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ABSTRACT

Output from a high-resolution ensemble data assimilation system is used

to assess the ability of an innovative nonlinear bias correction (BC) method

that uses a Taylor series polynomial expansion of the observation-minus-

background departures to remove linear and nonlinear conditional biases from

all-sky satellite infrared brightness temperatures. Univariate and multivariate

experiments were performed in which the satellite zenith angle and variables

sensitive to clouds and water vapor were used as the BC predictors. The re-

sults showed that even though the bias of the entire observation departure

distribution is equal to zero regardless of the order of the Taylor series expan-

sion, there are often large conditional biases that vary as a nonlinear function

of the BC predictor. The linear 1st order term had the largest impact on the

entire distribution as measured by reductions in variance; however, large con-

ditional biases often remained in the distribution when plotted as a function

of the predictor. These conditional biases were typically reduced to near zero

when the nonlinear 2nd and 3rd order terms were used. The univariate results

showed that variables sensitive to the cloud top height are effective BC predic-

tors especially when higher order Taylor series terms are used. Comparison

of the statistics for clear-sky and cloudy-sky observations revealed that non-

linear departures are more important for cloudy-sky observations as signified

by the much larger impact of the 2nd and 3rd order terms on the conditional

biases. Together, these results indicate that the nonlinear BC method is able

to effectively remove the bias from all-sky infrared observation departures.
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1. Introduction37

The ability to generate accurate cloud and water vapor (WV) analyses suitable for numerical38

weather prediction (NWP) models is perhaps the most challenging aspect of modern data as-39

similation (DA) systems because they typically assume Gaussian error statistics and that linear40

relationships exist between the observations and model state variables. Cloud processes, however,41

are inherently nonlinear with complex interactions occurring between different cloud hydrometeor42

species and the local thermodynamic environment at spatial and temporal scales that are typically43

much smaller than those represented by NWP models. Likewise, WV content can change rapidly44

in space and time and can influence the evolution of the cloud field in nonlinear ways. These and45

other factors can make it very challenging to effectively assimilate information from cloud and46

WV sensitive observations.47

Remotely sensed observations obtained using geostationary and polar-orbiting satellites provide48

the only reliable source of high-resolution cloud and WV information covering large geographic49

domains. Sophisticated visible, infrared, and microwave sensors onboard various satellite plat-50

forms provide information about the spatial distribution and characteristics of the cloud and WV51

fields. For regional-scale NWP, observations from geostationary satellites are especially useful52

because their continuous viewing of the same area with high temporal and spatial resolution allow53

them to more easily constrain the evolution of rapidly changing weather features (Vukicevic et al.54

2006; Errico et al. 2007). Satellite observations, however, often exhibit biases when compared to55

their model equivalents computed using the NWP model background; therefore, bias correction56

(BC) methods are typically required to assimilate these observations (Eyre 2016).57

Observation-minus-background (OMB) biases can occur for a variety of reasons and can differ58

for clear and cloudy observations. For example, biases can arise from calibration errors in a satel-59
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lite sensor or to instrument ”drift” as a sensor ages. Biases can also be introduced by deficiencies60

in the forward radiative transfer models used to compute the model equivalent brightness temper-61

atures. For clear-sky observations, biases may result from errors in the specification of surface62

emissivity, simplifications in the radiative transfer model equations, inadequate vertical resolu-63

tion or a low model top in the NWP model, or the misspecification or absence of atmospheric64

constituents (such as aerosols) observed by some satellite bands. In the context of clear-sky DA,65

biases can also be introduced by incomplete cloud screening procedures that allow some cloud-66

affected observations to pass quality control and thereby incorrectly enter the DA system. Indeed,67

most existing quality control methods were originally designed to remove all cloud-affected obser-68

vations; however, these constraints are being relaxed as operational modeling centers move toward69

all-sky DA (e.g., Okamoto et al. 2014; Zhu et al. 2016). Exclusion of cloud-affected brightness70

temperatures has the undesirable consequence of removing observations that could have been used71

to improve the model initialization in cloudy areas of the model domain.72

Additional uncertainties regarding the specification of cloud properties arise when assimilating73

cloud-affected infrared brightness temperatures. Though forward radiative transfer modeling for74

cloudy scenes has become more accurate in recent years, deficiencies remain, especially for ice75

clouds. Simulation of absorption and scattering properties for liquid clouds is relatively straight-76

forward because the droplets are assumed to be spherical. However, there are larger uncertainties77

with ice cloud bulk optical properties because there is some dependence in the infrared on the78

shape of the ice particles (Yang et al. 2013). For example, an ice particle may take the form of a79

hexagonal plate, solid or hollow column, bullet rosette, or an aggregate of some form, and impact80

the bulk microphysical and optical properties that result from integration of the individual particle81

properties over the assumed size and habit distributions (Baum et al. 2014). In addition, the ice82

water path is related to both the cloud optical thickness and the cloud particle effective diameter.83
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When computing simulated brightness temperatures, these diameters should be computed using84

the particle size distribution and cloud property assumptions made for each cloud species by a85

given microphysics scheme (e.g. Otkin et al. 2009; Cintineo et al. 2014; Thompson et al. 2016).86

Biases in the OMB departures can also be caused by systematic errors in the NWP model fore-87

casts that result from deficiencies in the parameterization schemes or other characteristics of the88

NWP model. It is well known that model forecasts containing large biases influence the behav-89

ior of BC methods and can degrade the performance of DA systems (Dee 2005; Dee and Uppala90

2009; Eyre 2016). Biases can be especially large for model variables for which few observations91

are available to constrain their evolution, such as root zone soil temperature and moisture (Mahfouf92

2010), or variables such as clouds and water vapor that are strongly influenced by parameteriza-93

tion schemes accounting for sub-grid scale processes. For example, uncertainties in microphysical94

parameters controlling cloud generation and decay processes can lead to systematic errors in the95

spatial extent, optical thickness, and height of the clouds, which in turn impacts the simulated96

satellite brightness temperatures (Otkin and Greenwald 2008; Cintineo et al. 2014; Eikenberg et97

al. 2015). Ideally, a BC method would not remove the bias in the OMB departures associated98

with deficiencies in the NWP model because the observations should be used to correct such sys-99

tematic errors. In the absence of a perfect reference analysis, however, it can be very difficult to100

determine whether a bias originates in the observations or forward radiative transfer model, both101

of which should be corrected, or in the model background (Dee 2005). Because of this uncertainty102

in bias attribution, all BC methods functionally act to correct the bias in the ”observations” regard-103

less of the true sources of the bias (Dee and Uppala 2009). Though this outcome is not desirable104

because it will limit the ability of the observations to reduce systematic errors in the analysis, it105

does satisfy the requirement by most DA methods that the observations are unbiased. In addition,106

the bias corrected observations can still be used to reduce random errors in the analysis. Eyre107
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(2016) noted that the impact of model bias on the analysis accuracy depends on the rate at which108

the NWP model state relaxes back toward its own climatology after the assimilation update. If109

an NWP model quickly returns to its preferred state, then the analysis errors will continue to be110

large even if the model bias can be removed prior to computing the BC coefficients. This points111

toward the need to fix the bias at its source within the NWP model. The impact of model bias on112

a BC method can be reduced when high quality ”anchor” observations with little or no bias are113

available; however, it is not apparent that such observations exist for water vapor and clouds.114

BC methods can be broadly categorized into two types (Eyre 2016). The first type uses depar-115

tures between the observations and their model equivalents accumulated over long time periods116

outside of the DA system to estimate and remove the bias from the observations prior to their117

assimilation. These so-called ”static” BC methods typically use the satellite scan angle along with118

several atmospheric variables, such as the geopotential thickness over some layer, as the BC pre-119

dictors. The BC coefficients for each satellite sensor and band are then computed using linear120

least squares regressions between the predictors and the observations. In practice, however, these121

”static” BC coefficients are regularly updated to account for changes in the model background due122

to changes in the NWP model or DA system, the addition of new observations, and upgrades to123

the forward radiative transfer model. Frequent retuning of a static BC method can be beneficial124

because it makes it more adaptable to changes in the models and observations. More detailed de-125

scriptions of static BC methods can be found in Eyre (1992), Harris and Kelly (2001), and Hilton126

et al. (2009).127

With the second type of BC method, known as variational BC (VarBC), the BC coefficients are128

updated simultaneously with the control vector during each DA cycle using the same set of obser-129

vations and an augmented control vector (Derber et al. 1991; Parrish and Derber 1992; Derber and130

Wu 1998; Dee 2005; Auligne et al. 2007; Dee and Uppala 2009; Zhu et al. 2014). Like static BC131
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methods, VarBC typically uses the satellite scan angle and several variables describing the atmo-132

spheric state as the predictors, with the total BC treated as a linear combination of all predictors.133

The BC coefficient for each predictor is computed during the minimization of the variational cost134

function. With an incremental DA approach with multiple outer loops, the BC coefficient incre-135

ments evolve during each iteration of the inner loop and are updated at the end of each outer loop,136

which allows the coefficients to adjust with time and capture changes in observation quality. The137

state space augmentation approach used by VarBC also requires an estimate of the background138

covariances of the augmented state vector. For simplicity, most schemes assume that the error for139

a given BC parameter is uncorrelated with errors in other parameters for other satellite sensors and140

bands and with errors in the model background (Derber and Wu 1998; Dee 2005).141

Most BC methods have been developed for use in variational or hybrid DA systems; however,142

several studies have also explored BC in ensemble DA systems. Fertig et al. (2009) developed a143

BC method for ensemble DA that is similar to VarBC in that it uses state augmentation to estimate144

the biases during the assimilation step. They showed that their method was able to reduce both the145

observation bias and the analysis error in perfect model experiments. Similar methods have also146

been used successfully in real data experiments assimilating microwave brightness temperatures147

(Szunyogh et al. 2008; Aravequia et al. 2011; Miyoshi et al. 2011). In high-resolution observ-148

ing system simulation experiments assimilating infrared brightness temperatures, Cintineo et al.149

(2016) found that the analysis and forecast accuracy was improved when a simple fixed-value BC150

was applied to the clear-sky observations similar to that used by Stengel et al. (2009, 2013) in151

a variational DA system. Cintineo et al. (2016), however, did not bias-correct the cloudy obser-152

vations prior to their assimilation because their bias was too complex to properly handle using a153

simple fixed-value BC applied uniformly to all cloudy observations. Zhu et al. (2016) handled bi-154

ases in all-sky microwave observations by computing the BC coefficients using only cases where155
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both the model background and the observations were either clear or cloudy. By doing this, they156

were able to reduce errors associated with mismatched cloud fields, while still preserving cloud-157

dependent information in the matched observations. Together, these results provide evidence that158

more sophisticated BC methods that can account for changes in cloud properties are necessary to159

effectively remove biases in the OMB departures.160

In this study, we present a new BC method that can be used to diagnose and remove biases in161

all-sky infrared brightness temperatures using a Taylor series polynomial expansion of the OMB162

departures. This approach can diagnose both linear and nonlinear bias components through use163

of higher order Taylor series terms and a set of BC predictors. For example, with a 3rd order164

approximation, the 0th and 1st order terms represent the constant and linear bias components,165

whereas the 2nd (quadratic) and 3rd (cubic) order terms represent nonlinear bias components. We166

use this nonlinear BC (NBC) method to remove the bias from Scanning Enhanced Visible and167

Infrared Imager (SEVIRI) infrared brightness temperatures that were passively monitored during168

high-resolution ensemble DA experiments. The paper is organized as follows. The DA framework169

is described in Section 2, with a mathematical description of the NBC method presented in Section170

3. Statistics obtained using the NBC method are shown in Section 4, with conclusions and a171

discussion presented in Section 5.172

2. Experimental Design173

a. SEVIRI Satellite Datasets174

The SEVIRI sensor onboard the Meteosat Second Generation satellite provides accurate top-175

of-atmosphere radiance measurements across 12 visible and infrared spectral bands with a nadir176

resolution of 3 km for all infrared bands (Schmetz et al. 2002). The utility of the NBC method was177
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evaluated using brightness temperatures from the 6.2 µm and 7.3 µm bands sensitive to WV over178

broad layers of the upper and middle troposphere, respectively, when skies are clear, while also179

being sensitive to clouds when they are present. Under clear conditions, the weighting functions180

that depict how much radiation from a given atmospheric height reaches the top of the atmosphere181

peak near 350 hPa (500 hPa) for the 6.2 µm (7.3 µm) bands, and then decrease to zero in the182

lower troposphere. When clouds are present, however, the weighting functions are truncated near183

the cloud top, which means that a larger portion of the top-of-atmosphere radiation originates at184

higher (e.g. colder) altitudes than would occur under clear-sky conditions. Their dual sensitivity185

to clouds and WV means that observations from these bands provide valuable information about186

the atmospheric state that is typically not available with conventional observations. Another mo-187

tivation for using these bands is the expectation that their OMB departure statistics will be more188

Gaussian than would occur with infrared ”window” bands because there will be a smoother tran-189

sition between the brightness temperatures in adjacent clear and cloudy areas.190

Cloud top height retrievals made using SEVIRI observations were also obtained using software191

provided by the EUMETSAT Nowcasting Satellite Applications Facility and will be used as one192

of the BC predictors. The cloud top height for each satellite pixel was estimated by computing193

simulated clear-sky 10.8 µm brightness temperatures using the RTTOV radiative transfer model194

(Saunders et al. 1999) and temperature and humidity profiles from the global GME model (Majew-195

ski et al. 2002), and then inserting a cloud at successively higher levels until a best fit is obtained196

between the observed and simulated brightness temperatures (Derrien and Le Gleau 2005; Le197

Gleau 2016). To reduce the data volume and minimize the impact of spatially correlated errors198

in the observation departures, the cloud top height retrievals and SEVIRI brightness temperatures199

were horizontally thinned by a factor of 5 in the zonal and meridional directions. This reduces200

their horizontal resolution to ∼20-25 km across the model domain, and is ∼8 times coarser than201
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the NWP model resolution. The cloud top height retrievals have a vertical resolution of 200 m;202

however, their uncertainty is larger, especially for semi-transparent clouds (Le Gleau 2016).203

b. KENDA Data Assimilation System204

Ensemble DA experiments in which conventional observations were actively assimilated and205

SEVIRI brightness temperatures were passively monitored were performed using the Kilometer-206

scale Ensemble Data Assimilation (KENDA) system (Schraff et al. 2016) developed by the207

Deutscher Wetterdienst (DWD). The KENDA system is based on the local ensemble transform208

Kalman filter method described by Hunt et al. (2007) and uses the Consortium for Small-scale209

Modeling (COSMO) model (Baldauf et al. 2011) as the NWP model. During this study, ra-210

diosonde, surface, wind profiler, and aircraft observations, were actively assimilated using a 1-h211

assimilation window, whereas SEVIRI 6.2 µm and 7.3 µm brightness temperatures were passively212

monitored. With KENDA, 4-D assimilation capabilities are obtained through inclusion of the ob-213

servation operators within the COSMO model so that the model equivalents can be computed at214

the exact observation times during the forward integration of the ensemble. Temporally and spa-215

tially varying covariance inflation values are obtained at each grid point through a combination216

of multiplicative covariance inflation based on Anderson and Anderson (1999) and the relaxation217

to prior perturbations approach described by Zhang et al. (2004). Covariance localization is per-218

formed by updating the analysis at each grid point using only those observations located within219

a specified distance of the grid point. The vertical localization scale is fixed, but increases with220

height, whereas the horizontal scale is determined adaptively. For more detailed information about221

the KENDA system, the reader is referred to Schraff et al. (2016).222

This study uses output from ensemble DA experiments that were performed on the COSMO-DE223

domain covering all of Germany and parts of surrounding countries with 2.8 km horizontal grid224
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spacing. Lateral boundary conditions were obtained at hourly intervals from the 7-km resolution225

COSMO-EU domain run at the DWD, which in turn is driven by boundary conditions provided226

by the Icosahedral non-hydrostatic (ICON) model (Zangl et al. 2015). The COSMO-DE domain227

covers approximately 1200 x 1200 km and contains 50 vertical levels that are terrain-following in228

the lower troposphere and become horizontally flat in the upper troposphere and stratosphere. The229

model top is located at 22 km (i.e. about 40 hPa). The DA experiments employed 40 ensemble230

members along with a deterministic run that is initialized by applying the Kalman gain matrix from231

the assimilation update to the deterministic model background. The ensemble and deterministic232

runs were initialized at 00 UTC on 16 May 2014 and then updated at hourly intervals during a233

5-day period ending at 00 UTC on 21 May 2014.234

Atmospheric prognostic variables in the COSMO model include the horizontal and meridional235

wind components, temperature, pressure, and the mixing ratios for water vapor, cloud water, rain-236

water, pristine ice, snow, and graupel. Cloud microphysical processes, such as autoconversion,237

accretion, and self-collection, are represented using a simplified version of the Seifert and Be-238

heng (2001) double-moment microphysics scheme that was reduced to a single-moment scheme239

for computational efficiency. Cloud formation and decay processes are parameterized based on240

the work of Lin et al. (1983). Heating rates due to radiative effects are updated at 15-min in-241

tervals using the δ -2-stream method developed by Ritter and Geleyn (1992). Deep convection242

is explicitly resolved whereas shallow convection is parameterized using a simplified version of243

the Tiedtke (1989) mass-flux scheme. A 2.5 order turbulent kinetic energy scheme developed by244

Raschendorfer (2001) is used to predict turbulence.245

After an initial 12-h spin-up period, simulated SEVIRI brightness temperatures were generated246

for each ensemble member and the deterministic run at hourly intervals during a 4.5-day period247

from 13 UTC 16 May 2014 to 00 UTC 21 May 2014 using first-guess model output from 1-h248
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COSMO-DE forecasts. The model profiles were interpolated to the thinned SEVIRI observation249

locations, and then simulated 6.2 µm and 7.3 µm brightness temperatures were computed using250

version 10.2 of the RTTOV radiative transfer model (Saunders et al. 1999). RTTOV includes an251

enhanced cloud-scattering module that enables the use of cloud profiles located on the NWP model252

vertical grid (Matricardi 2005; Hocking et al. 2011). When computing cloudy brightness temper-253

atures, RTTOV requires vertical profiles of liquid water content, ice water content, and fractional254

cloud cover. These quantities were computed using the COSMO model output and empirical rela-255

tionships developed by Kostka et al. (2014). The default maximum-random cloud overlap scheme256

in RTTOV based on Raisanen (1998) was used during this study. RTTOV also includes several257

options to diagnose the ice particle effective diameters from the forecast ice water content based258

on relationships developed by Wyser (1998), Ou and Liou (1995), and McFarquhar et al. (2003)259

along with two ice crystal shape options (aggregates and randomly-oriented hexagonal crystals)260

that together are used to compute the ice radiative properties. For this study, we assume hexagonal261

ice crystals and compute the particle diameters using the McFarquhar et al. (2003) method. These262

settings were chosen because they provided the smallest overall bias during the 108-h study pe-263

riod based on six sensitivity experiments using the various ice crystal diameter and shape options.264

The mean brightness temperature for ice clouds between the best and worst options differed by265

approximately 1 K for the 6.2 µm band and 2.5 K for the 7.3 µm band during the entire study266

period (not shown), which illustrates the large uncertainty associated with the ice cloud property267

lookup tables in RTTOV.268

3. Nonlinear Bias Correction (NBC) Method269

Traditional BC methods remove biases between a given set of observed and model-equivalent270

satellite brightness temperatures through use of a set of BC predictors that describe the atmospheric271

12



state or characteristics of the satellite data. Both static and VarBC methods typically assume that272

a linear relationship exists between the departure bias and a given set of predictors or that a global273

constant can be added to the observations. This linear BC approach has been shown to work well274

for clear-sky observations possessing Gaussian error characteristics for which a set of constant and275

linear BC coefficients are sufficient to remove the bias; however, their use will be sub-optimal if276

the observation bias varies as a nonlinear function of some predictor. For satellite observations,277

nonlinear error dependencies are more likely to occur when cloudy observations are assimilated278

given the prevalence of nonlinear processes in clouds that could lead to complex errors in the fore-279

cast cloud field and the possibility that nonlinear error sources could be introduced by the forward280

radiative transfer model used to compute the model-equivalent brightness temperatures. For exam-281

ple, with infrared brightness temperatures, it is possible that increased uncertainty simulating ice282

radiative properties in forward radiative transfer models could lead to biases that are a nonlinear283

function of some cloud property, such as cloud top height. Thus, given the increased interest in284

all-sky DA, it is desirable to develop BC methods that can remove both linear and nonlinear bias285

components from the innovations.286

One method that can be used to account for nonlinear error dependencies in a set of observations287

is a Taylor series polynomial expansion that includes higher order terms that can capture nonlinear288

features of the error distribution if they exist. For a given set of observed and model-equivalent289

brightness temperatures corresponding to a specific satellite sensor and band, the observation de-290

parture vector is defined as:291

dy = y−H(x), (1)

where y is the observation vector, x is the NWP model state vector, and H(x) is the observation292

operator that is used to compute the model equivalent brightness temperatures. If we assume that293

the bias in the observation departures can be described by a real function f (z) of a single variable294
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(e.g., predictor) that is infinitely differentiable around a real number c, Eqn. 1 can be decomposed295

into an N order Taylor series expansion:296

dy =

(
f (c)+

f ′(c)(z(i)− c)
1!

+
f ′′(c)(z(i)− c)2

2!
+

f ′′′(c)(z(i)− c)3

3!
+ ...+

f (n)(c)(z(i)− c)n

n!

)
i=1,...,m
(2)

where dy is the m x 1 observation departure vector and m is the number of observations, f (n)(c) is297

the nth derivative of f evaluated at the point c, and z(i) is the predictor value for the ith observation.298

The i = 1, ...,m notation outside the parentheses indicates that the Taylor series approximation is299

computed separately for each element of the dy vector using the equation within the parentheses.300

The variable used as the predictor is chosen based on its ability to capture some aspect of the301

observation departure bias, whereas the value z(i) of that variable for a given observation can be302

obtained from a variety of sources, such as the model background or a satellite retrieval. The303

constant c can be set to any value because c + δc simply moves c to another constant value;304

therefore, for convenience, we define c to be the mean of the predictor values:305

c =
∑

m
i=1 z(i)

m
(3)

It is readily apparent from Eqn. 2 that the higher order terms represent nonlinear components be-306

cause the exponents are ≥ 2, with the (z−c)2 and (z−c)3 polynomials representing the quadratic307

and cubic terms, respectively.308

The single variable case shown in Eqn. 2 can subsequently be generalized to be a function of309

more than one predictor:310
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dy =

(
f (a1, ...,ad)+

d

∑
j=1

∂ f (a1, ...,ad)

∂x j
(x(i)j −a j)

+
1
2!

d

∑
j=1

d

∑
k=1

∂ 2 f (a1, ...,ad)

∂x j∂xk
(x(i)j −a j)(x

(i)
k −ak)

+
1
3!

d

∑
j=1

d

∑
k=1

d

∑
l=1

∂ 3 f (a1, · · · ,ad)

∂x j∂xk∂xl
(x(i)j −a j)(x

(i)
k −ak)(x

(i)
l −al)+ ...

)
i=1,...,m

(4)

which can be written more compactly as:311

dy =

(
d

∑
n1=0
· · ·

d

∑
nd=0

(
∂ (n1+···+nd) f
∂xn1

1 · · ·∂xnd
d

)
(a1, · · · ,ad)

(x(i)1 −a1)
n1 · · ·(x(i)d −ad)

nd

n1! · · ·nd!

)
i=1,...,m

, (5)

where d is the number of predictors, f (nd)(ad) denotes the nth partial derivative of f evaluated at312

the point ad , and x(i)d is the ith value for a given predictor xd .313

For illustrative purposes, if we assume a single variable, third order Taylor series expansion for314

a single satellite sensor and band, and define the BC coefficients such that bn =
f (n)(a)

n! , Eqn. 2 can315

be written as:316

dy =
(

b0 +b1(z(i)− c)+b2(z(i)− c)2 +b3(z(i)− c)3
)

i=1,...,m
(6)

or alternatively in matrix notation as:317

dy = Ab (7)

where dy is the m x 1 observation departure vector, A is an m x n matrix containing the n Taylor318

series terms (z(i)−c)l for each ith observation, where l = 0, ...,n−1, and b is an n x 1 vector con-319

taining the BC coefficients. This is an overdetermined system of m linear equations in n unknown320

coefficients because m > n. The first column of A contains ones, with the remaining columns con-321

taining the linear and higher order Taylor series terms. Because this kind of system typically does322

not have an analytic solution, we instead want to find the coefficients b that best fit the equations323

by solving the quadratic minimization problem b̂ = min
b

S(b), where the objective function S is324
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given by:325

S(b) =
m

∑
i=1
|dyi−

n

∑
j=1

Ai jb j|2 = ‖dy−Ab‖2 (8)

and ‖·‖ is the Euclidean norm. Because most real-world phenomena act as a low pass filter in the326

forward direction where A maps b to dy, the inverse mapping will operate as a high-pass filter that327

amplifies noise and can therefore lead to a poorly conditioned problem. Preference, however, can328

be given to smaller norms by adding a Tikhonov regularization term, ‖Γb‖2, to Eqn. 8, which is a329

standard approach when solving inverse problems (Nakamura and Potthast, 2015). For simplicity,330

we choose a matrix that is a multiple of the identity matrix (Γ = αI), such that:331

Ŝ(b) = ‖dy−Ab‖2 +α ‖Ib‖2 (9)

Sensitivity tests showed that α could be set to a very small value (10−9) when one variable was332

used in the regression; however, a slightly larger value (10−6) was found to work better for the333

multivariate regressions. These values were used for the univariate and multivariate experiments334

presented in Section 4. The least squares solution can then be found by differentiating Ŝ with335

respect to b, and equating to 0, such that:336

∂ Ŝ
∂b

= AT dy− (αI +AT A)b = 0, (10)

or alternatively, after rearranging and multiplying both sides of Eqn. 10 by (αI+AT A)−1, we can337

solve for the b vector containing the BC coefficients using:338

b = (αI +AT A)−1AT dy (11)

where (αI+AT A) is a symmetric, square matrix with dimensions n x n. The small dimensions of339

this matrix make it easy to compute its inverse, thereby making it feasible to include higher order340

Taylor series terms, additional predictors, and a large OMB departure dataset when computing the341

BC coefficients. After solving for b, which is done separately for each satellite band and sensor,342
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the BC coefficients can then be applied to dy to remove the linear and nonlinear conditional bias343

components from the observations.344

4. Results345

In this section, the ability of the NBC method to remove biases from all-sky satellite infrared346

brightness temperatures is assessed using OMB departure statistics accumulated at hourly intervals347

during a 4.5 day period in which conventional observations were actively assimilated and SEVIRI348

observations were passively monitored. Figure 1 shows the evolution of the observed SEVIRI 6.2349

µm brightness temperatures during this time period. At the start of the period on 16 May (Fig.350

1a), an area of cold upper level clouds associated with a band of precipitation was located across351

the eastern half of the domain. This weather feature slowly weakened over Germany during the352

next two days (Fig. 1b, c), with the brightness temperatures becoming warmer as the convective353

clouds were replaced by cirrus and mid-level clouds. Generally clear skies characterized by warm354

brightness temperatures were also present across parts of the domain during this time period, with355

clear skies prevailing across most of the region on 19 May (Fig. 1d). A large area of convection356

with very cold upper-level clouds then moved into the western half of the domain on 20 May (Fig.357

1e). Overall, it is evident that the study period contains a wide range of atmospheric conditions358

and cloud types that supports a realistic assessment of the NBC method during the warm season.359

a. Univariate Bias Correction Results360

To explore the ability of individual predictors to remove the bias from all-sky infrared obser-361

vations, univariate NBC experiments were performed using the satellite zenith angle and various362

predictors sensitive to clouds and WV, such as the brightness temperature, cloud top height, and363

integrated water content over some vertical layer. This section presents results from a subset of364
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these experiments that remove the bias from all-sky SEVIRI 6.2 µm observations. The impact of365

each predictor is assessed using OMB departure distributions normalized by the standard deviation366

in a given sample and with 2-D probability distributions of the departures plotted as a function of367

a given predictor. The results are evaluated separately for the original departure distribution and368

for distributions for which the bias has been removed using either a 0th (constant), 1st (linear),369

2nd (quadratic), or 3rd (cubic) order Taylor series polynomial expansion.370

1) OBSERVED BRIGHTNESS TEMPERATURE PREDICTOR371

As shown by the probability distributions in Fig. 2, the observed 6.2 µm brightness temperatures372

are an excellent predictor of their own bias, especially when higher order Taylor series terms are373

used. The horizontal magenta line in each panel depicts the mean bias of the entire distribution,374

whereas the shorter horizontal black lines depict the conditional bias in each column and will375

be used to assess how the bias varies as a function of the predictor value. This terminology is376

being used to differentiate biases conditioned on the predictor value from the bias of the overall377

distribution. For example, though each distribution except for the original distribution will have378

zero overall bias, this obscures the fact that the conditional bias could potentially vary as a function379

of the predictor value. Inspection of Fig. 2a reveals a nonlinear pattern in the conditional biases,380

with a tendency for the simulated brightness temperatures to be too warm (cold) when the observed381

brightness temperatures are colder (warmer) than 235 K. Though the mean bias of the distribution382

is relatively small (-0.83 K), the nonlinear pattern in the conditional biases means that constant383

and linear BC terms alone will be unable to remove all of the bias. For example, even though the384

constant BC term removes the mean bias from the distribution (Fig. 2b), its shape remains the385

same and therefore large conditional biases remain throughout the distribution. Likewise, the 1st386

order BC term removes the linear departure component by raising (lowering) the cold (warm) end387
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of the distribution, which reduces the conditional biases for the coldest brightness temperatures,388

but turns a positive bias into a negative bias for the warmest brightness temperatures (Fig. 2c).389

Removal of the constant and linear bias components exposes an asymmetric arch shape in the390

conditional biases that is largely removed when the 2nd order quadratic term is used (Fig. 2d),391

except for nonzero biases that remain at the cold and warm ends of the distribution. Finally, when392

the 3rd order cubic term is used, the general shape of the distribution is unchanged; however, it393

is evident that subtle improvements were made to it given that most of the conditional biases are394

now close to zero. Together, these results show that even though each BC distribution has zero395

mean bias, that the conditional biases in the distribution are much smaller when the higher order,396

nonlinear BC terms are applied to the observations.397

Normalized OMB departure histograms computed using the original observations and the con-398

stant, 1st, 2nd, and 3rd order BC observations are shown in Fig. 3a-e. Each histogram is nor-399

malized based on its variance, with the curved red line on each panel representing a Gaussian400

distribution with zero mean and a variance equal to that of the sample. Overall, the variance and401

root mean square error (RMSE) are greatly reduced when the 1st order BC coefficients are ap-402

plied to the observations (Fig. 3c), which is primarily due to the smaller departures for the colder403

brightness temperatures (e.g. Fig. 2c). The variance was further reduced when the 2nd order BC404

was used, with only minimal changes occurring when this was expanded to a 3rd order BC (Figs.405

3d, e). The fact that the higher order terms only had a small impact on these statistics while simul-406

taneously having a large positive impact on the conditional biases in Fig. 2 illustrates that more407

detailed analysis methods such as 2-D probability distributions can provide additional insight into408

the characteristics of the OMB departure distributions. Comparison of the histograms also shows409

that the negative skewness in the original distribution (Fig. 3a) changes to positive skewness after410

the BC terms are applied. This behavior primarily results from a conditional positive skewness for411
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brightness temperatures < 230 K that is evident in Fig. 2a by the tendency for the conditional bias412

in each column to be located above the bin with the maximum probability. Because the same BC413

is applied to a given brightness temperature regardless of its OMB departure, the positive skew-414

ness in the conditional distributions is preserved as they are shifted upward, thereby leading to a415

positive skewness in the full BC distributions.416

2) CLOUD TOP HEIGHT PREDICTOR417

Because infrared observations are very sensitive to the vertical distribution of clouds, an experi-418

ment was performed using the NWC SAF cloud top height retrievals as the BC predictor to better419

isolate the impact of clouds. To provide complete domain coverage, the clear-sky observations420

were assigned a height equal to the model terrain elevation. Overall, the conditional biases in the421

original distribution (Fig. 4a) are close to zero for cloud top heights < 7 km; however, the biases422

increase for clouds above this level and peak near -6 K for cloud top heights > 10 km. This is a423

complex error pattern that a constant BC scheme is unable to fix (Fig. 4b). Indeed, the upward shift424

of the distribution to remove the mean bias actually worsens the conditional biases for cloud top425

heights < 7 km, while leading to only minor improvements for the upper-level clouds. The linear426

correction (Fig. 4c) slightly improves the conditional biases for lower and upper-level clouds, but427

worsens the bias for mid-level clouds, which together slightly reduces the variance in the overall428

distribution (Fig. 3f). Use of the 2nd order quadratic term substantially improves the distribution429

by removing the arch in the conditional bias pattern by decreasing the magnitude of the positive430

(negative) OMB departures for cloud tops located in the middle (upper) troposphere (Fig. 4d).431

These changes resulted in a much smaller variance in the histogram (Fig. 3g). As was the case in432

the previous section, the 3rd order BC led to slightly smaller conditional biases across most of the433

distribution (Fig. 4e), but had minimal impact on the statistics of the overall distribution (Fig. 3h).434
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Though the cloud top height predictor was unable to reduce the variance of the full distribution435

as much as the brightness temperature predictor did, the NBC method was still able to greatly436

improve the distribution by decreasing the conditional biases. Its use also led to a more symmetric437

OMB departure distribution (Fig. 3h). These results show that cloud top height information can438

be used to remove the bias from all-sky infrared observations if higher order Taylor series terms439

are used.440

3) VERTICALLY-INTEGRATED WATER CONTENT PREDICTOR441

In this section, the impact of using a BC predictor that depicts the total water content over a442

vertical layer is assessed. Numerous experiments were performed using different vertical layers;443

however, for brevity, results are only shown for the predictor that encapsulates the total water444

content between 100 and 700 hPa because that is the portion of the atmosphere where 6.2 µm445

brightness temperatures are most sensitive. Unlike the previous predictors, this predictor is com-446

puted using model output. The total water content is calculated for each ensemble member by447

converting the WV and all cloud hydrometeor mixing ratios in each model layer into mm and448

then integrating over the 100-700 hPa layer. Inspection of Fig. 5a shows that this predictor has449

a less complex OMB departure pattern than occurred when the cloud top height and brightness450

temperatures were used as the predictors. There are however slightly larger biases on both ends of451

the distribution, with a small upward slope in the maximum probabilities as the total water content452

increases. This linear error trend is removed by the linear bias correction term (Fig. 5c), which453

reduces the conditional biases when the total water content is < 7 mm, but increases it elsewhere.454

The subtle arch in the conditional biases is subsequently removed after applying the 2nd order455

quadratic term (Fig. 5d), with only minor changes occurring after the 3rd order term is used (Fig.456

5e). Comparison of the histograms (Figs. 3i-k) shows that the total water predictor had only a457
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small impact on the variance of the full distribution; however, the scatterplots showed that it still458

improved the conditional bias across most of the distribution. Even so, this predictor still had459

a much smaller impact than the previous predictors that were directly sensitive to the cloud top460

height, which indicates that the location of the cloud top rather than the vertically integrated cloud461

and WV content is a more effective BC predictor for all-sky infrared brightness temperatures.462

4) SATELLITE ZENITH ANGLE PREDICTOR463

Given that the satellite zenith angle is widely used in operational BC methods, an additional464

experiment was performed using it as the BC predictor. After adjusting for the mean bias in the465

original distribution, the conditional biases are close to zero across the entire distribution, with466

only a slight downward trend in the bias for zenith angles > 48◦ (Fig. 6b). Application of the467

1st to 3rd order BC terms (Figs. 6c-e) eliminated most of these conditional biases; however, the468

impact of this predictor on the statistics of the entire distribution was negligible according to the469

histograms (Figs. 3l-n). These results indicate that the bias in the observations is only very weakly470

related to the satellite zenith angle; however, the small improvements made to the conditional471

biases by the 2nd to 3rd order terms also show that there is a small nonlinear bias component that472

can be removed when using this predictor.473

b. Clear and Cloudy Sky Error Evaluation474

Next, the relative impact of the linear and nonlinear BC terms on the clear and cloudy-sky obser-475

vations is examined more closely using a subset of the 6.2 µm brightness temperatures for which476

both the model background and a given observation were identified as being clear or cloudy. Each477

observation was classified as clear or cloudy based on the NWC SAF cloud mask dataset whereas478

each model grid point was deemed to be clear (cloudy) if the sum of all cloud hydrometeor mixing479
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ratios over the entire vertical profile was less (greater) than 10−6 kg kg−1. The 2-D probability480

distributions for the clear-sky matched observations are shown in Fig. 7, with the corresponding481

histograms shown in Fig. 8. The observed 6.2 µm brightness temperatures were used as the BC482

predictor. Inspection of Fig. 7a reveals that the original distribution contains both a systematic483

bias and a large linear trend where mostly negative OMB departures for the colder brightness tem-484

peratures transition into mostly positive departures for the warmer brightness temperatures. The485

linear trend indicates that the WV field in the model background is more uniform than observed486

such that the model tends to be too wet (dry) in regions where the observations indicate less (more)487

WV. Overall, most of the bias is removed from the clear-sky observation departures using only the488

constant and 1st order terms, with little or no impact due to the higher order terms (Figs. 7b-e).489

This behavior is consistent with existing BC schemes that use constant and linear corrections to490

remove the bias from clear-sky observation departures.491

For the cloud-matched observations shown in Figs. 9 and 10, the NWC SAF cloud top height492

retrievals were used as the predictor. The OMB departure pattern and conditional biases for these493

observations are very similar to that shown in Fig. 4 when both clear and cloudy-sky observations494

were included in the regression. This includes the generally positive departures for mid-level495

clouds and the transition to large negative departures for the upper-level clouds (Fig. 9a). Large496

departures remained in the distribution for all cloud top heights after the constant and linear BC497

terms were applied to the observations (Fig. 9c). It is only when the 2nd and 3rd order terms are498

used that the conditional biases become close to zero throughout the entire distribution (Figs. 9d,499

e). The histograms in Fig. 10 also reveal that the quadratic and cubic terms had a much larger500

impact on the overall statistics than occurred for the clear-sky matched observations. These results501

provide further evidence that the nonlinear conditional biases evident in the all-sky scatterplots in502

Section 4.1 primarily result from biases associated with the cloudy observations. It also shows503
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that the NBC method is an effective method to remove both linear and nonlinear biases from all-504

sky infrared brightness temperature departures if a suitable cloud-sensitive variable is used as the505

predictor.506

c. Multivariate Bias Correction Results507

In addition to the univariate NBC experiments discussed in previous sections, multivariate ex-508

periments were performed to assess the impact of using more than one predictor to remove the ob-509

servation bias. For a 3rd order polynomial expansion using two variables, it is necessary to solve510

for seven coefficients in Eqn. 11, whereas 22 coefficients are computed when three predictors are511

used. Because a direct approach is used to simultaneously estimate all of the BC coefficients, it512

is not possible to determine the individual contribution of each predictor on the OMB departures;513

however, the total contribution of all of the predictors within a given Taylor series order (e.g., 1st,514

2nd, and 3rd) can still be inferred through comparison of the results obtained using different order515

expansions. Though using more than one variable greatly increases the size of the A matrix, it is516

still computationally efficient to solve for the inverse of AT A given its small dimensions.517

Numerous experiments using different predictor combinations and a 2nd or 3rd order polyno-518

mial expansion were performed; however, for brevity, this section only includes results from the519

combination that had the largest impact on the OMB departure distributions. This particular con-520

figuration employed a 3rd order expansion with the satellite zenith angle, 100-700 hPa total water521

content, and observed brightness temperatures for a given satellite band used as the BC predic-522

tors for that band. A separate multi-variate experiment (not shown) that employed the cloud top523

height rather than the brightness temperature as the third predictor revealed that it had a smaller524

impact, similar to what occurred with the univariate experiments shown earlier. There may be525

some overlap between the brightness temperature and satellite zenith angle predictors; however,526
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this should be minimal because the zenith angle predictor primarily accounts for potential biases527

in the radiative transfer model associated with the path length through the atmosphere, whereas the528

brightness temperature predictor is being used as a proxy for the cloud top height given its strong529

sensitivity to the cloud top. Unlike the previous sections that focused exclusively on the 6.2 µm530

band, this section presents results from experiments that removed the bias from both of the SE-531

VIRI WV-sensitive bands (e.g., 6.2 µm and 7.3 µm). All observations, both clear and cloudy-sky,532

were used during these experiments.533

1) SEVIRI 6.2 µM EXAMPLE534

Figure 11 shows the OMB departure distributions for the 6.2 µm multivariate NBC experiment,535

with the corresponding normalized histograms shown in Figs. 3o-q. Comparison to Fig. 2 shows536

that the departure distributions for the multivariate case are similar to those from the univariate537

case employing only the observed brightness temperature as the BC predictor. This is not sur-538

prising given that the experiments employing the satellite zenith angle and total water content539

predictors both had a much smaller impact on the distributions (Figs. 5, 6). Overall, the shape540

of the distribution is improved after the linear term is used; however, there are still large condi-541

tional biases at both ends of the distribution (Fig. 11c). The arch pattern in the conditional bias542

was subsequently removed after the quadratic term was applied (Fig. 11d), with slightly smaller543

(larger) biases occurring at the warm (cold) end of the distribution after using the 3rd order cubic544

term (Fig. 11e). Though the distributions are similar to those shown in Fig. 2, it is evident that the545

width of the conditional distribution is less for all predictor values. This is encouraging because546

it shows that even though the impact of the satellite zenith angle and total water content predic-547

tors was relatively small when used individually, they still provided new information that further548

reduced the OMB departures when used in combination with the observed brightness temperature549
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predictor. Inspection of the histograms (Figs. 3o-q) shows that the variance was greatly reduced550

compared to the univariate experiments; however, each of the distributions had a large positive551

skewness similar to that seen in Figs. 3c-e when the brightness temperature was used as the BC552

predictor. It is important to note however that quality control measures could potentially be used to553

reduce the skewness in the distribution after the BC terms are applied. This topic will be explored554

in a future study.555

2) SEVIRI 7.3 µM EXAMPLE556

In this section, we assess the ability of the multivariate NBC method to improve the observation557

error characteristics of the 7.3 µm band. As discussed in Section 2.1, observations from this band558

are sensitive to WV and clouds in the middle and upper troposphere, with a weighting function that559

peaks near 500 hPa in clear sky scenes. Overall, each of the OMB departure distributions (Fig.560

12) have shapes that are similar to the corresponding 6.2 µm distributions (Fig. 11); however,561

their error range is larger because the weighting function for this band peaks at a lower level562

in the troposphere, thereby leading to potentially larger departures due to mismatched clouds in563

the observations and model background. Though the linear BC term substantially improves the564

distribution by making the departures less negative for colder brightness temperatures, non-zero565

conditional biases remain across most of the distribution, with negative (positive) biases occurring566

for brightness temperatures colder (warmer) than 230 K (Fig. 12c). As occurred in the previous567

experiments, the conditional biases are almost eliminated after the 2nd order BC term is used,568

with minimal changes occurring due to the 3rd order term (Figs. 12d, e). The negative skewness569

present in the original histogram (Fig. 13a) switches to a large positive skewness after the linear570

BC term is used (Fig. 13c). Inspection of the OMB departure distributions shows that the positive571

skewness developed in response to the large upward shift in the conditional distributions for the572
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colder brightness temperatures (Fig. 12a) that exposed the conditional positive skewness in the573

original distribution for warmer brightness temperatures that was being masked in the overall574

histogram by the large negative OMB departures. Another notable feature of the histograms is575

that their peaks are higher and narrower than the 6.2 µm histograms (Figs. 3o-q). This strongly576

non-Gaussian behavior was already present in the original histogram and is likely due to the large577

percentage of clear-sky observations containing small departures combined with fatter tails due578

to cloud displacement errors. Even so, these results show that the NBC method improved the579

distribution such that the variance was much lower and the conditional biases were reduced to580

near zero across most of the distribution. Also, as was the case with the 6.2 µm band, the linear581

BC term had the largest impact on the overall statistics; however, the variance was also reduced582

when using the higher order nonlinear BC terms.583

5. Discussion and Conclusions584

In this study, output from a high-resolution, regional-scale ensemble DA system was used to585

explore the ability of an innovative method to remove the bias associated with all-sky satellite586

infrared brightness temperatures using a Taylor series polynomial expansion of the OMB depar-587

tures. This so-called NBC method uses OMB statistics accumulated over some period of time to588

remove linear and nonlinear conditional biases in a distribution through use of higher order Taylor589

series terms and a set of BC predictors. Nonlinear conditional biases can be identified using 2nd590

(quadratic) and 3rd (cubic) order terms (and even higher order terms if desired), whereas the con-591

stant and linear bias components can be diagnosed using the 0th and 1st order terms, respectively.592

The ability of the NBC method to effectively remove the bias associated with all-sky SEVIRI593

infrared brightness temperatures was assessed using output from high-resolution ensemble DA594

experiments performed using the KENDA system. OMB departure statistics for the 6.2 and 7.3595
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µm bands sensitive to clouds and WV in the upper and middle troposphere, respectively, were596

accumulated at hourly intervals during a 108-h period from 16-21 May 2014 using output from597

the COSMO-DE domain that covers Germany and surrounding areas with 2.8-km horizontal grid598

spacing. Conventional observations were actively assimilated, whereas the SEVIRI observations599

were passively monitored and therefore did not affect the analyses during the hourly assimila-600

tion cycles. Model-equivalent brightness temperatures were computed for each observation and601

ensemble member using the RTTOV radiative transfer model. The study period contained both602

clear-sky areas and a wide range of cloud types that together promoted a realistic assessment of603

the NBC method during the warm season.604

Univariate and multi-variate NBC experiments were performed using the satellite zenith angle605

and other predictors sensitive to clouds and WV, with their impact on the conditional bias and other606

aspects of the OMB departure distributions assessed using normalized histograms and probability607

distributions plotted as a function of the predictor. Overall, the results revealed that there are often608

strongly nonlinear conditional bias patterns in the OMB probability distributions that cannot be609

removed using only constant and linear BC terms. Though the overall bias of each distribution is610

equal to zero regardless of the order of the Taylor series expansion, there are often large conditional611

biases that vary as a function of the BC predictor. Because each SEVIRI band had a relatively612

small systematic bias, the constant BC term only had a small impact on the distributions. The613

linear 1st order term generally had the largest impact on the statistics of the entire distribution614

as measured by reductions in the variance; however, conditional biases often remained across615

much of the distribution. These conditional biases were typically reduced to near zero across616

the entire distribution only after the nonlinear 2nd and 3rd order terms were applied to the OMB617

departures. Indeed, the conditional bias patterns often exhibited an arch shape for which the618

2nd order quadratic term is ideally suited to remove. The tendency for the nonlinear terms to619
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have a small impact on the variance of the entire distribution while simultaneously having a large620

positive impact on the conditional biases also illustrates that detailed analysis methods such as 2-D621

probability distributions provide valuable insight into the behavior of the BC method that is not622

possible using traditional 1-D error histograms.623

Inspection of the univariate NBC results showed that the variance of the BC distributions was624

smallest when the brightness temperature observations were used as the BC predictor. The vari-625

ance was also substantially reduced when the NWC SAF cloud top height retrievals were used as626

the predictor. Both of these predictors were able to diagnose and remove nonlinear biases asso-627

ciated with the cloudy observations. For example, large positive conditional biases for mid-level628

clouds transitioned into large negative conditional biases for upper-level clouds. Though not ex-629

amined during this study, the different signs of the conditional biases for these clouds could be630

related to the ability of the COSMO model and RTTOV to properly simulate ice and mixed-phase631

cloud properties. The experiments using the satellite zenith angle or vertically-integrated water632

content showed that these BC predictors had a much smaller impact on the variance of the over-633

all distribution. This behavior indicates that variables sensitive to the cloud top height are more634

effective BC predictors for all-sky infrared brightness temperatures, especially when higher order635

Taylor series terms are included. Even so, the multivariate experiments showed that though the636

zenith angle and total water content predictors only had a relatively small impact on the departure637

histograms when used individually, they still provided new information that greatly reduced the638

variance of the distribution when used in combination with the observed brightness temperature639

predictor.640

Additional univariate NBC experiments were performed to examine the influence of linear and641

nonlinear components on the OMB departure distributions for clear- and cloudy-sky observations642

using a subset of the 6.2 µm brightness temperatures for which both a given observation and the643
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corresponding model grid point were identified as being clear or cloudy. Overall, comparisons of644

the statistics for the clear-sky and cloudy-sky matched observations revealed that nonlinear error645

sources are much more important for cloudy sky observations as signified by the much larger646

impact of the 2nd and 3rd order Taylor series terms on the variance and the conditional biases647

in the distributions. For the clear-sky observations, the conditional biases could be effectively648

removed using only the 0th and 1st order terms, which is consistent with existing operational BC649

methods that typically remove the bias from clear-sky satellite observations using a set of constant650

and linear BC coefficients. These results show that the nonlinear conditional bias patterns evident651

in the all-sky OMB departure distributions primarily resulted from nonlinear biases in the cloudy-652

sky infrared brightness temperatures. They also show that the NBC method can effectively remove653

both linear and nonlinear conditional biases from all-sky infrared brightness temperatures provided654

that a suitable cloud-sensitive variable is used as one of the predictors.655

Future work includes running cycled DA experiments using the KENDA system to assess the656

impact of the NBC method on the forecast accuracy when assimilating clear- and cloudy-sky in-657

frared brightness temperatures. Additional experiments will be necessary to explore the ability of658

the method to remove biases from the OMB departures when the simulated brightness tempera-659

tures and cloud top heights are used as the BC predictors rather than their observed counterparts.660

Preliminary results indicate that predictors derived from the NWP model cloud field rather than the661

observations have a smaller impact on the overall statistics as measured by reductions in variance;662

however, they were still able to effectively remove the conditional biases across most of the dis-663

tribution when higher order Taylor series terms were used. These results also indicate that it may664

be necessary to use up to a 4th order polynomial to remove the bias if the NWP-derived quantities665

are used rather than their observed counterparts. A more detailed assessment of this sensitivity666

is currently underway. Additional experiments will also be necessary to explore the ability of the667
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NBC method to remove biases from infrared bands that are sensitive to the land surface or other668

atmospheric constituents such as ozone, as well as for all-sky microwave and visible radiances.669

Though the NBC method used in this paper was implemented as a static, off-line method, it670

could also be incorporated into online methods such as VarBC through inclusion of additional671

nonlinear predictors. For example, the VarBC system at the Met Office uses Legendre polynomial672

predictors to remove residual scan biases and Fourier predictors to correct complex orbital biases673

in some satellite sensors (Cameron and Bell, 2016). Higher order predictors, such as the quadratic674

form of the temperature lapse rate and 4th order polynomial of the satellite angle bias, are also675

widely used in operational VarBC systems. Zhu et al. (2015) recently showed that inclusion of676

a quadratic aircraft ascent/descent term reduced the bias when assimilating aircraft temperature677

observations. Results from the current study could be used to help inform the development of678

operational DA systems as they continue to expand into all-sky satellite DA. Finally, many of the679

all-sky OMB departure distributions exhibited narrow peaks and fat tails that could potentially be680

better represented using a Huber norm (Huber 1972) representation, which has been shown to lead681

to improved quality control and more observations being assimilated (Tavolato and Isaken 2015).682

Further research is necessary to determine if using a Huber norm in combination with the NBC683

method can improve existing quality control methods by identifying erroneous observations after684

the nonlinear conditional biases have been removed from the distribution. This approach could685

potentially preserve more cloud-affected observations where nonlinear biases are more prevalent,686

thereby leading to additional observations being assimilated in sensitive areas of the domain.687
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7. Figure Captions842

Fig. 1. Observed SEVIRI 6.2 µm brightness temperatures (K) valid at 18 UTC on (a) 16 May,843

(b) 17 May, (c) 18 May, (d) 19 May, and (e) 20 May 2014.844

Fig. 2. Probability distributions of 6.2 µm observation-minus-background departures plotted845

as a function of the observed 6.2 µm brightness temperatures (K) for the (a) original data, and846

the (b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd order bias corrected observations when847

the observed 6.2 µm brightness temperature is used as the predictor. The horizontal black line848

segments represent the conditional bias in each column. Data were accumulated at hourly intervals849

during a 108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.850

Fig. 3. Probability density function of normalized 6.2 µm observation-minus-background de-851

partures for the (a) original and (b) constant bias correction distributions. The corresponding 1st,852

2nd, and 3rd order bias correction error distributions when the (c-e) observed 6.2 µm brightness853
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temperatures, (f-h), NWC SAF cloud top heights, (i-k) model-simulated total integrated water854

content (IWC) in the 100-700 hPa layer, (l-n) satellite zenith angle, or (o-q) observed 6.2 µm855

brightness temperatures, satellite zenith angle, and IWC are used as the predictors are also shown.856

Data were accumulated at hourly intervals during a 108-h period from 13 UTC on 16 May 2014857

to 00 UTC on 20 May 2014.858

Fig. 4. Same as Fig. 2 except for showing probability distributions plotted as a function of the859

NWC SAF cloud top height retrieval (km) when this quantity is also used as the BC predictor.860

Fig. 5. Same as Fig. 2 except for showing probability distributions plotted as a function of the861

vertically-integrated total water content (mm) over the 100-700 hPa layer when this quantity is862

also used as the BC predictor.863

Fig. 6. Same as Fig. 2 except for showing probability distributions plotted as a function of the864

satellite zenith angle (o) when this quantity is also used as the BC predictor.865

Fig. 7. Same as Fig. 2 except for showing probability distributions for clear-sky matched866

observations plotted as a function of the observed brightness temperature (K) when this quantity867

is also used as the BC predictor.868

Fig. 8. Probability density function of normalized clear-sky matched 6.2 µm observation-869

minus-background departures for the (a) original data, and the (b) constant, (c) 1st order, (d)870

2nd order, and (e) 3rd order bias corrected observations when the observed 6.2 µm brightness871

temperature is used as the predictor. Data were accumulated at hourly intervals during a 108-h872

period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.873

Fig. 9. Same as Fig. 2 except for showing probability distributions for cloudy-sky matched874

observations plotted as a function of the NWC SAF cloud top height retrieval (km) when this875

quantity is also used as the BC predictor.876
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Fig. 10. Probability density function of normalized cloudy-sky matched 6.2 µm observation-877

minus-background departures for the (a) original data, and the (b) constant, (c) 1st order, (d) 2nd878

order, and (e) 3rd order bias corrected observations when the NWC SAF cloud top height retrieval879

is used as the predictor. Data were accumulated at hourly intervals during a 108-h period from 13880

UTC on 16 May 2014 to 00 UTC on 20 May 2014.881

Fig. 11. Same as Fig. 2 except for showing probability distributions plotted as a function of882

the observed 6.2 µm brightness temperatures when the observed 6.2 µm brightness temperature,883

satellite zenith angle, and vertically-integrated total water content from 100-700 hPa are used as884

the BC predictors.885

Fig. 12. Probability distributions of 7.3 µm observation-minus-background departures plotted886

as a function of the observed 7.3 µm brightness temperatures (K) for the (a) original data, and the887

(b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd order bias corrected observations when the888

observed 7.3 µm brightness temperature, satellite zenith angle, and model-integrated total water889

content from 100-700 hPa are used as the predictors. Data were accumulated at hourly intervals890

during a 108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.891

Fig. 13. Probability density function of normalized 7.3 µm observation-minus-background892

departures for the (a) original data, and the (b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd893

order bias corrected observations when the observed 7.3 µm brightness temperatures are used as894

the predictor. Data were accumulated at hourly intervals during a 108-h period from 13 UTC on895

16 May 2014 to 00 UTC on 20 May 2014.896
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Fig. 1. Observed SEVIRI 6.2 μm brightness temperatures (K) valid at 18 UTC on (a) 16 May,

(b) 17 May, (c) 18 May, (d) 19 May, and (e) 20 May 2014.
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Fig. 2. Probability distributions of 6.2 μm observation-minus-background departures plotted

as a function of the observed 6.2 μm brightness temperatures (K) for the (a) original data, and

the (b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd order bias corrected observations when

the observed 6.2 μm brightness temperature is used as the predictor.  The horizontal black line

segments represent the conditional bias in each column.  Data were accumulated at hourly

intervals during a 108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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Fig. 3. Probability density function of normalized 6.2 μm observation-minus-background

departures for the (a) original and (b) constant bias correction distributions.  The

corresponding 1st, 2nd, and 3rd order bias correction error distributions when the (c-e)

observed 6.2 μm brightness temperatures, (f-h), NWC SAF cloud top heights, (i-k) model-

simulated total integrated water content (IWC) in the 100-700 hPa layer, (l-n) satellite zenith

angle, or (o-q) observed 6.2 μm brightness temperatures, satellite zenith angle, and IWC are

used as the predictors are also shown.  Data were accumulated at hourly intervals during a 

108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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Fig. 4. Same as Fig. 2 except for showing probability distributions plotted as a function of the

NWC SAF cloud top height retrieval (km) when this quantity is also used as the BC predictor.
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Fig. 5. Same as Fig. 2 except for showing probability distributions plotted as a function of

the vertically-integrated total water content (mm) over the 100-700 hPa layer when this

quantity is also used as the BC predictor.
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Fig. 6. Same as Fig. 2 except for showing probability distributions plotted as a function of

the satellite zenith angle (º) when this quantity is also used as the BC predictor.
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Fig. 7. Same as Fig. 2 except for showing probability distributions for clear-sky matched

observations plotted as a function of the observed brightness temperature (K) when this

quantity is also used as the BC predictor.

(a) (b)

(e)(d)

(c)

1e-3

3e-2

0.3

3

3e-3

1e-2

0.1

1

P
ro

b
ab

ility
 (%

)

1e-4

3e-4

48



Original

3rd Order Correction2nd Order Correction

1st Order CorrectionConstant Correction

10-1

10-2

10-3

10-4

10-5

P
ro

b
ab

il
it

y
 (

%
)

Fig. 8. Probability density function of normalized clear-sky matched 6.2 μm observation-

minus-background departures for the (a) original data, and the (b) constant, (c) 1st order,

(d) 2nd order, and (e) 3rd order bias corrected observations when the observed 6.2 μm

brightness temperature is used as the predictor.  Data were accumulated at hourly intervals

during a 108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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Fig. 9. Same as Fig. 2 except for showing probability distributions for cloudy-sky matched

observations plotted as a function of the NWC SAF cloud top height retrieval (km) when

this quantity is also used as the BC predictor.
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Fig. 10. Probability density function of normalized cloudy-sky matched 6.2 μm observation-

minus-background departures for the (a) original data, and the (b) constant, (c) 1st order, (d)

2nd order, and (e) 3rd order bias corrected observations when the NWC SAF cloud top height

retrieval is used as the predictor.  Data were accumulated at hourly intervals during a 108-h

period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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Fig. 11. Same as Fig. 2 except for showing probability distributions plotted as a function

of the observed 6.2 μm brightness temperatures when the observed 6.2 μm brightness

temperature, satellite zenith angle, and vertically-integrated total water content from 

100-700 hPa are used as the BC predictors.
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Fig. 12. Probability distributions of 7.3 μm observation-minus-background departures plotted

as a function of the observed 7.3 μm brightness temperatures (K) for the (a) original data, and

the (b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd order bias corrected observations when

the observed 7.3 μm brightness temperature, satellite zenith angle, and model-integrated total

water content from 100-700 hPa are used as the predictors.  Data were accumulated at hourly

intervals during a 108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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Fig. 13. Probability density function of normalized 7.3 μm observation-minus-background

departures for the (a) original data, and the (b) constant, (c) 1st order, (d) 2nd order, and

(e) 3rd order bias corrected observations when the observed 7.3 μm brightness temperatures

are used as the predictor.  Data were accumulated at hourly intervals during a 108-h period

from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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