65 research outputs found

    Assimilation of all-sky seviri infrared brightness temperatures in a regional-scale ensemble data assimilation system

    Get PDF
    Ensemble data assimilation experiments were performed to assess the ability of satellite all-sky infrared brightness temperatures and different bias correction (BC) predictors to improve the accuracy of short-range forecasts used as the model background during each assimilation cycle. Satellite observations sensitive to clouds and water vapor in the upper troposphere were assimilated at hourly intervals during a 3-day period. Linear and nonlinear conditional biases were removed from the infrared observations using a Taylor series polynomial expansion of the observation-minus-background departures and BC predictors sensitive to clouds and water vapor or to variations in the satellite zenith angle. Assimilating the all-sky infrared brightness temperatures without BC degraded the forecast accuracy based on comparisons to radiosonde observations. Removal of the linear and nonlinear conditional biases from the satellite observations substantially improved the results, with predictors sensitive to the location of the cloud top having the largest impact, especially when higher order nonlinear BC terms were used. Overall, experiments employing the observed cloud top height or observed brightness temperature as the bias predictor had the smallest water vapor, cloud, and wind speed errors, while also having less degradation to temperatures than occurred when using other predictors. The forecast errors were smaller during these experiments because the cloud-height-sensitive BC predictors were able to more effectively remove the large conditional biases for lower brightness temperatures associated with a deficiency in upper-level clouds in the model background

    Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales

    Get PDF
    While contemporary Numerical Weather Prediction models represent the large-scale structure of moist atmospheric processes reasonably well, they often struggle to maintain accurate forecasts of small-scale features such as convective rainfall. Even though high-resolution models resolve more of the flow, and are therefore arguably more accurate, moist convective flow becomes increasingly nonlinear and dynamically unstable. Importantly, the models’ initial conditions are typically sub-optimal, leaving scope to improve the accuracy of forecasts with improved data assimilation. To address issues regarding the use of atmospheric water-related observations – especially at convective scales (also known as storm scales) – this paper discusses the observation and assimilation of water- related quantities. Special emphasis is placed on background error statistics for variational and hybrid methods which need special attention for water variables. The challenges of convective-scale data assimilation of atmospheric water information are discussed, which are more difficult to tackle than at larger scales. Some of the most important challenges include the greater degree of inhomogeneity and lower degree of smoothness of the flow, the high volume of water-related observations (e.g. from radar, microwave, and infrared instruments), the need to analyse a range of hydrometeors, the increasing importance of position errors in forecasts, the greater sophistication of forward models to allow use of indirect observations (e.g. cloud and precipitation affected observations), the need to account for the flow-dependent multivariate ‘balance’ between atmospheric water and both dynamical and mass fields, and the inherent non-Gaussian nature of atmospheric water variables

    Geostationary satellite data assimilation in mesoscale forecast systems : A review

    Get PDF
    This article reviews the current status and ongoing developments in assimilating so-called next generation geostationary satellite data into mesoscale numerical weather forecast systems. While increased quality and quantity of data have brought unprecedented opportunities for data assimilation (DA) to improve initial conditions of mesoscale forecasts, taking full advantage of these high-resolution data, including cloud and precipitation affected weather observations is a challenge for current DA systems. We overview some key issues in the development of the effective utilization of geostationary satellite data in mesoscale forecasts

    The Assimilation of Hyperspectral Satellite Radiances in Global Numerical Weather Prediction

    Get PDF
    Hyperspectral infrared radiance data present opportunities for significant improvements in data assimilation and Numerical Weather Prediction (NWP). The increase in spectral resolution available from the Atmospheric Infrared Sounder (AIRS) sensor, for example, will make it possible to improve the accuracy of temperature and moisture fields. Improved accuracy of the NWP analyses and forecasts should result. In this thesis we incorporate these hyperspectral data, using new assimilation methods, into the National Centers for Environmental Prediction's (NCEP) operational Global Data Assimilation System/Global Forecast System (GDAS/GFS) and investigate their impact on the weather analysis and forecasts. The spatial and spectral resolution of AIRS data used by NWP centers was initially based on theoretical calculations. Synthetic data were used to determine channel selection and spatial density for real time data assimilation. Several problems were previously not fully addressed. These areas include: cloud contamination, surface related issues, dust, and temperature inversions. In this study, several improvements were made to the methods used for assimilation. Spatial resolution was increased to examine every field of view, instead of one in nine or eighteen fields of view. Improved selection criteria were developed to find the best profile for assimilation from a larger sample. New cloud and inversion tests were used to help identify the best profiles to be assimilated in the analysis. The spectral resolution was also increased from 152 to 251 channels. The channels added were mainly near the surface, in the water vapor absorption band, and in the shortwave region. The GFS was run at or near operational resolution and contained all observations available to the operational system. For each experiment the operational version of the GFS was used during that time. The use of full spatial and enhanced spectral resolution data resulted in the first demonstration of significant impact of the AIRS data in both the Northern and Southern Hemisphere. Experiments were performed to show the contribution to the improvements in global weather forecasts from the increase in spatial and spectral resolution. Both spatial and spectral resolution increases were shown to make significant contributions to forecast skill. New methods were also developed to check for clouds, inversions and for estimating surface emissivity. Overall, an improved methodology for assimilating hyperspectral AIRS data was achieved

    Nonlinear bias correction for numerical weather prediction models

    Get PDF
    Data assimilation is an inverse problem that seeks to optimally combine information from a set of observations with a first guess analysis to generate the best estimate of the current state of a dynamic system. It is an essential part of numerical weather prediction because the accuracy of a model forecast is closely tied to the accuracy of the initial conditions. Thus, the goal of this thesis is to enhance our ability to assimilate satellite brightness temperatures through development of bias correction (BC) methods to remove systematic errors from the observations and model background. In the first part of the thesis, we introduce an innovative BC method that uses a Taylor series polynomial expansion of the observation-minus-background (OMB) departures to remove linear and nonlinear conditional biases from all-sky satellite infrared brightness temperatures. Passive monitoring experiments reveal that variables sensitive to the cloud top height are the most effective BC predictors and that higher-order Taylor series terms are necessary to account for complex nonlinear biases in the OMB departures. Active data assimilation experiments using the nonlinear BC method show that the model background is most improved when higher-order cloud-sensitive predictors are employed. Following this work, we use the Lorenz-63 model to develop a model bias estimation method based on an asymptotic expansion of the model dynamics for small time scales and small perturbations in one of its parameters. The model bias estimators are subsequently used to improve the model background error covariance matrix used during the data assimilation step. It is shown that the combination of a static matrix with a dynamic matrix that varies with time leads to more accurate model analyses and forecasts. Together, results from this thesis demonstrate that bias predictors derived from polynomial expansions of modeled and observed variables can improve the performance of data assimilation systems

    Nonlinear bias correction for satellite data assimilation using Taylor series polynomials

    Get PDF
    Output from a high-resolution ensemble data assimilation system is used to assess the ability of an innovative nonlinear bias correction (BC) method that uses a Taylor series polynomial expansion of the observation-minus background departures to remove linear and nonlinear conditional biases from all-sky satellite infrared brightness temperatures. Univariate and multivariate experiments were performed in which the satellite zenith angle and variables sensitive to clouds and water vapor were used as the BC predictors. The results showed that even though the bias of the entire observation departure distribution is equal to zero regardless of the order of the Taylor series expansion, there are often large conditional biases that vary as a nonlinear function of the BC predictor. The linear 1st order term had the largest impact on the entire distribution as measured by reductions in variance; however, large conditional biases often remained in the distribution when plotted as a function of the predictor. These conditional biases were typically reduced to near zero when the nonlinear 2nd and 3rd order terms were used. The univariate results showed that variables sensitive to the cloud top height are effective BC predictors especially when higher order Taylor series terms are used. Comparison of the statistics for clear-sky and cloudy-sky observations revealed that nonlinear departures are more important for cloudy-sky observations as signified by the much larger impact of the 2nd and 3rd order terms on the conditional biases. Together, these results indicate that the nonlinear BC method is able to effectively remove the bias from all-sky infrared observation departures

    Nonlinear bias correction for satellite data assimilation using Taylor series polynomials

    Get PDF
    Output from a high-resolution ensemble data assimilation system is used to assess the ability of an innovative nonlinear bias correction (BC) method that uses a Taylor series polynomial expansion of the observation-minus background departures to remove linear and nonlinear conditional biases from all-sky satellite infrared brightness temperatures. Univariate and multivariate experiments were performed in which the satellite zenith angle and variables sensitive to clouds and water vapor were used as the BC predictors. The results showed that even though the bias of the entire observation departure distribution is equal to zero regardless of the order of the Taylor series expansion, there are often large conditional biases that vary as a nonlinear function of the BC predictor. The linear 1st order term had the largest impact on the entire distribution as measured by reductions in variance; however, large conditional biases often remained in the distribution when plotted as a function of the predictor. These conditional biases were typically reduced to near zero when the nonlinear 2nd and 3rd order terms were used. The univariate results showed that variables sensitive to the cloud top height are effective BC predictors especially when higher order Taylor series terms are used. Comparison of the statistics for clear-sky and cloudy-sky observations revealed that nonlinear departures are more important for cloudy-sky observations as signified by the much larger impact of the 2nd and 3rd order terms on the conditional biases. Together, these results indicate that the nonlinear BC method is able to effectively remove the bias from all-sky infrared observation departures

    CIRA annual report FY 2010/2011

    Get PDF
    corecore