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Abstract:  

The paper discusses predictive control algorithms in the context of applications to robotics 

and manufacturing systems. Special features of such systems, as compared to traditional 

process control applications, require that the algorithms are capable of dealing with faster 

dynamics, more significant unstabilities and more significant contribution of non-linearities 

to the system performance. The paper presents the general framework for state-space design 

of predictive algorithms. Linear algorithms are introduced first, then, the attention moves to 

non-linear systems. Methods of predictive control are presented which are based on the 

state-dependent state space system description. Those are illustrated on examples of rather 

difficult mechanical systems.  

 

Keywords: Model Based Predictive Control, Non-linear systems, State-Dependent Riccati 

Equations, Linear Quadratic Gaussian Control, Optimization. 

 

 

1 .  INTROD UCT ION  

 

It is well known that the Model Based Predictive 

Control (MBPC) originated in process industry 

where it was applied to slow processes which could 

be adequately described by rather crude linear 

models. The advent in computational algorithms and 

real time control hardware stimulates attempts to 

transfer this method to more demanding applications. 

In this paper we aim to present some developments in 

predictive control which are relevant for 

manufacturing and robotic applications. 

The paper is organized as follows: 

In section 2 we deal with linear predictive control. 

After introducing the notation and defining the 

control structure the method of incorporating the 

non-zero reference signal into the state-space 

equations is presented. Based on this, the state-space 

Generalized Predictive Controller (GPC) is derived 

and next the stability of predictive schemes is 

discussed. Finally, a Linear Quadratic Gaussian 

Predictive Controller (LQGPC) is introduced. This 

algorithm can improve stability by incorporating 

finite horizon tuning parameters into infinite horizon 

optimization. Also, it proves to provide better 

performance than other predictive schemes, perhaps 

due to the fact that the values of tuning parameters 

which would result in instability for, say GPC, are 

still within stable region for LQGPC. It is important 

for fast mechanical systems where good tracking 

performance must be achieved. This algorithm can be 

computationally involving therefore some 

simplifications are presented which enable more 

efficient calculations of controls. 

Section 3 provides a short overview of three selected 

methods of non-linear predictive control. The first of 

them is contractive predictive control. Here, a special 

contractive constraint imposed on the state of the 

system at the end of the prediction horizon will 

assure stability. At the same time, within the 

prediction horizon, the control moves are hoped to 

have enough freedom to provide good performance. 

The second is the approach developed by researchers 

from Oxford University. The emphasis here is on 

feasibility for real time computations. The method is 

based on invariant ellipsoidal sets. Finally, the last 



method presented in this section uses fuzzy Takagi-

Sugeno models for prediction. 

In section 4 we concentrate on algorithms which are 

inspired by the idea of global linearization for non-

linear systems. The formulation of so-called state 

dependent state-space equations has lead to 

development of a technique which borrows from 

algorithmic solution for a standard linear quadratic 

problem and therefore is called State Dependent 

Riccati Equations (SDRE). This method is applied 

within the framework of predictive control for both 

finite horizon (GPC) and infinite horizon (LQGPC) 

algorithms. We notice that in the predictive schemes 

the future control actions within a finite horizon are 

predicted and available at a current time. This fact 

leads to improvements in defining the state-

dependent system model and therefore to 

improvements in the accuracy of control. 

Section 5 shows examples of application of the state-

dependent predictive algorithms. This is a very recent 

research direction and the results are not conclusive 

yet. However, the numerical examples presented are 

very encouraging. 

In section 6 we conclude the paper trying to predict 

the main future research directions and main 

obstacles to be overcome.  

 

 

2 .  LIN EAR PR EDIC T IV E CO NTRO L  

 

2.1. Problem statement 

The linear, time-invariant, discrete-time, finite-

dimensional, y un n  multivariable system of interest 

is represented in state equation form and is assumed 

to be stabilizable and detectable. The subsystem S1 

denotes the plant model and the reference signal is 

assumed to be generated by the subsystem S0. A 

slight generalization of the problem is to consider the 

inferred outputs  hy ( t ) , rather than the plant 

outputs {y(t)}, as being the signals to be controlled.   

The system model and the state-space plant equations 

to be considered, are therefore of the form: 

State :  

1 1 1 1 1 11x ( t ) A x ( t ) B u( t ) D ( t )     (1) 

 

Output : 

1 1 1y ( t ) C x ( t )  (2) 

 

Observations : 

1 1 1z ( t ) y ( t ) v ( t )   (3) 

 

Inferred output : 

1 1hy ( t ) H x ( t )  (4) 

and the state  1
1

n
x ( t ) R , output 1

yn
y ( t ) R , 

control un
u( t ) R , inferred output hn

hy ( t ) R , 

disturbances 1
1

q
( t ) R   and noise 1

yn
v ( t ) R . The 

zero-mean, white noise signals  1v ( t )  and  1( t )  

have the following covariance matrices: 

11 1 0v tcov[v ( t ),v ( )] R        and     

11 1 q tcov[ ( t ), ( )] I      

where the cross-covariances are assumed to be null. 

A model is required to predict the future values of the 

inferred output signal. From equations (1) and (4) 

obtain: 
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 (5) 

With an obvious definition of terms this equation for 

the inferred outputs, may be written in the more 

concise form: 

 

1 1
h

t ,N N N t ,N N t ,NY H x ( t ) G U N W     (6) 

 

The assumptions on the reference signal are similar 

to those presented by Tomizuka and co-authors [51], 

[53]. The reference signal {rh(t)} will be generated 

by the asymptotically stable linear stochastic state 

equation system model: 

 

0 0 01r r r rx ( t ) A x ( t ) D ( t )    (7) 

 

The zero-mean white-noise source  0( t )  is 

assumed to have the unity covariance. The desired 

future value of the reference signal p steps-ahead, is 

defined as a linear function of the current “reference 

state”: 

 

0h r rr ( t p ) H x ( t )   (8) 

 

where 1p N   is greater than or equal to the 

number of steps in the output prediction. New state 

equation variables may be defined, when p > 1, as 

delayed values of the reference signal: 
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 (9) 

which may be written, with an obvious definition of 

terms, in the vector form: 

 

0 0 0 0 01x ( t ) A x ( t ) D ( t )    (10) 

 

The current and future reference values can then be 

obtained as: 

0
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 (11) 

which can be written in the form: 

 

01p pR ( t ) H x ( t )   (12) 

 

The N 1( N p )   future set-point or reference 

values in the cost-function can be denoted as: 

 

0 0 01N RN pR (t ) H H x ( t ) C x ( t )    (13) 

 

The equations for the total system will now be 

obtained and these will determine the size of the 

Riccati equations in the control and estimation 

problems. Combining the state equations for the 

reference and the plant obtain the total augmented 

system as: 

 

0 0 0 0 0
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1 0

x ( t ) A x ( t ) D ( t )
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x ( t ) A x ( t ) B D ( t )




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 (14) 

which may be written in the more concise form: 

 

1X(t ) AX( t ) Bu( t ) D ( t )     (15) 

 

The equation for the future inferred outputs to be 

costed in the criterion may be written in terms of the 

state vector X(t), using (5), as: 

 

 1 0h
t ,N N N t ,N N t ,NY H X(t ) G U N W     (16) 

 

and from the reference vector equation (13): 

 

 1 0 0t ,NR C X( t )   (17) 

 

The error signal may now be written, using these two 

equations, as: 

1 1 1
h

t ,N t ,N t ,NE R Y     

 0 N N t,N N t ,NC H X(t ) G U N W     (18) 

 

That is, the predicted future error term that will 

appear in the cost-function is: 

 

1t ,N t ,N t ,NE HX(t ) GU W     (19) 

 

where 

 0 N N t,N N t ,NH C H , G G , W N W       (20) 

 

2.2. State-space GPC algorithm 

The full derivation of GPC controller in state-space 

form may be found in [38]. Only the main points are 

recalled below.  

The performance index to be minimized is defined as 

follows: 

 

  

 
0

1 1 1

1



          

     


N

T

t h h j h

j

T
h j

J r ( t j ) y ( t j ) Q r ( t j )

y ( t j ) u( t j ) R u( t j )


 (21) 

 

where E{.} denotes the unconditional expectation 

operator, and the error Qj and control Rj weightings 

can be different for future steps j. 

The cost-function can be simplified by introducing 

the block diagonal weighting matrices 

 1diag NQ Q ,...,Q  and  0 1diag NR R ,...,R  . 

The Jt term can therefore be written: 

 

   1 1 1 1   
 

    
 

T
h h T

t t ,N t ,N t ,N t ,N t ,N t ,NJ E R Y Q R Y U RU

 (22) 

Next, equations (18) and (19) are used. Note from (5) 

that the disturbance model t ,NW  includes current and 

future values of the white noise disturbance signal. 

The vector of future predictive values of the signal 

Ut,N is to be calculated at time t and cannot utilise 

knowledge of future disturbance signal components. 

Thus, t ,N( HX( t ) GU )  and t ,NW  are statistically 

independent and zero mean, and from (22): 

 

   
 0

T

t t ,N t ,N

T
t ,N t ,N

J E HX( t ) GU Q HX( t ) GU

U RU J

  

 

  (23) 

and 



0
T

t ,N t ,NJ E{(W QW )}  

Performing conditional expectation operation (as in 

standard LQG problem) the performance index, 

neglecting a constant (control independent) term, can 

be expressed as: 

 

   
T

t t ,N t ,N

T
t ,N t ,N

ˆ ˆJ HX( t ) GU Q HX( t ) GU

U RU

  



 (24) 

 

where X̂ ( t )  denotes the estimate of the extended 

state. Thus, by finding the stationary point, the vector 

of optimal control signals becomes: 

 

 
1

T T
t ,N

ˆU G QG R G QHX


    (25) 

 

Equation (25) can be represented in a more familiar 

form when the matrix H  and the extended state X  

are substituted by their appropriate definitions (20) 

and  (14): 

 

   

   

1
0

0
1

1

1

T T
t ,N N N N N

T T
N N N t ,N N

x̂ ( t )
U G QG R G Q C H

x̂ ( t )

ˆG QG R G Q R H x ( t )





  
     

  

  

 (26) 

As predictive control is based on the receding 

horizon philosophy, only the first element from the 

vector t ,NU  is used and the optimization is 

performed again in the next step with (possibly) a 

new value of the reference signal. 

 

2.3. Stability improvements through use the of 

terminal constraints or terminal cost 

 

The state-space version of the GPC controller 

presented above is well know to lack guaranteed 

stability properties. Several authors have suggested 

modifications and improvements to the problem  

formulation which will lead to better stability of the 

closed loop system. A popular approach is to 

consider terminal constraints which could be equality 

constraints [9, 34], non-equality constraints [6] or 

terminal penalty in the cost function [1, 33]. In the 

latter case, if zero reference signal is assumed, the 

performance index (21) will change to: 

 



1

1 1 1 1

0

1 1 1

1 1

1 1







        


       


N

T T
t j

j

T T
j N

J x ( t j ) H Q H x ( t j )

u( t j ) R u( t j ) x ( t N ) P x ( t N )



 (27) 

where PN+1 represents the terminal cost weighting 

matrix. Using the Principle of Optimality, PN+1 can 

be selected as the cost associated with infinite 

horizon performance index, therefore guaranteeing 

that the solution has the same stability properties as 

the infinite horizon LQG problem. 

 

2.4. Linear Quadratic Gaussian Predictive 

Control (LQGPC) 

The approach, which we propose here is related to 

the terminal cost approach described earlier. The 

dynamic performance index to be minimized is 

defined as: 

 

1

2

T

t
T

t T

J E lim J
T



  
  

  
  (28) 

 

where Jt is described by equation (21) or  (22). This 

new performance index (28) can be considered as the 

previous performance index (22) plus the terminal 

constraint which is an infinite horizon quadratic 

performance index. 

To be able to take into account the dynamic nature of 

the problem a slight modification to the state space 

equation of the system (15) is made: 

 

1 t ,NX(t ) AX( t ) U D (t )      (29) 

 

where the block matrix   is constructed as follows: 

 
T TB   

 
 (30) 

 

Therefore, equations (29) and  (15) represent exactly 

the same dynamic system. The modification 

introduced in equation (29) will enable us to 

substitute directly the state equation into the 

performance index and therefore to solve the infinite 

horizon dynamic optimization problem.  

The cost-function term Jt may be expanded using 

equation (24): 

 

 T T T T
t t ,N t ,NJ E X ( t )H QHX(t ) U (G QG R )U  

 0
T T T T
t ,N t ,NU G QHX(t ) X ( t )H QGU J    (31) 

 

This cost term may therefore be written in the form: 

 

 
0

2

t

T T T
c t ,N c t ,N c t ,N

J J

E X ( t )Q X( t ) U R U X ( t )G U



  
 

 (32) 

 

where the weightings: 

  andT T T
c c cQ H QH, R G QG R G H QG     

include the cross-product term Gc. 

The optimal control solution is then given by: 

 



   
1

T T T T
t ,NU R G QG B SB G QH B SA X( t )



    

(33) 

 

where S  is a steady state solution of the Riccati 

equation: 

 

 

   

1 1

1

1 1

T T T T
j j j

T T T T
j j

S H QH A S A H QG A S B

R G QG B S B G QH B S A

 



 

   

    

 (34) 

 

with the terminal condition: 1TS   . Equations (33) 

and (34) may be further simplified. Assuming that 

matrix jS  is divided into four matrix blocks of 

appropriate dimensions: 

 

1 2

2 3

j j

j T

j j

S S
S

S S

 
 
 
 

 (35) 

 

and using definitions of matrices as given in 

equations (14) and (20) obtains: 

 

 

 

 

1
1

1 1

1
1 1 1

2
1 0

T T
t ,N N N

T T
N N

T T
N N

U R G QG B S B

ˆG QG A B S A X( t )

B S A G Q R ( t )



   

  
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


 (36) 

 

and equation (34) may be split into two equations: 

 

 

  

 

1 1
1 1 1

1
1 1

1 1 1 1 1 1

1
1 1 1

T T
j N N j
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T T
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 (37) 

  

 

2 2
1 1 1 0

1
1 1

1 1 1 1 1 1

2
1 1 0

T T T
j N j

T T TT
N j N N j

T T
j N

S A H Q A S A
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


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
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 (38) 

 

2.5. Implementation to Manufacturing Systems 

 

A property of the above particular minimization 

problem enables the solution procedure to be 

simplified and made numerically efficient. First note 

that the vector of future controls, Ut,N can be 

partitioned into those determining the control input 

u(t), at time t, and the controls for   t  that will 

now be denoted as f
t ,NU . Assuming for the moment 

that states may be measured, this result enables u(t) 

and 
f

t ,NU  to be computed separately. To demonstrate 

this result we will partition GN, Rc and Gc 

compatibly with the partition of Ut,N. Consider the 

cost term I(t) where: 

 

1 1 2

3 2

2

2

2 2

T T T
c t ,N c t ,N c t ,N

fT fT T T
c c c ct ,N t ,N

f fT T
c ct ,N t ,N

I( t ) X ( t )Q X( t ) U R U ( t ) X ( t )G U

X Q X u R u X G u U R U

u R U X G U

  

   

 

 (39) 

From (30), the dynamics of the system, involved in 

the state model, do not depend upon 
f

t ,NU . It follows 

that the optimization of the cost, depending upon 
f

t ,NU  is a finite dimensional problem.  To obtain the 

gradient, with respect to 
f

t ,NU  we consider: 

2 3 2

2 3 2

2 2

2

fT fT T
c c ct ,N t ,Nf

t ,N

fT T T
c c ct ,N

((U R u ( t )R X ( t )G )U )
U

(U R u ( t )R X ( t )G )


 



  

 (40) 

Setting the gradient to zero, to obtain the optimum 

cost, we find the vector of future controls as: 

 
1
2 3 2

f T T
c c ct ,NU R ( R u( t ) G X( t ))    (41) 

 

This provides the solution for future controls and the 

main problem then becomes the calculation of the 

feedback control at time t. The control at time t can 

be found by minimization of E{Jt} defined as: 

 

02

T T
t c c

T
c

E{ J } E{ X ( t )Q X( t ) u ( t )R u( t )

X ( t )G u( t )} J

 

 
 (42) 

where 
1

2 2 2

1
1 3 2 3

1
1 2 2 3

T
c c c c c

T
c c c c c

T
c c c c c

Q Q G R G ,

R R R R R ,

G G G R R







 

 

 

 (43) 

Note that when states are not available X(t) can be 

replaced by the optimal estimate X̂ ( t ) . 

Therefore, the solution of the LQGPC optimal 

control problem, with the multi-step cost index may 

be found in two stages. 

Stage 1 :  Vector of future controls 
1
2 3 2

f T T
c c ct ,NU R ( R u( t ) G X( t ))    (44) 

Stage 2 : Minimization in terms of current control. 

This minimization can be performed using 

polynomial description of the system as follows: 

 

The predictive control criterion to be minimized is 

defined to have the following steady-state (infinite 

time) form: 







 

 

1 1

1

1

1

2

1
2

2

T
T T

c c
T

t T

T T T
c c

c XX c uX

z

c uu

J lim E X ( t )Q X( t ) u ( t )R u( t )
T

X ( t )G u( t ) u ( t )G X( t )

trace Q ( z ) G ( z )
j

dz
trace R ( z )

z

 







 






 



 

 







 (45) 

The optimal control, tracking and feedback 

components, may be computed using: 

 
1 1

0 1 1Nu( t ) K ( z )R ( t ) K ( z )z ( t )     (46) 

 

where the matrix polynomials K0(z
-1

) and K1(z
-1

) are 

obtained through standard minimization procedures 

applied to (45) and to the polynomial equivalent of 

the system model. 

 

 

3 .  NON-LIN EAR PR EDI CT IV E 

CONTROL –  AN OV E RVIE W  

The development of predictive control algorithms for 

non-linear systems has started relatively recently. 

The techniques that are being used are often a direct 

extension of techniques for linear systems. This 

happens even if specific non-linear modeling 

methods such as neural nets or fuzzy logic are 

applied to prediction of future outputs. It is therefore 

inevitable that some sort of linearization of the 

system model must be performed to allow for 

introduction of Linear – Quadratic theory. Therefore, 

many researchers concentrate on defining specific 

conditions, which will allow linearized algorithms to 

work on non-linear and constrained systems. This 

includes the issues of stabilizability and feasibility. 

Another important issue is construction of efficient 

prediction algorithms, which would enable for fast 

calculation of the optimum of the performance index.  

A sample of different methods of non-linear 

predictive control is presented below. 

 

3.1. Contractive predictive control 

In this method of non-linear predictive control [28] 

two sampling intervals are considered. The normal 

sampling interval T  determines the frequency of 

changes of the control action. The “contractive” 

sampling interval, which is multiplicity of the normal 

sampling interval: P T  determines frequency of 

application of the contractive constraint. The system 

is described by a non-linear differential equation: 

 

dx( t )
f ( x( t ),u( t ))

dt
  (47) 

 

and the control action is assumed piecewise constant 

between sampling moments. The performance index 

is a quadratic form with respect to the state, the 

control action and the increment in the control action: 

 

1 1

1

k k

kk

k

k

t t
T T

k

i tt

t
T

u

i t

J( t ) x ( t )Qx( t )dt u ( i )Ru( i )

u ( i ) u( i )  

 







  







 (48) 

where tk and tk+1 denote two sampling moments 

distanced by the “contractive” sampling interval. 

Therefore, the summations in equation (48) are 

performed over P steps. The predictive control law is 

designed to minimize the above performance index 

subject to the state equation constraint (equation 

(47)), the upper and lower constraints on the control 

action: 

 

min maxu u( i ) u  , (49) 

 

the constraints on the speed of changes of the control 

action: 

 

maxu( i ) u  , (50) 

 

the constraint on the horizon of the control action: 

 

0 1 1u uu( i )    for   i N ,N ,...,P      (51) 

where Nu is the control horizon, 

and finally, the “contractive” constraint: 

 

1 1
T T

k x k k x kx ( t )P x( t ) x ( t )P x( t )    (52) 

where  0 1   and  xP  is a positive definite matrix. 

The control actions within the horizon  1k kt ,t   are 

calculated using a non-linear numerical optimization 

algorithm and then applied to the system in P 

sampling periods. The procedure is then repeated at 

the time instant tk+1. 

 

3.2. Efficient non-linear predictive control 

This approach was originally developed for linear 

systems with constraints [26]. Several extensions 

have been proposed to handle non-linear systems [4, 

5, 27].  

The underlying idea is to split the infinite control 

horizon  1u( t ),u( t ),...  into two parts. The first 

part  u( t ),...,u( t M )  will be subject to system 

constraints and non-linear optimization may be 

needed to calculate it. The second part 

 1u( t M ),...   will be assumed linear function of 

the system state: 

 

u( t M j ) Kx( t M j )      (53) 

 

Similarly, for the remote future, i.e. t>M, the system 

model will be assumed to be approximated well 



enough by the linearized model around zero (steady 

state) system state: 

 

1x( t ) Ax( t ) Bu( t )    (54) 

 

At the end of the first part of optimization, it is 

assumed that the system state will fall into a so-called 

invariant set that guarantees feasibility and stability 

thereafter. It means that a linear, stabilizing control 

law K will maintain the system state within the set 

and the set itself will be assumed ellipsoidal: 

 

 1 1T
x xx : x x     where 0x   (55) 

 

A semi-definite programming solver can be used to 

determine the maximum possible value of x  which 

will provide the invariance and will satisfy the input 

constraints: 

 

maxu( t ) Kx( t ) u   

 

For the first M+1 moves of the control signal, it is 

recognized that more freedom in the control action 

will be needed to compensate for constraints and 

non-linearities. Therefore, the control law is assumed 

in the form: 

 

u( t ) Kx( t ) c( t )   (56) 

 

where c(t) represents a correction or a “trim” to the 

control action and is used for optimization purposes. 

The optimal, predictive control problem can now be 

formulated as follows: 

For a given non-linear system model: 

 

1x( t ) f ( x( t ),u( t ))   

 

find a set of M values of c(t) (equation (56)) such that 

the quadratic performance index: 

 

 

 

1 1

0

1

1 1

0

T T
t j t j t j t j

j

M
T T T
t j t j t j t j M M M

j

J x Qx u Ru

x Qx u Ru x P x



     





     



  

  





 (57) 

is minimized and the state xM lies in an invariant set. 

The performance index (57) can be optimized 

numerically and, in some cases, this can be reduced 

to solving a linear programming task. 

 

3.3. Fuzzy Takagi-Sugeno models in predictive 

control 

Takagi and Sugeno  proposed, [51], a type of fuzzy 

models suitable for the approximation of a large class 

of non-linear systems. This model is expressed by a 

set of rules Ri in the form: 

 

1 1 1If and and theni i n in i i nR :  x  is A     x  is A   y f (x , ,x )

  (58) 

where 1 nx , ,x  are the input variables of the model; 

1i inA , ,A  are the fuzzy sets associated to the input 

variables, yi is the output of the rule i, and fi is a 

function that could be linear, so that: 

 

i 0 1 1 ny   xi i i
np p x p     (59) 

 

where 0  ..., i i
np , p  are the consequent parameters of 

the rule i. 

Combining the values of the outputs generated by all 

the rules in the model, the output of the fuzzy model 

is given by: 

 

 

1

1

M

i i

i

M

i

i

y

y















 (60) 

 

with M as the number of the rules of the fuzzy model. 

Also, i corresponds to the degree of satisfaction of 

the rule i, defined as: 

 

 1
   

i ij ini A A Aoper , , , ,     (61) 

 

where “oper” is a triangular norm given by the 

minimum or product operator, and 
ijA  is the 

membership degree of the input variable xj associated 

with the fuzzy set Aij; for j = 1,..., n. 

Takagi - Sugeno dynamic models can be used to state 

space description of the system: 

 

1 1If and … and

then 1

i i n in

i i i i

R :  x (t) is A   x (t) is A  

       x (t + ) A x( t ) B u( t ) C  
 (62) 

 

where  1

T

nx x , ,x   is the state vector of the 

model; A
i
, B

i
 and C

i
 are the matrices of the linear 

models in state variables for the consequences and x
i
 

is the output vector in state variables for the rule i. 

 

Presented below is a fuzzy predictive controller 

based on linearization of the Takagi-Sugeno fuzzy 

model [50]. For the fuzzy model given by equation 

(62), the equivalent time-variant linear model can be 

constructed: 

 

1x( t ) A( t )x( t ) B( t )u( t ) C( t )     (63) 

 



where 
1

M
i

i

i

A( t ) ( t )A


 , 
1

M
i

i

i

B( t ) ( t )B


  and 

1

M
i

i

i

C( t ) ( t )C


  with i being the normalized 

satisfaction degree of the rule i.  

At every sampling time, a linear model is derived by 

evaluating the fuzzy model premises or the 

satisfaction degrees. Then, a linear predictive 

controller is designed for the resulting linear model 

and, in the next sampling time, the linear model is 

updated. 

 

 

4 .  NON-LIN EAR PR EDI CTIV E 

CONTROL WI TH STA TE 

DEPEN DEN T S TA TE - SPACE 

M ODELS  

 

This approach is based on performing a dynamic 

linearization around the state trajectory and applying 

a receding horizon strategy. There are some 

similarities to the non-linear algorithms presented 

earlier.  

 

Only a deterministic case is considered in this part of 

the paper. Extension to stochastic systems would 

require a careful consideration of effects which non-

linearities will have on probability distributions. 

 

4.1. System representation 

Assume a non-linear, discrete in the time system 

described by the following equations: 

State: 

1 1 1 2 11x ( t ) f ( x ( t )) f ( x ( t )) u( t )     (64) 

 

Inferred output: 

3 1hy ( t ) f ( x ( t ))  (65) 

 

where: f1 is a vector of size nx, f2 is a matrix 

x u( n n ) , f3 is a vector of size ny. 

 

The above system can be transformed into an 

alternative representation, with state-dependent state 

transition matrices: 

 

1 1 1 1 1 1

1 1

1

h

x ( t ) A ( x ( t ))x ( t ) B ( x ( t ))u( t )

y ( t ) H( x ( t ))x ( t )

  


 (66) 

 

Where: A1 is a matrix x x( n n ) , B1=f2, H is a matrix 

y x( n n ) .  

Notice that the representation (66) is not unique [9], 

[35], in fact there is infinite number of possible 

transformations leading from equation (64) to (66). 

For instance, if f1 is expressed as: 

 

 

 

11 111

1

1 1 1

x

x
x x

n

n n n

f x ( t ), ,x ( t )f

f ( x( t ))

f f x ( t ), ,x ( t )
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  
   
  
    

  (67) 

 

then, the matrix A1(x1(t)) can be formed as follows: 

 

111
1 1

1

diag x

x

n

n

ff
A ( x ( t ))

x x

   
   

    

 (68) 

 

However, also other representations are possible and, 

indeed, may be more appropriate, especially when 

the state is close to zero. 

We will denote: ( k )a a( x( k ))  

Using this notation and the system model as in 

equation (66), the N steps ahead prediction of the 

state is given by: 

 

1 1 1 2 1

1 1 1 2 1 1 1

1 1 1 2 1 2 1 1

1 1 1 2

1 1

1

2

1

( t N ) ( t N ) ( t )

( t N ) ( t N ) ( t ) ( t )

( t N ) ( t N ) ( t ) ( t )
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x( t N ) A A A x( t )

A A A B u( t )

A A A B u( t )

A B u( t N )

B u( t N )

   

    

     

   

 

    

   

    

 

   

  

 (69) 

We introduce the following notation: 

 

1 if 

if 

n
( n ) ( n ) ( l )

( k )

k l

a a a l n
a

l n





  
  

   
 (70) 

 

then equation (69) can be expressed as: 
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 (71) 



 

Define the following vectors, consisting of vector 

variables x1, u, yh:  
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 (72) 

 

Then,  
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and: 
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1 1
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0 0

0 0

0 0
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( t )h
t ,N t ,N

( t N )

H

H
Y

H







 



 
 
 
 
 
  

 (73) 

 

Therefore:  

1
h

t ,N N( t ,t N ) N( t ,t N ) t ,NY H x ( t ) G U    (74) 

 

Also, the state equation (66) can be re-written in a 

form that contains the vector Ut,N instead of u(t). 

Direct analogy with (29) and (30) gives: 

 

1 11 ( t ) ( t )x ( t ) A x( t ) u( t )    (75) 

 

4.2. State Dependent Riccati Equation technique 

Before progressing further with design of predictive 

control algorithms we mention that our method is 

partially inspired by the State Dependent Riccati 

Equation technique [10], reported to be very 

successful for difficult mechanical systems [35]. In 

this approach, the system is described by a 

continuous equivalent of equation (66): 

1
1 1 1 1 1

dx
A ( x )x ( t ) B ( x )u( t )

dt
   (76) 

A standard quadratic performance index:  

 

0 0

0 1 1
T T

t t

J( t ) x ( t )Qx ( t )dt u ( t )Ru( t )

 

    (77) 

is optimized. To perform optimization, an 

assumption is made that for a given time instant t0, 

the all future values of the system parameters are to 

be equal to those at time t0 (one step ahead horizon 

for the system parameters changes). Consequently, 

the algebraic state-dependent Riccati equation 

(SDRE) is solved, to obtain  1S x . 

 

       1 1 1 1 1 1 1 1
1 0T TA x S SA x SB x R B x S Q    (78) 

Accepting only    1 1 10TS x S x x   . 

Then, the optimal control is given by a well-known 

equation: 

 

   1
1
Tu( t ) R B x S x x( t )   (79) 

 

If equation (78) could be solved analytically it would 

produce an analytical equation for u. However, in the 

normal circumstances, it is solved numerically for a 

given value of x1. Next, the system state is updated 

and, consequently, new system parameters are 

obtained. This completes one iteration of the 

procedure. 

 

Theorems concerning stability of SDRE are 

presented in [9] and [35]. In summary, if the pair 

{A1(x1(t)), B1(x1(t))} is pointwise stabilizable and the 

pair {H(x1(t)),A1(x1(t))} is pointwise detectable in the 

linear sense for all x1 in the neighborhood of the 

origin, then the system controlled by the LQ 

regulator (79) is locally asymptotically stable. 

 

Example of application to the flexible manipulator 

The flexible manipulator is a beam pinned at the joint 

hinge axis, and free at the other end. The model 

obtained on basis of Lagrange’s equations of motion 

yields two sets of equations. The first set is 

associated with the rigid body degree of freedom 

defined by , and the other set is associated with the 

elastic degrees of freedom defined by i . These two 

sets of equations are nonlinear time varying coupled, 

second order ordinary differential equations. The 

system can be represented in the state-space form 



with six states:  1 2 1 2 3 4x , , , , ,       and the tip 

position as the output:  

 

   x f x B x u   (80) 

 1 1 1 2 2tipy k C C      (81) 

where, 2,1, CCtipk  are constants, depending on the 

arm characteristics. 

A simulated example described in this section 

considers that the flexible link rotates on the 

horizontal plane. Fig. 1 shows how the tip position 

changes in response to a step set-point change when 

the system is controlled by the SDRE method. The 

results compare favorably with other methods, 

proposed for this problem in earlier literature and are 

therefore highly encouraging. 
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Fig. 1. Tip position, deflection for SDRE 

 

4.3. Implementation of GPC controller 

Now, we move back to the design of predictive 

algorithm that will use state dependent state space 

representation. Unlike in the previous section, we 

will use discrete in the time system model (66) and 

(74). The reference model will be introduced in the 

same way as for the linear system (equations (10) and 

(13)). Therefore, the state and the “reference state” 

can be combined in the extended state as in equation 

(14): 

00 0

1 11 1

0 01

01 ( t ) ( t )

Ax ( t ) x ( t )
u( t )

A Bx ( t ) x ( t )

      
       

      

 (82) 

Notice that the lower part of this system, i.e. A1(t)  and 

B1(t) represents the non-linear state dependent 

behavior. The standard predictive control 

performance index will cover finite number of N 

steps into the future and therefore can be expressed 

as in (22): 

 

   1 1 1 1

T
h h T

t t ,N t ,N t ,N t ,N t ,N t ,NJ R Y Q R Y U RU   
 

    
 

 (83) 

The solution of the optimization problem is given by: 

 

 
 

1

1

T
t ,N N( t ,t N ) N( t ,t N )

T
N( t ,t N ) t ,N N( t ,t N )

U G QG R

G Q R H x ( t )



 

 

 

 

 (84) 

 

The above control law is optimal for the non-linear 

system (82) and the quadratic performance index 

(83). However, the control law (84) is not causal. The 

matrices in the solution are functions of the future 

system states, which are not known when the control 

is calculated. Similarly to the section 4.2, a causal 

solution could be obtained if the analytical 

relationships from (82) are substituted to the 

prediction equation and the resulting equation is 

solved for u. Alternatively, one can calculate the 

control action iteratively as follows: 

 

1. The current time instant is t 

PART A: Initial conditions for the current time 

instant 

2. obtain the state x(t) 

3. obtain the matrices A(x(t)), B(x(t)), H(x(t)) 

4. assume that those matrices will remain constant 

for the next N steps 

5. based on this (linear model) calculate the state 

predictions, the output predictions and the 

control vector Ut,N 

PART B: Iterations performed within one time 

instant 

6. substitute the calculated Ut,N into the state 

equation (66) and calculate iteratively the state 

predictions and associated state matrices: 

1 1 11 ( t ) ( t ) ( t )x( t ) A , B , H     

… 

1 1 11 ( t N ) ( t N ) ( t N )x( t N ) A , B , H         

7. Calculate the output predictions and the control 

vector Ut,N 

8. check the difference between the state 

predictions now and in the previous iteration 

step, and between the control vector Ut,N  

calculated now and in the previous iteration step 

9. If the difference is not small enough: go back to 

6. 

If the difference is small enough: end iterations 

(Part B) 

10. Increase current time index by 1 and go to 2. 

 

4.4. Implementation of LQGPC controller 

Following the reasoning presented in section 2.4 the 

LQGPC (dynamic performance) index will be 

formulated as a sum of the indices defined by (83), 

i.e.: 

 

   



1 1 1 1

0

1

1

T T
h h

t j ,N t j ,N t j ,N t j ,N

j

T
t j ,N t j ,N

J R Y Q R Y
T

U RU

       



 


  

 





 (85) 

Using the state as defined in equation (75) and the 

input and output as defined in equation (74) the 

problem can be solved in exactly the same way as in 

section 2.4, leading to coupled (algebraic) Riccati 

equations as in (37) and (38). 



Notice that in this formulation, knowledge of N 

future states is required to construct the state-space 

model. Therefore, as before, the obtained solution is 

not causal. However, it can be approximated by an 

iterative procedure similar to the one described in the 

section above. 

As before, it is assumed that at the time instant t0 it is 

possible to predict N future values of control signals 

and therefore N future values of states of the system. 

Furthermore, it is assumed that the plant parameters 

beyond this horizon will be constant. This 

assumption has no implication when using 

performance index (83) as the optimization is 

performed in one step (static optimization). However, 

if the performance index (85) is used, the 

optimization problem within the horizon T+1 will 

require a solution of Riccati equation backward from 

T+1 to 1. In the iterations of the Riccati equation the 

last N steps (i.e. the first N steps in time) will feature 

changing parameters of the system.  

 

5 .  EXAM PLE  

 

Two examples are presented in this section. The first, 

which illustrates the state dependent GPC technique, 

is based on a simplified model of a helicopter. The 

model is a multidimensional naturally unstable 

system with two manipulated inputs and two 

measured outputs with significant cross-couplings. 

The model is described by non-linear state-space 

equations with two inputs, two outputs and nine 

states. The inputs are: the throttle valve opening for 

the main propeller and for the side propeller and the 

outputs are: elevation angle and azimuth angle.  

 

 

Fig. 2. Elevation angle with non-linear GPC 

 

 
Fig. 3. Azimuth angle with non-linear GPC 

 

 
Fig. 4. Main propeller motor control 

 

 
Fig. 5. Side propeller motor control 

 

For elevation angles greater than 90 degrees 

helicopter model is unstable. For this model, two 

different control algorithms have been tried. The first 

was based on linear GPC technique, i.e. the system 

non-linear equations were linearized in the current 

operating point and then the linear GPC solution 

computed and the first control applied. In the next 

time instant the linearization and the computations of 

GPC controller were repeated. This is very similar to 

the SDRE technique but with a finite horizon. Using 

this approach, all the attempts to stabilize the 

helicopter model failed. Then, the approach 

described in section 4.3 was tried and the system was 

successfully stabilized with the GPC non-linear 

controller. The results are presented in Fig. 2 to Fig. 

5. 

 

The second example refers to the flexible 

manipulator described earlier. Fig. 6 shows the 

results of application of the state-dependent GPC 

controller and Fig. 7 refers to the non-linear LQGPC 

control, both described in the previous paragraphs. 

Both techniques compare favorably with the SDRE 

(see Fig. 1), and LQGPC is slightly better than GPC. 

It is worth mentioning that the SDRE technique 

already provides very good results to this difficult 

problem. The algorithms based on predictive 

approach prove easier to tune which can be credited 

to a larger number and greater transparency of tuning 

parameters. 
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Fig. 6. Tip position, deflection for GPC control 

 

0 0 .5 1 1 .5 2 2 .5 3

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2
D e fle c t io n  (m )    

Tip  p o s it io n  (ra d )

 
Fig. 7. Tip position, deflection for nonlinear LQGPC 

control. 

 

 

6 .  CONCLU SIONS  

 

I a recent excellent tutorial session [48], Jacques 

Richalet, whose contribution to the field of predictive 

control, e.g. [49,47] is unanimously appreciated, 

specified 4 basic principles by which all those 

algorithms which pretend to be named “predictive” 

should be judged. Those principles are: 

 internal model; i.e. the model of the system is 

known and used internally in the control 

algorithm to predict the future outputs 

 reference trajectory, is defined for a finite number 

of steps into the future 

 structurization of manipulated variables, i.e. the 

control action is approximated by a combination 

of pre-defined functions of time 

 self-compensation.  

However, one may find out that those principles are 

not fully obeyed in the majority of predictive control 

literature. Many researchers with a background in 

LQG optimization wish to see the predictive control 

as a special case (namely finite, receding horizon) of 

LQG problem. Whereas the four principles listed 

above do not even mention optimization, only a 

definition of a reference trajectory.  

Also, we admit that this presentation is biased by the 

“Linear-Quadratic optimization” thinking. However, 

trying to bear in mind that the Model Based 

Predictive Control is a more general approach, not a 

special case of the LQG method, let us consider some 

consequences this may have on design of algorithms, 

especially in non-linear and/or constrained cases. 

 

The reference trajectory:  

Very often the papers on predictive control contain 

the sentence: without loss of generality assume zero 

reference signal. This is not necessarily so easy, 

especially in the real applications where the human 

operator or the higher level in the automatic control 

hierarchy would need to have a facility to change the 

value of the reference signal on-line while the 

algorithm is running. We believe that the way of 

describing the reference signal provided in section 

2.1 addresses this problem.  

Set-point and stability: 

Many publications base the stability analysis on 

methods that assume the equilibrium point at the 

origin in the state space [25, 29]. For non-zero 

reference signal the state of the system not 

necessarily stabilizes at zero and in non-linear and 

constrained cases this will strongly affect the stability 

and feasibility considerations. 

Structurization of manipulated variables:  
This approach is now gaining popularity due to its 

promising features and computational advantages for 

non-linear systems [14, 31, 46]. Notice that standard, 

LQG based predictive control algorithms can provide 

zero steady state error for constant reference signal. 

For reference being a ramp function the tracking 

error will be constant, determined by the closed loop 

gain. However, when using the appropriately 

structured manipulated variables it is possible [47] to 

achieve zero steady-state error for a ramp reference 

function or even faster changing reference signals 

(e.g. quadratic function of time). 

Reduced order controller: 

As a consequence of structurization of manipulated 

variables, the order of the controller can be pre-

specified at the design stage and can be lower than 

the dimension of the system state. The price paid for 

this is that the parameters of the controller will have 

to change from step to step [55]. However, in most of 

non-linear predictive algorithms even without 

structurization of the manipulated variables, the 

controller is being re-calculated in every step and still 

results in a high order dynamic system. Being able to 

reduce the order of the controller dynamics may be 

an attractive feature if a computational power is 

limited or a particular hardware imposes restrictions 

on the controller structure.  
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