will also depend on i. Notice that if a and O' depend on i,

then the average power in the received signal also depends on i. That is,

the signals are not required to have equal power. The approximation given

in (35) is also valid even if Pq depends on i, provided that w an<*

o. »  o. for all k. k l
In Figure 3 the approximation P , which is given by (35) with Pq replaced

by the expression in (39), is shown as a function of A = <?/Nq for various values 
2of Y • For the data presented in Figure 3, the values of q> and o (and

hence y an<* A) do not depend on i. Additional numerical data can be obtained

from Table 1 by evaluating Pq from (37) or (39). Notice that for Rayleigh

fading with <?/Nq less than 20 dB the value of Pq is less than 0.01. From Table 1

we see that for P_ < 0.01, the value of PTT is always less than 2Pa and the value 0 U A
of P^ is always less than 2P^ for the values of K, q, and N^ considered in 
Table 1. For K = 15, q = 1000, and N^ = 10 we see that for Pq < 0.01, we

^ /v <v
always have PA —  1.2 P and P —  1.25 P . Thus, for Rayleigh fading or 

A Li U A
2Rician fading with Y ^ 1» the bounds and approximations given in this section 

are sufficiently accurate for the design of slow-frequency-hopped spread- 

spectrum multiple-access systems. Further evidence of this is given in the

next section.
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(K = 15, q = 1000, and = 10).
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IV. NONSELECTIVE RAYLEIGH FADING

In this section we present a more exact analysis of the effects of
multiple-access interference and nonselective fading for the special case

in which the fading is Rayleigh. This analysis provides a more accurate

approximation and a tighter upper bound for the probability of error than

is obtained by specializing the results of Section III to Rayleigh fading.

The system and channel models are as presented in Section III, and the

received signal is as given in (9) and (10).

Since we are considering only Rayleigh fading in the present section, the
(k)random amplitudes A^ have a Rayleigh distribution. The density functionXj

(k )for A^ is given by (36) with a = 0 and a - ct̂ . In general the second 
moments ^  = 2cr̂  are different for different signals. For the analysis 

presented in this section we assume that the fading for different signals 

is statistically independent. Stated precisely, the requirement is that
. . . ,Ap^ are mutually independent for any choice of X - , . . . .

The starting point for the analysis of the receiver is (8). Since in 

practice f »  T  ̂for a spread-spectrum system, the high frequency terms 
in the integrand of (8) may be ignored. The output of the integration at 

the sampling instant is then given by

Z * D + (P/8)^ T 2 I ^ ’1) + nc,m c,m c,m c,m (42)

The first term D is the component due to the signal s.(t).c ,m 1 i If the
(i)transmitted data bit is b^ for X = jN^ + p then

D =■ ( P / 8 ) W (1)5(bi(l),m)cos[9. m + <z$l) - 8 $l) + *.(l) ] .c ,m A A i j i u j  J A (43)

Since the component is the output of the integrator in the absence of 

multiple-access and channel noise, it is called the desired signal component.
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(k i)The multiple-access interference 1^ ^ ' from the k-th signal depends

upon the delay For convenience let j&k = Lt ^/T^J an<* ^  = L(Tk ’ ̂ kTh ^ T̂  *
(k i)where |_uj denotes the integer part of the real number u. Then I canc,m

be expressed as

Ic,m ) d(\ )[AL(^k+l)el(\ ,nk)cOS ̂  ^ k ’V  +AL(^k)e2 ^ k ,nk)cOS ^ k ,nk ^
(44)

for 0 < n^ < p. The following expressions define the various terms in (44). 
First we have

dCi) = J“* J (45)

for 0 ^  1 < N. Second, if L(n) = (j -i^)N^ + p-n then

(k)V* - u vu
and

e!(^n) - ô (bL(^l)>m)[Tk ‘ AV nT]/T- (46)

(47)e2(A,n) = 6 (b^^,m)[(n+l)T-Tk + XTh ]/T .

Finally, if b^) = m' and b ^ \  = m" thenL(n+1) L(n)

= V m ' + “ 5 - i ' P f ) - 2 n [ f c + m' i + f j<- ] lTk  +  i L ( L l )  (48>

and ijrM(X,n) is given by (48), with m' replaced by mM and L(n-Hl) replaced 

by L(n). For p < n^ < equation (44) is replaced by

^ » m  ) = d(Xk+1)[AL(ik+l)el(i'k,nk)cOS,ir ’ ̂ k +1,nk) + ̂ ( ^ ) e2 ^ k ,\ )coS*"(\ +1,nk)
(49)

The only remaining case is n^ = p for which we have

I(k,L) = dU k+l)^^+1)e1(Xk,p)coŝ  ' a k+l,p) + d U k) ^ )e2 U k,p)cos^"ak,p)c,m
(50)



24

(k) (k)Notice that if we set A£^^ = 1 and ^L(n) = ® t̂ ie a^ove expressions, 
then we obtain expressions for the in-phase components of the desired signal 

and the multiple-access interference for a system with an additive white 
Gaussian noise channel.

The remaining component of Z is the component N which is due toc,m r c,m
the channel noise process n(t). It is easy to show that N is a zero-meanc ,m
Gaussian random variable with variance NqT/16.

The quadrature components are defined by expressions which are analogous

to (42)-(44). In fact Z and N are defined in the same way as above, ands ,m s ,m ■' 7
the only change that must be made in the definitions of D and i^»i) iss,m s,m
that cos(«) should be replaced by -sin(») in (43), (44), (49) and (50).

We next consider the average probability of error where the average is 

computed with respect to the phase angles, time delays, and data symbols.

We start by assuming that the transmitted data bit is b.^ = +1 whereA.
X = jN^+p as before. Also the probabilities and expectations below are all
conditioned upon the data sequences (b^ ') and time delays t ^. For m = +1 or -1, 

2 2let a and <r be the variances of the in-phase and quadrature componentsO y HI S y in
Zc m and Zg m respectively. Since, as we discuss below, these components are 

Gaussian random variables with equal variances, the probability of error is 
given [8, p. 587] by

2 2 2 P = o i (o n + a _) e c,-lv c,l c,-!7
-1 (51)

for slow nonselective Rayleigh fading and noncoherent FSK detection. Under
the assumptions about the fading model that were made above, the desired
signal component D . is a zero-mean Gaussian random variable with variancec, 1

2(PT /16)|4,t. Also notice that Dc = 0.
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In order to proceed further in the analysis of the multiple-access

interference, we need to consider the nature of the statistical dependence
between and and between and for 4 and in the same

hopping interval. These are the random variables which describe the fading

during adjacent data bits. We consider the two extreme cases described in

Section III: (i) the fading is constant in the sense that A^k  ̂ = A^k  ̂ and
Z Z+l

(k) (k) whenever l and 4 + 1 are in the same hopping interval and (ii) the 

fading is independent for adjacent data bits in the same hopping interval.
Under our assumptions, the multiple-access interference component

(k i) 2I * is a zero-mean Gaussian random variable with variance % pL.a (k,i). For c ,ni k m
constant fading, as described by case (i) above, we have

— d(i,̂ ) e2 ^ k ,nk ^  (52)

for 0 < nk < p,

< ^ ( M >  = d(ik+l)te1 (ik,nk ) ] 2 + d(ik)[e2 a k ,nk ) ] 2 (53)

for n^ = p, and

CTn/k,i  ̂ = d^ k +1^ el ^ k ,rV  + e2 ^ k ,nk ^

for p < n^ < N^. For independent fading, as described by case (ii) above, 
we have

°m(k,i) = d( V C[el(\ >nk)]2+[e2a k irik)]25 (55)
2for 0 ^  n^ < p. If n^ = p, CTm (k,i) is given by (53), and for p < n^ < 

a2 (k,i) = d(ik+l)C[e1 (ik .nk ) ] 2 + [e2< W  ̂  . (56)
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Because of the independence of the fading for different signals, the random 
(k i)variables I v * are independent when conditioned on the data bits and time c ,m

delays. As a result

= (PT2/16){6(l,m)|j, + Z Mscr2(k,i)} + NnT/16 .c, m i K m  u

By symmetry we see that cr = a . Thus (51) can be written ass,m c,m

(57)

P =
(<S/N0)_1+ 2 

k^i
-1 2 „ M-k̂ i CT.ĵ Ck,!)

1 + 2( <?/N0)_1 + Z V ‘i1[a-l(k,i) + s2(k,i) 1
(58)

where <$ = H^PT is the energy per bit for the received signal (in the absence 
of multiple-access interference).

In order to evaluate the average probability of error P , we must average

the expression in (58) with respect to the time delays and data symbols. This

is of course a difficult computation since it involves the evaluation of K-l

dimensional integrals. However we can obtain an approximation P and an upperA
bound Py which are relatively easy to compute. This is accomplished by 
observing that Pg depends on only through t^, and where

= (Tk - “ 1\ T)/T * We can thus obtain a discrete approximation to the
integral with respect to t^ by approximating the uniform distribution on [0,1] 

by the discrete distribution with probability mass J  ̂at points 

J *,2J \...,(J-1)J 1 and probability mass (2J)”* at the end points 0 and 1.

We find that for the first-order Markov patterns and constant fading (case (i))

Ptom (k,i) - jj"1] = p 0 <  j < J, (59)
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where the quantities are defined completely by the fact that their sum
is 1 and

(2jq)‘1(l + Nb‘1): j = 1,2.... J-l,

Pj = ' (60)
(4jq)‘1(l + N*1) + (4q)"1(l-Nb1), j = J .

For independent fading (case (ii))

PC'Vk.i) = = Pj , 0 <  j <  J, (61a)

P{am (k,l) = [j2 + ( J - j o h V 1] = qj , 0 <  j <  %J, (61b)

where p^ and q_. are defined by

f ( 2 j q ) '1 ( l  + Nb 1). 

i (2Jq)_1 ,

j = 1,2,...,J-1 ,

j =J,

(2jq)*1(l-Nb1), 

. (4jq)'1(l-Nb1),

j = 1,2....j/2-1 ,

j = J/2 ,

and
J J/2

P0 = 1 - 2 p - 2 q .
j=l J j=l J

(62a)

(62b)

(62c)

In (61) and (62) we assume J is an even integer.

An upper bound can be obtained as follows. The conditional probability 

of error P£ given by (58) is not convex in t^ (1 <  k <  K, k ^ i). However 

if we upper bound the sum of squares of (53) for case (i) or of (55), (53), 
and (56) for case (ii) by the square of the sum, the upper bound on P^
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becomes a convex function of the t̂ 's. We then obtain a discrete approximation
to the integral with respect to t^ as for The upper bound is the same
for cases (i) and (ii) and the distribution of crm(k,i) is given by (59), where 
the pj are defined by

r (4Jq)‘1(l + H*1) , j = ,

l (l+j‘1)(4q)'1(l + N‘1), j = J
(63)

A similar approximation and upper bound can be obtained for the sequences 
of independent random elements.

Finally we note that in order that the approximation and bound presented
in this section be tight and computationally efficient we need to assume

that for all k ^ i. If this is not the case, we can still work with
= maxCp,^] , but the approximation and the upper bound obtained above are 

k
not expected to be very tight, so that it might be'preferable to work with the 

bounds suggested in Section III which are not affected by the different power 
levels.

In Table 2 the approximation obtained in this section is compared with 

the improved lower bound, the approximation, and the upper bound of Section 
III.B for the first-order Markov hopping patterns and = (j. for all k.
The approximation P (for both cases (i) and (ii) and the bound PA U
are evaluated for J = 4. It turns out that they are rather insensitive to 
increases in J as long as J ^ 4. Values for P are given in Table 2(a) for (i) 
constant fading and (ii) independent fading. The notations pf"^ and P ^ * ^ , 

respectively, are used for these two cases. Independent-fading turns out to be 

the most favorable case although the difference is less than ten percent. Also notice



Table 2. Bit error probability for nonselective Rayleigh fading

a)

b)

c)

K = 5, q = 

g/N0 (dB)

100, and 

PL

N, = 10 b
p(ii)
A ?u *x)< > PU

6 1.64 1.71 1.72 1.72 1.74 1.82 (Xio h
8 1.19 1.25 1.26 1.27 1.28 1.37 (X10 ,)

10 8.41 8.95 9.02 9.09 9.21 10.14 (xio'p
12 5.80 6.29 6.36 6.44 6.54 7.52 (X10“p
15 3.28 3.73 3.81 3.90 3.97 5.01 (Xio ■;)
20 1.37 1.78 1.87 1.97 2.02 3.10 (xiopCO 0.44 0.83 0.92 1.02 1.06 2.16 (XIO )

K = 10, q = 1000, and N = 10D
S/Nq (dB) h 5u po

6 1.67 1.68 1.69 1.70 (xio b
8 1.20 1.22 1.22 1.24 (Xio ,)

10 8.35 8.51 8.54 8.74 (xio'p
12 5.65 5.79 5.82 6.04 (xio";)
15 3.05 3.18- 3.20 3.44 (XIO f)
20 1.07 1.20 1.22 1.46 (X10"f)00 0.10 ’ 0.23 0.24 0.49 (xio“z)

K = 15, q = 

I/NQ (dB)

1000, and N, 0

fL

= 10 

fu PU
6 1.66 1.69
8 1.20 1.23
10 8.36 8.60
12 5.67 5.90
15 3.08 3.30
20 1.12 1.3300 0.16 0.36

1.70 1.72 (XIO"*)1.23 1.26 (xio"h8.65 8.97 (xio";)5.94 6.28 (xio";)3.33 3.69 (XIO t)1.35 1.73 (xio"p0.38 0.76 (X10"z)
I



29

that the bound P (common for both cases) differs from P of (i) or (ii) byU A
at most twenty percent; therefore, in Tables 2(b) and 2(c) we present data on

P only (not on P ). The purpose is comparison with P , P , and P . InU A Li A U
comparing P^ and P^ we note that P^ appears to be an upper bound for the 

nonselective Rayleigh case. Also the results of Table 2(c) show that for 

q = 1000, K = 15, = 10, and <$/N q ̂  20 dB the results of the Table show that

Py —  1.17 P^, P^ — 1*3 Pjj and P^ < 1.52 P^. Similar observations can be made 
for the data provided in Tables 2(a) and 2(b). As a final comment we point out 

that since the approximations P^ and the bound P^ are expected to be very close 
to the true probability of error, their favorable comparison with the simpler 

bounds P^ and P^ and the approximation P^ strongly suggests the use of the 
latter for the design of SFH/SSMA systems.
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V. SELECTIVE FADING
In this section we consider a general wide-sense stationary uncorrelated- 

scattering (WSSUS) fading channel. This model is described in detail in [1] 

and [8, Ch. 9] and is employed in the analysis of direct-sequence SSMA 

communications over fading channels in [4]. We assume that f^ »  qA’, so 
that narrow band signal models can be employed. The input to the k-th channel 

is sjc(t “Tjc) where

sk (t) = Re[xk(t)exp(j 2 tt fct )} (64)

and
Xĵ Ct) = y^P exp{j(2 tt [bk (t)A +fk (t) ]t+ 0k (t)+ak (t))} . (65)

The corresponding output is yk(t~Tk) where

yk (t) = YQsk (t)+Re[uk (t)exp(j2TT fct)} (66)

and
»

uk (t) = Yk I hk(t,T)xk(t-T)dT , (67)
-a»

so that the received signal for this channel is given by (9).

If Yq = 1 then there is a (non-faded) specular component present in the

output of the channel, and the channel is a Rician fading channel (as in [4]).
2 2 In this case Yk plays the same role as the parameter Y of Section III. If

Yq = 0 there is no specular component, and the channel is a Rayleigh fading
2channel. In this case Yk plays the same role as the parameter jj,k of Section

IV.
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The fading process h^(t,T) (which can be thought of as the time-varying 

impulse response of a lowpass filter) is a zero-mean complex Gaussian random 

process with autocovariance

E{hk (t,T)hg(s,CT)} = P k(t - s,t )6 (t -<t) , (68)

where 6(0 is the Dirac delta function and
00
J Pk(0,T)dT = 1 .
>00

Two special cases of the model considered in [1] and [4] are the purely 

time-selective and purely frequency-selective WSSUS fading channels (see 
also [2] and [3]).

In the present paper we consider a somewhat more general model which is 

both time and frequency selective. This is a special doubly-dispersive model 

that is characterized by

pk(t - s,t ) - rk(t - s)gk(T ) . (69)

If 8k (T ) - 6(t ) the channel is not frequency selective. If rk (§) = 1 it is 
not time selective.

As usual ([l]-[4]), some limitations are imposed on the selectivity 

of the channel. First it is assumed that

gk(T ) «  0 for |t | > T, (70)

which is a constraint on the frequency selectivity of the channel that allows 

us to restrict attention to the intersymbol interference from the two adjacent
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data bits. This assumption can be relaxed, but the error probability 
computations become more difficult. The second assumption is that two 

signals which are transmitted at different frequencies have non-overlapping 

spectra at the receiver. This is primarily a limitation on the time 

selectivity of the channel, but it also is related to the spacing A.

The analysis of the receiver follows that of Section IV, so many of the 

details are omitted. The output of the in-phase component of each of the 
two branches of the i-th receiver is

Zc,m * Yo(Dc,m+ I c>m> + (P/8>%T^ C)m + i2 iYki ^ i))+Nc>m . (71)

(i)The terms D , I , and N are as in Section IV if we replace A.c,nr c,nr c,m r i

by 1 and * >■ ' by 0. The terms F and I v * are (normalized) fadedjtj c ̂ m o j m
versions of the desired signal and the multiple-access interference due to 

the k-th signal. These terms are defined for the X-th decision bit 

(X = jNb + p) by

and
F = Re(F ) c, m m

= Re(I^k,ib  , c,m N m ' 3

where

Fm = T*1 J J hi(t,T)Tlijm(t,T)exp[j i|ri (t,T)]dTdt
(X + 1)T «

(72)

(73)

(74)
XT

and
, k i ,  f ( W ) l  •

=T J I hi(t-Tk>T)\ , i >m<t>Tk + T)eXP[J’l'k,x(t>Tk + T)ldTdt'XT -«
(75)

In (74) and (75) the functions h, . and . are given byL jm K^1
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\,i,m^t,T) = 6tfk(t-T),fi(t)]8[bk(t - t ) ,m] (76)
and

(t»T ) = "2 tt [fc + bk (t -t )A+ fk (t - t )]t +0k (t - t ) +Ofk (t-r) -f3.(t). (77)

The functions T). . and . are denoted by T). and ., respectively.1 y i j m x j x x 5 m x

Notice that F is nonzero if and only if both f.(t-T) = f. (t) and m i i
bi(t-T) = m for some t and t (similarly for 1^ 5 '). This is a result of

our assumption for the time-selectivity of the channel and the size of A.

In the analysis below, the expectations and probabilities are conditioned
(k )on b^ and Tk for 1 < k <  K. However, the error probabilities that are

(k)obtained do not depend upon Tk or b^ ' for k ^ i. So in the last step we 
only have to average over Xj
A. WSSUS Rayleigh Fading Model (Yq = 0)

The bounds of (32)-(34) and the approximation of (35) are employed

except that fading must be accounted for in Pq and !p. For Yq = 0 and K = 1,
Z is the sum of two random variables ((P/8)2T F and N ) of which c,m c,m c,nr
the first is conditionally Gaussian and the second is Gaussian. Furthermore, 

it is not hard to see that Zc  ̂and Z£ are conditionally independent, and
so are Zs,l and Zs t —1 * Since oc,m = crs ,m then [8, p. 587]

e,0
2 , 2  2 - 1  = o , (o n + o - ) c,-l c,1 c,-l (78)

is the conditional probability of error given there are no hits where

CTc,m = (Pt2/8)^  VarCFC)m] + NQT/16 . (79)
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It is convenient to normalize <t c m and write (78) as

Pe,0 ’ v-l(vl + v-l)
-1

where v is given in terms of $ - y. PT by m ,-lv - 2 Var{F ] + (<$/Nft) m w c,nr 0

(80)

(81)

The expression for Var[Fc m) depends on the position of the data bit within 

the interval [ jTh> (j+l)Th). For the p-th bit of the j-th hop (X = jNb + p) de 

define 6m = 8(l,m), 6^ = S O ^ ^ m ) ,  and 6^ = 6(b^,m). Let

2H. (v) = 2T" T , v t \a i J o (v " u ^ O O d u ,
and define

F. = f g. (t )H. (T)dT1 Jo 1

(82)

(83a)

F. = f g. (t )H. (T -T)dT
1 Jo 1 1

and
t T - t1 J*0 0

G± = t‘2 J* gt(T) J J ri(t-s)dtds

(83b)

(83c)

The following expressions for Var[Fc m} are derived in the Appendix. 

First for p = 0 we find

VarfF } = %[(6"+6 )F. + 26?. + 26(6 " + 6 )G, ] •'* c, m ^ N m q i m i  m m q l (84)

For p * - 1 (84) is valid provided we replace 6^ by 6^. Finally, for

0 < p < Nb - 1, the expression is

Var[F } = %[(6’+6")F. + 26mF, + 26m (6 ’ + 6")G. ] .w c,m m m i m i  m m  m i (85)
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For the first-order Markov hopping patters and the RS hopping patterns the

quantity 6^ that appears in (84) is identically 0. For the sequences of

independent random elements is a random variable with p{6 = l] = q"1 andq q
P{6q = 0} = 1-q'1 .

Notice that for 0 < p < - 1 (i.e. for the internal bits of each

dwell interval), Var{Fc m} does not depend on the hopping pattern.

It turns out that the average probability of error for these bits 

(0 < p < - 1) is larger than that of the first and last bits (p=0 and

P = Nb - 1) . Thus we use (85), and not (84), in order to obtain an upper bound 

on PQ which applies for all values of p. As a consequence of using (85), we 
obtain a bound on Pq which does not depend on the hopping pattern.

In order to obtain the limiting error probability (as the channel becomes 

nonselective) it suffices to let g^T) = 6(t ) and r^u) = 1. We then have
A —  O= 0 and F^ = % so that Pq is given by (41) with A = $/Nq = y^ p . 

Similarly, to obtain the irreducible error probability (as p -» ®) we simply 

disregard the second term in the right-hand side of (81).

For the WSSUS Rayleigh fading model we say that a hit occurs from the 

k-th signal whenever t ^, b^(t), and ffc(t) are such that V a r j i ^ ^ }  4 0.

The probability P of such a hit depends upon and q. For the first- 
order Markov hopping patterns we have

p - pu <1 + iT> • <“ )b
In deriving (86) we used the fact that for the selective fading model used 

in this section, as many as 4 adjacent bits from the k-th signal may
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interfere with each bit of the i-th signal. The expressions (25) and 

(32)-(35) apply with P replaced by P^ and PQ evaluated as explained above. 
For memoryless hopping patterns the corresponding result is

P - Pu = ?  [1 + iT (1 - q)] • <87>b

Both bounds in (86) and (87) are tight for ^ 3. For the RS hopping 

patterns the corresponding result is

P <  Pu
1

q-1 (88 )

Notice that the bound in (88) is the same as in (23) which was obtained under 

nonselective fading conditions. This is due to the fact that the RS hopping 
patterns do not repeat within a period.

B. WSSUS Rician Fading Model (Yq = 1)

In this case the conditional error probability given there are no hits 

is [8, p. 587]

Pe,0 = (89)

Upon normalization, (89) reduces to

Pe,0 = v-l(vl + v-i>"1 exPi-tY^(v1 + v^)]"1}-1- (90)

where v is defined by m J

V - 2 Var[F J + (1+Y,)(Y? ¿/lU"1, (91)in c i 1 u
o

#/Nn = (1 + Y*)P> and Var[F } is given by (82)-(85). Finally in order to 
obtain Pq we have to average P^ q with respect to the data bits (b^|,b^).
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For Rician fading the hits from the k-th signal may occur from either 

the direct-path component or the faded component. The probability of a hit 

from the k-th signal due to the direct-path component is the same as for 
nonselective Rayleigh fading (this was evaluated in Section III). The 

probability of a hit due to the faded component is evaluated above (for 

Rayleigh fading). The union bound provides simple upper bound on the 

probability of a hit. This is given by

p <  P ’ = - (1 + £-) (92)u q

for first-order Markov hopping patterns and

P < P' > - [1 + -p (1 -i)] (93)u q Nfa q
A

for memoryless random hopping patterns. For RS hopping patterns P is 

still bounded as in (88); that is,

P < P' = P • (94)u u

By substituting for Pq in (32)-(35) and replacing P by P^ in (25) we have 
lower bounds, an approximation and an upper bound on the average probability 

of error.
In Tables 3 and 4 the approximation P^ given in (35) is obtained for 

purely frequency-selective Rayleigh and Rician fading channels, respectively. 

The system parameters are K = 15, q = 1000, and = 10. First-order Markov 
hopping patterns are employed. The covariance function of the frequency- 

selective channel is triangular, so that the rms multimath spread a defined

by = J* T g(t )dT is related to the parameter d of [3] by d = 2.22 a/T.
• 00

We let Yk = Y for all k. Then in Table 3, PA is given as a function of



Table 3

Table 4

Bit error probability for Rayleigh frequency--selective fading
(K = 15, q = 1000, and Nb = 10) .

£/N0 (dB) a=0.05T o=0.IT o=0.15T o=0.2T

6 1.75 1.82 1.91 2.01 (xio'})
8 1.28 1.35 1.44 1.54 (xio p

10 0.91 0.97 1.06 1.17 (X10 ,)
12 6.31 6.88 7.71 8.84 (Xio p
15 3.63 4.13 4.94 6.08 (Xio ,)
20 1.59 2.04 2.82 3.95 (XlO"p00 0.58 1.00 1.76 2.89 (X10”Z)

Bit error probability for Rician frequency-•selective fading
(K = 15, q = 1000, N, = 10D , and o = 0.05T).

£/NQ (dB) y2=.i Y2=.5 v2=l y2=10 y2=1000

6 0.98 1.42 1.60 1.77 1.78 (Xio'})
8 0.49 0.94 1.13 1.30 1.31 (Xio'})

10 0.23 0.61 0.78 0.93 0.94 (xio p
12 1.23 3.96 5.34 6.58 6.63 (Xio p
15 0.86 2.26 3.14 3.94 3.97 (Xio,)
20 0.82 1.24 1.58 1.92 1.94 (Xio p
CO 0.81 0.83 0.86 0.93 0.94 (xio“p
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_ 2 2£/Nq = (1 + Y )P for G = 0.05 T and for five different values of y • Notice
2 .that as Y “* 00 the probability P is not the same as the second column ofA

Table 3. Although Pq is the same in this limiting case, the fact that 

P < (compare (86) to (92)) implies that the two cases give different 
values of the bit error probability.

Finally we compare P^ for nonselective and frequency-selective Rayleigh 

fading for K = 15, q = 1000, and = 10, (first-order Markov hopping patterns 

are employed). From Tables 2(c) and 3 we see that the probability of error 

for the frequency-selective case is, for <$/Nq = 12 dB and a = 0.05, 1.1 times 

that for nonselective fading, and it becomes 1.5 times the corresponding 

probability for nonselective fading as c increases to 0.2 T. Similarly 

for (5/Nq = 20 dB the ratio of the two probabilities ranges from 1.2 for 

ct = 0.05 T to 2.9 for a = 0.2 T.



APPENDIX

we

In this appendix we develop the expressions for Var[Fc . As in [4]

can write Var^F } as c ,m

Var[F } = E[Re{Fm]]2 = h E[FmF*] , c, m m m m (A-l)

where we used the fact that [1] ECh^(t,T)h^(s,C7)}= 0. Upon substitution for 

(74), (68) and (69) in (A-l) we find

- (X+l) (\+l)T
Var[Fc>m} = T Ixt ri(t-s)\ , m (t’T)\ , m < S’T >

exptj[1'i(t»T) -\|ri(s,T)]}dtdsdT . (a -2)

Notice that Tl. ( t , T ) T ] .  (s ,t ) 41 0 only for those t, s, and t for which the 
following three conditions hold: f^(t-T) = f̂ (t), f^(s-T) = f̂ (s), and 
b^(t-T) = b^(s -T) = m. But these three conditions imply o^(t-T) = a^(t),

(s -t ) = (s), 9^(t -t ) = 9^(s -t ), respectively. Also a^(t) = a^(s) =
and p^(t) = ^(s) = for t and s in [\T,(X+1)T). Consequently,

^(s,t ) for these values of t, s, and t . As a result we may let

exp C j i(t,T) - ^i(s,x) ]] = 1

in equation (A-2).

The next step is to write (A-2) as

VartF } = w c,nr 2 [d(jt) s A (i,n) + A (A,p) + d(i+l) 2 A « , n ) ]
l - n=0 m m n-jrt-1 m 9 (A-3)



A-2

where for n ^ p

A U,n) = m
J0

gi(T+^Th+nT)[ Am (&,n+1)F(T) + Am U,n)F(T) +

2Am a,n+l)Am (Ji,n)G(T)]dT, (A-4a)

and for n = p

(T
A (A,p) =m g (t+^T +pT)[d(i+l)Am(i,p+l)F(T) + d(H)A (H,p)F(t) + a u in m

2d(£+l)d(£)Am (£,p+l)Am (£,p)G(T)]dT.

In (A-3) - (A-4) we also need the definitions
(A-4b)

d(Jl) = 6<f£>, fj15),

Am(4,n) = «(b£> m),
b

(A-5) 

(A-6)

and (cf. (82) - (83))

F(t) = T-2
XT+r
XT

XT+t
XT

ri(t-s)dtds = H^(t), (A-7a)

F(t) = T-2 r(X+l)T r(A+l)T
XT+t XT+t

r^(t-s)dtds = H^T- t) (A-7b)

G(t) = T-2 XT+t
XT

f (X+1)T
XT+t

r^(t-s)dtds =
T fT

ri(t-s)dtds (A-7c)

Notice that the result of (A-3) is quite general and it accounts for the 

intersymbol interference due to many data bits. However, because of the 
assumption (70) only the terms £=0, n=0 and ¿=-1, n=Nb*l of (A-3) give 

nonzero contributions, and thus (A-3) reduces to (84) - (85).
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APPENDIX B

ANALYSIS OF A SLOW FREQUENCY-HOPPED SYSTEM WITH POISSON TRAFFIC

In this section the packet error probability and the throughput rate 

are determined for a particular frequency-hopped system when the number 

of packet transmissions in a slot is given by a Poisson random variable.

The packet error rate and throughput under the Poisson traffic assumption 

are significant in view of the local Poisson approximation and recursive 

retransmission control strategies discussed in the next section.

The system of interest is assumed to be packet-synchronized. A 

sufficient time-guard-band must be maintained between packet slots to 

maintain sychronization in the face of differential delays due to the 

spatial distribution of the stations. Synchronization at the level of 

bits or bytes is not assumed.
Each packet transmission is declared successful or not according to 

some criteria (a specific choice is given below). The following defini

tions will be used

r(m|k) = P[m successful|k packets transmitted in slot] 

k
r(k) = 2 m r(m|k)

m=0
and

P(k) = l-r(k)/k.

Thus r(*|k) is the distribution of the number of successes, r(k) is the 

mean number of successes, and P(k) is the average probability of failure 

for a typical packet, all given that k packets are transmitted in the slot.

Similarly, define

rp (m | G) = E [r (m| K) ]



rp(G) = E[r(K) ]

and
Pp(G) = 1 - rp(G)/G

where K is a Poisson random variable with mean G. Thus r (*|G) and rp(G) 

are the distribution and mean of the number of successes and Pp(G) is the 

probability of failure of a typical packet, all given that the number of 

transmissions in the slot is a Poisson random variable with mean G.

The specific FH system will now be described. The frequency spectrum 

is divided into q frequency slots and the packets are divided into n bytes each. 

Each byte is transmitted at a frequency chosen from the q frequencies with 

equal probability, independently of the frequencies chosen for other bytes.

It is then appropriate to use a burst-error correcting code —  we will 
assume that a Reed-Solomon code is used. We will also assume that a 

packet consists of exactly one codeword from a RS code for which up to t 

byte errors can be corrected. This provides us with a natural definition 

of a successfully transmitted packet. A packet is declared successfully 

transmitted if at most t byte errors occur. Both the (31,15)-code (with 

n=31 bytes, five bits per byte, 15 information bytes and t = 8) and the 

(255,127)-code (with n * 255 bytes, eight bits per byte, 127 information 

bytes and t = 64) will be considered.

In the following let X =G/q, so that X is the traffic intensity per 

frequency slot. Also, P(k,q) and Pp(X,q) will be written in place of 

P(k) and Pp(G) in order to make the dependence on q explicit. Finally, 

let i?(X,q) = X (l-Pp(X ,q)) . Thus i? denotes the average throughput per

frequency slot.



Assume now that byte errors are independent in the absence of multi

access interference. This independence assumption is true for an additive 

white Gaussian noise (AWGN) channel. The assumption is also approximately 

true for an AWGN channel with fading if q is so large that very few fre

quency slots are hit by more than one byte for any packet, or if the fading 

process of the channel model has a short correlation time compared to the 

typical elapsed time between visits to a given frequency. Also, by inter

leaving codewords, it is possible to approximately achieve the situation 

with independent byte errors even for relatively slowly fading channels.

Now let p^ be the byte error probability in the absence of multi

access interference. Then the byte error probability given that k 

packets are transmitted in a slot is

pk = 1 - ( 1 - (| - i ) ) k"1(l-P1) (k>l)
q

2 1If byte synchronization were possible, the term -----j i-n this expression
q q

could be replaced by 1/q. By the assumed independence of byte errors in 

the absence of multi-access interference and the memorilessness of the 

random hopping pattern, the byte errors (including multi-access interference) 

are conditionally independent given k. Thus the packet error probability is

P(k,q) = 2
i=t+l <i>

i ... Nn-iPi. u-p,,)

which can be used to compute

Pp(k,q)
~  - k q  n  i k  
2 e-------^ a L .  k P(k ,q ) A q
k-1 K'



and

r7 (X ,q) = X(l-Pp(X#q))

which are the desired packet error probability and throughput per frequency 

slot for Poisson traffic.
The computation of Pp(X,q) (and hence also i?(X,q)) simplifies in two 

special cases: First, when q = l,

Pp(X,l) = l-e"x (1- P(l,l))

since P(k,l) =1 for k > 2. This implies that

n(X.D  = Xe 'x (1 -P (1,1 )).

That is, when q = l, the throughput is Xe ^ (which is the throughput for a 

noiseless slotted-ALOHA channel) times the success rate in the absence of 
multiple-access interference. *

The second special case is obtained by letting q and G tend to infinity 

with X = G/q fixed. The limiting packet error probability is then

P (X,+ °°) = lim P (X,q) = lim P(k,q)
F q  ̂ q

k + °°
X=k/q

= X S (?) pi (1 - P j n_1 i=t+l
where

Poo = lim  Pv = 1 " e~2X (1 -  P-. ) •q -* °o
k-*-°°
X=k/q



Numerical results are given in Figs. 1-4 and in Tables 1-3. We see 

in Fig. 1 that for no channel noise and using the (255,127) Reed-Solomon 

code, a smaller packet error probability is achieved by q = +°° than by 

q = 1 if and only if X is smaller than about 0.13. For an intuitive 

understanding of this it is important to keep in mind the following two 

facts. First, at the level of byte errors, the essential effect of varying 

the parameter q is that as q decreases, the occurrences of byte errors 

within a single packet become more positively correlated. Secondly, since 

X is the traffic normalized per frequency slot, for fixed X the byte error 

probability and therefore also the mean number of byte errors per packet 

does not strongly depend on q. Summarizing these two facts, for larger q 

the distribution of the number of byte errors tends to be more tightly 

concentrated near the (almost q-independent) mean number of byte errors.

Thus, whether or not the packet error probability is smaller for large 

q than for small q is determined by whether or not the error correcting 

capability of the code can accomodate any number of byte errors "near" 

the mean number of byte errors. Since the mean number of byte errors 

increases with X, it follows that for small enough X the packet error 

probability is smaller for large q, and conversely for large X the packet 

error probability is smaller for small q.

When the byte error probability in the absence of multi-access 

interference p^ is increased from zero to 0.1, the packet error probability 

does not significantly increase for q = 1 while it does for larger values 

of q. (Compare Figs. 1 and 2.) As a result, the value of X at which the 

packet error probability for q=°° surpasses the packet error probability 
decreases to X = 0.078. (See Fig. 2.) Thus in the presence of channel noise, 

the crossover value of X can become quite small.



Turning to Figs. 3 and 4 we observe that the maximum throughput (over 

all X) is much greater for q = l than for q=°°. However, the maximum 

throughput for q = 1 can only be achieved by maintaining a mean traffic 

intensity X = 1  which causes the packet error probability to exceed .63. 

Hence, although q=l offers greatly increased maximum throughput, the 

increase comes at the expense of either many retransmissions (which, if 

possible at all, generally increase delays) or a high packet loss rate.

Discussion of Method

The method of using the local Poisson approximation as discussed here 

and in the next section is admittedly only an approximation. It is impor

tant to emphasize however that, as shown in [7], the method does lead to 

channel stability (even taking approximations into account).

Another approach to the analysis of delay in a random-access system 

would be to use a more detailed model of the transmitters —  allowing them 

to obtain multiple packets and then buffer delay could be discussed. For 

such analysis so far in the literature, the total system is usually 

described as a (many state) Markov chain. For such analysis, the main 
obstacle has been the large size of the state-space. Here we wish to 

point out another difficulty which arises for such detailed analysis when 

one considers spread-spectrum systems. The problem is that a detailed 

exact analysis would require knowledge of the conditional distribution 

r(*|k) of the number of successes given k transmissions (whereas our 

analysis only required use of the mean number of successes). Some authors 

propose (implicitly) that the distribution of the number of successes is 

binomial under the assumption that the outcomes of transmissions of distinct 

packets form independent events. It is clear, due to the mutually destruc

tive effect of collisions that this assumption is not true.



In summary —  before more detailed models can be effectively used, 

the distribution r(*|k) must be better characterized. Nevertheless, we 

have found retransmission control schemes which insure stable throughput, 
even without knowledge of this distribution (see next section).



Table 1. Packet error probability and throughput vs. traffic-intensity-per- 
frequency-slot X for q = 1 (no hopping during packet transmission).

q = 1 p 1  = 0 
Either

.0
Code RS-(31,15)

Pi = 0.1
RS-(255,127)

X P = l-e_X V P = l-e"X (.9974) V P = l-e”X (1-1.2X10~12) V

0.00 0 0 .0026 0 1.2X10“12 0
0.02 .0198 .0196 .0223 .0196
0.04 .0392 .0384 .0417 .0383 Same as columns for
0.06 .0582 .0565 .0607 .0564 p = 0.0
0.08 .0768 .0738 .0793 .0737 JL

0.10 .0951 .0905 .0975 .0902
0.12 .1131 .1064 .1154 .1062
0.14 .1306 .1217 .1329 .1214
0.16 .1479 .1363 .1501 .1360
0.18 .1647 .1503 .1669 .1500
0.20 .1812 .1637 .1834 .1633
0.25 .2212 .1947 .2232 .1942
0.30 .2592 .2222 .2611 .2216
0.40 .3300 .2681 .3314 .2674
0.50 .3934 .3032 .3950 .3025
0.60 .4512 .3293 .4526 .3284
0.70 .5034 .3476 .5047 .3467
0.80 .5501 .3595 .5518 .3585
0.90 .5934 .3659 .5945 .3650
1.0 .6321 .3679 .6331 .3669
1.5 .7769 .3347 .7774 .3338
2.0 .8646 .2707 .8650 .2700
2.5 .9180 .2052 .9181 .2047



Table 2. Packet error probability and throughput vs. traffic-intensity- 
per-frequency-slot X for q = 10 frequency slots.

q=10 Xi II 0.0 pi = 0.1
RS-(31, 15) RS-(255 ,127) RS-(31,15) RS-(255, 127)

X P V P V P 1? P rj

0.00 0 0 0 0 .0026 0 1.24X10“12 0
0.02 .0335 .0193 .0185 .0196 .0958 .0180 .1386 .0172
0.04 .0820 .0367 .0632 .0375 .1864 .0325 .2599 .0296
0.06 .1400 .0516 .1240 .0525 .2725 .0436 .3655 .0381
0.08 .2031 .0637 .1934 .0645 .3531 .0517 .4571 .0434
0.10 .2684 .0731 .2664 .0733 .4274 .0572 .5364 .0464
0.12 .3335 .0800 .3395 .0792 .4953 .0606 .6047 .0474
0.14 .3968 .0844 .4102 .0825 .5568 .0620 .6635 .0471
0.16 .4572 .0868 .4769 .0837 .6121 .0620 .7140 .0457
0.18 .5140 .0874 .5388 .0830 .6615 .0610 .7572 .0437
0.20 .5667 .0866 .5955 .0809 .0753 .0589 .7942 .0411
0.25 .6801 .0800 .7138 .0715 .7937 .0515 .8645 .0339
0.30 .7983 .0695 .8010 .0595 .8574 .0428 .9113 .0266
0.40 .8835 .0465 .9080 .0365 .9337 .0265 .9626 .0150
0.50 .9438 .0280 .9597 .0201 .9700 .0150 .9845 .0078
0.60 .9737 .0157 .9827 .0104 .9860 .0079 .9936 .0038



Table 3. Byte error probability, packet error probability and throughput vs. traffic-intensity-per-frequency- 
slot for q = °°.

q = oo Pi = 0.0 PX = 0-1
RS-(31,15) RS-(255, 127) RS-(31 ,15) RS-(255,127)

X i _2Xp = l-e P P V , a "2X p = l-.9e P V P r?

0.00 0 0 6 0 0 _338.72X 10 ^
0 .100 .00260 0 1.24 X 10_^2 0

0.02 .0392 2.00X 10 . .020 .020 .135 .0183 .020 2.41x 10 ; .020
0.04
0.06

.0768

.113
3.93X 10 Z 
5.91X 10 j

.040

.060
4.96X 10
2 .3 6x io ;u

.040

.060
.169
.202

.0658

.158
.037
.051

3.37X 10 .040 
.0236 .059

0.08
0.10

.148

.181
3.15X 10 ^
9.36 x 10

.077

.091
5.84 X 10 
2.06 X 10

.080

.100
.233
.263

.285

.431
.057
.057

.224 .062 

.639 .036
0.12 .213 .199 .096 6.19X 10 .113 .292 .576 .051 .961 .010
0.14 .244 .337 .093 .366 .089 .319 .697 .042 .989 .0015
0.16 .274 .490 .082 .773 .036 .349 .798 .032 .999 .0001
0.18 .302 .623 .068 .958 .008 .372 .871 .023
0.20 .330 .741 .052 .996 .001 .397
0.22 .356 .829 .036
0.30 .451 .978 .007



Fig. 1. Block error probability vs. traffic-intensity-per-frequency-slot v 
No channel noise (p^ = 0) . For q = l, curves coincide.



Fig. 2. Block error probability vs. traffic-intensity-per-frequency-slot X. 
Independent byte errors —  error probability p^ = 0.1.



Fig. 3. Throughput vs. traffic-intensity-per-frequency-slot X. No channel 
noise (p^ = 0) . For q = l, curves coincide.



0

Fig. 4. Throughput vs. traffic-intensity-per-frequency-slot X. Independent 
byte errors —  error probability p^ = 0.1.



APPENDIX C
RECURSIVE RETRANSMISSION CONTROL —  APPLICATION TO 

FREQUENCY-HOPPED (FH) SPREAD-SPECTRUM SYSTEMS

Although the models of the user population and the feedback information 

are quite simple, the concepts of [5]-[7] readily extend to more complex and 

realistic settings. In order to illustrate this point, we shall briefly 

describe how the decentralized dynamic control procedure in [5] can be adapted 

to the frequency-hopping system described in the previous appendix. For 

definiteness, suppose that the Poisson model in [5] is used to describe how 

the population of stations acquires packets to be transmitted.

Our research has shown that it is desirable for the users to have some 

feedback information in order to suitably control the traffic level. We 

shall now describe a method for the users to obtain such information which 

is appropriate for use in the Navy’s ITF network. During each slot, user a 

uses a random hopping pattern to hop a receiver among the q frequencies.

The pattern has the same distribution as patterns used to transmit packets.

For each dwell time the user decides (by a simple threshold test) whether 

or not the channel was free during that dwell time in the frequency monitored. 

The user then simply counts the number of dwell times in the slot for which 

it was decided that the channel frequency was not free. Let Y^ denote the 

count of user a for slot t. The variables Y^ comprise the feedback infor

mation upon which the retransmission control strategy described next is based.

Following [5], we suggest that user a recursively computes the sequence 

f£ via the multiplicative rule

f£+1 = min(f“a(Y“), 1) (1)

Then if user a has a packet to transmit, it transmits it in slot t with 

probability f^. A possible choice for the function a is



( 2 )a (y) = 1 - - p )t

where

P

and X is a desired value of the traffic intensity per frequency slot.

To understand this choice of retransmission policy, note first that 

if the number of packet transmissions in a slot is Poisson with mean 

G = qX, then the probability that a frequency slot is used during any portion 
of a given one-byte dwell time is

When X =X , p = p  . That is, p is the probability that a frequency is 

occupied during a given one-byte dwell time when the number of packet
•ktransmissions is Poisson with the desired mean-per-frequency-slot X .

for all a and given the set of users which have a packet to transmit, 

the conditional distribution of the number of packet transmissions in slot 

t is approximately Poisson with mean

(where ju. is the rate at which new packets are transmitted) by the local 

Poisson approximation described in [5] and [9]. Hence,

p = 1 - exp(-2X)

*

Now given the current values of the retransmission probabilities f®

(A)

E [ Y“ |f“, all a] = qp£ (5)

Pt = 1 - exp(-2Gt/q)

where



Thus by (1) and (4),

lfa [ 2
a E A

f“«0r“) all a]
t+1

+ 2 f“E[a(Y“)|f“, all a]
t+1

and since (by (2) and (5))

E [ a (Y®) | f “, all a] = E [1-7 (-—  - p ) | f “, all a ]

= l-7(pt -p )

= 1 +7 (exp(-2Gt/q) - exp(-2G /q))

we have

E ^Gt+llft* a11 = *1+7 (exp(-2Gt/q) “ exp(-2G*/q)) }Gt

Hence, will tend to be larger than (resp. smaller than Gt) if Gt is
*smaller (resp. larger) than the desired traffic level G . That is, G will

•ktend to drift toward the desired traffic level G .

Using the methods of [ 7] it can be shown that with this transmission 

policy the channel is stable whenever the input rate ju is smaller than the
kaverage throughput rate qi? (X ,q) corresponding to the desired traffic

kintensity per frequency slot X .



APPENDIX D
ACKNOWLEDGEMENT BASED RETRANSMISSION CONTROL

In [9] we define and analyze the class of Acknowledgement Based Retrans

mission Control (ABRC) schemes for random access. Such schemes require no more 

feedback information than the original ALOHA scheme in that each user need 

only learn whether or not its own transmission is successful. Such small 

feedback requirements are desirable in a spread spectrum environment when 

channel monitoring is difficult. On the basis of approximations developed

in [5] under this contract and an equilibrium analysis, we have found that 
such schemes can provide satisfactory performance for both an infinite and 
finite number of users, as long as the retransmission probabilities are 

properly chosen.

We also introduced the possibility that after a packet has collided a 

certain number of times then it is rejected and no longer retransmitted.

It appears that the probability that a given packet must be rejected can 

be kept to a satisfactorily low level, while allowing rejections improves 
stability considerably. In Fig. 1 the average probability of success and 

the probability of ultimate rejection P are given as a function of the 

allowed number of retransmissions k for the infinite user model with input 

rate \=0.3. For k = 12 the probability of rejection is about one in ten 

thousand. However if k is chosen to be too large then undesirable bistable 

behavior appears.
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Fig. 1. Equilibrium values of success probability 3 and ultimate 
probability of rejection for \=0.3 packets/slot in 
infinite user model.

)



APPENDIX E

THE METHOD OF MARKOV PROCESSES WITH PHASES

Another area of progress under this contract has been the development 

of a numerical technique, the "method of phases", which we have discovered 

is suitable for evaluating certain random access algorithms in the presence 

of fluctuating traffic rates. Our main motivation is that the usual 

Bernoulli or Poisson models of arrival processes are not "bursty" enough 

to realistically model traffic which random access schemes are likely to 

face in practice. So far the method has been successful for evaluation of 

TDMA with buffered users and varying arrival rates. The method will now 

be briefly described, following [8].

Consider a TDMA system with m users and arrival rate cr packets/slot/ 

user. Let Nt denote the number of packets in the first user's buffer and 

let 0 6 {l,...,m] denote which user is transmitting during slot t. (0 is

the "phase" of the system relative to the first user.) Then (Nt,0t) can 

be modelled as a discrete-time Markov chain on Z+ X {l,...,m} with transi

tion matrix (in the following matrices, only non-zero entries are 
indicated):

where the blocks of P are the mXm matrices
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In [8] a general method is presented for obtaining the invariant distribu
tion of such chains. The general procedure is as follows [8]:

Step 1: Compute B, where B is the minimum non-negative solution to
the equation

B = BA2BA0 (X-A1)‘1 + (I-Ap*1

Successive substitutions starting with B ^  = 0 yields an increasing 
sequence converging to B.

Step 2 : .Find tTq , the invariant distribution for the mXm transition 
matrix = AQ0 + AoiBA10”
Step 3: Compute the constant

c = n0 (I+A01B(X-R)'1)e 
Twhere e ■ (1,1,...,1) and R = A^B.

Then the invariant distribution for P is x = (Xq ,x ^,...) where

and
xo ■ V c

\  -  X0A01BR
k-1 k S; 1.



In [8] analogous results are also derived when P is truncated to a finite 
number of levels and boundary states are added. This provides a computa
tionally tractable method to analyze queues with finite buffers.

Using this approach, the invariant distribution for the TDMA example has 
been found analytically and numerically [10]. Our results, such as expres

sions for the average backlog, agree with those obtained by other methods.
The advantage of this approach is that it readily extends to the case when 

the arrival rate fluctuates according to an underlying Markov process, for 
then the system still has the same form as above but for different choices 
of the A^’s. This extension has been carried out and is presented in [10].

An example of our numerical results are presented in Fig 2. In 

this example the number of users M was taken to be 4 or 10. In each case 

the mean arrival rate was p = 96% of the channel capacity, and the actual 

arrival rate fluctuated between two different arrival rates, where the 

switching was governed by a two state Markov chain. The dashed lines 
correspond to an example when both of the input rates were chosen below 
the system capacity while the solid lines correspond to an example when one 

of the two rates is above the system capacity. The curves give the average 

backlog N for a given user versus y, where y is a parameter which indicates 

how fast the rate is switched. For small y the switching processes is 

slow so that a large backlog results when one of the two rates is above the 
system capacity (see solid lines).

Our reason for studying arrival processes with varying rates is that 
we feel it provides a more realistic model of bursty traffic than does the 
usual Poisson arrival model. We are now in the process of analyzing other 
random access disciplines in the presence of varying traffic rates. We 
suspect that many random access schemes will perform more favorably relative 

to the performance of TDMA when the traffic arrival rates vary dynamically.



In addition, we have found the method of phases developed in [8] under 

this contract to be useful in the analysis of certain routing schemes in a 

packet switched network [10]. (This portion of [10] was supported by a 

JSEP contract.) An important product has been an increase in our under

standing of the advantages and limitations in the use of Markov processes 

with phases. We feel that it is an important and useful technique which 

will find many applications both within and beyond the multiple access area.

Fig. 1. Average backlog of a user in TDMA system as a function 
of the rate of traffic variation.


