
Research Article
Preimage Selective Trapdoor Function:
How to Repair an Easy Problem

Baocang Wang

The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Baocang Wang; bcwang79@aliyun.com

Received 23 August 2013; Accepted 9 March 2014; Published 27 April 2014

Academic Editor: Yi-Kuei Lin

Copyright © 2014 Baocang Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Public key cryptosystems are constructed by embedding a trapdoor into a one-way function. So, the one-wayness and the
trapdoorness are vital to public key cryptography. In this paper, we propose a novel public key cryptographic primitive called
preimage selective trapdoor function. This scenario allows to use exponentially many preimage to hide a plaintext even if the un-
derlying function is not one-way. The compact knapsack problem is used to construct a probabilistic public key cryptosystem, the
underlying encryption function of which is proven to be preimage selective trapdoor one-way functions under some linearization
attack models. The constructive method can guarantee the noninjectivity of the underlying encryption function and the unique
decipherability for ciphertexts simultaneously. It is heuristically argued that the security of the proposal cannot be compromised by
a polynomial-time adversary even if the compact knapsack is easy to solve. We failed to provide any provable security results about
the proposal; however, heuristic illustrations show that the proposal is secure against some known attacks including brute force
attacks, linearization attacks, and key-recovery attacks.The proposal turns out to have acceptable key sizes and performs efficiently
and hence is practical.

1. Introduction

1.1. Background. Public key cryptosystem (PKC) is an impor-
tant cryptographic primitive in the area of network and
information security. The basic idea to construct a PKC
is to embed a trapdoor into a mathematically intractable
problem. The trapdoor helps the trapdoor holder reverse
the underlying one-way function. However, without the
trapdoor, one should attack a presumed intractable problem
in order to reconstruct the plaintext corresponding to a given
ciphertext. So the existence of mathematically hard problems
is vital in public key cryptography. This explains why we
say bad news in computational complexity is good news for
cryptography.

In the cryptographic community, a PKC is always con-
sidered as synonymous with the so-called trapdoor one-
way function. Bellare et al.’s observation [1] provides a
better understanding of the two concepts. On one hand, a
probabilistic public key encryption does not necessarily imply
a trapdoor one-way function. For example, the underlying

encryption function𝑓(𝑚, 𝑟) = (𝑐
1
, 𝑐
2
) = (𝑔𝑟, 𝑚ℎ𝑟)of ElGamal

[2] is not one-way in that the auxiliary key 𝑟 randomly
chosen by the encrypter cannot be recovered knowing the
trapdoor 𝑥 satisfying ℎ = 𝑔𝑥. On the other hand, in
some cases, noninjective trapdoor one-way functions cannot
be used to construct PKCs because a PKC is required to
recover a unique plaintext from any valid ciphertext. So the
encryption function underlying a PKC should be injective.
Bellare et al. showed that any one-way function implies a
highly noninjective trapdoor one-way function.However, the
authors derived no PKCs from their universal constructions.
They only showed that if the image of a trapdoor one-way
function has polynomially bounded number of preimages,
the trapdoor one-way function can be used to derive a PKC.

In this paper, we propose a probabilistic public key
encryption algorithm from a highly noninjective one-way
function. We think that our construction not only enriches
the cryptographic basket and deepens our insights into
public key cryptographic designs but also provides weaker
cryptographic assumptions. Our confidence in the hardness

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 475678, 18 pages
http://dx.doi.org/10.1155/2014/475678

2 Mathematical Problems in Engineering

M

SE

SP

𝜎

T

CF

Figure 1: Preimage selective trapdoor one-way function.

of noninjective one-way functions rests on the proven fact
that it is not easier to reverse a given one-way function
equipped with an additional noninjectivity property than an
injective one-way function [3]. More importantly, what we
observed in this paper is that it remains possible to develop a
secure PKC by fully exploiting the noninjectivity property of
functions even if these functions turn out to be not one-way.

1.2. Our Contribution. In this paper, we firstly formalize
a novel public key cryptographic scenario called preimage
selective trapdoor one-way function (PSTOF, for short) and
then use the compact knapsack problem to realize such a
scenario.

1.2.1. Preimage Selective Trapdoor One-Way Function (See
Figure 1). A PSTOF 𝑇 is in fact a noninjective public key
encryption function. When encrypting a message m in the
message space M, the encrypter firstly encodes the message
into a plaintext x = F(m) in the plaintext space S

𝑃
and then

derives a ciphertext 𝑐 = 𝑇(x) in the ciphertext spaceC. When
decrypting a ciphertext 𝑐, the decrypter utilizes the trapdoor
𝜎 to decrypt a valid ciphertext into a unique plaintext x ∈ S

𝑃

and then uniquely decodes x into a messagem ∈ M.
The scenario allows us to base the security of a PKCon the

high noninjectivity rather than the one-wayness of a function
(an intractable problem). In this scenario, S

𝑃
is a subset of

the equivalent plaintext space S
𝐸
, and the ciphertext space

C = 𝑇(S
𝐸
) = {𝑇(x) | x ∈ S

𝐸
}. For any valid ciphertext

𝑐 ∈ C, 𝑐 will have many preimages in S
𝐸
, which are called

equivalent ciphertexts in that all of them can be mapped into
𝑐 under the function𝑇, and a unique preimage (the plaintext)
x ∈ S

𝑃
with respect to the function 𝑇, which is a valid

plaintext and hence can be further decoded into ameaningful
message. The message encoding function F simulates the
process of randomly selecting a subset as the plaintext space
S
𝑃
from the whole preimage domain S

𝐸
, from which the

name PSTOF comes. In other words, the message encoding
function imposes some restrictions on the preimage set S

𝐸

to get a subset with a predesignated special structure as the
plaintext space S

𝑃
. The equivalent plaintexts in S

𝐸
are used

to hide a (valid) plaintext in S
𝑃
. If 𝑇 is preassumed one-way,

any polynomial-time adversary cannot obtain a preimage
in S
𝐸
given a 𝑐 ∈ C; let alone the unique preimage (the

plaintext) x ∈ S
𝑃
⊂ S
𝐸
. If the underlying function 𝑇 is

not one-way and when a 𝑐 ∈ C has exponentially many
preimages in S

𝐸
, the corresponding plaintext in S

𝑃
is hidden

by these exponentially many preimages. A polynomial-time
adversary only obtains polynomially many preimages, which
can be seen as randomly output from all the exponentially
many preimages and hence include the target plaintext with
a negligible probability.

1.2.2. Probabilistic Compact Knapsack PKC. By using the
concept of PSTOF and from the compact knapsack problem,
a probabilistic public key encryption scheme is designed.
An easy compact knapsack-type problem is defined, and an
algorithm called Onion Algorithm is developed to peel off
the solutions to the easy problem. The easy problem is used
to construct a probabilistic PKC. The main results are that
the trapdoor one-way function underlying the proposal is
PSTOFs under different linear attack models (See Theorems
25, 26, and 30), and the images of the PSTOFs have expo-
nentially many preimages (see Table 3). Some design tricks
are adopted to make the PKC immune from some known
key-recovery attacks such as GCD attack [4, 5], Diophantine
approximation attack [6, 7], and orthogonal lattice attack
[8, 9].

1.3. Organization. The rest of the paper is organized as
follows. In Section 2, we formalize the definition of PSTOF
and use the cryptographic scenario to explain some known
PKCs. Section 3 provides a concrete probabilistic public
key encryption scheme to realize the PSTOF. Sections 4
and 5 discuss the performance and security related issues,
respectively. Section 6 gives some concluding remarks.

2. Preimage Selective Trapdoor
One-Way Function

2.1. Symbols and Notations. The notations listed at the end of
the paper will be used throughout the paper.

2.2. Message Encoding Function. When encrypting amessage
using a PKC, we need to firstly encode a binary string
message into a plaintext (an element in the algebraic structure
underlying the PKC) in order that the PKC can deal with
the message. However, sometimes, it is not necessary to
explicitly specify the encoding algorithm. For example, it is
more convenient to just look a message as a binary integer in
Z
𝑁
than to develop an algorithm to transform amessage into

an element in Z
𝑁
in case of RSA [10]. Formally, we define a

message encoding function as follows.

Definition 1. A function F : M 󳨃→ S
𝑃
with S

𝑃
= F(M) =

{F(m) | m ∈ M} is called a message encoding function if it
satisfies the following conditions.

(1) The function F is injective.

(2) It can be efficiently performed to compute F(m) for a
givenm ∈ M, and F−1(p) for a given p ∈ S

𝑃
.

2.3. Preimage Selective Trapdoor One-Way Function. The
PSTOF is formalized as follows.

Mathematical Problems in Engineering 3

Definition 2. A function 𝑇 : S
𝐸
󳨃→ C = 𝑇(S

𝐸
) is called a

PSTOF if it satisfies the following conditions.

(1) For an arbitrary x ∈ S
𝐸
, it is easy to compute 𝑐 = 𝑇(x).

(2) 𝑇 is noninjective.

(3) Given any 𝑐 ∈ C, there exists at most an x ∈ S
𝑃
such

that 𝑇(x) = 𝑐.
(4) Given any 𝑐 ∈ C and the trapdoor, there is a

polynomial-time algorithm to output a unique x ∈ S
𝑃

with 𝑇(x) = 𝑐 or the invalid ciphertext symbol ⊥.

(5) Given any 𝑐 ∈ C and without knowing the trapdoor,
anyone cannot efficiently compute a preimage x ∈ S

𝐸

such that 𝑇(x) = 𝑐.

Remark 3. The third and the forth conditions in Definition 2
guarantee that when viewed as a public key encryption
function, the PSTOF is inverted according to the knowledge
of the trapdoor 𝜎 to derive a unique preimage (the plaintext)
in S
𝑃
, and both conditions in Definition 1 mean that the

plaintext can be uniquely decoded into the original message.
If we remove the last requirement in Definition 2, we just call
𝑇 a preimage selective trapdoor (not non-way) function.

Definition 4. The preimage density 𝑃
𝑑
of a noninjective

function 𝑇 is defined as the ratio of the cardinality of the
preimage set S

𝐸
to that of the image set C:

𝑃
𝑑
=

󵄨󵄨󵄨󵄨S𝐸
󵄨󵄨󵄨󵄨

|C|
. (1)

On average, a ciphertext will have 𝑃
𝑑
preimages in S

𝐸
.

Remark 5. When 𝑃
𝑑
is exponentially large, we can use the

high noninjectivity of the underlying function 𝑇 to hide a
plaintext. On average, for a valid ciphertext 𝑐 = 𝑇(x) for
a plaintext x ∈ S

𝑃
, 𝑐 will have exponentially many 𝑃

𝑑

preimages in S
𝐸
. So a polynomial-time adversary only can

obtain polynomially many 𝑝 preimages in S
𝐸
of 𝑐, which

contains the targeted unique valid plaintext x ∈ S
𝑃
with a

negligible probability 𝑝/𝑃
𝑑
. One may doubt that the function

𝑇 is indeed a trapdoor one-way functionmapping fromS
𝑃
to

C. So if one breaks the one-wayness of 𝑇 : S
𝑃
󳨃→ C, he also

recovers the unique x ∈ S
𝑃
such that 𝑐 = 𝑇(x). However, if the

plaintext space S
𝑃
can be seen as randomly chosen from the

whole equivalent plaintext spaceS
𝐸
, the adversary cannot use

the special structure of S
𝑃
to develop an efficient algorithm

for reversing the function 𝑇 : S
𝑃
󳨃→ C. We will explain this

point later on by using an example.

2.4. Examples

2.4.1. High-Density Knapsack PKCs. To illustrate the afore-
mentioned definitions, we consider high-density 0-1 knap-
sack (subset sum) PKCs Chor-Rivest and [11] Okamoto-
Tanaka-Uchiyama [12]. In both cryptosystems, a bit-string
message is encoded into an 𝑛-dimensional 0-1 plaintext vector
with a fixed 𝑘 Hamming weight (the so-called predesignated

special plaintext structure) by using the source encoding
algorithm (message encoding function) [13]:

S
𝑃
= {x | x ∈ {0, 1}𝑛, 𝐻𝑤 (x) = 𝑘} ⊂ {0, 1}𝑛 = S

𝐸
. (2)

Let the public key a = (𝑎
1
, . . . , 𝑎

𝑛
). The underlying PSTOF is

𝑇 : S
𝐸
󳨃→ C = {0, 1, . . . , ∑

𝑛

𝑖=1
𝑎
𝑖
}; that is, for x ∈ S

𝐸
,

𝑇 (x) = ⟨a, x⟩ =
𝑛

∑
𝑖=1

𝑎
𝑖
𝑥
𝑖
= 𝑐. (3)

The density of both PKCs defined as 𝑑 = 𝑛/log
2
max a can be

made sufficiently high (>1), in which case asymptotically (3)
will have more than one (i.e., 𝑃

𝑑
> 1) binary solution [14]:

𝑃
𝑑
=

󵄨󵄨󵄨󵄨S𝐸
󵄨󵄨󵄨󵄨

|C|
≥

2𝑛

𝑛max a
=
2𝑛

𝑛2𝑛/𝑑
= 2(1−1/𝑑)𝑛−log2𝑛. (4)

The illustrations say that when 𝑑 > 1, a valid ciphertext
will have exponentially many 2(1−1/𝑑)𝑛−log2𝑛 preimages in
S
𝐸

and a unique preimage in S
𝑃
. In other words, the

plaintext is hidden by exponentially many preimages. Even
if a polynomial-time adversary conquers the one-wayness of
the underlying subset sumproblem and hence the underlying
encryption function is only a preimage selective trapdoor
(not one-way) function; the adversary just obtains polynomi-
ally many preimages to (3) which contain the plaintext with
a negligible probability. High-density subset sum PKCs can
base their security on the noninjectivity of the underlying
function, which is a weaker intractability assumption.

Remark 6. There exist twoways to break Chor-Rivest [11] and
the Okamoto-Tanaka-Uchiyama [12] cryptosystems: recover-
ing the secret key [15] and solving the underlying knapsack
problem. Some work still was done to make Chor-Rivest
immune from key-recovery attacks [16–18]. However, some
known cryptanalytic algorithms [14, 19–21] only can solve the
preimages x ∈ S

𝐸
= {0, 1}𝑛 but not necessarily the unique

plaintext x ∈ S
𝑃
= {x | x ∈ {0, 1}𝑛, 𝐻𝑤(x) = 𝑘}. So in

the adversary’s point of view, the underlying problem remains
the knapsack problem.This explains why we say in Remark 5
that the adversary cannot use the special structure of S

𝑃
to

efficiently reverse the function 𝑇 : S
𝑃
󳨃→ C.

2.4.2. Rabin Cryptosystem. We also can view Rabin cryp-
tosystem [22] as a PSTOF. For convenience of discussions, we
just set Rabin encryption function as 𝑐 = 𝑥2(mod 𝑁) with
𝑁 = 𝑝𝑞 being the product of two primes, and S

𝐸
= Z∗
𝑁
.

So, the ciphertext space C consists of the quadratic residues
modulo𝑁; that is, C = QR

𝑁
. In order to uniquely recover a

plaintext, we need to embed some redundant information in
S
𝐸
. The redundant information forms the special structure

of S
𝑃
. The PSTOF underlying Rabin cryptosystem is 𝑇 :

Z∗
𝑁
󳨃→ QR

𝑁
; for 𝑥 ∈ Z∗

𝑁
, 𝑇(𝑥) = 𝑐 = 𝑥2(mod𝑁). We

note that each of the𝜙(𝑁)/4quadratic residuesmodulo𝑁has
four roots, from which we use the redundant information to
pick out the exact plaintext. Hence, the noninjectivity of the
PSTOF for Rabin is given as

𝑃
𝑑
=

󵄨󵄨󵄨󵄨S𝐸
󵄨󵄨󵄨󵄨

|C|
=

󵄨󵄨󵄨󵄨Z
∗

𝑁

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨QR
𝑁

󵄨󵄨󵄨󵄨
=
𝜙 (𝑛)

𝜙 (𝑛) /4
= 4. (5)

4 Mathematical Problems in Engineering

3. The Proposed Probabilistic Public Key
Encryption Scheme

3.1. Knapsack Problems

Definition 7 (knapsack problem). Given a positive integral
vector a = (𝑎

1
, . . . , 𝑎

𝑛
) and an integer 𝑠 ∈ Z, the knapsack or

subset sum problem is to find a binary vector x ∈ {0, 1}𝑛 such
that ⟨a, x⟩ = 𝑠. A knapsack problem is denoted as KP(a, 𝑠).
The density of the knapsack problem KP(a, 𝑠) is defined as
𝑑 = 𝑛/log

2
max a.

The density of a compact knapsack problem KP(a, 𝑠)
imposes an important effect on the hardness of the problem. It
was shown that if the density 𝑑 < 0.9408, the knapsack prob-
lem KP(a, 𝑠) can be solved with an overwhelming probability
[23, 24].

Definition 8 (compact knapsack problem). Given a positive
integral vector a = (𝑎

1
, . . . , 𝑎

𝑛
), an integer 2 ≤ 𝐾 ∈ Z+, and

an integer 𝑠 ∈ Z, the compact or general knapsack problem
is to find a vector x = (𝑥

1
, . . . , 𝑥

𝑛
) with 0 ≤ 𝑥

𝑖
≤ 𝐾 − 1

such that ⟨a, x⟩ = 𝑠. A compact knapsack problem is denoted
as CKP

𝐾
(a, 𝑠). The density of a compact knapsack problem

CKP
𝐾
(a, 𝑠) is defined as 𝑑 = 𝑛 log

2
𝐾/log

2
max a.

If the density of a compact knapsack problem CKP
𝐾
(a, 𝑠)

is 𝑑 < 1, it was shown that the compact knapsack problem
can almost always be efficiently solved with lattice reduction
algorithms [25]. In this paper, we consider the compact
knapsack problem with𝐾 = 192.

3.2. The Proposed Message Encoding Function. The message
space M consists of 𝑛 blocks with each block 3 bit long;
namely, M = Z𝑛

8
. For a message m = (𝑚

1
, . . . , 𝑚

𝑛
) ∈

M, we firstly define a message encoding function that maps
the message m into a vector in Z𝑛

192
under an auxiliary key

r = (𝑟
1
, . . . , 𝑟

𝑛
) ∈ {0, 1}𝑛, which is randomly chosen by the

encrypter. We define 𝐹
𝑖
: Z
8
× {0, 1} 󳨃→ Z

192
for 𝑖 = 1, . . . , 𝑛

as

𝐹
𝑖
(𝑚
𝑖
, 𝑟
𝑖
) = ⟨58(𝑖−1)+𝑚𝑖 − 1⟩

97
+ 96𝑟
𝑖
∈ Z
192
. (6)

Remark 9. We note that 97 is a prime and 5 is a primitive
root modulo 97, so the function 0 ≤ ⟨5𝑥 − 1⟩

97
≤ 95 forms

a permutation when 𝑥 runs through Z
96

and hence 𝐹
𝑖
(𝑥, 𝑟)

permutates Z
192

when 𝑥 and 𝑟 run through Z
96

and {0, 1},
respectively. We denote

F
𝑖
= {𝐹
𝑖
(𝑚
𝑖
, 𝑟
𝑖
) | 𝑚
𝑖
∈ Z
8
, 𝑟
𝑖
∈ {0, 1}} . (7)

It is easy to verify that⋃12
𝑖=1

F
𝑖
forms a partition ofZ

192
. So we

can deduce that if 𝑖,𝑚
𝑖
, and 𝑟

𝑖
are uniformly distributed over

{1, . . . , 𝑛}, Z
8
and {0, 1}, respectively, 𝐹

𝑖
(𝑚
𝑖
, 𝑟
𝑖
) is uniformly

distributed over Z
192

. This means that the generating of
each 𝐹

𝑖
(𝑚
𝑖
, 𝑟
𝑖
) ∈ F

𝑖
can simulate the process of randomly

choosing an integer from Z
192

, which allows the predesig-
nated special structure of S

𝑃
defined in (9) as random as

possible.

The message encoding function is defined as F : M ×
{0, 1}𝑛 󳨃→ S

𝑃
:

F (m, r) = (𝐹
1
(𝑚
1
, 𝑟
1
) , . . . , 𝐹

𝑛
(𝑚
𝑛
, 𝑟
𝑛
)) , (8)

where the plaintext space is

S
𝑃
= {F (m, r) | m ∈ M, r ∈ {0, 1}𝑛} = F

1
× ⋅ ⋅ ⋅ × F

𝑛
. (9)

In the rest of the paper, we also define the equivalent plaintext
space S

𝐸
= Z𝑛
192

including the plaintext space S
𝑃
⊂ S
𝐸
.

Remark 10. Another fact about 𝐹
𝑖
is

𝐹i (𝑚, 𝑟) = 𝐹𝑖+12 (𝑚, 𝑟) , (10)

for 𝑚 ∈ Z
8
and 𝑟 ∈ {0, 1} because 596 = 1(mod 97). Hence,

we have that if 𝑖 = 𝑗 (mod 12), F
𝑖
= F
𝑗
.

Remark 11. Now we remark on how to encode a message
and decode a plaintext with respect to F. We can construct
𝑛 tables similar to truth-value tables to show the functions
𝐹
𝑗
. By observing (10), we see that the tables have a periodic

structure with period 12. That is to say those 𝑗 sharing a
common residue modulo 12 have a same table. So only 12
tables suffice to list the values of F(m, r). See Table 1. Here, we
spend some more words on the message encoding function
and Table 1. At present, we only consider the preceding three
columns of the 12 subtables in Table 1, which list the values
of 𝑟
𝑗
, 𝑚
𝑗
, and the corresponding 𝐹

𝑗
(𝑚
𝑗
, 𝑟
𝑗
), respectively. To

encode a message m ∈ M and given a randomly chosen
auxiliary key r ∈ {0, 1}𝑛, for 𝑖 = 1, . . . , 𝑛, we determine the
𝐹
𝑖
(𝑚
𝑖
, 𝑟
𝑖
) one by one by looking up the subtable indexed by

𝑖 = ⟨𝑗⟩
12
(mod 12) in Table 1 denoted as Sub-T

⟨𝑗⟩
12

. When
𝑟
𝑖
= 0 (or 1, resp.), we only search the 8 rows covered by

𝑟
𝑖
= 0 (or 1, resp.) in Sub-T

⟨𝑗⟩
12

, and output the integer in
the column marked by F

𝑖
that lies in the same row with𝑚

𝑖
as

the value of 𝐹
𝑖
(𝑚
𝑖
, 𝑟
𝑖
). For example, to encodem = (5, 4, 7, 6)

under the control of r = (0, 1, 1, 0), by looking up Sub-T
1
, we

determine 𝐹
1
(𝑚
1
, 𝑟
1
) = 20. Similarly, we get 𝐹

2
(𝑚
2
, 𝑟
2
) = 159,

𝐹
3
(𝑚
3
, 𝑟
3
) = 177, 𝐹

4
(𝑚
4
, 𝑟
4
) = 78. So, we encode (5, 4, 7, 6) as

F(m, r) = (20, 159, 177, 78). On the contrary, we can decode
a plaintext x ∈ S

𝑃
by looking up the table. For example,

x = (100, 101, 76, 6). We search the third column of Sub-
T
1
for 100 which lies in the same line with 𝑚

1
= 1, so

𝑚
1
= 1. Similarly, we get 𝑚

2
= 0, 𝑚

3
= 5, 𝑚

2
= 7. Hence,

m = (1, 0, 5, 7).

3.3. Onion Algorithm

3.3.1. Indistinguishability and Associated Integer Pairs. Given
an integer pair (𝑎, 𝑏) ∈ (Z+)

2 and 𝑓
𝑖
∈ F

𝑖
, we

define 𝑓
𝑖
(mod (𝑎, 𝑏)) = (𝑓

𝑖
(mod 𝑎), 𝑓

𝑖
(mod 𝑏)) and the set

F
𝑖
(mod (𝑎, 𝑏)) = {𝑓

𝑖
(mod (𝑎, 𝑏)) | 𝑓

𝑖
∈ F
𝑖
}. In fact, we

can look F
𝑖
(mod (𝑎, 𝑏)) as a transformation on F

𝑖
. If the

two cardinalities are identical, |F
𝑖
(mod (𝑎, 𝑏))| = |F

𝑖
|, the

transformation forms a bijection.

Mathematical Problems in Engineering 5

Table 1: The values of 𝐹
𝑖
(𝑀
𝑖
, 𝑟
𝑖
) and their associated integer pairs.

(a)

𝑖 = 1 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 34) mod (2, 17)

0

0 0 (0, 0) (0, 0)
1 4 (0, 4) (1, 4)
2 24 (0, 24) (0, 7)
3 27 (0, 27) (1, 10)
4 42 (0, 8) (0, 8)
5 20 (0, 20) (0, 3)
6 7 (0, 7) (1, 7)
7 39 (0, 5) (1, 5)

1

0 96 (0, 28) (0, 11)
1 100 (0, 32) (0, 15)
2 120 (0, 18) (0, 1)
3 123 (0, 21) (1, 4)
4 138 (0, 2) (0, 2)
5 116 (0, 14) (0, 14)
6 103 (0, 1) (1, 1)
7 135 (0, 33) (1, 16)

(b)

𝑖 = 2 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 33) mod (3, 11)

0

0 5 (0, 5) (2, 5)
1 29 (0, 29) (2, 7)
2 52 (0, 19) (1, 8)
3 70 (0, 4) (1, 4)
4 63 (0, 30) (0, 8)
5 28 (0, 28) (1, 6)
6 47 (0, 14) (2, 3)
7 45 (0, 12) (0, 1)

1

0 101 (0, 2) (2, 2)
1 125 (0, 26) (2, 4)
2 148 (0, 16) (1, 5)
3 166 (0, 1) (1, 1)
4 159 (0, 27) (0, 5)
5 124 (0, 25) (1, 3)
6 143 (0, 11) (2, 0)
7 141 (0, 9) (0, 9)

(c)

𝑖 = 3 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 31) mod (1, 37)

0

0 35 (0, 4) (0, 35)
1 82 (0, 20) (0, 8)
2 26 (0, 26) (0, 26)
3 37 (0, 6) (0, 0)
4 92 (0, 30) (0, 18)
5 76 (0, 14) (0, 2)
6 93 (0, 0) (0, 19)
7 81 (0, 19) (0, 7)

(c) Continued.

𝑖 = 3 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 31) mod (1, 37)

1

0 131 (0, 7) (0, 20)
1 178 (0, 23) (0, 30)
2 122 (0, 29) (0, 11)
3 133 (0, 9) (0, 22)
4 188 (0, 2) (0, 3)
5 172 (0, 17) (0, 24)
6 189 (0, 3) (0, 4)
7 177 (0, 22) (0, 29)

(d)

𝑖 = 4 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 46) mod (2, 23)

0

0 21 (0, 21) (1, 21)
1 12 (0, 12) (0, 12)
2 64 (0, 18) (0, 18)
3 33 (0, 33) (1, 10)
4 72 (0, 26) (0, 3)
5 73 (0, 27) (1, 4)
6 78 (0, 32) (0, 9)
7 6 (0, 6) (0, 6)

1

0 117 (0, 25) (1, 2)
1 108 (0, 16) (0, 1)
2 160 (0, 22) (0, 22)
3 129 (0, 37) (1, 14)
4 168 (0, 30) (0, 7)
5 169 (0, 31) (1, 8)
6 174 (0, 36) (0, 13)
7 102 (0, 10) (0, 10)

(e)

𝑖 = 5 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 29) mod (1, 47)

0

0 34 (0, 5) (0, 34)
1 77 (0, 19) (0, 30)
2 1 (0, 1) (0, 1)
3 9 (0, 9) (0, 9)
4 49 (0, 20) (0, 2)
5 55 (0, 26) (0, 8)
6 85 (0, 27) (0, 38)
7 41 (0, 12) (0, 41)

1

0 130 (0, 14) (0, 36)
1 173 (0, 28) (0, 32)
2 97 (0, 10) (0, 3)
3 105 (0, 18) (0, 11)
4 145 (0, 0) (0, 4)
5 151 (0, 6) (0, 10)
6 181 (0, 7) (0, 40)
7 137 (0, 21) (0, 43)

6 Mathematical Problems in Engineering

(f)

𝑖 = 6 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 39) mod (3, 13)

0

0 15 (0, 15) (0, 2)
1 79 (0, 1) (1, 1)
2 11 (0, 11) (2, 11)
3 59 (0, 20) (2, 7)
4 8 (0, 8) (2, 8)
5 44 (0, 5) (2, 5)
6 30 (0, 30) (0, 4)
7 57 (0, 18) (0, 5)

1

0 111 (0, 33) (0, 7)
1 175 (0, 19) (1, 6)
2 107 (0, 29) (2, 3)
3 155 (0, 38) (2, 12)
4 104 (0, 26) (2, 0)
5 140 (0, 23) (2, 10)
6 126 (0, 9) (0, 9)
7 153 (0, 36) (0, 20)

(g)

𝑖 = 7 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 34) mod (2, 17)

0

0 95 (0, 27) (1, 10)
1 91 (0, 23) (1, 6)
2 71 (0, 3) (1, 3)
3 68 (0, 0) (0, 0)
4 53 (0, 19) (1, 2)
5 75 (0, 7) (1, 7)
6 88 (0, 20) (0, 3)
7 56 (0, 22) (0, 5)

1

0 191 (0, 21) (1, 4)
1 187 (0, 17) (1, 0)
2 167 (0, 31) (1, 14)
3 164 (0, 28) (0, 11)
4 149 (0, 13) (1, 13)
5 171 (0, 1) (1, 1)
6 184 (0, 14) (0, 14)
7 152 (0, 16) (0, 16)

(h)

𝑖 = 8 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 33) mod (3, 11)

0

0 90 (0, 24) (0, 2)
1 66 (0, 0) (0, 0)
2 43 (0, 10) (1, 10)
3 25 (0, 25) (1, 3)
4 32 (0, 32) (2, 10)
5 67 (0, 1) (1, 1)
6 48 (0, 15) (0, 4)
7 50 (0, 17) (2, 6)

(h) Continued.

𝑖 = 8 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 33) mod (3, 11)

1

0 186 (0, 21) (0, 10)
1 162 (0, 30) (0, 8)
2 139 (0, 7) (1, 7)
3 121 (0, 22) (1, 0)
4 128 (0, 29) (2, 7)
5 163 (0, 31) (1, 9)
6 144 (0, 12) (0, 1)
7 146 (0, 14) (2, 3)

(i)

𝑖 = 9 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 31) mod (1, 37)

0

0 60 (0, 29) (0, 23)
1 13 (0, 13) (0, 13)
2 69 (0, 7) (0, 32)
3 58 (0, 27) (0, 21)
4 3 (0, 3) (0, 3)
5 19 (0, 19) (0, 19)
6 2 (0, 2) (0, 2)
7 14 (0, 14) (0, 14)

1

0 156 (0, 1) (0, 8)
1 109 (0, 16) (0, 35)
2 165 (0, 10) (0, 17)
3 154 (0, 30) (0, 6)
4 99 (0, 6) (0, 25)
5 115 (0, 22) (0, 4)
6 98 (0, 5) (0, 24)
7 110 (0, 17) (0, 36)

(j)

𝑖 = 10 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 46) mod (2, 23)

0

0 74 (0, 28) (0, 5)
1 83 (0, 37) (1, 14)
2 31 (0, 31) (1, 8)
3 62 (0, 16) (0, 16)
4 23 (0, 23) (1, 0)
5 22 (0, 22) (0, 22)
6 17 (0, 17) (1, 17)
7 89 (0, 43) (1, 20)

1

0 170 (0, 32) (0, 9)
1 179 (0, 41) (1, 18)
2 127 (0, 35) (1, 12)
3 158 (0, 20) (0, 20)
4 119 (0, 27) (1, 4)
5 118 (0, 26) (0, 3)
6 113 (0, 21) (1, 21)
7 185 (0, 1) (1, 1)

Mathematical Problems in Engineering 7

(k)

𝑖 = 11 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 29) mod (1, 47)

0

0 61 (0, 3) (0, 14)
1 18 (0, 18) (0, 18)
2 94 (0, 7) (0, 0)
3 86 (0, 28) (0, 39)
4 46 (0, 17) (0, 46)
5 40 (0, 11) (0, 40)
6 10 (0, 10) (0, 10)
7 54 (0, 25) (0, 7)

1

0 157 (0, 12) (0, 16)
1 114 (0, 27) (0, 20)
2 190 (0, 16) (0, 2)
3 182 (0, 8) (0, 41)
4 142 (0, 26) (0, 1)
5 136 (0, 20) (0, 42)
6 106 (0, 19) (0, 12)
7 150 (0, 5) (0, 9)

(l)

𝑖 = 0 (mod 12)
𝑟
𝑖

𝑚
𝑖

F
𝑖

mod (1, 39) mod (3, 13)

0

0 80 (0, 2) (2, 2)
1 16 (0, 16) (1, 3)
2 84 (0, 6) (0, 6)
3 36 (0, 36) (0, 10)
4 87 (0, 9) (0, 9)
5 51 (0, 12) (0, 12)
6 65 (0, 26) (2, 0)
7 38 (0, 38) (2, 12)

1

0 176 (0, 20) (2, 7)
1 112 (0, 34) (1, 11)
2 180 (0, 24) (0, 11)
3 132 (0, 15) (0, 2)
4 183 (0, 27) (0, 1)
5 147 (0, 30) (0, 4)
6 161 (0, 5) (2, 5)
7 134 (0, 17) (2, 4)

Definition 12. Given an integer pair (𝑎, 𝑏) ∈ (Z+)
2, if

|F
𝑖
(mod (𝑎, 𝑏))| = |F

𝑖
|, we call F

𝑖
to be distinguishable

modulo (𝑎, 𝑏), or (𝑎, 𝑏) is an associated integer pair with F
𝑖
.

Example 13. Decide whether F
61

is distinguishable modulo
(1, 34) and (2, 19) or not, respectively. We note that F

61
= F
1

contains the integers listed in the third column of Sub-T
1
.

Calculations show that |F
61
| = |F

61
(mod (1, 34))| = 16. The

16 values in F
61
(mod (1, 34)) are listed in the forth column

of Sub-T
1
. So, F

61
is distinguishablemodulo (1, 34). However,

|F
61
| = 16 ̸= |F

61
(mod (2, 19))| = 14 in that 4 and 42

modulo (2, 19) produce a same integer pair (0, 4), and 24 and
138 modulo (2, 19) produce a same integer pair (0, 5). So F

61

is not distinguishable modulo (2, 19).

Table 2: Associated integer pairs with F
𝑖
.

Set Associated integer pairs
AIP1 {(1, 34), (2, 17)}

AIP2 {(1, 33), (3, 11)}

AIP3 {(1, 31), (1, 37)}

AIP4 {(1, 46), (2, 23)}

AIP5 {(1, 29), (1, 47)}

AIP6 {(1, 39), (3, 13)}

AIP7 {(1, 34), (2, 17)}

AIP8 {(1, 33), (3, 11)}

AIP9 {(1, 31), (1, 37)}

AIP10 {(1, 46), (2, 23)}

AIP11 {(1, 29), (1, 47)}

AIP0 {(1, 39), (3, 13)}

Table 3: Suggested security parameters.

Security level
Moderate Higher Highest

𝑛 60 90 120
Public key size 21282 47025 82796
Information rate 0.49 0.50 0.51
Costs for BFA I 2240 2360 2480

Costs for BFA II 2125.9 2186.5 2246.9

𝑃
𝑑1

286.9 2146.1 2205.7

𝑃
𝑑2

2587.8 2899.4 21211.6

𝑃
𝑑3

2111.4 2183 2255.1

Remark 14. When F
𝑖
is distinguishable modulo (𝑎, 𝑏), there

is a bijection between the integers in F
𝑖
and the integer

pairs in F
𝑖
(mod (𝑎, 𝑏)). For example, the third and the forth

columns of Sub-T
1
listed the integers in F

1
and the integer

pairs in F
1
(mod (1, 34)). For example, if we know an integer

𝑓
1
∈ F
1
satisfies 𝑓

1
(mod (1, 34)) = (0, 32), we search

the forth column generated by F
1
(mod (1, 34)) for (0, 32) in

Sub- T
1
and find that (0, 32) lies in the same line with 100, so

𝑓
1
= 100.

Remark 15. From Remark 10, we have that, for congruent
indices 𝑗’s modulo 12, we get a same set F

𝑗
(mod (𝑎, 𝑏)). For

each 𝑖 = ⟨𝑗⟩
12
(mod 12), we give two integer pairs (𝑎

𝑖1
, 𝑏
𝑖1
)

and (𝑎
𝑖2
, 𝑏
𝑖2
) associatedwithF

𝑖
, and the corresponding integer

pairs modulo (𝑎
𝑖1
, 𝑏
𝑖1
) and (𝑎

𝑖2
, 𝑏
𝑖2
), respectively, in the forth

and fifth column of Sub-T
⟨𝑗⟩
12

. We denote the set consisting
of the two integer pairs (𝑎

𝑗1
, 𝑏
𝑗1
) and (𝑎

𝑗2
, 𝑏
𝑗2
) as AIP

⟨𝑗⟩
12

. For
example, AIP

⟨73⟩
12

= AIP
1
= {(1, 34), (2, 17)}. In Table 2, we list

all the 12 sets of AIP
⟨𝑗⟩
12

.

Remark 16. Note that F
𝑖
is distinguishable modulo (𝑎, 𝑏) if

and only if F
𝑖
is distinguishable modulo (𝑏, 𝑎) = (𝑎, 𝑏)𝑇.

For example, AIP𝑇
1
= {(34, 1), (17, 2)} also contains integer

pairs associated with F
1
. If we know that an integer 𝑓

1
∈ F
1

satisfies 𝑓
1
(mod (34, 1)) = (32, 0), we also can determine

the value of 𝑓
1
by searching the forth column generated by

F
1
(mod (1, 34)) in Sub-T

1
for (0, 32), and we find a unique

8 Mathematical Problems in Engineering

𝑓
1
= 100 with 𝑓

1
(mod (1, 34)) = (0, 32). So the unique

integer 𝑓
1
∈ F
1
is 𝑓
1
= 100 such that 𝑓

1
(mod (34, 1)) =

(32, 0).

3.3.2. Simultaneous Diophantine Equation. Now, we consider
a simultaneous Diophantine equation problem as follows;
given integers 𝑠

1
and 𝑠
2
and positive integer sequences u =

(𝑢
1
, . . . , 𝑢

𝑛
) and k = (V

1
, . . . , V

𝑛
), find x = (𝑓

1
, . . . , 𝑓

𝑛
) ∈ S

𝑃

defined in (9) such that

𝑠
1
= ⟨u, x⟩ , 𝑠

2
= ⟨k, x⟩ . (11)

It is pointed out that if max u ≤ 2𝑑u𝑛 and max k ≤ 2𝑑k𝑛,
for some constants 𝑑u and 𝑑k subject to 𝑑u + 𝑑k < log

2
192,

(𝑠
1
, 𝑠
2
) will have exponentially many preimages in S

𝐸
= Z𝑛
192

satisfying (11); namely,

𝑃
𝑑
≥

󵄨󵄨󵄨󵄨S𝐸
󵄨󵄨󵄨󵄨

(191max u) (191max k)
≥

192𝑛

19122𝑑u+𝑑k
, (12)

which is O(2log2192−𝑑u−𝑑k). What we mean is that if we require
x = (𝑓

1
, . . . , 𝑓

𝑛
) ∈ S

𝐸
and 𝑑u + 𝑑k < log

2
192, (11) will

be a many-to-one function. In the subsequent contents, we
will define a condition such that (11) will have at most one
solution in S

𝑃
(to guarantee the unique decipherability for

ciphertexts) and propose an algorithm to solve (11). Besides,
some transformations will be introduced in the construction
of the proposed PKC to derive a compact knapsack problem
equipped with noninjectivity, a trapdoor, and one-wayness
natures.

3.3.3. AnEasy Problemand theAlgorithmSolving It. For some
specialu and k, we can efficiently determine𝑓

𝑛
in (11) as stated

in the following lemma.

Lemma 17. Assuming that (11) has solutions in S
𝑃
, 𝑔𝑐𝑑u
𝑛
=

𝑔𝑐𝑑k
𝑛
= 1, and (𝑔𝑐𝑑u

𝑛−1
, 𝑔𝑐𝑑k
𝑛−1
) ∈ 𝐴𝐼𝑃

⟨𝑛⟩
12

∪ 𝐴𝐼𝑃𝑇
⟨𝑛⟩
12

, then
𝑓
𝑛
∈ F
𝑛
can be efficiently and uniquely determined.

Proof. We first note that gcdu
𝑛−1

| 𝑢
𝑖
and gcdk

𝑛−1
| V
𝑖
,

for 𝑖 = 1, . . . , 𝑛 − 1, so the two equations in (11) mod-
ulo gcdu

𝑛−1
and gcdk

𝑛−1
, respectively, give 𝑠

1
= 𝑢
𝑛
𝑓
𝑛
(mod

gcdu
𝑛−1
) and 𝑠

2
= V
𝑛
𝑓
𝑛
(mod gcdk

𝑛−1
). Observing that gcdu

𝑛
=

gcd (gcdu
𝑛−1
, 𝑢
𝑛
) = 1, we can invert 𝑢

𝑛
and similarly V

𝑛
:

(𝑓
𝑛1
, 𝑓
𝑛2
) = 𝑓
𝑛
(mod (gcdu

𝑛−1
, gcdk
𝑛−1
))

= (𝑢−1
𝑛
𝑠
1
(mod gcdu

𝑛−1
) , V−1
𝑛
𝑠
2
(mod gcdk

𝑛−1
)) .

(13)

If (gcdu
𝑛−1
, gcdk
𝑛−1
) ∈ AIP

⟨𝑛⟩
12

, we determine the unique
corresponding value 𝑓

𝑛
according to Remark 14. If

(gcdu
𝑛−1
, gcdk
𝑛−1
) ∈ AIP𝑇

⟨𝑛⟩
12

, we use the method given in
Remark 16 to determine the unique 𝑓

𝑛
.

The above lemma says that for some special u and k, we
can determine the solution 𝑓

𝑛
, . . . , 𝑓

1
to (11) one by one as if

we peel off an onion, so the name Onion Algorithm comes.

Theorem 18. Assuming that (11) has solutions in S
𝑃
:

gcdu
𝑛
= gcdk
𝑛
= 1, (14)

and that, for 𝑖 = 2, . . . , 𝑛,

(
gcdu
𝑖−1

gcdu
𝑖

,
gcdk
𝑖−1

gcdk
𝑖

) ∈ AIP
⟨𝑖⟩
12

∪ AIP𝑇
⟨𝑖⟩12
, (15)

the solution x = (𝑓
1
, . . . , 𝑓

𝑛
) ∈ S
𝑃
to (11) can be efficiently and

uniquely determined.

Proof. From Lemma 17, 𝑓
𝑛
can be efficiently and uniquely

determined.
For 𝑖 = 𝑛 − 1, . . . , 2, assuming that 𝑓

𝑖+1
, . . . , 𝑓

𝑛
have been

uniquely determined, we know that

𝑠
1
−
𝑛

∑
𝑗=𝑖+1

𝑢
𝑗
𝑓
𝑗
=
𝑖

∑
𝑗=1

𝑢
𝑗
𝑓
𝑗
. (16)

We note that gcdu
𝑖
| 𝑢
𝑗
for 1 ≤ 𝑗 ≤ 𝑖, so gcdu

𝑖
divides the right

side and hence the left side of (16). We set

𝑠
𝑖1
=
𝑠
1
− ∑
𝑛

𝑗=𝑖+1
𝑢
𝑗
𝑓
𝑗

gcdu
𝑖

=
𝑖

∑
𝑗=1

𝑢
𝑗

gcdu
𝑖

𝑓
𝑗
. (17)

A similar analysis also applies to the second equation of (11),
so we set 𝑠

𝑖2
= (𝑠
2
− ∑
𝑛

𝑗=𝑖+1
V
𝑗
𝑓
𝑗
)/gcdk
𝑖
to obtain

𝑠
𝑖1
=
𝑖

∑
𝑗=1

𝑢
𝑗

gcdu
𝑖

𝑓
𝑗
, 𝑠

𝑖2
=
𝑖

∑
𝑗=1

V
𝑗

gcdk
𝑖

𝑓
𝑗
. (18)

If we view (18) as a new simultaneous Diophantine equation
problem with integer sequences (𝑢

1
/gcdu
𝑖
, . . . , 𝑢

𝑖
/gcdu
𝑖
) and

(V
1
/gcdk
𝑖
, . . . , V

𝑖
/gcdk
𝑖
), what follows shows that the new prob-

lem satisfies the conditions in Lemma 17.
Firstly, (11) has solutions, and 𝑓

𝑖+1
, . . . , 𝑓

𝑛
have been

uniquely determined, so (18) must have solutions.
Secondly, recalling the meaning of gcdu

𝑖
, we claim that

these entries divided by their gcd must be relatively prime:

gcd(𝑢
1

gcdu
𝑖

, . . . ,
𝑢
𝑖

gcdu
𝑖

) = gcd(V
1

gcdk
𝑖

, . . . ,
V
𝑖

gcdk
𝑖

) = 1. (19)

Thirdly,

gcd(𝑢
1

gcdu
𝑖

, . . . ,
𝑢
𝑖−1

gcdu
𝑖

) =
gcdu
𝑖−1

gcdu
𝑖

,

gcd(V
1

gcdk
𝑖

, . . . ,
V
𝑖−1

gcdk
𝑖

) =
gcdk
𝑖−1

gcdk
𝑖

.

(20)

Mathematical Problems in Engineering 9

(1) Compute (𝑓
𝑛1
, 𝑓
𝑛2
) according to (13).

(2) if (gcd u
𝑛−1
, gcd k

𝑛−1
) ∈ AIP

⟨𝑛⟩12
then

(3) Search for (𝑓
𝑛1
, 𝑓
𝑛2
) in Sub-𝑇

⟨𝑛⟩12
generated by

F
𝑛
(mod (gcd u

𝑛−1
, gcd k

𝑛−1
)) to get 𝑓

𝑛
∈ F
𝑛
such that

𝑓
𝑛
(mod (gcd u

𝑛−1
, gcd k

𝑛−1
)) = (𝑓

𝑛1
, 𝑓
𝑛2
). Store 𝑓

𝑛
.

(4) end if
(5) if (gcd u

𝑛−1
, gcd k

𝑛−1
) ∈ AIP𝑇

⟨𝑛⟩12
then

(6) Search for (𝑓
𝑛2
, 𝑓
𝑛1
) in Sub-𝑇

⟨𝑛⟩12
generated by

F
𝑛
(mod (gcd k

𝑛−1
, gcd u

𝑛−1
)) to get 𝑓

𝑛
∈ F
𝑛
such that

𝑓
𝑛
(mod (gcd k

𝑛−1
, gcd u

𝑛−1
)) = (𝑓

𝑛2
, 𝑓
𝑛1
). Store 𝑓

𝑛
.

(7) end if
(8) for 𝑖 = 𝑛 − 1, . . . , 2 do
(9) Compute (18) and

(𝑓
𝑖1
, 𝑓
𝑖2
) = (𝑠

𝑖1
(
𝑢
𝑖

gcd u
𝑖

)
−1

(mod
gcd u
𝑖−1

gcd u
𝑖

) ,

𝑠
𝑖2
(

V
𝑖

gcd k
𝑖

)
−1

(mod
gcd k
𝑖−1

gcd k
𝑖

)) .

(∗)

(10) if (gcd u
𝑖−1
/ gcd u

𝑖
, gcd k

𝑖−1
/ gcd k

𝑖
) ∈ AIP

⟨𝑖⟩12
then

(11) Search the column in Sub-𝑇
⟨𝑖⟩12

generated
by F
𝑖
modulo (gcd u

𝑖−1
/ gcd u

𝑖
, gcd k

𝑖−1
/ gcd k

𝑖
)

for (𝑓
𝑖1
, 𝑓
𝑖2
) such that (𝑓

𝑖1
, 𝑓
𝑖2
) =

𝑓
𝑖
(mod (gcd u

𝑖−1
/ gcd u

𝑖
, gcd k

𝑖−1
/gcd k

𝑖
)). Store

𝑓
𝑖
.

(12) end if
(13) if (gcd u

𝑖−1
/ gcd u

𝑖
, gcd k

𝑖−1
/ gcd k

𝑖
) ∈ AIP𝑇

⟨𝑖⟩12
then

(14) Search the column in Sub-𝑇
⟨𝑖⟩12

generated
by F
𝑖
modulo (gcd k

𝑖−1
/ gcd k

𝑖
, gcd u

𝑖−1
/gcd u

𝑖
)

for (𝑓
𝑖2
, 𝑓
𝑖1
) such that (𝑓

𝑖2
, 𝑓
𝑖1
) =

𝑓
𝑖
(mod (gcd k

𝑖−1
/ gcd k

𝑖
, gcd u

𝑖−1
/ gcd u

𝑖
)). Store

𝑓
𝑖
.

(15) end if
(16) end for
(17) Compute and store 𝑓

1
= (𝑠
1
− ∑
𝑛

𝑖=2
𝑢
𝑖
𝑓
𝑖
) /𝑢
1
.

(18) return x = (𝑓
1
, . . . , 𝑓

𝑛
).

Algorithm 1: Onion Algorithm.

From (15) and the previous two proven things, we know that
(18) indeed satisfies the conditions in Lemma 17. So we can
efficiently determine a unique 𝑓

𝑖
∈ F
𝑖
.

Finally, once𝑓
2
, . . . , 𝑓

𝑛
have been uniquely determined, it

is a trivial thing to determine a unique 𝑓
1
just by computing

𝑓
1
=
𝑠
1
− ∑
𝑛

𝑖=2
𝑢
𝑖
𝑓
𝑖

𝑢
1

or
𝑠
2
− ∑
𝑛

𝑖=2
V
𝑖
𝑓
𝑖

V
1

. (21)

Both values on the right side of the above equation must be
not only identical but also in F

1
because (11) has solutions in

S
𝑃
and 𝑓

2
, . . . , 𝑓

𝑛
have been uniquely determined.

Given the problem (11), satisfying the conditions pre-
sented in Theorem 18, the Onion Algorithm for solving (11) is
summarized as shown in Algorithm 1.

Now we use a toy example to illustrate what we discuss in
this subsection about the Onion Algorithm.

Example 19. Assume that the following equations have
solutions in S

𝑃
; find the solution x = (𝑓

1
, 𝑓
2
, 𝑓
3
) to

11𝑓
1
+ 9𝑓
2
+ 13𝑓

3
= 2926, 93𝑓

1
+ 62𝑓

2
+ 89𝑓

3
= 20783.

We can verify that (gcdu
3
, gcdk
3
) = (1, 1), (gcdu

2
, gcdk
2
) =

(1, 31), (gcdu
1
, gcdk
1
) = (11, 93), and (gcdu

2
/gcdu
3
, gcdk
2
/gcdk
3
) =

(1, 31) ∈ AIP
3
, (gcdu
1
/gcdu
2
, gcdk
1
/gcdk
2
) = (11, 3) ∈ AIP𝑇

2
, so

(14) and (15) are satisfied. Hence, we use theOnion Algorithm
to compute (𝑓

31
, 𝑓
32
) = (2926 × 13−1(mod 1), 20783 ×

89−1(mod 31)) = (0, 20). We look up Sub-T
3
and find that

𝑓
3
= 82(mod (1, 31)) = (0, 20). So 𝑓

3
= 82. We compute

𝑠
21
= (2926−13 × 82)/1 = 1860, 𝑠

22
= (20783−89 × 82)/31 =

435. Then we compute (𝑓
21
, 𝑓
22
) = (1860 × 9−1(mod

11), 435 × (62/31)−1(mod 93/31)) = (5, 0). We search Sub-
T
2
for (0, 5) and find that 𝑓

2
= 159 (mod (3, 11)) = (0, 5).

So we determine 𝑓
2
= 159. Finally, we get 𝑓

1
= (2926 − 9 ×

159 − 13 × 82)/11 = 39. Thus, a unique x = (39, 159, 82) is
determined.

3.4. The Proposed Probabilistic Public Key Encryption. In
this subsection, we use the results obtained in previous
subsections to derive a probabilistic public key encryption.

10 Mathematical Problems in Engineering

3.4.1. Key Generation. Randomly choose two sequences u =
(𝑢
1
, . . . , 𝑢

𝑛
) and k = (V

1
, . . . , V

𝑛
) ∈ (Z+)

𝑛, satisfying condi-
tions (14) and (15) given in Theorem 18, and a two-dimens-
ional invertible square matrix with positive integer entries
upper bounded by a constant,

Δ = (
𝛿
11
𝛿
12

𝛿
21
𝛿
22

) , 𝛿
𝑖𝑗
= O (1) , 1 ≤ 𝑖, 𝑗 ≤ 2. (22)

Compute

(
g
h) = (

𝑔
1
⋅ ⋅ ⋅ 𝑔
𝑛

ℎ
1
⋅ ⋅ ⋅ ℎ
𝑛

) = Δ(
u
k) . (23)

Randomly choose two primes 𝑝 ̸= 𝑞 such that

𝑝 >
𝑛

∑
𝑖=1

𝑔
𝑖
max F

𝑖
, 𝑞 >

𝑛

∑
𝑖=1

ℎ
𝑖
max F

𝑖
. (24)

Let 𝑁 = 𝑝𝑞. Compute the vector b = (𝑏
1
, . . . , 𝑏

𝑛
) using the

Chinese remainder theorem,

𝑏
𝑖
≡ 𝑔
𝑖
(mod 𝑝) , 𝑏

𝑖
≡ ℎ
𝑖
(mod 𝑞) . (25)

Randomly choose an integer 𝑤 ∈ Z∗
𝑁
and compute

𝑎
𝑖
= 𝑤𝑏
𝑖
(mod 𝑁) , 𝑖 = 1, . . . , 𝑛. (26)

The public key is a = (𝑎
1
, . . . , 𝑎

𝑛
). The secret key consists of

𝑝, 𝑞, and 𝑤−1(mod 𝑁), Δ−1. When decrypting a ciphertext,
the decrypter also needs to store the values of gcdu

𝑖
, gcdk
𝑖
, 𝑖 =

1, . . . , 𝑛, and Table 1.

3.4.2. Encryption. To encrypt a messagem = (𝑚
1
, . . . , 𝑚

𝑛
) ∈

M = Z𝑛
8
, the encrypter randomly chooses an auxiliary key

r = (𝑟
1
, . . . , 𝑟

𝑛
) ∈ {0, 1}𝑛 and computes the plaintext x =

(𝑓
1
, . . . , 𝑓

𝑛
) = F(m, r) and the ciphertext using the public key

a,

𝑐 = ⟨a, x⟩ . (27)

3.4.3. Decryption. To decipher a ciphertext 𝑐, the decrypter
firstly computes 𝑐

𝑁
= ⟨𝑤−1𝑐⟩

𝑁
= 𝑤−1𝑐(mod 𝑁), and then

𝑐
𝑝
= ⟨𝑐
𝑁
⟩
𝑝
, 𝑐
𝑞
= ⟨𝑐
𝑁
⟩
𝑞
. Secondly, the decrypter computes

(
𝑠
1

𝑠
2

) = Δ−1 (
𝑐
𝑝

𝑐
𝑞

) . (28)

Thirdly, the decrypter uses theOnion Algorithm to determine
a unique solution x = (𝑓

1
, . . . , 𝑓

𝑛
) ∈ S

𝑃
to (11). Finally, the

decrypter decodes x into the corresponding message m by
using the method illustrated in Remark 11.

3.4.4. Why Decryption Works. To illustrate why the decryp-
tion works, we observe that 𝑐

𝑁
= ⟨b, x⟩(mod 𝑁) from (26),

so 𝑐
𝑝
= ⟨g, x⟩(mod 𝑝) and 𝑐

𝑞
= ⟨h, x⟩(mod 𝑞) according to

(25). From (23), we know that 𝑔
𝑖
= 𝛿
11
𝑢
𝑖
+ 𝛿
12
V
𝑖
> 0, so

0 ≤ 𝑐
𝑝
< 𝑝 from (24). Now we conclude that 𝑐

𝑝
= ⟨g, x⟩ and

similarly 𝑐
𝑞
= ⟨h, x⟩. Hence, we have

(
𝑠
1

𝑠
2

) = Δ−1 (
g
h)(

𝑓
1

...
𝑓
𝑛

) = (
u
k)(

𝑓
1

...
𝑓
𝑛

), (29)

from which (11) is derived. It is easy to verify that (11)
satisfies the conditions listed in Theorem 18, and hence can
be efficiently solved with Onion Algorithm to give a unique
solution x ∈ S

𝑃
. Then x is decoded into the original message

m.

3.4.5. On Generating u and v. Now, we give an algorithm to
generate the 𝑛-dimensional positive integer sequences u and
k satisfying conditions (14) and (15) in Theorem 18.

Theorem 20. The generated u and k satisfy (14) and (15).

Proof. We note that, for 𝑖 = 1, . . . , 𝑛,

gcdu
𝑖
= gcd (𝑢

1
, . . . , 𝑢

𝑖
)

= gcd(𝜁
1

𝑛

∏
𝑗=1

𝛼
𝑗
, . . . , 𝜁

𝑖

𝑛

∏
𝑗=𝑖

𝛼
𝑗
)

= gcd(
𝑛

∏
𝑗=1

𝛼
𝑗
, . . . ,

𝑛

∏
𝑗=𝑖

𝛼
𝑗
) =

𝑛

∏
𝑗=𝑖

𝛼
𝑗
.

(30)

Similarly, gcdk
𝑖
= gcd(V

1
, . . . , V

𝑖
) = ∏

𝑛

𝑗=𝑖
𝛽
𝑗
. We immediately

have gcdu
𝑛
= 𝛼
𝑛
= gcdk

𝑛
= 𝛽
𝑛
= 1. Thus, (14) is satisfied. For

𝑖 = 2, . . . , 𝑛, we have

(
gcdu
𝑖−1

gcdu
𝑖

,
gcdk
𝑖−1

gcdk
𝑖

) = (
∏
𝑛

𝑗=𝑖−1
𝛼
𝑗

∏
𝑛

𝑗=𝑖
𝛼
𝑗

,
∏
𝑛

𝑗=𝑖−1
𝛽
𝑗

∏
𝑛

𝑗=𝑖
𝛽
𝑗

)

= (𝛼
𝑖−1
, 𝛽
𝑖−1
) ∈ AIP

⟨𝑖⟩
12

∪ AIP𝑇
⟨𝑖⟩12
,

(31)

so (15) is satisfied, as desired.

Now we use an example to illustrate Algorithm 2.

Example 21. We randomly choose (𝛼
1
, 𝛽
1
) = (11, 3) ∈ AIP

2
∪

AIP𝑇
2
, (𝛼
2
, 𝛽
2
) = (1, 31) ∈ AIP

3
∪ AIP𝑇

3
and 𝜁
2
= 9, 𝜁

3
= 13,

𝜂
2
= 2, 𝜂

3
= 89, and set 𝜁

1
= 𝜂
1
= 𝛼
3
= 𝛽
3
= 1, so we

can compute 𝑢
1
= 𝜁
1
𝛼
1
𝛼
2
𝛼
3
= 11, 𝑢

2
= 𝜁
2
𝛼
2
𝛼
3
= 9, 𝑢

3
=

𝜁
3
𝛼
3
= 13, and V

1
= 𝜂
1
𝛽
1
𝛽
2
𝛽
3
= 93, V

2
= 𝜂
2
𝛽
2
𝛽
3
= 62,

V
3
= 𝜂
3
𝛽
3
= 89, which are the coefficients in Example 19.

3.4.6. Remarks and Suggested Security Parameters. The
suggested parameters 𝑛 are listed in Table 3.

We provide some remarks on the proposed PKC as
follows.

Remark 22. We can choose a 2-dimensional square matrix Δ
with determinant equal to ±1 because the inverse Δ−1 can be
easily represented when |Δ| = ±1.

Mathematical Problems in Engineering 11

(1) For 𝑖 = 1, . . . , 𝑛 − 1, randomly choose (𝛼
𝑖
, 𝛽
𝑖
) ∈

AIP
⟨𝑖+1⟩12

∪ AIP𝑇
⟨𝑖+1⟩12

with repetition permitted.
(2) Randomly choose 2(𝑛 − 1) numbers 𝜁

2
, . . . , 𝜁

𝑛
and

𝜂
2
, . . . , 𝜂

𝑛
and set 𝜁

1
= 𝜂
1
= 𝛼
𝑛
= 𝛽
𝑛
= 1 such that

gcd (𝜁
𝑖
, 𝛼
𝑗
) = gcd (𝜂

𝑖
, 𝛽
𝑗
) = 1 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and

gcd (𝜁
𝑖
, 𝜁
𝑖+1
) = gcd (𝜂

𝑖
, 𝜂
𝑖+1
) = 1 for 𝑖 = 1, . . . , 𝑛 − 1.

(3) for 𝑖 = 1, . . . , 𝑛 do
(4) 𝑢

𝑖
= 𝜁
𝑖

𝑛

∏
𝑗=𝑖

𝛼
𝑗
, V

𝑖
= 𝜂
𝑖

𝑛

∏
𝑗=𝑖

𝛽
𝑗
. (󳀅)

(5) end for
(6) return u = (𝑢

1
, . . . , 𝑢

𝑛
), k = (V

1
, . . . , V

𝑛
).

Algorithm 2: Generating u and k.

Remark 23. We should choose 𝑝 and 𝑞 slightly greater than
∑
𝑛

𝑖=1
𝑔
𝑖
max F

𝑖
and ∑𝑛

𝑖=1
ℎ
𝑖
max F

𝑖
, respectively. See (24). So

for convenience of discussions, we always assume that

𝑝 ≈
𝑛

∑
𝑖=1

𝑔
𝑖
max F

𝑖
, 𝑞 ≈

𝑛

∑
𝑖=1

ℎ
𝑖
max F

𝑖
. (32)

Remark 24. In Algorithm 2, we suggest choosing 𝜁
𝑖
and 𝜂

𝑖

with some special lengths in order that the generated 𝑢
𝑖
’s (V
𝑖
’s,

resp.) share an almost same binary length; that is,

󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑗=1

𝛼
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑗=𝑖

𝛼
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

,
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑗=1

𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑗=𝑖

𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

,

(33)

So, for 𝑖 = 1, . . . , 𝑛 − 1, we have

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑗=1

𝛼
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

=
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨2,

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑗=1

𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

=
󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨2. (34)

For convenience of discussions, we also assume that 𝑢
1
and

V
1
have an almost same binary length, so from (34), we have

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨2 ≈

󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨2. (35)

4. Performance

This section analyzes the performance related issues, such as
the computational complexity of the encryption and decryp-
tion algorithms, the public key size and the information rate.

4.1. Estimation of Public Key Size. Wefirst point out two facts.
Firstly, when generating u and k by using Algorithm 2, for
𝑖 = 1, . . . , 𝑛 − 1, we randomly choose (𝛼

𝑖
, 𝛽
𝑖
) ∈ AIP

⟨𝑖+1⟩
12

∪

AIP𝑇
⟨𝑖+1⟩
12

in the first step. We also set 𝛼
𝑛
= 𝛽
𝑛
= 1. So from

Table 2, we see that 𝛼
𝑖
𝛽
𝑖
≤ 47, for 𝑖 = 1, . . . , 𝑛 − 1. Secondly,

max F
𝑖
≤ 191.

From (23), we rewrite 𝑔
𝑖
and ℎ

𝑖
as 𝑔
𝑖
= 𝛿
11
𝑢
𝑖
+ 𝛿
12
V
𝑖
and

ℎ
𝑖
= 𝛿
21
𝑢
𝑖
+ 𝛿
22
V
𝑖
with 𝛿

𝑖𝑗
= O(1), and from (35), we have

|𝑔
𝑖
|
2
≈ |ℎ
𝑖
|
2
≈ |𝑢
𝑖
|
2
≈ |V
𝑖
|
2
≈ |𝑢
1
|
2
≈ |V
1
|
2
.

We recall that the public key consists of 𝑛 integers a =
(𝑎
1
, . . . , 𝑎

𝑛
), and the length of each of them is upper bounded

by that of𝑁 = 𝑝𝑞, so from (32) we have

|𝑁|
2
≈
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨2 +

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨2 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
191
𝑛

∑
𝑖=1

𝑔
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
191
𝑛

∑
𝑖=1

ℎ
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

≈
󵄨󵄨󵄨󵄨191𝑛𝑔𝑖

󵄨󵄨󵄨󵄨2 +
󵄨󵄨󵄨󵄨191𝑛ℎ𝑖

󵄨󵄨󵄨󵄨2 ≈
󵄨󵄨󵄨󵄨󵄨191
2𝑛2𝑢
1
V
1

󵄨󵄨󵄨󵄨󵄨2

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1912𝑛2

𝑛−1

∏
𝑖=1

𝛼
𝑖
𝛽
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2
≤
󵄨󵄨󵄨󵄨󵄨191
2𝑛247𝑛−1

󵄨󵄨󵄨󵄨󵄨2

≈ (𝑛 − 1) log
2
47 + 2log

2
𝑛 + 2log

2
191.

(36)

So the public key size is estimated via

𝑛|𝑁|2 ≤ 𝑛 (𝑛 − 1) log247 + 2𝑛log2𝑛 + 2𝑛log2191, (37)

which is upper bounded by O(𝑛2).

4.2. Computational Complexity. We analyze the compu-
tational costs for encrypting a message and decrypting a
ciphertext. Givenm and r, we only needO(𝑛) bit operations to
compute x. To encrypt x, the encrypter only needs to perform
𝑛multiplications with themultipliers 𝑎

𝑖
bounded byO(𝑛) and

𝑓
𝑖
≤ 191, and 𝑛−1 additions. SoO(𝑛2) bit operations suffice to

do the computations in (27). The computational complexity
for the encryption algorithm is given as O(𝑛2).

The decrypter first performs a modular multiplication
𝑐
𝑁
= ⟨𝑤−1𝑐⟩

𝑁
, and two modular reductions 𝑐

𝑝
= ⟨𝑐
𝑁
⟩
𝑝
,

𝑐
𝑞
= ⟨𝑐
𝑁
⟩
𝑞
, which cost O(𝑛2) bit operations in total. To

solve (11) for each 𝑓
𝑖
and hence 𝑚

𝑖
, the decrypter computes

(∗) to determine (𝑓
𝑖1
, 𝑓
𝑖2
) with the moduli gcdu

𝑖−1
/gcdu
𝑖
,

gcdk
𝑖−1
/gcdk
𝑖
≤ 47. So it will take O(1) bit operations to

compute each (𝑓
𝑖1
, 𝑓
𝑖2
). The look-up operation on Sub-T

⟨𝑖⟩
12

for 𝑓
𝑖
and𝑚

𝑖
only costs O(1) bit operations. So the decrypter

only needs O(𝑛) bit operations to use the Onion Algorithm to
solve (11) for x and m. The computational complexity of the
decryption algorithm is also O(𝑛2).

4.3. Information Rate. The information rate 𝜌 of a cryptosys-
tem is defined as the ratio of the binary length of the message
to that of the cipher-text. In the proposed cryptosystem, the
information rate is

𝜌 =
3𝑛

log
2
maxC

. (38)

We need to evaluate the binary length of maxC. Note that

maxC =
𝑛

∑
𝑖=1

𝑎
𝑖
max F

𝑖
< 191

𝑛

∑
𝑖=1

𝑎
𝑖
< 191𝑛𝑁. (39)

If we rewrite (36) as

𝑁 ≤ 1912𝑛247𝑛−1, (40)

we obtain

maxC ≤ 191𝑛𝑁 < 1913𝑛347𝑛−1. (41)

12 Mathematical Problems in Engineering

So the information rate is evaluated by

𝜌 ≈
3𝑛

log
2
(1913𝑛347𝑛−1)

, (42)

which is asymptotically 3/log
2
47 ≈ 0.54.

The public key sizes and information rates for the sug-
gested security parameters are listed in Table 3, from which
we see that the public key size is about dozens of a 1024-RSA
modulus. The public key size is acceptable.

5. Security Analysis

The adversary has two methods to attack the proposed cryp-
tosystem: solve the cracking problem [26], that is, breaking
the one-wayness of the underlying encryption function with-
out knowing the trapdoor, and solve the trapdoor problem,
that is, reversing the basic mathematical construction of the
trapdoor in a PKC. Efficient algorithms for the latter also
help to efficiently solve the former. In this section, we first
analyze the hardness of the cracking problem by investigating
the underlying PSTOFs under some attack models, and then
examine the intractability for key-recovery attacks.

5.1. Brute Force Attack

5.1.1. Brute Force Attack I. One straightforward way to attack
the system is to solve (27) for x by exhausting all the∑𝑛

𝑖=1
𝑎
𝑖
𝑓
𝑖

with x ∈ S
𝑃
. But note that |F

𝑖
| = 16, so the brute force attack

will take on the order of O(16𝑛) steps. The computational
costs under brute force attack I (BFA I for short) given in
Table 3 are measured in bit operations with respect to the
suggested parameters.

5.1.2. Brute Force Attack II. A better method is to compute
and sort each of the sets

𝑆
1
= {
𝑛/2

∑
𝑖=1

𝑎
𝑖
𝑓
𝑖
| 𝑓
𝑖
∈ F
𝑖
} ,

𝑆
2
= {𝑐 −

𝑛

∑
𝑖=𝑛/2+1

𝑎
𝑖
𝑓
𝑖
| 𝑓
𝑖
∈ F
𝑖
} ,

(43)

and then scan 𝑆
1
and 𝑆
2
, looking for a common element. If a

common element 𝑠 = ∑𝑛/2
𝑖=1
𝑎
𝑖
𝑓
𝑖
= 𝑐 − ∑

𝑛

𝑖=𝑛/2+1
𝑎
𝑖
𝑓
𝑖
is found,

then 𝑐 = ∑
𝑛

𝑖=1
𝑎
𝑖
𝑓
𝑖
. The entire procedure takes O(𝑛16𝑛/2)

steps [27]. See Table 3 for the computational costs under brute
force attack II (BFA II for short) with respect to the suggested
parameters.

5.2. Linearization Attack. In this subsection, we assume
that the adversary aims at recovering the corresponding
plaintext (andhence themessage) by reversing the underlying
encryption function without learning the trapdoor informa-
tion. When a concrete attack model is concerned, we firstly
formalize and then prove the underlying PSTOF.

5.2.1. Linearization Attack I. Encryption function (27) of the
proposed PKC is a linear function mapping an element in S

𝑃

into an integer in the ciphertext space C. Now we define

𝑇
1
: S
𝐸
= Z
𝑛

192
󳨃󳨀→ C = 𝑇

1
(S
𝐸
) ,

𝑇
1
(x) = ⟨a, x⟩ = 𝑐, x ∈ S

𝐸
.

(44)

Theorem 25. If the compact knapsack CKP
192
(a, 𝑐) is

intractable, 𝑇
1
is a PSTOF.

Proof. It is easy to verify that the five conditions except the
second one inDefinition 2 are satisfied; (45) below guarantees
the noninjectivity of function 𝑇

1
. So 𝑇

1
is indeed a PSTOF

underlying the proposed PKC under the compact knapsack
intractability assumption.

The distinction between the two functions (27) and (44)
is that the preimage sets are different. Given a ciphertext 𝑐, 𝑐
will have a unique preimage inS

𝑃
, namely, the corresponding

plaintext, while 𝑐 will have many preimages in the equivalent
plaintext space S

𝐸
.

We have pointed out in Remark 9 that the message
encoding function F can simulate the process of randomly
choosing an element from S

𝐸
= Z𝑛
192

. That is to say, if one
can obtain a preimage of 𝑐 with respect to 𝑇

1
, the preimage

is a randomly output preimage from all the preimages in
𝑇−1
1
(𝑐) = {x ∈ S

𝐸
| 𝑇(x) = 𝑐} and not necessarily the plaintext

x ∈ S
𝑃
.

Now, we explain why we say we can further weaken the
underlying cryptographic hardness assumption. If we assume
that the compact knapsack problem CKP

192
(a, 𝑐) is easy; that

is, 𝑇
1
is not one-way, the proposed cryptosystem seems still

secure. Under the assumption, there exists an oracle A for
the compact knapsack problem CKP

192
(a, 𝑐). We note that

each time the adversary can obtain a (at most polynomially
many) preimage of 𝑐 by accessing the oracle A. However,
we will show that 𝑐 has exponentially many (denoted as
2𝜆1(𝑛)) preimages, over which the plaintext x ∈ S

𝑃
seems

uniformly distributed. So we can heuristically argue that the
adversary only obtains polynomiallymany𝑝(𝑛) preimages by
performing polynomiallymany𝑝(𝑛) accesses to the oracleA,
and hence those 𝑝(𝑛) preimages contain the target plaintext
x ∈ S
𝑃
with a negligible probability 𝑝(𝑛)/2𝜆1(𝑛). Thus, we can

conceive 𝑇
1
as a preimage selective trapdoor (not one-way)

function assuming that the underlying compact knapsack
problem CKP

192
(a, 𝑐) is easy. In fact, under the assumption,

the security of the proposed PKC is based on the assumption
that it is computationally infeasible to recover a solution to a
highly noninjective compact knapsack problem CKP

192
(a, 𝑐)

with a predesignated special structure (i.e., the structure of
S
𝑃
).
To illustrate, we need to show that a ciphertext has

exponentially many preimages with respect to 𝑇
1
. We use the

preimage density given in Definition 4 to roughly evaluate
the number of preimages for a ciphertext. To begin with, we
need to estimate the cardinalities for the image set (ciphertext
spaceC) and the preimage set (i.e., the equivalent space S

𝐸
=

Z𝑛
192

). It is obvious that |S
𝐸
| = 192𝑛. We note (41) and |C| ≤

Mathematical Problems in Engineering 13

maxC+ 1 ≈ maxC, so we have |C| ≤ 1913𝑛347𝑛−1 and hence
the preimage density is

𝑃
𝑑1
=

S
𝐸

|C|
≥

192𝑛

1913𝑛347𝑛−1
= 2𝜆1(𝑛) = 2O(𝑛), (45)

where𝜆
1
(𝑛) = 𝑛log

2
192−(𝑛−1)log

2
47−3log

2
𝑛−3log

2
191. See

Table 3 for themanipulations of𝑃
𝑑1
for the suggested security

parameters.

5.2.2. Linearization Attack II. Now, we consider an attack
transforming (27) into a standard 0-1 knapsack problem.The
adversary can combine all of these 16 values in F

𝑖
denoted as

F
𝑖
= {𝑓(1)
𝑖
, . . . , 𝑓(16)

𝑖
} with each entry 𝑎

𝑖
in a to derive a new

integer sequence w = (𝑤(1)
1
, . . . , 𝑤(16)

1
, . . . , 𝑤(1)

𝑛
, . . . , 𝑤(16)

𝑛
)

such that 𝑤(𝑗)
𝑖
= 𝑎
𝑖
𝑓
(𝑗)

𝑖
with 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 16.

Under the linearization attackmodel, we define the following
function:

𝑇
2
: S
𝐸2
= {0, 1}

16𝑛 󳨃󳨀→ C
2
= 𝑇
2
(S
𝐸2
) ,

𝑇
2
(y) = ⟨w, y⟩ =

𝑛

∑
𝑖=1

16

∑
𝑗=1

𝑤
(𝑗)

𝑖
𝑦
(𝑗)

𝑖
= 𝑐,

(46)

where y = (𝑦(1)
1
, . . . , 𝑦(16)

1
, . . . , 𝑦(1)

𝑛
, . . . , 𝑦(16)

𝑛
) ∈ S
𝐸2
. We set

S
𝑃2
=
{
{
{

y ∈ {0, 1}16𝑛 |
16

∑
𝑗=1

𝑦
(𝑗)

𝑖
= 1, 1 ≤ 𝑖 ≤ 𝑛

}
}
}

. (47)

Theorem 26. If the knapsack problem KP(w, 𝑐) is intractable,
𝑇
2
is a PSTOF.

Proof. To verify (3) and (4) in Definition 2, we consider a
mapping 𝜏 : S

𝑃
󳨃→ S
𝑃2

as follows. Given an arbitrary x =
(𝑓
1
, . . . , 𝑓

𝑛
) ∈ S

𝑃
, we must have that for 𝑖 = 1, . . . , 𝑛, there

should exist a unique𝑓(𝑗)
𝑖
∈ F
𝑖
such that𝑓

𝑖
= 𝑓
(𝑗)

𝑖
with 1 ≤ 𝑗 ≤

16. Now we define y = (𝑦(1)
1
, . . . , 𝑦(16)

1
, . . . , 𝑦(1)

𝑛
, . . . , 𝑦(16)

𝑛
) =

𝜏(x) with 𝑦(𝑗)
𝑖
= 1 when 𝑓

𝑖
= 𝑓
(𝑗)

𝑖
and 𝑦(𝑗)

𝑖
= 0 otherwise. So

we must have for 1 ≤ 𝑖 ≤ 𝑛, ∑16
𝑗=1
𝑦
(𝑗)

𝑖
= 1, and ∑16

𝑗=1
𝑓
(𝑗)

𝑖
𝑦
(𝑗)

𝑖
=

𝑓
𝑖
. So y ∈ S

𝑃2
. Furthermore, any y ∈ S

𝑃2
must have a

preimage x = 𝜏−1(y) with 𝑓
𝑖
= ∑
16

𝑗=1
𝑓
(𝑗)

𝑖
𝑦
(𝑗)

𝑖
. We further note

that |S
𝑃
| = |S

𝑃2
| = 16𝑛 and can argue that 𝜏 is a bijection

from SP to S𝑃2. By observing

⟨w, y⟩ =
𝑛

∑
𝑖=1

16

∑
𝑗=1

𝑊
(𝑗)

𝑖
𝑦
(𝑗)

𝑖
=
𝑛

∑
𝑖=1

𝑎
𝑖

16

∑
𝑗=1

𝑓
(𝑗)

𝑖
𝑦
(𝑗)

𝑖

=
𝑛

∑
𝑖=1

𝑎
𝑖
𝑓
𝑖
= ⟨a, x⟩ ,

(48)

we know that x ∈ S
𝑃
is a solution to (27) if and only if y = 𝜏(x)

is a solution to (46). So (3) and (4) inDefinition 2 are satisfied.

To show the noninjectivity of (46), we first note that the
image set is C

2
= 𝑇
2
(S
𝐸2
) and that

maxC
2
=
𝑛

∑
𝑖=1

16

∑
𝑗=1

𝑤
(𝑗)

𝑖
=
𝑛

∑
𝑖=1

𝑎
𝑖

16

∑
𝑗=1

𝑓
(𝑗)

𝑖

< 191 × 16
𝑛

∑
𝑖=1

𝑎
𝑖
< 16 × 191 𝑛𝑁

≤ 16 × 1913𝑛347𝑛−1.

(49)

The last symbol ≤ in (49) is due to (40). Hence, we have
|C
2
| < 16 × 1913𝑛347𝑛−1 + 1. So we compute the preimage

density via

𝑃
𝑑2
=

S
𝐸2

󵄨󵄨󵄨󵄨C2
󵄨󵄨󵄨󵄨
≥

216𝑛

16 × 1913𝑛347𝑛−1
= 2𝜆2(𝑛) = 2O(𝑛), (50)

where 𝜆
2
(𝑛) = 16𝑛−(𝑛−1)log

2
47−3log

2
𝑛−3log

2
191−4. See

Table 3 for themanipulations of𝑃
𝑑2
for the suggested security

parameters. Thus, 𝑇
2
is indeed a PSTOF.

The computational infeasibility for the linearization
attack is supported by either of the following arguments.

Remark 27 (noninjectivity-based security argument). If we
assume that the adversary can solve the knapsack problem
KP(w, 𝑐), then𝑇

2
is a preimage selective trapdoor function. A

given ciphertext 𝑐 will have exponentially many 2𝜆2(𝑛) binary
solutions. So a polynomial-time adversary only obtains poly-
nomially many 𝑝(𝑛) preimages including the target solution
in S
𝐸2

with a negligible probability 𝑝(𝑛)/2𝜆2(𝑛).

Remark 28 (density-based security argument). It is known
that knapsack problems achieving a density smaller than
0.9408 are solvable with an overwhelming probability by
accessing an oracle for the shortest vector problem over
lattices [23, 24]. We show that the underlying knapsack
problemKP(w, 𝑐) (46) obtain a sufficiently large density. Note
that

𝑑
2
=

16𝑛

log
2
maxw

≥
16𝑛

log
2
(max amax F

𝑖
)
≥

16𝑛

log
2
(191𝑁)

.

(51)

Observing (40), we have that 𝑑
2
approaches 16/log

2
47 ≈ 2.88

when 𝑛 approaches infinity.

Remark 29 (Dimension-based security argument). In real life
practice, we use known efficient lattice reduction algorithms
to simulate a shortest vector oracle in low-dimensional lattice.
However, when the dimension is sufficiently large, say larger
than 500, known lattice reduction algorithms fail to output
a relatively short lattice vector. Under the suggested param-
eters, knapsack problem KP(w, 𝑐) (46) achieves sufficiently
large dimensions 960, 1440, 1920, respectively.

5.2.3. Linearization Attack III. Now we consider another
linear attack III, which also transforms the problem (27) into

14 Mathematical Problems in Engineering

a knapsack problem. We note that 0 ≤ 𝑓
𝑖
≤ 191, so 8 bits

are needed to represent each 𝑓
𝑖
. For 𝑖 = 1, . . . , 𝑛, we define

𝑑
(𝑗)

𝑖
= 2𝑗−1𝑎

𝑖
with 𝑗 = 1, . . . , 8 and obtain an 8𝑛-dimensional

integer sequence d = (𝑑(1)
1
, . . . , 𝑑(8)

1
, . . . , 𝑑(1)

𝑛
, . . . , 𝑑(8)

𝑛
). Now

we provide the following function:

𝑇
3
: S
𝐸3
= {0, 1}

8𝑛 󳨃󳨀→ C
3
= 𝑇
3
(S
𝐸3
) ,

𝑇
3
(z) = ⟨d, z⟩ =

𝑛

∑
𝑖=1

8

∑
𝑗=1

𝑑
(𝑗)

𝑖
𝑧
(𝑗)

𝑖
= 𝑐,

(52)

where z = (𝑧(1)
1
, . . . , 𝑧(8)

1
, . . . , 𝑧(1)

𝑛
, . . . , 𝑧(8)

𝑛
) ∈ S
𝐸3
. We set

S
𝑃3
=
{
{
{

z ∈ {0, 1}8𝑛 |
8

∑
𝑗=1

2𝑗−1𝑧
(𝑗)

𝑖
∈ F
𝑖
, 1 ≤ 𝑖 ≤ 𝑛

}
}
}

. (53)

Theorem 30. If the knapsack problem KP(d, 𝑐) is intractable,
𝑇
3
is a PSTOF.

Proof. It is easy to verify that (1) and (5) in Definition 2
are satisfied. In fact, any element z ∈ S

𝑃3
stands for

a binary representation of an element x ∈ S
𝑃
, and

in turn, the binary representation of any element x ∈
S
𝑃

falls into the set S
𝑃3
. So if we define a mapping

𝜏 from S
𝑃3

to S
𝑃
, 𝜏(𝑧(1)
1
, . . . , 𝑧(8)

1
, . . . , 𝑧(1)

𝑛
, . . . , 𝑧(8)

𝑛
) =

(∑
8

𝑗=1
2𝑗−1𝑧
(𝑗)

1
, . . . , ∑

8

𝑗=1
2𝑗−1𝑧(𝑗)
𝑛
), 𝜏 is a bijection. Further-

more, we note that

⟨d, z⟩ =
𝑛

∑
𝑖=1

𝑎
𝑖

8

∑
𝑗=1

2𝑗−1𝑧
(𝑗)

𝑖
= ⟨a, x⟩ . (54)

So z = (𝑧(1)
1
, . . . , 𝑧(8)

1
, . . . , 𝑧(1)

𝑛
, . . . , 𝑧(8)

𝑛
) is a solution to (52)

if and only if 𝜏(z) = x ∈ S
𝑃
is a solution to (27). So

conditions (3) and (4) in Definition 2 are satisfied. To show
the noninjectivity of 𝑇

3
, we first evaluate the cardinalities of

S
𝐸3

and C
3
. It is obvious that |S

𝐸3
| = 28𝑛. To estimate |C

3
|,

we first note that

maxC
3
=
𝑛

∑
𝑖=1

8

∑
𝑗=1

𝑑
(𝑗)

𝑖
=
𝑛

∑
𝑖=1

𝑎
𝑖

8

∑
𝑗=1

2𝑗−1

= 255
𝑛

∑
𝑖=1

𝑎
𝑖
< 255 × 𝑛𝑁

≤ 255 × 1912𝑛347𝑛−1.

(55)

So the preimage density of 𝑇
3
can be estimated via

𝑃
𝑑3
=

S
𝐸3

󵄨󵄨󵄨󵄨C3
󵄨󵄨󵄨󵄨
≥

28𝑛

255 × 1912𝑛347𝑛−1
= 2𝜆3(𝑛) = 2O(𝑛), (56)

where 𝜆
3
(𝑛) = 8𝑛−(𝑛−1)log

2
47−3log

2
𝑛−3log

2
191−log

2
255.

See Table 3 for the values of 𝑃
𝑑3

under the suggested security
parameters.Thus, condition (2) in Definition 2 is satisfied, so
𝑇
3
is indeed a PSTOF.

Remark 31 (noninjectivity-based security argument). If one
conquers the knapsack problem KP(d, 𝑐), then 𝑇

3
is a pre-

image selective trapdoor function. A ciphertext will have
exponentially many 2𝜆3(𝑛) binary solutions. So a polynomial-
time adversary only obtains polynomially many 𝑝(𝑛) preim-
ages which include the solution in S

𝐸3
with a negligible

probability 𝑝(𝑛)/2𝜆3(𝑛).

Remark 32 (density and dimension based arguments). The
density to (52) is estimated via

𝑑
3
=

8𝑛

log
2
max d

≥
8𝑛

log
2
(27max a)

≥
8𝑛

log
2
(27𝑁)

, (57)

which is 8/log
2
47 ≈ 1.44 > 0.9408 when 𝑛 approaches infin-

ity. The knapsack problem KP(d, 𝑐) (52) has sufficiently large
dimensions 480, 540, and 960 for the suggested parameters.

5.3. Key-Recovery Attacks. When we discuss the cracking
problem, we only study the computational infeasibilities for
the adversary to solve (27) without considering the structure
of the public integer sequence a. To claim the security of the
proposed PKC, we need to examine whether the trapdoor is
easy to discover or not. So we need to examine the security of
the proposed PKC against known attacks.

The public integer sequence a distinguishes with a ran-
domly chosen positive integer sequence in two respects, that
is, the special structures defined in (14) and (15) and the
size conditions given in (24). We discuss the effects of these
conditions on the security.

5.3.1. GCD Attack. The GCD attack in [4] was used to
successfully attack the knapsack-based probabilistic public
key encryption [28].The attack illustrates that if the entries of
b = (𝑏

1
, . . . , 𝑏

𝑛
) assume a linear combinatorial relation with

small integer combinatorial coefficients, we can recover the
secret modulus𝑁 by computing the greatest common divisor
for a set of numbers. This point will be explored later on, or
the readers can refer to [4] for more details. We first note
that if the modulus 𝑁 = 𝑝𝑞 is known, under the suggested
parameters, 𝑛 = 60, 90, and 120, the binary length of 𝑁
is upper bounded by 355, 523, 690, respectively. See (36). It
is not intractable to factor the moduli by using the fastest
factorization algorithm [29]. Hence, one can factor 𝑁 into
its prime products. Once 𝑝 and 𝑞 have been obtained, the
adversary can do the modular reductions, 𝑎

𝑖𝑝
= 𝑎
𝑖
(mod 𝑝)

and 𝑎
𝑖𝑞
= 𝑎
𝑖
(mod 𝑝). If we denote themodular reductions of

𝑤−1 modulo 𝑝 and 𝑞 as 𝑤−1
𝑝

and 𝑤−1
𝑞
, from (25) and (26), we

know 𝑔
𝑖
= 𝑎
𝑖𝑝
𝑤−1
𝑝
= 𝑎
𝑖
𝑤−1 = 𝑏

𝑖
(mod 𝑝) and ℎ

𝑖
= 𝑎
𝑖𝑞
𝑤−1
𝑞
=

𝑎
𝑖
𝑤−1 = 𝑏

𝑖
(mod 𝑞) and then exhaust the matrix Δ to reverse

the process of (23) as

(
u
k) = Δ

−1 (
g
h) = (

𝛿
22
−𝛿
12

−𝛿
21
𝛿
11

)(
g
h) , (58)

Mathematical Problems in Engineering 15

where for convenience, we just set |Δ| = 1. So we have

𝑢
𝑖
= 𝛿
22
⟨𝑎
𝑖𝑝
𝑤−1
𝑝
⟩
𝑝
− 𝛿
12
⟨𝑎
𝑖𝑞
𝑤−1
𝑞
⟩
𝑞
,

V
𝑖
= 𝛿
11
⟨𝑎
𝑖𝑞
𝑤−1
𝑞
⟩
𝑞
− 𝛿
21
⟨𝑎
𝑖𝑝
𝑤−1
𝑝
⟩
𝑝
.

(59)

We note that gcdu
𝑛−1

| 𝑢
𝑖
, gcdk
𝑛−1

| V
𝑖
for 𝑖 = 1, . . . , 𝑛 − 1,

𝑎
𝑖𝑝
and 𝑎

𝑖𝑞
are publicly computable once 𝑝 and 𝑞 have been

obtained, and (gcdu
𝑛−1
, gcdk
𝑛−1
) ∈ AIP

⟨𝑛⟩
12

∪ AIP𝑇
⟨𝑛⟩
12

and 𝛿
𝑖𝑗

can be efficiently exhausted (and hence we can assume that
they are all known). So, for 𝑖 = 1, . . . , 𝑛 − 1, we have

𝛿
22
𝑎
𝑖𝑝
𝑥
0
− 𝛿
22
𝑥
2𝑖
𝑝 − 𝛿
12
𝑎
𝑖𝑞
𝑥
1
− 𝛿
12
𝑥
2𝑖+1
𝑞 − 𝑘
𝑖
gcdu
𝑛−1
= 0,

𝛿
11
𝑎
𝑖𝑞
𝑥
1
− 𝛿
11
𝑥
2𝑖+1
𝑞 − 𝛿
21
𝑎
𝑖𝑝
𝑥
0
− 𝛿
21
𝑥
2𝑖
𝑝 − 𝑙
𝑖
gcdk
𝑛−1
= 0

(60)

with integer unknowns 0 < 𝑥
0
= 𝑤−1
𝑝
< 𝑝, 0 < 𝑥

1
= 𝑤−1
𝑞
< 𝑞,

𝑥
2𝑖
(𝑥
2𝑖+1

, resp.) being the incomplete quotient of 𝑎
𝑖𝑝
𝑥
0
(𝑎
𝑖𝑞
𝑥
1
,

resp.) divided by 𝑝 (𝑞, resp.), and 𝑘
𝑖
and 𝑙
𝑖
are the quotients

of 𝑢
𝑖
and V
𝑖
divided by gcdu

𝑛−1
and gcdk

𝑛−1
, respectively. So we

have 0 ≤ 𝑥
2𝑖
< 𝑎
𝑖𝑝
, 0 ≤ 𝑥

2𝑖+1
< 𝑎
𝑖𝑞
, 0 < 𝑘

𝑖
< 𝑝/gcdu

𝑛−1
, and

0 < 𝑙
𝑖
< 𝑞/gcdk

𝑛−1
. We can use an efficient heuristic algorithm

for solving a system of linear Diophantine equations with
lower and upper bounds on the variables given in [30] (see
also Section 3 of [4] for a simplified description) to determine
these unknowns, and eventually the full secret keys. So we
caution that in implementation, wemust keep themodulus𝑁
secret. However, we will show that the GCD attack is useless
to derive modulus𝑁.

The condition for the GCD attack to succeed in finding
modulus 𝑁 is that we can construct some linear relations
using the entries of the public sequence b. To illustrate, we
recall (26) and argue that there must exist integers 𝑠

𝑖
such

that 𝑏
𝑖
𝑤 − 𝑠

𝑖
𝑁 = 𝑎

𝑖
. We assume that the entries of b share

some linear combinatorial relations with small coefficients,
say 𝑡
1
𝑏
1
− 𝑡
2
𝑏
2
= 0, 𝑡

3
𝑏
3
− 𝑡
4
𝑏
4
= 0, where by saying

small coefficients we mean we can efficiently do exhaustive
search for these 𝑡

𝑖
’s. So we conclude that 𝑁 | 𝑡

1
𝑎
1
− 𝑡
2
𝑎
2
=

𝑁(s
1
𝑡
1
− 𝑠
2
𝑡
2
) and𝑁 | 𝑡

3
𝑎
3
− 𝑡
4
𝑎
4
and hence can expect𝑁 =

gcd(𝑡
1
𝑎
1
−𝑡
2
𝑎
2
, 𝑡
3
𝑎
3
−𝑡
4
𝑎
4
).Wemust admit that the entries ofu

(and k) do share a linear combinatorial relation; for example,
from (󳀅) we derive 𝜁

2
𝑢
1
−𝛼
1
𝑢
2
= 0. However, we should bear

in mind that b is fully scrambled by (23) and (25) especially
through the confusion role of theChinese remainder theorem
in (25). So it is unlikely for the adversary to derive modulus
𝑁 by launching a GCD-like attack on the proposal.

5.3.2. Simultaneous Diophantine Approximation Attack.
After Shamir broke the basic Merkle-Hellman knapsack
cryptosystem [31, 32], cryptanalysts began to investigate
the security of the multiply iterated Merkle-Hellman
cryptosystem. Lagarias observed that the size conditions and
the modular transformation in the multiply iterated Merkle-
Hellman cryptosystem help him construct a simultaneous
Diophantine approximation problem [7]. Lagarias showed
that he can successfully launch a key-recovery attack on the
doubly iterated Merkle-Hellman cryptosystem through his
simultaneous Diophantine approximation approach.

Many knapsack-type cryptosystems use size conditions to
disguise an easy knapsack problem. In such a cryptosystem,
the designer randomly generates an easy knapsack problem,
𝑦 = ∑

𝑛

𝑖=1
𝑎
𝑖
𝑥
𝑖
, 𝑥
𝑖
∈ [0, 2𝑏 − 1], and chooses a modulus

𝑚 and a multiplier 𝑤, gcd(𝑚, 𝑤) = 1. He uses the size
condition 𝑚 > (2𝑏 − 1)∑𝑛

𝑖=1
𝑎
𝑖
to disguise the easy knapsack

sequence a = (𝑎
1
, . . . , 𝑎

𝑛
) as a seemingly hard knapsack

sequence b = (𝑏
1
, . . . , 𝑏

𝑛
) by a modular multiplication, 𝑏

𝑖
=

⟨𝑤𝑎
𝑖
⟩
𝑚
. The size condition and the public sequence can be

utilized to derive a simultaneous Diophantine approximation
problem, namely, the problem to find a set of rational
numbers sharing a common and relatively small denominator
to simultaneously approximate a given set of real numbers.
By launching the simultaneous Diophantine approximation
attack, the adversary can obtain some useful information
about (𝑤,𝑚). See [6, 7] for more details about the relation
between the simultaneous Diophantine approximation prob-
lem and knapsack public key cryptanalytics.

The trapdoor of the proposed system is disguised using
the Chinese remainder theorem, which involves no size
conditions. Hence, the adversary cannot expect finding some
information about the trapdoor by launching a simultaneous
Diophantine approximation attack. However, the reader may
doubt that the size condition has been used in (24).We should
observe that if the adversary wants to launch a simultaneous
Diophantine approximation attack, he must peel off the
outmost shuffle in (25) and (26).This seems intractable in that
the adversary does not know the primes 𝑝 and 𝑞.

5.3.3. Orthogonal Lattice Attack. To examine the security, we
must consider the orthogonal lattice attacks introduced by
Nguyen and Stern [8, 9], which were used to successfully
though heuristically recover the secret keys of two PKCs
[33, 34]. We first illustrate why the orthogonal lattice attack
can be used to reconstruct the secret key of the PKC in
[34], and then show why our proposal is immune from the
orthogonal lattice attack.

In the PKC [34], the security parameter 𝑠 = 1024 is
suggested, a modulus 𝑁 = 𝑝𝑞 with 𝑝 and 𝑞 being primes
of lengths, respectively, |𝑝|

2
= 3𝑠/4 and |𝑞|

2
= 𝑠/4 is

chosen, and the secret sequence g = (𝑔
1
, . . . , 𝑔

𝑛
) (typically

𝑛 = 180) with each entry 𝑔
𝑖
< 𝑝1/𝑙 (typically 𝑙 = 17) is

generated so that the public sequence a = (𝑎
1
, . . . , 𝑎

𝑛
) can be

computed via a modular multiplication 𝑎
𝑖
= 𝑤𝑔

𝑖
(mod𝑁)

for a randomly chosen 𝑤 ∈ Z∗
𝑁
. The core for the orthogonal

lattice attack to recover the secret key of [34] is to choose
0 < 𝑚 ≤ 𝑛 entries a

𝑚
= (𝑎
1
, . . . , 𝑎

𝑚
) from a and then obtain

sufficiently many small and linearly independent solutions
x
𝑚
= (𝑥
1
, . . . , 𝑥

𝑚
) to ⟨a

𝑚
, x
𝑚
⟩ = 0. Given a solution x

𝑚
, we

must have ⟨a
𝑚
, x
𝑚
⟩ = ⟨𝑤g

𝑚
, x
𝑚
⟩ = 𝑤⟨g

𝑚
, x
𝑚
⟩ = 0 (mod 𝑝),

where g
𝑚
= (𝑔
1
, . . . , 𝑔

𝑚
). So ⟨g

𝑚
, x
𝑚
⟩ = 0 (mod 𝑝), which

means that x
𝑚
is orthogonal to g

𝑚
, or ⟨g

𝑚
, x
𝑚
⟩ = 𝑘𝑝 with

𝑘 ̸= 0. In the second case, from Cauchy-Schwarz inequality,
we have

󵄩󵄩󵄩󵄩x𝑚
󵄩󵄩󵄩󵄩 ≥

󵄨󵄨󵄨󵄨⟨g𝑚, x𝑚⟩
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩g𝑚
󵄩󵄩󵄩󵄩

≥
𝑝

√𝑚𝑝1/𝑙
≈
𝑁12/17

√𝑚
, (61)

16 Mathematical Problems in Engineering

when concrete parameters are concerned, which implies that
either x

𝑚
is orthogonal to g

𝑚
or the norm of x

𝑚
is quite

large. From the observations, the authors of [9] conjectured
that among the reduced basis (b

1
, . . . , b

𝑚−2
, b
𝑚−1
) of the (𝑚−

1)-dimensional lattice consisting of the integer solutions to
⟨a
𝑚
, x
𝑚
⟩ = 0, the first 𝑚 − 2 basis vectors b

1
, . . . , b

𝑚−2

are orthogonal to g
𝑚
, namely, Assumption 4 of [9]. By

noting that g
𝑚
belongs to the two-dimensional orthogonal

lattice L⊥ consisting of all 𝑚-dimensional integer vectors
orthogonal to the lattice vectors in L(b

1
, . . . , b

𝑚−2
) and

that ‖g
𝑚
‖ < √𝑚𝑝1/𝑙 = √𝑚𝑝1/17 is a very small value,

they provide another assumption conjecturing that g
𝑚
is a

shortest vector inL⊥, namely, Assumption 5 of [9]. So given
a
𝑚
, we can expect to find the reduced basis b

1
, . . . , b

𝑚−2

and the shortest vector g
𝑚

by using lattice reduction
algorithms.

In the proposed cryptosystem, we generate𝑝 according to
(24), so we can assume that 𝑝 > 191𝑛𝑔

𝑖
. Equation (61) turns

out to be

󵄩󵄩󵄩󵄩x𝑚
󵄩󵄩󵄩󵄩 ≥

󵄨󵄨󵄨󵄨⟨g𝑚, x𝑚⟩
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩g𝑚
󵄩󵄩󵄩󵄩

≥
𝑝

𝑝/ (191𝑛)√𝑚
=
191𝑛

√𝑚
. (62)

Under the suggested parameters 𝑛 = 60, 90, 120, 191𝑛 is
at most 15 bits long, so the assumption will be too strong
to be satisfied that the first 𝑚 − 2 basis vectors b

1
, . . . , b

𝑚−2

have norms less than 191𝑛/√𝑚 and hence are orthogonal
to g
𝑚
. Furthermore, in [34], we can argue that ‖g

𝑚
‖ <

√𝑚𝑝1/𝑙 = √𝑚𝑝1/17 is a very small value; however, we just
obtain ‖g

𝑚
‖ < √𝑚𝑝/(191𝑛) in the proposed cryptosystem

and hence cannot assume that g
𝑚

is a shortest vector
inL⊥.

To summarize, we can conjecture that the requirement of
𝑔𝑙
𝑖
< 𝑝 in [34] makes both to find𝑚− 2 linearly independent

short vectors b
1
, . . . , b

𝑚−2
and to accept the shortest vector in

L⊥ as the target vector g
𝑚
possible, while in the proposed

cryptosystem 𝑝 > 191𝑛𝑔
𝑖
is only somewhat larger than

those 𝑔
𝑖
, from which we cannot formalize Assumptions 4

and 5 provided in [9]. Hence, the proposed cryptosystem is
invulnerable to the orthogonal lattice attack.

Remark 33. Now we explain why we introduce the matrix Δ
when generating the public keys. If Δ is the two-dimensional
identity matrix I

2
, g = u, we can distil a relatively large

common divisor 𝑡 = gcdg
𝑚
= gcdu

𝑚
= ∏

𝑛

𝑖=𝑚
𝛼
𝑖
(see

(󳀅)) from the preceding 𝑚 entries of g. Thus, if we define
g󸀠
𝑚
= (𝑔󸀠
1
, . . . , 𝑔󸀠

𝑚
) with 𝑔󸀠

𝑖
= 𝑔
𝑖
/𝑡 being sharply reduced,

then we can recover g󸀠
𝑚
by the orthogonal lattice attack and

eventually g
𝑚
by firstly exhausting the value of 𝑡 = ∏𝑛

𝑖=𝑚
𝛼
𝑖

and then combining 𝑔󸀠
𝑖
and 𝑡 to derive 𝑔

𝑖
= 𝑡𝑔󸀠
𝑖
. However,

after the transformation of (23), we cannot expect to extract
a large greatest common divisor for the entries of g

𝑚
. We

suggest choosing Δ with determinant being 𝛿
11
𝛿
22
− 𝛿
21
𝛿
12
=

±1 in Remark 22, in which case we can make sure that
gcd(𝛿

11
, 𝛿
12
) = gcd(𝛿

21
, 𝛿
22
) = 1. If the two gcd’s are greater

than 1, say 𝛿 = gcd(𝛿
11
, 𝛿
12
) > 1, then 𝛿 | 𝑔

𝑖
= 𝛿
11
𝑢
𝑖
+ 𝛿
12
V
𝑖

and hence 𝑡 = gcdg
𝑚
≥ 𝛿, which may compromise the

security.

6. Conclusions

In this paper, we defined a public key cryptographic scenario
PSTOF and used the knapsack problem to exemplify how
to further weaken the cryptographic assumptions used in
public key cryptography. Extensive security scrutiny is made
on the proposed probabilistic encryption scheme; however,
some security drawbacks may still exist in the proposal.
If some cryptanalysts announced that the proposed cryp-
tosystem is breakable, we would not be surprised in that
some cleverer and efficient cryptanalytic method may be
developed. But we are confident that the proposal can be
broken only by successfully launching a key-recovery attack.
We think that if someone invents a PSTOF with a hard-
to-discover trapdoor by fully exploring the noninjectivity
property of the underlying one-way function, it can be used
to provide a higher level of security. We hope that some
more elegant methods can be developed in the cryptographic
literature to provide more practical and secure realizations
of the concept of PSTOF. Some more cryptanalytic dis-
cussions are needed to obtain all-sided and in-depth secu-
rity analysis of the proposal, which belongs to our future
work.

Notations

Z: Ring of integers
Z+: Set of positive integers
Z
𝑁
: The least nonnegative complete

residue system modulo𝑁,
{0, 1, . . . , 𝑁 − 1}

𝜙(𝑁): Euler’s totient function
Z∗
𝑁
: Set of invertible elements in Z

𝑁

|A|: The determinant when A denotes a
square matrix and the cardinality
when A represents a set

max a: The maximum value in a set a
min a: The minimum value in a set a
⟨𝑎⟩
𝑝
, 𝑎(mod 𝑝): The least nonnegative residue of 𝑎

modulo 𝑝
𝑓
𝑖
(mod (𝑎, 𝑏)): (𝑓

𝑖
(mod 𝑎), 𝑓

𝑖
(mod 𝑏))

F
𝑖
(mod (𝑎, 𝑏)): {𝑓

𝑖
(mod (𝑎, 𝑏)) | 𝑓

𝑖
∈ F
𝑖
}

gcda
𝑖
: gcd(𝑎

1
, . . . , 𝑎

𝑖
), the greatest common

divisor of the preceding 𝑖 components
of the integer sequence a = (𝑎

1
, ⋅ ⋅ ⋅ , 𝑎

𝑛
)

𝐻𝑤(x): ∑
𝑛

𝑖=1
𝑥
𝑖
, the Hamming weight of a

binary vector x = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ {0, 1}𝑛

𝑎−1(mod 𝑝): The modular inverse of 𝑎modulo 𝑝
𝑎 | 𝑏: 𝑎 divides 𝑏
(𝑎, 𝑏)𝑇: (𝑏, 𝑎)

A𝑇: {(𝑎, 𝑏)𝑇 | (𝑎, 𝑏) ∈ A ⊂ (Z+)2}
|𝑎|
2
: The binary length of a positive integer

𝑎

A−1: The inverse of an invertible square
matrix A

⟨u, k⟩: The inner product of two vectors u
and v

‖u‖: The Euclidean norm of a vector u.

Mathematical Problems in Engineering 17

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 61173152), the 111 Project (no.
B08038), the ISN Foundation (no. ISN1103007), the Fun-
damental Research Funds for the Central Universities (no.
JY10000901009), and theNatural Science Basic Research Plan
in Shaanxi Province of China (Program no. 2012JM8005).

References

[1] M. Bellare, S. Halevi, A. Sahai, and S. Vadhan, “Many-to-one
trapdoor functions and their relation to public-key cryptosys-
tems,” in Advances in Cryptology—Crypto 1998, vol. 1462 of
Lecture Notes in Computer Science, pp. 283–298, Springer, Santa
Barbara, Calif, USA, 1998.

[2] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Transactions on Informa-
tion Theory, vol. 31, no. 4, pp. 469–472, 1985.

[3] T. Q. Khoat, “Relation between the hardness of a problem and
the number of its solutions,”ActaMathematica Vietnamica, vol.
36, no. 1, pp. 55–60, 2011.

[4] A. M. Youssef, “Cryptanalysis of a knapsack-based probabilistic
encryption scheme,” Information Sciences, vol. 179, no. 18, pp.
3116–3121, 2009.

[5] E. F. Brickell and A. M. Odlyzko, “Cryptanalysis: a survey of
recent results,” in Contemporary Cryptology, The Science of
Information Integrity, pp. 501–540, IEEE Press, New York, NY,
USA, 1992.

[6] J. C. Lagarias, “The computational complexity of simultaneous
Diophantine approximation problems,” SIAM Journal on Com-
puting, vol. 14, no. 1, pp. 196–209, 1985.

[7] J. C. Lagarias, “Knapsack public key cryptosystems and dio-
phantine approximation,” in Advances in Cryptology—Crypto
1983, pp. 3–23, Plenum, New York, NY, USA, 1984.

[8] P. Nguyen and J. Stern, “Merkle-Hellman revisited: a crypt-
analysis of the Qu-Vanstone cryptosystem based on group
factorizations,” in Advances in cryptology—CRYPTO 1997, vol.
1294 of LectureNotes in Computer Science, pp. 198–212, Springer,
Santa Barbara, Calif, USA, 1997.

[9] P. Nguyen and J. Stern, “Cryptanalysis of a fast public key
cryptosystem presented at SAC ’97,” in Selected Areas in Cryp-
tography, vol. 1556 ofLectureNotes inComputer Science, pp. 213–
218, Springer, Ontario, Canada, 1998.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the Association for Computing Machinery,
vol. 21, no. 2, pp. 120–126, 1978.

[11] B. Chor andR. L. Rivest, “A knapsack-type public key cryptosys-
tem based on arithmetic in finite fields,” IEEE Transactions on
Information Theory, vol. 34, no. 5, part 1, pp. 901–909, 1988.

[12] T.Okamoto, K. Tanaka, and S.Uchiyama, “Quantumpublic-key
cryptosystems,” inAdvances in Cryptology—CRYPTO 2000, vol.
1880 of Lecture Notes in Computer Science, pp. 147–165, Springer,
Santa Barbara, Calif, USA, 2000.

[13] T.M. Cover, “Enumerative source encoding,” IEEE Transactions
on Information Theory, vol. 19, no. 1, pp. 73–77, 1973.

[14] P. Q. Nguyen and J. Stern, “Adapting density attacks to low-
weight knapsacks,” in Advances in cryptology—ASIACRYPT
2005, vol. 3788 of Lecture Notes in Computer Science, pp. 41–58,
Springer, Chennai, India, 2005.

[15] S. Vaudenay, “Cryptanalysis of the Chor-Rivest cryptosystem,”
Journal of Cryptology, vol. 14, no. 2, pp. 87–100, 2001.

[16] L. H. Encinas, J. M. Masqué, and A. Q. Dios, “Safer parameters
for the Chor-Rivest cryptosystem,” Computers & Mathematics
with Applications, vol. 56, no. 11, pp. 2883–2886, 2008.

[17] L. H. Encinas, J. M. Masqué, and A. Q. Dios, “Analysis of the
efficiency of the Chor-Rivest cryptosystem implementation in a
safe-parameter range,” Information Sciences, vol. 179, no. 24, pp.
4219–4226, 2009.

[18] A. Kate and I. Goldberg, “Generalizing cryptosystems based on
the subset sum problem,” International Journal of Information
Security, vol. 10, no. 3, pp. 189–199, 2011.

[19] K. Omura andK. Tanaka, “Density attack to the Knapsack cryp-
tosystems with enumerative source encoding,” IEICE Trans-
actions on Fundamentals of Electronics Communications and
Computer Sciences, vol. 84, no. 1, pp. 1564–1569, 2001.

[20] T. Izu, J. Kogure, T. Koshiba, and T. Shimoyama, “Low-density
attack revisited,” Designs, Codes and Cryptography, vol. 43, no.
1, pp. 47–59, 2007.

[21] N. Kunihiro, “New definition of density on knapsack cryptosys-
tems,” in Progress in Cryptology—AFRICACRYPT 2008, vol.
5023, pp. 156–173, Springer, Berlin, Germany, 2008.

[22] M. Rabin, “Digital signatures and public-key encryptions as
intractable as factorization,” MIT Technical Report 212, 1979.

[23] M. J. Coster, B. A. LaMacchia, A.M.Odlyzko, andC.-P. Schnorr,
“An improved low-density subset sum algorithm,” in Advances
in Cryptology—Eurocrypt 1991, vol. 547 of Lecture Notes in
Computer Science, pp. 54–67, Springer, Brighton, UK, 1991.

[24] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-
P. Schnorr, and J. Stern, “Improved low-density subset sum
algorithms,”Computational Complexity, vol. 2, no. 2, pp. 111–128,
1992.

[25] M. K. Lee and K. Park, “Low-density attack of public-key cryp-
tosystems based on compact knapsacks,” Journal of Electrical
Engineering and Information Science, vol. 4, no. 2, Article ID
197204, 1999.

[26] N. Koblitz, Algebraic Aspects of Cryptography, vol. 3, Springer,
Berlin, Germany, 1998.

[27] A. M. Odlyzko, “The rise and fall of knapsack cryptosystems,”
in Cryptology and Computational Number Theory, vol. 42 of
Proceedings of Symposia in Applied Mathematics, pp. 75–88,
1990.

[28] B. Wang, Q. Wu, and Y. Hu, “A knapsack-based probabilistic
encryption scheme,” Information Sciences, vol. 177, no. 19, pp.
3981–3994, 2007.

[29] T. Kleinjung, K. Aoki, J. Franke et al., “Factorization of a 768-bit
RSA modulus,” http://eprint.iacr.org/2010/006 .

[30] K. Aardal, C. A. J. Hurkens, andA. K. Lenstra, “Solving a system
of linear Diophantine equations with lower and upper bounds
on the variables,” Mathematics of Operations Research, vol. 25,
no. 3, pp. 427–442, 2000.

[31] R. C. Merkle and M. E. Hellman, “Hiding information and
signatures in trapdoor knapsacks,” IEEE Transactions on Infor-
mation Theory, vol. 24, no. 5, pp. 525–530, 1978.

18 Mathematical Problems in Engineering

[32] A. Shamir, “A polynomial-time algorithm for breaking the
basic Merkle-Hellman cryptosystem,” IEEE Transactions on
Information Theory, vol. 30, no. 5, pp. 699–704, 1984.

[33] M. H. Qu and S. A. Vanstone, “The knapsack problem in cryp-
tography,” in Finite Fields: Theory, Applications, and Algorithms,
vol. 168 of Contemporary Mathematics, pp. 291–308, 1994.

[34] K. Itoh, E. Okamoto, and M. Mambo, “Proposal of a fast
public key cryptosystem,” in Proceedings of the Selected Areas in
Cryptography (SAC ’97), Ottawa, Canada, 1997.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

