3,080 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Non-linear predictive control for manufacturing and robotic applications

    Get PDF
    The paper discusses predictive control algorithms in the context of applications to robotics and manufacturing systems. Special features of such systems, as compared to traditional process control applications, require that the algorithms are capable of dealing with faster dynamics, more significant unstabilities and more significant contribution of non-linearities to the system performance. The paper presents the general framework for state-space design of predictive algorithms. Linear algorithms are introduced first, then, the attention moves to non-linear systems. Methods of predictive control are presented which are based on the state-dependent state space system description. Those are illustrated on examples of rather difficult mechanical systems

    Sliding mode predictive control for chemical proces with time delay

    Get PDF
    16th IFAC World Congress Praga (RepĂșblica Checa), 03/07/2005A design of a novel model predictive controller is presented. The proposed Sliding Mode Predictive Control (SMPC) algorithm combines the design technique of Sliding-Mode Control (SMC) with Model based Predictive Control (MPC). The SMPC showed a considerable robustness improvement with respect to MPC in the presence of time delay, and showed an enhanced ability to handle set point changes in a nonlinear process. Its robustness was evaluated using a robustness plot, its performance was judged using a single input single output nonlinear mixing tank process with variable time delay

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Computationally Efficient Trajectory Optimization for Linear Control Systems with Input and State Constraints

    Full text link
    This paper presents a trajectory generation method that optimizes a quadratic cost functional with respect to linear system dynamics and to linear input and state constraints. The method is based on continuous-time flatness-based trajectory generation, and the outputs are parameterized using a polynomial basis. A method to parameterize the constraints is introduced using a result on polynomial nonpositivity. The resulting parameterized problem remains linear-quadratic and can be solved using quadratic programming. The problem can be further simplified to a linear programming problem by linearization around the unconstrained optimum. The method promises to be computationally efficient for constrained systems with a high optimization horizon. As application, a predictive torque controller for a permanent magnet synchronous motor which is based on real-time optimization is presented.Comment: Proceedings of the American Control Conference (ACC), pp. 1904-1909, San Francisco, USA, June 29 - July 1, 201

    A general U-block model-based design procedure for nonlinear polynomial control systems

    Get PDF
    The proposition of U-model concept (in terms of providing concise and applicable solutions for complex problems) and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies

    Research on RBF neural network model reference adaptive control system based on nonlinear U – model

    Get PDF
    The overall objective of this study is to design the nonlinear U-model-based radial basis function neural network model reference adaptive control system, through research into a class of complex time-varying nonlinear plants. First, the ideal nonlinear plant is adopted as the reference model and transformed into the U-model representation. In the process, the authors establish the corresponding relationship between the degrees of the reference nonlinear model and the controlled nonlinear plants, and carry out research into the corresponding coefficient relationship between the reference nonlinear model and the controlled nonlinear plants. Also, the impact of the adjusting amplitude and tracking speed of the model on the system control accuracy is analyzed. Then, according to the learning error index of the neural network, the paper designs the adaptive algorithm of the radial basis function neural network, and trains the network by the error variety. With the weight coefficients and network parameters automatically updated and the adaptive controller adjusted, the output of controlled nonlinear plants can track the ideal output completely. The simulation results show that the model reference adaptive control system based on RBF neural network has better control effect than the nonlinear U-model adaptive control system based on the gradient descent method

    Model-based and data-based frequency domain design of fixed structure robust controller: a polynomial optimization approach

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Design of generalized minimum variance controllers for nonlinear multivariable systems

    Get PDF
    The design and implementation of Generalized Minimum Variance control laws for nonlinear multivariable systems that can include severe nonlinearities is considered. The quadratic cost index minimised involves dynamically weighted error and nonlinear control signal costing terms. The aim here is to show the controller obtained is simple to design and implement. The features of the control law are explored. The controller obtained includes an internal model of the process and in one form is a nonlinear version of the Smith Predictor
    • 

    corecore