1,459 research outputs found

    Cooperative algorithms for a team of autonomous underwater vehicles

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel Internet of Vehicles Approaches for Smart Cities

    Get PDF
    Smart cities are the domain where many electronic devices and sensors transmit data via the Internet of Vehicles concept. The purpose of deploying many sensors in cities is to provide an intelligent environment and a good quality of life. However, different challenges still appear in smart cities such as vehicular traffic congestion, air pollution, and wireless channel communication aspects. Therefore, in order to address these challenges, this thesis develops approaches for vehicular routing, wireless channel congestion alleviation, and traffic estimation. A new traffic congestion avoidance approach has been developed in this thesis based on the simulated annealing and TOPSIS cost function. This approach utilizes data such as the traffic average travel speed from the Internet of Vehicles. Simulation results show that the developed approach improves the traffic performance for the Sheffield the scenario in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms. In contrast, transmitting a large amount of data among the sensors leads to a wireless channel congestion problem. This affects the accuracy of transmitted information due to the packets loss and delays time. This thesis proposes two approaches based on a non-cooperative game theory to alleviate the channel congestion problem. Therefore, the congestion control problem is formulated as a non-cooperative game. A proof of the existence of a unique Nash equilibrium is given. The performance of the proposed approaches is evaluated on the highway and urban testing scenarios. This thesis also addresses the problem of missing data when sensors are not available or when the Internet of Vehicles connection fails to provide measurements in smart cities. Two approaches based on l1 norm minimization and a relevance vector machine type optimization are proposed. The performance of the developed approaches has been tested involving simulated and real data scenarios

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles

    Get PDF
    We present a cooperative bathymetry-based localization approach for a team of low-cost autonomous underwater vehicles (AUVs), each equipped only with a single-beam altimeter, a depth sensor and an acoustic modem. The localization of the individual AUV is achieved via fully decentralized particle filtering, with the local filter’s measurement model driven by the AUV’s altimeter measurements and ranging information obtained through inter-vehicle communication. We perform empirical analysis on the factors that affect the filter performance. Simulation studies using randomly generated trajectories as well as trajectories executed by the AUVs during field experiments successfully demonstrate the feasibility of the technique. The proposed cooperative localization technique has the potential to prolong AUV mission time, and thus open the door for long-term autonomy underwater.Massachusetts Institute of Technology. Department of Mechanical EngineeringSingapore-MIT Alliance for Research and Technology (SMART) (Graduate Fellowship

    Distributed Control of a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    With the increasing use of Unmanned Aerial Vehicles (UAV)s military operations, there is a growing need to develop new methods of control and navigation for these vehicles. This investigation proposes the use of an adaptive swarming algorithm that utilizes local state information to influence the overall behavior of each individual agent in the swarm based upon the agent\u27s current position in the battlespace. In order to investigate the ability of this algorithm to control UAVs in a cooperative manner, a swarm architecture is developed that allows for on-line modification of basic rules. Adaptation is achieved by using a set of behavior coefficients that define the weight at which each of four basic rules is asserted in an individual based upon local state information. An Evolutionary Strategy (ES) is employed to create initial metrics of behavior coefficients. Using this technique, three distinct emergent swarm behaviors are evolved, and each behavior is investigated in terms of the ability of the adaptive swarming algorithm to achieve the desired emergent behavior by modifying the simple rules of each agent. Finally, each of the three behaviors is analyzed visually using a graphical representation of the simulation, and numerically, using a set of metrics developed for this investigation

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Strategic Technology Maturation and Insertion (STMI): a requirements guided, technology development optimization process

    Get PDF
    This research presents a Decision Support System (DSS) process solution to a problem faced by Program Managers (PMs) early in a system lifecycle, when potential technologies are evaluated for placement within a system design. The proposed process for evaluation and selection of technologies incorporates computer based Operational Research techniques which automate and optimize key portions of the decision process. This computerized process allows the PM to rapidly form the basis of a Strategic Technology Plan (STP) designed to manage, mature and insert the technologies into the system design baseline and identify potential follow-on incremental system improvements. This process is designated Strategic Technology Maturation and Insertion (STMI). Traditionally, to build this STP, the PM must juggle system performance, schedule, and cost issues and strike a balance of new and old technologies that can be fielded to meet the requirements of the customer. To complicate this juggling skill, the PM is typically confronted with a short time frame to evaluate hundreds of potential technology solutions with thousands of potential interacting combinations within the system design. Picking the best combination of new and established technologies, plus selecting the critical technologies needing maturation investment is a significant challenge. These early lifecycle decisions drive the entire system design, cost and schedule well into production The STMI process explores a formalized and repeatable DSS to allow PMs to systematically tackle the problems with technology evaluation, selection and maturation. It gives PMs a tool to compare and evaluate the entire design space of candidate technology performance, incorporate lifecycle costs as an optimizer for a best value system design, and generate input for a strategic plan to mature critical technologies. Four enabling concepts are described and brought together to form the basis of STMI: Requirements Engineering (RE), Value Engineering (VE), system optimization and Strategic Technology Planning (STP). STMI is then executed in three distinct stages: Pre-process preparation, process operation and optimization, and post-process analysis. A demonstration case study prepares and implements the proposed STMI process in a multi-system (macro) concept down select and a specific (micro) single system design that ties into the macro design level decision
    corecore