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Design of Generalized Minimum Variance Controllers 

for Nonlinear Systems 
 

Michael J. Grimble 
 

Abstract: The design and implementation of Generalized Minimum Variance control laws for 
nonlinear multivariable systems that can include severe nonlinearities is considered. The 
quadratic cost index minimised involves dynamically weighted error and nonlinear control 
signal costing terms. The aim here is to show the controller obtained is simple to design and 
implement. The features of the control law are explored. The controller obtained includes an 
internal model of the process and in one form is a nonlinear version of the Smith Predictor. 
 
Keywords: Cost-function, delays, minimum variance, nonlinear, optimal control. 
 

1. INTRODUCTION 
 
The proposed control law is for nonlinear 

multivariable systems is based on a rich heritage. 
Åström introduced the Minimum Variance (MV) 
controller assuming the linear plant was minimum 
phase and later derived the MV controller for 
processes that could be non-minimum phase (Åström 
1979 [1]). The latter was guaranteed to be stable on 
non-minimum phase processes, whereas the former 
was unstable. Hastings-James and later Clarke and 
Hastings-James (1971, [2]), modified the first of these 
control laws by adding a control costing term. This 
was termed a Generalized Minimum Variance (GMV) 
control law and enabled non-minimum phase 
processes to be stabilized, although when the control 
weighting tended to zero the control law reverted to 
the initial algorithm of Åström, which was unstable 
(Grimble 1981 [3], 1988 [4]). However, the control 
law had similar characteristics to Linear Quadratic 
Gaussian (LQG) design and in some cases and was 
much simpler to implement. This simplicity was 
exploited in the GMV self-tuner (1975, [5]). All of 
these results were applicable to linear discrete-time 
processes. 

The aim in the following is to first introduce the 

GMV controller for Nonlinear (NL) multivariable 
processes using dynamic cost-function weightings in 
the same spirit as the above results. The structure of 
the system is defined so that a simple controller and 
solution are obtained. When the system is linear the 
results then revert to those for the GMV controller 
(Grimble 2001 [8]).  

There is some loss of generality in assuming the 
reference and disturbance models are represented by 
linear subsystems. However, the plant model can be in 
a very general nonlinear operator form, which might 
involve state-space, transfer operators or even 
nonlinear function look up tables. That is, the input 
sub-system to the plant might include valves or a 
servo-system that has no traditional equation based 
model. The input nonlinear subsystem can be a black 
box. No state-space or model based operator structure 
is needed. The optimal solution reveals all that is 
needed is a method of computing the output from such 
subsystem, given a control input. If on the an equation 
based model is available it may be used directly. For 
this reason the nonlinear part of the plant is 
represented in operator (unstructured form) for most 
of the analysis.  

The nonlinear (NL) dynamic terms, in the plant, 
only need to be open loop stable and can include hard 
static nonlinearities or complex dynamic equations. 
The ability to introduce very general plant structures, 
without formal models, is an advantage of the method. 
This feature is similar to the properties of some 
controllers generated by feedback linearization 
methods (Goodwin, Rojas and Takata, 2001 [6]). 
However the plant model does not need to be affine in 
the control and feedback linearization methods do not 
of course provide a general solution that gives optimal 
disturbance rejection and tracking. 

For linear systems stability is ensured when the 
combination of a control weighting function and an 
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error weighted plant model is strictly minimum phase. 
For nonlinear systems a related operator equation 
must have a stable inverse. It is shown that if there 
exists say a PID controller that will stabilize the 
nonlinear system, without transport delay elements, 
then a set of cost weightings can be defined to 
guarantee the existence of this inverse and thereby 
ensure the stability of the closed loop. 

The results presented here concentrate on the 
feedback control problem and design/implementation 
issues. It only includes an abbreviated solution since 
the full solution of the Feedforward and Tracking 
Nonlinear Generalized Minimum Variance (NGMV) 
control problem was given in Grimble (2005 [11]). 
This required the solution of three bilateral 
Diophantine equations in [11]. The structure of the 
polynomial equations derived below, is rather 
different to those in [11] and for the feedback control 
here only one unilateral Diophantine equation is 
involved. The result is a truly nonlinear controller that 
is sufficiently straightforward to be used on real 
applications. In the following the properties of the 
control law are explored and the focus is on 
implementation and design issues. 

 
2. SYSTEM DESCRIPTION 

 
The system description is of restricted generality 

and is carefully chosen so that simple results are 
obtained. The plant itself is nonlinear and may have 
quite a general form. However, the reference and 
disturbance signals are assumed to have linear time-
invariant model representations. This is often valid, 
since in many applications the only models available 
for the disturbance and reference signals are LTI 
approximations. The system is shown in Fig. 1 and 
includes the nonlinear plant model and the linear 
reference/disturbance models. There is no loss of 
generality in assuming that the zero mean white noise 
sources { ( )}tω  and { ( )}tξ  have identity covariance 
matrices. There is no requirement to specify the 
distribution of the noise sources, since the special 
structure of the system leads to a prediction equation, 
which is dependent upon the linear disturbance and 
reference models.  

The polynomial matrix system models, for the 
multivariable system, shown in Fig. 1, may now be 
introduced. Part of the system is represented by linear 
models. The linear disturbance, reference and plant 
output subsystem models have the left-coprime 
polynomial matrix representation:  

1 1 1 1 1 1 1 1
0 0[ ( ), ( ), ( )] ( )[ ( ), ( ), ( )]d r k d r kW z W z W z A z C z E z B z− − − − − − − −= . 

(1) 
The polynomial matrix system models follow: 

Disturbance model: 1 1 1 1( )  ( ) ( )d dW z A z C z− − − −=  

Reference model: 1 1 1 1( )  ( ) ( )r rW z A z E z− − − −= .(2) 

The subsystem associated with the plant inputs is 
assumed to be unstructured and of the form: 

Nonlinear plant model: ( ) ( ) ( )( )k ku t D u t=W W ,(3) 

where { }1 2- - - diag , ,..., rk k k
kD z z z=  denotes the common 

delay elements in the respective output signal paths. 
One of the main strengths of the method is that no 
model is required for the nonlinear subsystem: 
( )( ).ku tW  It is necessary to have some means of 
computing the output from this block but a traditional 
equation based model is not essential. That is, look-up 
tables may be employed, old Fortran code may be 
available that enables the output to be computed for a 
given input, or as in current research, a fuzzy-neural 
model, may be fitted to plant data. These methods do 
not involve a conventional model. 

Most of the results do not need a more detailed 
breakdown of the plant model structure. However, if 
the plant model is separated into an input subsystem 
W1k and a linear subsystem W0k then only the input 
nonlinear subsystem needs to be assumed stable 
(finite gain stable for example). In the later sections, 
to show the system can be stabilised, it will be 
assumed that any unstable modes of the linear plant 
subsystem are included in a stable/unstable linear 
time-invariant block of polynomial matrix form: 

-1
0 0 .k kW A B= The delay free plant model: ( )( )ku t�W  

( )( )0 1 k kW u t= W ( )( )-1
0 1 k kA B u t= �W  and the total 

plant model:  

( ) ( ) ( )0 1 ( )k k ku t D W u t=W W ,               (4) 

where it is assumed that this nonlinear model 1kW  is 
finite gain stable. Note the solution does not require 
the plant model be affine in the control. The signals 
shown in the system model of Fig. 1 may be listed: 

Error signal:        ( ) ( ) ( )e t r t y t= − ,       (5) 
Plant output:      ( ) ( ) ( ) ( )y t d t u t= + W ,  (6) 
Reference:         ( ) ( )rr t W tω= ,         (7) 

Disturbance signal:  ( ) ( )dd t W tξ= ,         (8) 
Combined signal:   ( ) ( ) ( )f t r t d t= − .      (9) 

The power spectrum for the combined reference – 
disturbance: 

* *
ff rr dd r r d dФ Ф Ф W W W W= + = +            (10) 

and the spectral-factor fY satisfies: 

*
f f ffY Y Ф= ,                            (11) 
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where the system models ensure Yf is strictly 
minimum phase. A measurement noise model has not 
been included to simplify the equations. This is 
appropriate so long as the control cost-function 
weighting, ensures controller roll-off at HF. 

 
3. NONLINEAR GMV CONTROL PROBLEM 

 
The optimal NGMV control problem involves the 

minimisation of the variance of the signal ( ){ }0 tφ  in 
Fig. 1. This has a ( )r m×  dynamic cost-function 
weighting matrix: Pc(z-1) on the error signal, 
represented by linear polynomial matrices as: 

1
c cd cnP P P−= . The signal also includes an m-square, 

nonlinear dynamic control signal costing operator 
term: ( )( )c .u tF  Typically Pc is low-pass and cF  is 
a high-pass transfer. The signal:  

( ) ( )( )0( ) c ct P e t u tφ = + F  (12) 

is to be minimized in a variance sense, so the cost: 

( ) ( ){ } ( ) ( ){ }{ }0 0 0 0
T TJ E t t E trace t tφ φ φ φ= = ,  (13) 

where {}E ⋅ denotes the unconditional expectation 
operator. If the smallest of the delays in each output 
channel of the plant are of magnitudes:{ }1 2, ,..., rk k k , 
respectively, this implies the control signal at time t 
affects the thj output at least jk  steps later. For this 
reason the control signal costing can be defined as: 

( ) ( ) ( ) ( )c ck ku t D u t=F F .                  (14) 

Typically this will be a linear operator but it may be 
nonlinear to cancel the plant input nonlinearities in 
appropriate cases. The control weighting operator 

ckF  is assumed full rank and invertible.  
Theorem 3.1: NGMV Optimal Controller 
The NGMV optimal controller to minimize the 

variance of the weighted error and control signals may 
be computed from the following equations. The 
assumptions are made that the input subsystem 1kW  
is finite gain stable and the nonlinear operator 
( )c k ckP − �W F has a finite gain stable causal inverse, 
due to the choice of weighting operators cP  and cF .  

The smallest degree solution: 0 0( , )G F , with respect 
to 0F , must be computed from the polynomial matrix 
unilateral Diophantine equation: 

0 0p cd k cf fA P F D G P D+ = ,                (15) 

where the left coprime polynomial matrices satisfy: 

1 1
p cf cnA P P A− −=  (16) 

and the spectral factor: 1 .f fY A D−=  
Optimal control signal: The optimal NGMV 

control action can be computed as:  

( ) ( ) ( ) ( )
1 11 1

0 0 .f k ck pf cd fu t F Y A P G Y e t
− −− −⎛ ⎞= − ⎜ ⎟

⎝ ⎠��W F (17) 

� 
Proof: Involves collecting results in next section. � 
The solution is simplified if Dk and weighting Pc 

and Yf commute. This assumption is valid if the delay 
elements are the same in each channel k

kD z I−=  or 
if Pc, Yf are diagonal. The class of problems 
considered are those for which a solution to the 
Diophantine equation can be found where the row 
degrees of 0

1F ( )z−  are less than the delay path 
magnitudes { }1 2, ,..., rk k k  and this is ensured under 
the conditions listed in the previous remark. 

 
4. NGMV NONLINEAR OPTIMAL CONTROL 

 
A simple optimisation argument is used in the 

following. The signal to be minimised is shown to 
consist of both linear and nonlinear terms. However, 
the stochastic part of the problem involves linear 
models so that a prediction equation may easily be 
derived. This enables the signal to be written in terms 
of future and past white noise related terms. The 
optimal causal solution is therefore that which sets the 
past terms to zero. This will include some of the 
nonlinear terms and the optimal control follows. 

Consider the minimisation of ( )0 tφ  that represents 
the weighted sum of error and control signals and is 
the same dimension as the input signal. This fictitious 
or inferred output is defined as: ( ) ( )0 ct P e tφ = +  

( )( )cu tF , where Pc is assumed to be a linear and cF  
can be a linear or nonlinear operator. Now from the 
equations in §2: e r y r d u = − = − −W  and hence, 

 

Pc 

Wr 

Wd 

r  e u + 
- 

y 

d 

W + 
+ 

m 

Fc 

Disturbance 

Control 
weighting 

Reference

Error 
weighting 

+ + ξ  

C0 

Nonlinear 
plant Controller 

0 c cP e uφ = +F  

ω  

 

Fig. 1. Single degree of freedom feedback. 
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( ) ( )0 ( )c c ct P r d P uφ = − − − �W F . (18) 

Assumption: An important assumption will now be 
recalled that does not affect stability properties. That 
is, the model for signal f r d= −  is assumed linear.  

Spectral factor: Recall the innovations model for 
the signal: εff Y= , where Yf is a linear transfer and 

( )ε t  denotes a zero mean white noise signal of 
identity covariance matrix. This follows from a 
spectral-factor computation, given the disturbance Wd 
and the reference Wr signal models. The Yf = A-1Df 
where from the system description Df is strictly Schur. 
Thence, from the first term in (18): ( )c cP r d P f− =  

-1 1 εcd cn fP P A D−= . Introduce the left coprime matrices 

Ap and Pcf where 1 1
cn p cfP A A P− −= then Pcf = ( ) 1

p cdA P
−

 

εcf fP D  and from (15) the weighted error and control 
signals:  

( ) ( )
-1

0 εp cd cf f c cA P P D P uφ = − −W F . (19) 

Introduce the Diophantine equation, to expand the 
combined disturbance and reference model into two 
groups of terms:  

0 0p cd k cf fA P F D G P D+ = , (20) 

where the solution for ( )0 0,F G  satisfies the row j 
degree of 0 .jF k<  Hence, 

( ) ( )-1 1
0 0c f p cd cf f p cd kP Y A P P D F A P D G

−
= = + .(21) 

The first polynomial matrix includes delay elements 
in the jth channel, up to and including 1jkz− +  and the 
last term involves delay elements greater than or equal 
to jk  in each channel. Substituting into (19): 

( ) ( )-1
0 0 0ε εp cd k c cF A P D G P uφ = + − −W F  (22) 

but 1 1ε ( )f fY f Y r d− −= = − and substituting in (22):  

( )-1 1
0 0 0ε p cd k fF A P D G Y eφ −= +           (23) 

( ) ( )-1 1
0p cd k p cd c f f cA P D G A P P Y Y u−⎛ ⎞+ − +⎜ ⎟

⎝ ⎠
W F

 

but 1
p cd c f p cn f cf fA P P Y A P A D P D−= =  and hence 

(20) gives: 0 0k cf f p cdD G P D A P F− = − . 
These last two equations then give the desired 

weighted error and control signal as: 

( ) ( )-1 1 1
0 0 0 0ε p cd k f c fF A P D G Y e F Y uφ − −= + + − �F W .(24) 

The control signal at time t affects the jth system 
output at time t+kj and hence the control signal 
costing term cF  should include a delay of kj steps, 
so that .c k ckD=F F  Moreover, since in general the 
control signal costing is required on each signal 
channel, the ckF  weighting may be defined to be of 
full rank and invertible. (24) may be simplified further 
if p cdA P  and Dk and 1

0 fF Y −  and Dk commute, 
which is certainly the case under the assumptions on 
Pc and Yf discussed after the Theorem at the end of the 
last section. From (24) the inferred or fictitious output 
may be written as: 

( ) ( ) ( ) ( )( )1
0 0 0ε [( )k ck f kt F t D u t F Y u tφ −= + −F W  

1 1
0( ) ( )]p cd fA P G Y e t− −+ � .   (25) 

To compute the optimal control signal inspect the 
form of the weighted error and control signals in 
equation (25). Since the row degrees of 0F  are 
required to be less than kj (the magnitude of the delay 
in the jth channel) the jth row of the first term is 
dependent upon the values of the white noise signal 
components: ( )ε t ,…, ( )ε 1 .jt k− +  The remaining 

terms in the expression for the jth row are all delayed 
by at least kj steps and therefore depend upon the 
earlier values: ( )ε ,jt k−  ( )ε 1 ,jt k− −  and it follows 

the first and remaining terms are statistically 
independent. The first term on the right of (25) is 
independent of the control action and the smallest 
variance is achieved when the remaining terms are 
zero. The optimal control signal must satisfy: 

( )( ) ( ) ( )11 1 1
0 0( ) ck f k p cd fu t F Y u t A P G Y e t

−− − −⎛ ⎞= −⎜ ⎟
⎝ ⎠�� F W (26) 

and this may be represented by the Fig. 2. Note the 
signal 0 c cP e uφ = +F  ( )c cP r y u= − +F  involves a 
weighting cF  that normally has a negative zero 
frequency gain. The forward path gain of the 
controller block is therefore usually positive. 
 

Reference 
Output 

( ) 1 1
0 fp cdA P G Y

− −  

1
0 fF Y −

 

1
ck

−F  
y 

+ 

- 

r 

    Disturbance 

d 

+ 

u - 
+

Controller 

W  

kW  

Plant 

+ 

m p 

 
Fig. 2. NGMV control generation and controller. 
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An alternative expression for the control signal, in 
terms of the exogenous signals may be found that is 
useful for stability analysis. From (26), recalling 

1
0 fF Y −  and kD , commute, the optimal control: 

( ) ( )( )1 1
0[ck f ku t F Y u t− −=F W  

( ) ( ) ( ) ( )( )( )1 1
0 ]p cd fA P G Y r t d t u t

− −− − −� W  

but ( ) 11 1 1
0 0 .f p cd k f cd cnF Y A P D G Y P P

−− − −+ =  Thence, ( ) 1
cku t −=F  

( )( ) ( ) ( )( )1 1
0c k p cd fP u t A P G Y r d t

− −⎛ ⎞− −⎜ ⎟
⎝ ⎠

W . 

Alternatively, rewriting: 

( ) ( ) ( ) ( ) ( )( )1 1 1
0c k ck p cd fu t P A P G Y r t d t

− − −= − −
��W F ,(27) 

where the existence of a finite gain stable causal 
inverse of the nonlinear operator ( )c k ckP −W F  

ensures the control action represents a stable system.  
The system output follows as: ( )( )( )m t u t= W  and 

since the cascade controller sub-system ( ) 1
p cdA P

−
 

1
0 fG Y −  must be implemented in its minimal form, it 

follows the output does not involve cancellation of 
any unstable modes present in 1

0 ( )kW z−  and internal 
stability is preserved.  

 
5. IMPLEMENTATION OF CONTROLLER  
 
The implementation of the controller shown in Fig. 

2 reveals that the computational complexity increases 
with the model order and number of inputs and 
outputs since the plant model is included. A way to 
reduce part of this burden is described later (the RS 
version).  

To consider the implementation of the control law 
recall from (17) that the optimal control signal is 

given as: ( ) ( ) 11
0 ( )f k cku t F Y p t

−−= −
��W F  where ( )p t =  

( ) 1 1
0 ( )p cd fA P G Y e t

− − as shown in Fig. 2. Introducing 

non-singular constant scaling matrix: Y0 the control 
signal may be written, using (4) as: 

( ) ( ) ( )11 1 1 1 1 1
0 0 0 1k 0 0 0( ) ( )f k ck p cd fu t Y F D B Y Y A P G Y e t

−− − − − − −= −W F

and 

( ) 11 1 1
0 0 0 1k 0 0( ) ( ) ( )f k cy p cd fY F D B u t A P Y G Y e t

−− − −− =� �W F ,(28) 
 

where 0ck cyY=F � F  and 
1 1 1

0 0 0 1k( )f k cyY F D B− − −−� �W F  may 
then be computed, assuming the existence of the 
inverse -1

cyF  Redefine the scaled signal p(t) as: 

( ) ( ) 1 1
0 0 ( )p cd fp t A P Y G Y e t

− −=  

( )( ) ( )( )1 1
0 0 0k 1kf c yY F D B u t u t− −= −W F .  (29) 

 
Then the control signal:  

( ) ( )( ) ( )( )1 1 1
0 0 0k 1k .cy fu t Y F D B u t p t− − −= −F W  

Unfortunately this solution requires iteration, since the 
right-hand side includes: ( ).u t  This represents an 
algebraic loop and to avoid this problem the operator 

1 1
0 0 0k 1k( )f cyY F D B− − − ��W F  may be split into two parts 

involving a through term, without a delay 0N  and a 
term that depends upon past values of the control 
action, denoted 1

1z− N . That is, ( ) 1 1
0 0( fp t Y F D− −=  

1
0k 1k 0 1) ( )( ) ( )( )cyB u u t z u t−− = +�W F N N so that the 

control:  

( ) ( )( )1 1
0 1( )( )u t p t z u t− −= −N N .          (30) 

These results suggest the method of implementing 
the inverse operator in Fig. 3. To obtain a more 
explicit description of 0N  and 1N  let the nonlinear 

plant model subsystem: 
1

1 0 1k z−= +W G G  and let the 

linear terms: 1 1
0 0 0kfY F D B− − 1

0 1L z L−= +  where these 
nonlinear and linear terms 0G  and 0L  include no 
delay terms. Also let cyF  be split into a non-dynamic 

through term: 0cF  and a term: 
1

1cz− F . That is, cy =F  
1

0 1c cz−+F F  and  

1 1
0 0 0k 1( )f k cyu Y F D B u− −= −N� W F  

( )1
0 0 1 1 1( )cy kL z L u−= − + +G F G W     (31) 

1
0 1( )( ) ( )( )u t z u t−= +N N . 

Hence identify: ( )0 0 0 0( )( ) ( )cu t L u t= −N G F  
and 1 1 1 1 1( )( ) ( ) ( )k cu t L u t= + −N G W F .       (32) 

 

It is clear the algebraic loop is removed in the 
implementation of the inverse operator in Fig. 3. Note 
 

 

1kW

cyF  

1
0

−N  

1 1
0 0 0kfY F D B− −

 

Plant and weighting operators Inverse operator 

+ 
_ _ 

u u
+ p  

1
1z− N  

 

Fig. 3. NL operator and inverse. 
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that this term L0 is not diagonal naturally and 

complicates the computation of 1-
0N  which involves 

the inverse of the operator: ( )0 0 0cL −G F .  
This can be simplified if an appropriate scaling is 

used as described below. Let Y0 denote the constant 
full rank matrix: Y0 = 1

0 0k(0) (0) (0)fF D B− , then this 
may be used to normalise and diagonalise the fist z0 
term in the denominator of the expression for the 
optimal control in (28). It is interesting that the 
scaling matrix Y0 may be related to the weighted plant 
model, by noting from (15) and (16):  

1 1 1 1 1
0 0f cd p k f cF D P A D G D P A− − − − −+ =  

and this gives: 
1

0 0 0k 0k(0) (0) (0) (0) (0)f cY F D B P W−= = .  (33) 

Recall that in the previous section the term 1
0Y −  

1
0 0kfF D B−  was expanded into a constant matrix and 

terms that are delayed by at least one step:  

1 1 1
0 0 0k 0 1fY F D B L z L− − −= +                 (34) 

but when the scaling (33) is applied the constant 
matrix: 0L I= . Clearly 0cF  can also be taken as a 
diagonal matrix function so that in the majority of 
problems the operator term:  

( )0 0 0 0( )( ) ( )cu t L u t= −N G F = ( )0 0 ( )c u t−G F  

in (32) is easy to invert, even noting that both of these 
terms may involve a nonlinear and multivariable 
process. The scaling suggested above ensures the 
direct control related terms have corresponding 
diagonal structures for most problems.  

If it is complicated to compute the inverse of the 
non-dynamic function: 0N  a modified strategy can 
be applied. Assuming the existence of the inverse of 

0G  and L0 (30) can be written, noting (31) as:  

( ) ( )( )1 1
0 1( )( )u t p t z u t− −= −N N            (35) 

( )( )1 1 1
0 0 1 0( ) ( )( ) ( )cL p t z u t u t− − −= − +G N F .(36) 

The term 0cF  is often small so that although this 
expression involves an algebraic loop the result can 
considerably reduce the computation time. If the 
nonlinearity is represented by a black box the above 
method of avoiding the algebraic loop does not hold. 
In this case the function 0N  can be found by 
experiment, inputting a unit pulse at different 
operating points and fitting a smooth function. The 
operator 1N  can again be defined as: 1

1z− N  

0= −N N  but since errors are inevitable there 
remains the possibility of a small through term that 
will prolong an iterative solution of the inverse 
operator equations. To avoid this component a 
possible strategy, is to define the model with zeroed 
initial states/conditions as: 0 0= −F N N  and 
compute the signal: ( )( )0u tF  just for u at time t. 
This can then be subtracted from the output of the 
block: ( )0( )( ) ( )( )u t u t−N� N  to ensure the error at 
the operating point is zero. Note that this complication 
is only introduced when black box models are used 
for the nonlinear subsystem and it may not be 
necessary. 

The result (27) indicates a necessary condition for 
optimality is that the operator ( )c k ckP −W F must 
have a stable inverse. This reveals that one of the 
restrictions on the choice of cost weightings is that 
this stability condition be fulfilled. An important 
question is whether sensible choices of the weightings 
will lead to this condition. Consider the case where 

ckF  is linear and ck kF= −F . Then, 

( ) ( )1
c k k k k c kP F u F F P I u−+ = +W W         (37) 

and note that the term ( )1
k c kI F P−+ W  represents the 

return-difference for a system with controller:  

1
c k cK F P−= .                            (38) 

This is important since it provides a starting point for 
cost weighting selection. That is, consider the delay 
free plant kW  and assume a PID controller exists Kc 
to stabilize the closed loop system. Then a weighting 
choice, that will ensure ( )c k kP F+W  is stably 

invertible, is 1 .k c cF P K− =  The controller expression 
may also be expressed in a slightly different form, 
using the inverse of the NL operator (from (26)) as: 

( ) ( )( )1 1 1 1
0 0 1k 0( ) ( ) .f k ck p cd fu t F D B A P G Y e t− − − −= −�W F

(39) 
The controller then has the structure shown in Fig. 

4, showing the nonlinear compensator block.  
Minimum Cost: This may be found from (25): 

( ) ( ) ( )( ){ 1
0 0 0ε ( )k ck f kt F t D F Y u tφ −= + −F W  

( ) ( )}1 1
0p cd fA P G Y e t

− −+ �             (40) 

and if at the optimum the term within the braces is 
null then ( ) ( )0min 0εt F tφ =  and the minimum cost: 

( )( ) ( )( ){ }min 0 0ε εTJ E F t F t=  



Design of Generalized Minimum Variance Controllers for Nonlinear Systems                   287 
 

( ) ( )*1 1
0 0

| | 1

1  
2 z

dztrace F z F z
j zπ

− −

=

⎧ ⎫= ⎨ ⎬
⎩ ⎭∫ .    (41) 

This expression for the minimum cost can provide a 
benchmark cost for nonlinear controller design and 
depends only on the reference and disturbance signal 
models that are linear, time invariant (LTI). This arises 
because the control action effectively removes the 
nonlinear plant model from the prediction of 
{ }( ) ,tφ whose variance is being minimised. 

 
6. NONLINEAR SMITH PREDICTOR AND 

RESTRICTED STRUCTURE CONTROLLER 
 
The optimal controller can be expressed in a similar 

form to that of a Smith Predictor. This provides a new 
nonlinear version of the Smith Predictor. Moreover, it 
provides an optimal method of tuning and provides 
optimal stochastic disturbance rejection and tracking 
properties. However, the introduction of this structure 
also limits the application of the solution on open-
loop unstable systems. Although the structure 
illustrates a useful link between the new solution and 
the Smith time delay compensator, it also has the same 
disadvantage, that it may only be used on open-loop 
stable systems. The Nonlinear Smith Predictor will 
now be derived. Observe that the system in Fig. 2 may 
be redrawn as in Fig. 5. The changes are made to the 
linear subsystems by adding and subtracting 
equivalent terms. Now combine the two linear inner 
loop blocks, by first defining the signal:  

( ) ( )( )k km t u t= W  (42) 

as follows:  

( ) 11 1
0 0f p cd f k kF Y A P G Y D m

−− −⎛ ⎞+⎜ ⎟
⎝ ⎠

 

( ) ( )1 1
0 0p cd p cd k f kA P A P F D G Y m

− −= +      (43) 

but from (20), assuming Dk and G0 commute: 
1 1 1

0 0( ( ) )f p cd f k k c kF Y A P G Y D m P m− − −+ = .  (44) 

The system may therefore be redrawn as shown in 
Fig. 6 where the control action clearly satisfies 
equation: (27). Now observe that the compensator 
may be rearranged, as shown in Fig. 7. This latter 

structure is essential if Pc includes an integrator, 
which introduces integral action. That is, 1

cdP−  must 
be placed in the inner error channel, rather than in 
individual blocks as in Fig. 6. 

 
6.1. Restricted structure low order implementation 

The NGMV controller structure is already simple to 
understand and implement but in some industries the 
experience gained at using a PID parameterisation of a 
controller is so important it suggests replacing the 
cascade linear block by a low order parameterised 
model. This involves a parallel of the so-called 
Restrictive Structure (RS) control design method for 
linear systems introduced by Grimble (2000 [7]). The 
cascade linear subsystem in Fig. 1 can then be 
simplified to a given lower order controller structure 
where the cascade block is parameterised and the 
unknown coefficients optimised directly. This is 
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Fig. 4. Equivalent single DOF NL system. 
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possible since the minimum cost expression, when the 
inner nonlinear block is unchanged, only depends 
upon the cascade term in the above figure. This may 
be shown since, from (27), the optimal control: 

 

( ) ( ) ( ) ( ) ( )( )1 1 1
0 .c k ck p cd fu t P A P G Y r t d t

− − −= − −
��W F

 

Denote the linear cascade block in Fig. 2 or Fig. 6 as: 
1 1

0( )c p cd fG A P G Y− −= . If this block is to be simplified 

by using a restricted structure then the parameterised 
cascade transfer (say a PID block) might be denoted 
as: cG  and the sub-optimal control: 

 

( ) ( ) ( )( )1( )c k ck cu t P G r t d t−= − −W F .      (45) 
 

Substituting into (19), recalling 1 1
cn p cfP A A P− −= ,  

( ) ( )
-1

0 εp cd cf f c cA P P D P uφ = − −W F  

( ) ( ) ( )( )
-1

ε(t)p cd cf f k cA P P D D G r t d t= − − (46) 

( )= ε .c k c fP D G Y−                    (47) 

The cascade block cG  is linear and the output when 
this block is used is given by the linear system in 
equation: (47). It follows that the very same 
algorithms that has been used by Grimble (2002 [9]) 
for linear systems which directly optimises the cost 
index may be applied. Note that assuming that Dk 
commutes (44) reveals that as expected (47) simplifies 
to 0 ( )F tε  in the optimal ( c cG G= ) case. 

If greater simplification is demanded the inner 
nonlinear loop in Fig. 1 has to be simplified but in 
this case the nonlinear operator does not cancel when 
forming: (46). The problem is then no longer linear 
and the simple RS method does not apply. However, a 
so-called multiple model RS approach (Grimble 2002 
[9]) has also been suggested for nonlinear systems. 
This technique may be applied to simplify the inner 
loop where the first step is to linearize the delay free 
plant model at a number of operating points. The 
single linear inner feedback loop block can then be 
calculated that minimises the cost function that is 
averaged over the different models. Note that the NL 
model for the plant is still included in the inner loop. 
Thus the controller remains nonlinear but with a 
simpler inner-loop linear sub-system. The resulting RS 
strategy should simplify the controller sub-systems 
simplify implementation. 

 
7. NONLINEAR GMV CONTROL PROBLEM 

 
The computation of a NGMV controller is 

illustrated below in the design of a scalar nonlinear 
discrete-time dynamic system, given in the following 

very nonlinear state-space form: 
 

1 2
1 2

1
2 2
1 2

2
( ) ( )

( ) ( )( 1) ( ),
1 ( )

( 1) ( ),x t x t

x t x tx t u t
x t

x t e u t−

⋅
+ = +

+

+ = +

           

(48)

 

1( ) ( 4)y t x t= − .  

Let the initial state x(0) = 0. Observe that the output 
y(t) includes an explicit transport delay of 5k =  
samples. The open-loop system response to a series of 
steps is shown in Fig. 8, and the nonlinearity present 
in the system is clearly evident from the range of 
responses. The polynomial system models for the 
disturbance and reference models have the form: A = 
1-1.79z-1 + 0.792z-2, Cd = 0.05-0.0495z-1, Er= 0.05 – 
0.04z-1and Ap = A. 

For the nonlinear GMV controller design, the linear 
reference model has been defined as: Wr = 0.05 

( )11 0.99z−− , and is the stochastic analogue of a near 

step reference changes. The model of the additive 
linear disturbance acting on the system output was 
chosen as: ( )10.05 1 0.8dW z−= − . 

Assume the plant is controlled by the nominal 
stabilizing PID controller, denoted: 1

1( )C z− , with 
filtered derivative term: 

1
1

1 1 1
(1 )1( ) 1

(1 ) (1 )
d

i d

T zC z K
T z zτ

−
−

− −

⎛ ⎞−
= + +⎜ ⎟⎜ ⎟− −⎝ ⎠

and with the 

tuning parameters: K=0.1, Ti=4s, Td=1s and dτ =0.5. 
As explained in Section 5.2, the initial choice of 
dynamic weightings for the NGMV design may be 
defined in terms of this controller as: 1( )cP z− =  

1 1 4
1( ), ( ) .cC z F z z− − −= −  The Bode plots of these 

weightings are shown in Fig. 9. The reference tracking 
of a sequence of steps for the two nominal controllers 
is shown in Fig. 10, and the corresponding output and 
control signal variances are collected in Table 1.  
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Fig. 8. Open-loop plant responses. 
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Note that the nominal PID tuning parameters have 
only been found to stabilize the delay-free plant and 
are not optimized in any sense. However, this 
controller is useful in that it can provide initial design 
parameters for the NGMV controller that will stabilize 
the plant, ie. make the nonlinear operator stable and 
invertible.  

Computation of NGMV control law: The cost 
weightings implied by the PID controller become: 

-1 -2 = 0.2250   - 0.3625 z  + 0.15 z ,cnP  
-1 -2 = 1.0000  - 1.5 z  +  0.5 z ,cdP  1ckF =  

and the polynomials in Fig. 2 have the solutions: 

-1 -2 -3
0  = 0.0162 + 0.0133 z  +  0.0125 z  +  0.0127 z ,F

-1 -2 -3
0  = 0.0134 - 0.0298 z  +  0.0215 z   - 0.0050 z ,G  

and Df = 0.0721-0.0621z-1. The optimal control may 
then be calculated from (26) or as in Fig. 2: 

( )( ) ( ) ( )11 1 1
0 0( ) .ck f k p cd fu t F Y u t A P G Y e t

−− − −⎛ ⎞= −⎜ ⎟
⎝ ⎠�� F W

(49) 
As can be seen from Fig. 10 and Table 1, the 

performance of the initial nonlinear controller design 
is close to that of the original PID, although it is 
normally more robust to the changes of the operating 
point (this can be seen for the set-point equal to zero). 
The stochastic performance of the nonlinear controller 
is also slightly better. The importance of this result is 
not the controller produced but that it provides a 
painless way to obtain an initial choice of cost 
weightings. 

The nominal design may be modified by changing 
the control weighting. Parameterize the weighting as: 

1(1 )ckF zρ γ −= − − , where ρ  is a positive scalar 

and γ  is a value from 0 to 1, to introduce a lead 
term. This is useful to reduce the high frequency gain 
of the controller. For the nominal design: 1ρ =  and 

0.γ =  The Bode plots are shown in Fig. 11. The 
parameterization of the weightings involves two 
tuning parameters and is meant to simplify the design. 
Decreasing the value of ρ  (reducing the control 

 

Fig. 9. Frequency responses of the dynamic weight-
ings (nominal design). 

 

 
 

Fig. 10. Time responses nominal PID and NGMV 
controllers. 

 
Table 1. Stochastic performance: Nominal PID and 

NGMV controllers. 
Op. 

point Controller Var[e] Var[u] Var[phi]

PID 0.01662 0.00117 0.000823 NGMV 0.01672 0.00104 0.00082
PID 0.01568 0.00046 0.000540 NGMV 0.01180 0.00025 0.00038
PID 0.01122 0.00168 0.00051-1 NGMV 0.01117 0.00166 0.00052
PID 0.00729 0.00115 0.00035-3 NGMV 0.00726 0.00115 0.00033
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Fig. 11. Frequency response of the weightings (Pc 
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dotted). 



290                Michael J. Grimble 
 

weighting) leads to a faster response and a more 
violent control action. This can be seen from the 
stochastic performance results (with added disturbance 
noise). Interestingly, there is little change in the error 
variance. Decreasing ρ  to a value of 0.35 leads to 
some undesirable oscillations. Adding a lead term 
resolves this problem. Fig. 12 and Table 2 present the 
simulation results for different values of ρ (γ 0)= . 
Increasing ρ  results in a slower response providing 
a simple tuning mechanism. 
For comparison, the nominal PID controller has been 
retuned and compared with that of the NGMV 
controller with ρ = 0.5 and γ = 0.3. The results are 
presented in Fig. 13 and Table 3. After many attempts, 
a set of PID parameters were obtained close to the 
NGMV design in terms of speed of response, but the 

NL plant still caused some oscillatory behaviour in the 
PID control design responses. 
Fig. 14 and Table 4 present the simulation step 
response results for different values of γ ( 0.35,ρ =  
rescaled for constant DC gain). 

In the last experiment, the plant time delay was 
increased from 4 to 10 samples. For the controller 
design, the same weightings were used as before but 
the NGMV controller obtained was of course different, 
reflecting the change in the time-delay. Then the 
Nonlinear Control Design Blockset of Matlab was 
used to find the optimal PID parameters, given the 
desired response. The boundary constraints were 
relaxed until a feasible set of parameters was found. 
However, it was not possible to tune the PID 
controller for satisfactory responses, across the whole 
operating range. 

Fig. 15 shows the response of the NGMV design 
and 2 of the PID controllers obtained. The dynamic 
response of the NGMV controller is very close to that 
in Fig. 14, despite the significant increase in the time 
delay. It was not possible to obtain, for the PID 
controllers, both fast transient responses at the 
operating point = 3 and no oscillatory behaviour at the 
operating point = 0. 

The PID controller did not have time delay 
compensation, so it might be argued that it is not a fair 
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Fig. 12. Time responses for weighting parameters: 
ρ = 0.5, 0.7, 1, 2; (γ 0)= . 

 
Table 2. Stochastic performance for weighting para-

meters: ρ = 0.5, 0.7, 1, 2; γ = 0 . 

Op. 
point rho Var[e] Var[u] Var[phi]

0.5 0.01528 0.00334 0.00263
0.7 0.01515 0.00199 0.00162
1 0.01512 0.00120 0.001313 

2 0.01518 0.00049 0.00169
0.5 0.01330 0.00095 0.00233
0.7 0.01324 0.00059 0.00126
1 0.01322 0.00035 0.000770 

2 0.01312 0.00013 0.00055
0.5 0.01042 0.00345 0.00352
0.7 0.01017 0.00201 0.00171
1 0.01015 0.00117 0.00127-1 

2 0.01023 0.00063 0.00214
0.5 0.00604 0.00182 0.00258
0.7 0.00593 0.00129 0.00140
1 0.00595 0.00089 0.00104-3 

2 0.00617 0.00042 0.00141
 

 

Fig. 13. Responses for retuned PID and NGMV. 
 
Table 3. Performance for retuned PID – NGMV. 

Op. 
point Control Var[e] Var[u] Var[phi]

PID 0.03724 0.03473 0.001843 NGMV 0.03485 0.03800 0.00124
PID 0.03170 0.01567 0.001350 NGMV 0.02768 0.01677 0.00087
PID 0.03164 0.12969 0.00373-1 NGMV 0.02856 0.15558 0.00092
PID 0.02519 0.06335 0.00198-3 NGMV 0.02336 0.06492 0.00076
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comparison, nevertheless it demonstrates a potential 
of the NGMV controller to control highly nonlinear 
plants with significant time delays. Moreover, 
although the link to a Smith Predictor time delay 
compensator was made, the approach has the 
significant advantage over the Smith Predictor, that it 
provides a stochastic control design procedure, 
whereas the Smith Predictor only provides a structure 
(there is no guidance how to design the controller for 
say disturbance rejection). 

In general, it seems relatively easy to obtain an 
NGMV design very close (and normally better) than 
the existing PID performance, and then use the 
proposed parameterization (which is only one of a 
number of possible choices) to achieve further 
improvement.  

The approach is not in competition with PID of 
course. There is every reason to use the simplest 
possible controller that will do the job. The NGMV 
has the advantage that if the plant is high order, a 
stabilising PID control law may not even exist. 

As the controller includes the NL model of the plant, 
it should be robust against any changes of the 
operating point, whereas any linear controller may 
have problems regulating across the whole operating 
range. The above results do, of course, correspond to 
no (or little) plant/model mismatch. The choice of cost 
weightings to optimise robustness will be a subject of 
future research. A slight generalization is to define a 
completely nonlinear objective function, so that the 
error weighting is nonlinear .c��P  Constraints on 
input actuators, like mechanical bending limits, can be 
allowed for using barrier functions, which may be 
absorbed into the plant model as a further nonlinearity. 

 
8. CONCLUDING REMARKS 

 
The NGMV design provides a relatively simple 

controller for NL multivariable systems. The 
assumptions made in the definition of the system and 
the specification of the cost, were all to obtain a 
simple controller. However, the plant description can 
be very general. An advantage of the NGMV solution 
is that the nonlinear plant model is not required, only 
the ability to compute an output for a given control 
input. The controller is simple to compute and 
implement.  
The closed loop stability of the system was shown to 
depend upon the existence of a stable inverse for a 
particular loop operator. This operator depended upon 
the cost weighting definitions. A possible starting 
point for weighting selection was through the 
relationship to a PID controller. If a PID controller 
exists, to stabilize the delay free plant model this 
guaranteed the existence of at least one set of control 
weightings to ensure closed-loop stability. 

Leaving aside issues of optimality the controller is 
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Fig. 14. Responses for ρ = 0 35, γ = 0, 0.3, 0.6, 0.9.

 
Table 4. Performance: ρ = 0.35, γ = 0, 0.3, 0.6, 0.9.

Op. 
point Gamma Var[e] Var[u] Var[phi]

0 0.01857 0.00917 1.01559
0.3 0.01826 0.00578 0.31276
0.6 0.01813 0.00358 0.115403 

0.9 0.01771 0.00215 0.01998
0 0.02495 0.00257 0.87553
0.3 0.02592 0.00190 0.35453
0.6 0.02847 0.00154 0.137900 

0.9 0.05257 0.00198 0.02958
0 0.04224 0.02324 20.15882
0.3 0.01305 0.00703 0.33807
0.6 0.01261 0.00575 0.12317-1 

0.9 0.01218 0.00414 0.02745
0 0.01158 0.00458 1.00197
0.3 0.01112 0.00406 0.31726
0.6 0.01098 0.00382 0.12312-3 

0.9 0.01031 0.00323 0.02547
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Fig. 15. Responses delay increased from 4 to 10. 
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such that the input nonlinear subsystem can also be 
time-varying without complicating implementation. 
This suggests a simple adaptive or learning control 
solution may be possible. Future work will be 
concerned with applications on automotive power 
train control, ship roll stabilisation and loopers for hot 
strip rolling mills. A state-space version (Grimble and 
Majecki, 2004 [10]) may also lead to a simple NL 
predictive controller. This will use the receding 
horizon philosophy (Kwon and Pearson, 1975 [12]). 
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