85 research outputs found

    Quadratic compact knapsack public-key cryptosystem

    Get PDF
    AbstractKnapsack-type cryptosystems were among the first public-key cryptographic schemes to be invented. Their NP-completeness nature and the high speed in encryption/decryption made them very attractive. However, these cryptosystems were shown to be vulnerable to the low-density subset-sum attacks or some key-recovery attacks. In this paper, additive knapsack-type public-key cryptography is reconsidered. We propose a knapsack-type public-key cryptosystem by introducing an easy quadratic compact knapsack problem. The system uses the Chinese remainder theorem to disguise the easy knapsack sequence. The encryption function of the system is nonlinear about the message vector. Under the relinearization attack model, the system enjoys a high density. We show that the knapsack cryptosystem is secure against the low-density subset-sum attacks by observing that the underlying compact knapsack problem has exponentially many solutions. It is shown that the proposed cryptosystem is also secure against some brute-force attacks and some known key-recovery attacks including the simultaneous Diophantine approximation attack and the orthogonal lattice attack

    Public key exponent attacks on multi-prime power modulus using continued fraction expansion method

    Get PDF
    This paper proposes three public key exponent attacks of breaking the security of the prime power modulus =22 where and are distinct prime numbers of the same bit size. The first approach shows that the RSA prime power modulus =22 for q<<2q using key equation −()=1 where ()= 22(−1)(−1) can be broken by recovering the secret keys  / from the convergents of the continued fraction expansion of e/−23/4 +1/2 . The paper also reports the second and third approaches of factoring multi-prime power moduli =2 2 simultaneously through exploiting generalized system of equations −()=1 and −()=1 respectively. This can be achieved in polynomial time through utilizing Lenstra Lenstra Lovasz (LLL) algorithm and simultaneous Diophantine approximations method for =1,2,…,

    A new efficient asymmetric cryptosystem based on the integer factorization problem of N=p2q

    Get PDF
    In this paper, we introduce a new scheme based on the hardness of factoring integers of the shape N = p2q. Our scheme uses a combination of modular linear and modular squaring. We show that the decryption is 1-to-1 which is a great advantage over Rabin's cryptosystem. Its encryption speed has a complexity order faster than RSA and ECC. For decryption its speed is better than RSA and is marginally behind ECC. Constructed using a simple mathematical structure, it has low computational requirements and would enable communication devices with low computing power to deploy secure communication procedures efficiently

    New vulnerability of RSA modulus type N = p2q

    Get PDF
    This paper proposes new attacks on modulus of type N = p2q. Given k moduli of the form Ni = p2iqi for k ≥ 2 and i = 1, …, k, the attack works when k public keys (Ni, ei) are such that there exist k relations of the shape eix – Niyi = zi – (ap2i + bq2i)yi or of the shape eixi – Niy = zi – (ap2i + bq2i)y where the parameters x, xi, y, yi and zi are suitably small in terms of the prime factors of the moduli. The proposed attacks utilizing the LLL algorithm enables one to factor the k moduli Ni simultaneously

    New attacks on prime power N = prq using good approximation of φ(N)

    Get PDF
    This paper proposes three new attacks. Our first attack is based on the RSA key equation ed − kφ(N) = 1 where φ(N) = pr-1(p-1)(q-1). Let q <p <2q and 2p 3r+2/r+1 |p r-1/r+1 – q r-1/r+1| < 1/6Ny with d = Nδ. If δ < 1-y/2 we shows that k/d can be recovered among the convergents of the continued fractions expansions of e/N-2N r/r+1 + N r-1/r+1. We furthered our analysis on j prime power moduli Ni = priqi satisfying a variant of the above mentioned condition. We utilized the LLL algorithm on j prime power public keys (Ni, ei) with Ni = priqi and we were able to factorize the j prime power moduli Ni = priqi simultaneously in polynomial time

    Preimage Selective Trapdoor Function: How to Repair an Easy Problem

    Get PDF
    Public key cryptosystems are constructed by embedding a trapdoor into a one-way function. So, the one-wayness and the trapdoorness are vital to public key cryptography. In this paper, we propose a novel public key cryptographic primitive called preimage selective trapdoor function. This scenario allows to use exponentially many preimage to hide a plaintext even if the underlying function is not one-way. The compact knapsack problem is used to construct a probabilistic public key cryptosystem, the underlying encryption function of which is proven to be preimage selective trapdoor one-way functions under some linearization attack models. The constructive method can guarantee the noninjectivity of the underlying encryption function and the unique decipherability for ciphertexts simultaneously. It is heuristically argued that the security of the proposal cannot be compromised by a polynomial-time adversary even if the compact knapsack is easy to solve. We failed to provide any provable security results about the proposal; however, heuristic illustrations show that the proposal is secure against some known attacks including brute force attacks, linearization attacks, and key-recovery attacks. The proposal turns out to have acceptable key sizes and performs efficiently and hence is practical

    Cryptanalysis on prime power RSA modulus of the form N=prqN = p^r q

    Full text link
    corecore