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a b s t r a c t

Knapsack-type cryptosystems were among the first public-key cryptographic schemes to
be invented. Their NP-completeness nature and the high speed in encryption/decryption
made them very attractive. However, these cryptosystems were shown to be vulnerable to
the low-density subset-sum attacks or some key-recovery attacks. In this paper, additive
knapsack-type public-key cryptography is reconsidered. We propose a knapsack-type
public-key cryptosystem by introducing an easy quadratic compact knapsack problem.
The system uses the Chinese remainder theorem to disguise the easy knapsack sequence.
The encryption function of the system is nonlinear about the message vector. Under
the relinearization attack model, the system enjoys a high density. We show that the
knapsack cryptosystem is secure against the low-density subset-sum attacks by observing
that the underlying compact knapsack problem has exponentially many solutions. It is
shown that the proposed cryptosystem is also secure against some brute-force attacks and
some known key-recovery attacks including the simultaneous Diophantine approximation
attack and the orthogonal lattice attack.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Knapsack cryptography [1] is an important class of public-key cryptosystems in the area of public-key cryptography.
It involves no expensive modular exponentiations, which makes the encryption and decryption much more efficient
than discrete-logarithm-based and factorization-based cryptosystems [2,3]. For a long time, knapsack-type cryptosystems
were considered to be the most attractive and the most promising due to their high speed of encryption and decryption
and NP-completeness nature. Many knapsack-type cryptosystems were developed in the history of knapsack public-key
cryptography especially in the 1980s, and the cryptographic applications of some variants of the knapsack problem were
also investigated [4–14]. However, almost all additive knapsack-type cryptosystems were shown to be vulnerable to low-
density subset-sum attacks [15–17], GCD attack [18], simultaneous Diophantine approximation attack [19,20] or orthogonal
lattice attack [21]. Refer to the survey paper [22] for the rise and fall of knapsack cryptosystems.
Severalmethods have been used to design knapsack cryptosystems achieving high density, especially non-injective cryp-

tosystems with density greater than 1. One method is due to Koskinen [23] and another one is due to Chor, Rivest [24], and
Okamoto et al. [25]. However, the two knapsack cryptosystems given in [23] suffer a drawback that the decryption is time-
consuming, while the so-called low-weight knapsack cryptosystems Chor–Rivest [24] andOkamoto–Tanaka–Uchiyama [25]
were also shown to be vulnerable to low-density attacks [26–29]. This paper defines a new easy quadratic compact knapsack
problem. We construct a new knapsack-type public-key cryptosystem based on the knapsack problem. The cryptosystem
achieves a high knapsack density (about 1.27when the dimension of the public cargo vector n = 100) under the relineariza-
tion attack model. However, the security of the knapsack cryptosystem against low-density subset-sum attacks is not sup-
ported by the estimation of the density. We show that the underlying compact knapsack problem always has exponentially
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many solutions. Hence, it is completely computationally infeasible for the attacker to find all the solutions among which
the attacker expects to pick out the plaintext. Thus, we show that the system is secure against the low-density subset-sum
attacks. We also show that the system is secure against simultaneous Diophantine approximation and orthogonal lattice
attacks.
The rest of the paper is organized as follows: Section 2 lists some useful concepts to understand the security analysis. In

Section 3, we define an easy quadratic knapsack problem. The detailed description of the proposed cryptosystem is given in
Section 4. Section 5 discusses the performance related issues and specifies the parameter selection. Section 6 analyzes the
security of the proposed cryptosystem. Section 7 provides some concluding remarks.

2. Preliminaries

We recall some concepts about the lattice theory, the low-density subset-sum attack and the simultaneous Diophantine
approximation problem. These concepts are useful to understand the security analysis of the proposed cryptosystem.

2.1. Notations

Throughout this paper, the following notations will be used. The greatest common divisor of two integers a and b is
denoted as gcd(a, b). For (a, b) ∈

(
Z+
)2, and an integerm,mmod (a, b) denotes the 2-tuple (mmod a,mmod b). Naturally,

u 6≡ v(mod(a, b))means that u mod a 6= v mod a or umod b 6= v mod b. When x is a number, |x|means its absolute value.
For an n-dimensional vector X ∈ Rn, we write ‖X‖ for the Euclidean norm of X . The notation |A| denotes the cardinality of a
set A. We write the binary length of an integer a as |a|2. dre denotes the smallest integer greater than or equal to r .

2.2. Definition of lattice

A lattice is a discrete (additive) subgroup of Rn. More precisely, a lattice consists of all integral linear combinations of a
set of linearly independent vectors {vi}, i.e.,

L =

{
n∑
i=1

zivi|zi ∈ Z

}
.

The most important algorithmic problems in lattice theory include the shortest vector problem (SVP), the closest vector
problem (CVP) and the smallest basis problem (SBP). The SVP is to search for the shortest non-zero vector in a given lattice
L. The CVP states that, given a lattice L and a vector v, find a lattice vector sminimizing the length of the vector v− s. The SBP
requires one to find a lattice basis to minimize themaximum of the lengths of its elements in a given lattice. No polynomial-
time algorithm is known for the three problems. The best polynomial-time algorithms for solving SVP achieve only slightly
sub-exponential factors, and are based on the LLL algorithm [30]. These problems are of special significance in complexity
theory and cryptology.

2.3. Knapsack problems and density

The standard subset sum or 0-1 knapsack problem is defined as follows. Given a cargo vector A = (a1, . . . , an) and a
sum s, find which elements are put into the knapsack, that is, solve the following linear Diophantine equation for the binary
variables X = (x1, . . . , xn),

n∑
i=1

aixi = s, xi ∈ {0, 1}. (1)

The standard 0-1 knapsack problem has many variants. One of these variants is compact knapsack problem which given
A = (a1, . . . , an) and s, asks for X = (x1, . . . , xn)with 0 ≤ xi ≤ 2b − 1 and b ≥ 1 such that

∑n
i=1 aixi = s. Another problem

is quadratic knapsack or matrix cover problemwhich needs to solve a 0-1 quadratic Diophantine equation s = XAXT , where
X = (x1, . . . , xn), xi ∈ {0, 1}, andA is an n-dimensional squarematrix. These problems had beenused to construct knapsack-
type public-key cryptosystems [1,4,31,9,14]. In this paper, we will define a new knapsack problem, simultaneous quadratic
compact knapsack problem.
In a compact knapsack cryptosystem with public key A = (a1, . . . , an), a messageM = (m1, . . . ,mn)withmi ∈ [0, k] is

encrypted into

s =
n∑
i=1

aimi. (2)

An important characteristic of a knapsack cryptosystem is the density of the cryptosystem. The density for compact knapsack
problems (2) is defined as d = nb/ log2max1≤i≤nai [32], where we set b = dlog2(k + 1)e in that b bits are needed to
represent the k + 1 integers in [0, k]. We note that when b = 1, the definition immediately gives the density for 0-1
knapsack problems (1), d = n/ log2max1≤i≤n ai [17,16]. Here we also point out that some other definitions appear in the
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literature for the density of compact knapsack problems (2). For example, Katayangi and Murakami defined the density of
(2) as d = ndlog2(k+ 1)e/ log2

(
k
∑n
i=1 ai

)
[33]. In fact, when n approaches infinity, the two definitions are asymptotically

identical.

2.4. Low-density subset-sum attacks

The basic idea of low-density attacks is to solve the knapsack problem with lattice basis reduction algorithms. Given a
cargo vector A = (a1, . . . , an) and a sum s =

∑n
i=1 aixi, the Lagarias–Odlyzko low-density attack [16] is outlined as follows.

Construct the following matrix

V =


1 0 · · · 0 δa1
0 1 · · · 0 δa2
...

...
. . .

...
...

0 0 · · · 1 δan
0 0 · · · 0 −δs

 =

v1
v2
...
vn
vn+1

 .
The integral combinations of the row vectors {vi} of thematrix V imply an (n+1)-dimensional lattice L. Note that the vector
v = (x1, . . . , xn, 0) = x1v1+· · ·+ xnvn+ vn+1 ∈ L, and v is short. Hence, the short vector vmay be found with lattice basis
reduction algorithms.
In their original paper [16], Lagarias and Adlyzko set δ = 1 and showed that when the density d of a 0-1 knapsack

problem is less than 0.645, the knapsack problem almost always can be solved with a single call to a lattice oracle. Coster
et al. obtained a new bound 0.6463 by setting δ >

√
n [17]. The authors of [17] also derived a better bound 0.9408 by

introducing two different lattices, which we will not detail in this paper. The above bounds only apply to 0-1 knapsack
problems. For compact knapsack problems (2), Lee and Park set δ > k

√
n and argued that when b = dlog2(k+ 1)e is much

larger than n and if d < 1, the compact knapsack problem is almost always solvable with a single call to a lattice oracle [32].
However, as far as the authors know, no general results are obtained for compact knapsack problems (2).

2.5. Simultaneous Diophantine approximation

The simultaneous Diophantine approximation problem states that, given n + 1 real numbers r1, . . . , rn, ε > 0, and an
integer Q > 0, find integers p1, . . . , pn, and q such that 0 < q ≤ Q , and∣∣∣∣ri − piq

∣∣∣∣ ≤ ε

q
, i = 1, . . . , n.

There exists a solution to the simultaneous Diophantine approximation problem if Q ≥ ε−n. However, no efficient
algorithm is known to find the solution. This problem is also related to lattice basis reduction and the solution can be
approximated with lattice basis reduction algorithms.
We illustrate the reduction in a bit more details. Similarly to the above low-density subset-sum attack, the key point is to

find a lattice to represent the simultaneous Diophantine approximation problem. Note that the integral linear combinations
of the row vectors of the following matrix form a lattice L,

V =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−r1 −r2 · · · −rn ε/Q

 =

a1
a2
...
an
an+1

 .
One can employ lattice basis reduction algorithms and obtain a reduced basis of the lattice L. The shortest vector b in the
reduced basis can be used to solve the simultaneous Diophantine approximation problem. Since b ∈ L, there exist integers
p1, . . . , pn, and q such that

b = p1a1 + · · · + pnan + qan+1 = (p1 − qr1, . . . , pn − qrn, qε/Q ).

Because b is short, pi − qr i is small for i = 1, . . . , n. Hence, |ri − pi/q| is small for each i = 1, . . . , n. From the discussion
above, the set of fractions {pi/q} with a common denominator q is approximate to {ri}. This observation illustrates the
relation between the lattice reduction algorithms and the simultaneous Diophantine approximation problem.

3. An easy simultaneous quadratic knapsack problem

Knapsack cryptosystems are always constructed by finding an easy knapsack problem and then transforming this easy
knapsack into a seemingly hard knapsack problem. In this section, we give an easy quadratic knapsack problem. The cargo
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vector defined in the easy knapsack problem is different from the super-increasing sequences [1], the cargo vectors used in
Graham–Shamir cryptosystem [34], and the knapsack sequences [35] used for attacking a knapsack-type cryptosystem [12]
based on Diophantine equations, and it can be thought as the generalization of the cargo vectors given in [31,14].
Nowwe consider two sets I ⊂ Z and J = {j = (j1, j2)|j1, j2 ∈ Z+}. We use JT to denote the set {(j2, j1)|(j1, j2) ∈ J}. Given

a j = (j1, j2) ∈ J , the set I mod j = {(i mod j1, i mod j2)|i ∈ I}. Generally, we have ∀j ∈ J , |I mod j| ≤ |I|. It is easy to see
that |I mod j| = |I| if and only if different integers in I modulo j always produce different integer pairs, i.e., ∀i1 6= i2 ∈ I ,
and J = (j1, j2) ∈ J , ii 6≡ i2 mod (j1, j2).

Definition 1. If ∀j ∈ J , |I mod j| = |I|, we call the set I distinguishable (DIST) modulo J .

More concretely, we set I = {i2|i = 0, 1, . . . , 15} and J = W ∪ W T , where W is a set consisting of the follo-
wing integer pairs: (1, 31), (1, 34), (1, 37), (1, 38), (1, 41), (1, 43), (1, 46), (1, 47), (1, 53), (1, 58), (1, 59), (1, 61),
(1, 62), (1, 67), (1, 68), (1, 71), (1, 73), (1, 74), (1, 76), (1, 78), (1, 79), (1, 82), (1, 83), (1, 86), (1, 87), (1, 89), (1, 92),
(1, 93), (1, 94), (1, 97), (2, 17), (2, 19), (2, 23), (2, 29), (2, 31), (2, 34), (2, 37), (2, 38), (2, 39), (2, 41), (2, 43), (2, 46),
(2, 47), (3, 26), (3, 29), (3, 31), (4, 17), (4, 19), (4, 23), (6, 13). It is easy but tedious to verify that I is DIST mod-
ulo J . Take (3, 31), (17, 2) ∈ J as an example. We compute I mod (3, 31) as a table {(0, 0), (1, 1), (1, 4), (0, 9),
(1, 16), (1, 25), (0, 5), (1, 18), (1, 2), (0, 19), (1, 7), (1, 28), (0, 20), (1, 14), (1, 10), (0, 8)}, I mod (17, 2) = {(0, 0),
(1, 1), (4, 0), (9, 1), (16, 0), (8, 1), (2, 0), (15, 1), (13, 0), (13, 1), (15, 0), (2, 1), (8, 0), (16, 1), (9, 0), (4, 1)}. Hence,
both cardinalities of I mod (3, 31) and I mod (17, 2) equal to |I| = 16. Definition 1 also says that if I is DIST modulo
J , given j and i2 mod j, we can uniquely determine the integer i. For example, given i2 mod (3, 31) = (0, 5), from the table
generated via I mod (3, 31), we look up the table and find that the 6th component matches (0, 5) (starting from the 0th
entry (0,0)), so we can uniquely determine i2 = 62 = 36, i = 6. Similarly, from i2 mod (17, 2) = (13, 1) we can uniquely
determine i2 = 92 = 81, i = 9. In fact, J contains all the 100 integer pairs j = (j1, j2) with j1j2 < 100 such that I is DIST
modulo J . We also should note that for any non-empty subset G of J , I is also DIST modulo G.
In the rest of the paper, we always use I and J to denote the set I = {i2|i = 0, 1, . . . , 15} and the set containing the 100

integer pairs respectively. Now we look at an example.

Example 1. Solve the simultaneous quadratic knapsack problem

49x21 + 48x
2
2 + 51x

2
3 = 14 271, 53x21 + 31x

2
2 + 62x

2
3 = 14 879, x2i ∈ I.

To solve the problem, we need to compute I mod (3, 31) and I mod (2, 17). Note that gcd(48, 51) = 3 and gcd(31, 62) =
31. The two equations modulo 3 and 31 gives two congruences respectively,

49x21 + 48x
2
2 + 51x

2
3 ≡ 14 271 mod 3, 53x21 + 31x

2
2 + 62x

2
3 ≡ 14 897 mod 31.

Hence, x21 ≡ (0, 5)mod (3, 31). Accordingly, we get x1 = 6. Note that 48x22 + 51x
2
3 = 14 271 − 49x

2
1 and we obtain

16x22 + 17x
2
3 = 4169. Similarly, we get x

2
2 + 2x

2
3 = 419 from the second equation. The two equations modulo 17 and 2 give

x22 ≡ 13 mod 17, x
2
2 ≡ 1 mod 2, from which we know x2 = 9. Solving x3 = 13 is immediate.

We summarize the results shown in the example using a theorem.

Theorem 1. Given two cargo vectors A = (a1, . . . , an) and B = (b1, . . . , bn). Denote by ci and di the gcd of the latter i
components of A and B respectively, i.e., ci = gcd(an, . . . , an−i+1), di = gcd(bn, . . . , bn−i+1). Without loss of generality, we
assume that cn = dn = 1. Let G = {gi = (g1i, g2i) = (ci−1/ci, di−1/di)|i = 2, . . . , n}. If G ⊂ J , the simultaneous quadratic
knapsack problem

n∑
i=1

aix2i = s1,
n∑
i=1

bix2i = s2, x2i ∈ I (3)

can be solved in polynomial (about n) time. Furthermore, the problem has at most one solution about X = (x1, . . . , xn) with
xi ∈ {0, 1, . . . , 15}.

Proof. The following facts are obvious. Firstly, I is DIST modulo G. Hence, given gi and an integer pair (a, b) belonging to
the table generated via I modulo gi, we can determine a unique xi such that x2i ∈ I and (a, b) ≡ x

2
i mod gi. Secondly,

ci = gcd(ci−1, an−i+1) and di = gcd(di−1, bn−i+1). Hence, gcd(ci−1/ci, an−i+1/ci) = gcd(di−1/di, bn−i+1/di) = 1, and ci−1|aj,
di−1|bj, when n− i+2 ≤ j ≤ n. Assume that (3) has solutions.We usemathematical induction to prove that we can solve (3).
The two equations of (3) modulo cn−1 and dn−1 respectively give a1x21 ≡ s1 mod cn−1, b1x

2
1 ≡ s2 mod dn−1. Hence, we

have x21 ≡ a
−1
1 s1 mod cn−1, x

2
1 ≡ b

−1
1 s2 mod dn−1. Note that gn = (g1n, g2n) = (cn−1/cn, dn−1/dn) = (cn−1, dn−1). So we

obtain x21 ≡ (a
−1
1 s1, b

−1
1 s2)mod gn, from which we uniquely determine x

2
1 ∈ I and hence the value of x1 ∈ {0, . . . , 15}.

We assume that the values of x1, . . . , xi, 1 ≤ i ≤ n− 2 have been determined. So

n∑
j=i+1

ajx2j = s1 −
i∑
j=1

ajx2j ,
n∑

j=i+1

bjx2j = s2 −
i∑
j=1

bjx2j . (4)
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Note that the two equations of (4) modulo cn−i−1 and dn−i−1 respectively give

ai+1x2i+1 ≡ s1 −
i∑
j=1

ajx2j mod cn−i−1,

bi+1x2i+1 ≡ s2 −
i∑
j=1

bjx2j mod dn−i−1.

So we have

ai+1
cn−i
x2i+1 ≡

s1 −
i∑
j=1
ajx2j

cn−i
mod

cn−i−1
cn−i

,

bi+1
dn−i
x2i+1 ≡

s2 −
i∑
j=1
bjx2j

dn−i
mod

dn−i−1
dn−i

,

from which we can uniquely determine x2i+1 modulo gn−i and hence the value of xi+1,

x2i+1 ≡


(
ai+1
cn−i

)−1 s1 − i∑
j=1
ajx2j

cn−i
,

(
bi+1
dn−i

)−1 s2 − i∑
j=1
bjx2j

dn−i

 mod gn−i.
After the values of x1, . . . , xn−1 have been determined, we get two equations anx2n = s1 −

∑n−1
j=1 ajx

2
j , and bnx

2
n =

s2 −
∑n−1
j=1 bjx

2
j . Either equation gives the unique value of x

2
n = (s1 −

∑n−1
j=1 ajx

2
j )/an = (s2 −

∑n−1
j=1 bjx

2
j )/bn. Hence, we

also can uniquely determine xn ∈ {0, . . . , 15}.
If and only if one of the following cases appears, we conclude that (3) has no solutions. Firstly, there exists an i such

that either cn−i|s1 −
∑i
j=1 ajx

2
j or dn−i|s2 −

∑i
j=1 bjx

2
j does not hold. Secondly, all the values of x1, . . . , xn−1 can be uniquely

determined. However, the two values (s1 −
∑n−1
j=1 ajx

2
j )/an and (s2 −

∑n−1
j=1 bjx

2
j )/bn are not identical. Thirdly, all the values

of x1, . . . , xn can be uniquely determined, but they cannot match the equations of (3) simultaneously.
To determine each xi, we need to solve two linear congruences and look up the table generated via I mod gn−i+1. So the

simultaneous quadratic knapsack problem (3) can be solved in polynomial (about n) time. If the problem has solutions, each
xi is uniquely determined. So the simultaneous quadratic knapsack problem has at most one solution. �

For given input A, B subject to the requirements of Theorem 1 and s1, s2, the algorithm to solve (3) runs as follows.

Algorithm 1. 1. Compute ci = gcd(an, . . . , an−i+1), di = gcd(bn, . . . , bn−i+1) for i = 1, . . . , n and G = {gi = (g1i, g2i) =
(ci−1/ci, di−1/di)|i = 2, . . . , n}.

2. For i = 2, . . . , n, compute and store Table i generated via I mod gi.
3. Compute x21 ≡ (a

−1
1 s1, b

−1
1 s2)mod gn, and look up Table 1. If the k-th component of Table 1 matches (a

−1
1 s1, b

−1
1 s2), store

x1 = k; Otherwise, output ‘‘No Solutions’’ and exit.
4. For i = 2, . . . , n− 1, decide whether cn−i+1 and dn−i+1 divide r1i = s1−

∑i−1
j=1 ajx

2
j and r2i = s2−

∑i−1
j=1 bjx

2
j respectively.

If no, output ‘‘No Solutions’’ and exit; otherwise, calculate

x2i ≡

((
ai
cn−i+1

)−1 r1i
cn−i+1

,

(
bi

dn−i+1

)−1 r2i
dn−i+1

)
= (l1i, l2i) mod gn−i+1,

and look up Table i. If the k-th component of Table imatches (l1i, l2i), store xi = k; Otherwise, output ‘‘No Solutions’’ and
exit.

5. Decide whether an divides r1n = s1 −
∑n−1
j=1 ajx

2
j , bn divides r2n = s2 −

∑n−1
j=1 bjx

2
j and r1n/an = r2n/bn or not. If yes, set

x2n = r1n/an = r2n/bn; Otherwise, output ‘‘No Solutions’’ and exit. It is easy to solve xn from x
2
n. Store xn.

6. Decide whether
∑n
i=1 aix

2
i = s1 and

∑n
i=1 bix

2
i = s2. If yes, output X = (x1, . . . , xn) and exit; Otherwise, output ‘‘No

Solutions’’ and exit.

Now we begin to construct a public-key cryptosystem in the next section by using the above easy knapsack problem.

4. The proposed cryptosystem

The proposed asymmetric encryption algorithm consists of three sub-algorithms: key generation, encryption and
decryption.
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4.1. Key generation

The key generation algorithm runs as follows.

1. Randomly choose two cargo vectors A = (a1, . . . , an) and B = (b1, . . . , bn)which satisfy the requirements of Theorem 1.
2. Randomly choose a 2-dimensional square matrix C = (cij)2×2 with determinant 1 and the length of its entries upper-
bounded by a constant, that is, |cij|2 = O(1) and write the inverse of C as C−1.

3. Compute(
Â
B̂

)
=

(
â1 · · · ân
b̂1 · · · b̂n

)
= C

(
A
B

)
.

4. Randomly choose twoprime integers p and q slightly greater than 225
∑n
i=1 âi and 225

∑n
i=1 b̂i respectively, and compute

N = pq.
5. Use the Chinese remainder theorem to generate a cargo vector E = (e1, . . . , en),

ei ≡ âi mod p, ei ≡ b̂i mod q, (5)

6. Randomly choose an invertible integer v over ZN .
7. Compute

fi ≡ eiv mod N. (6)

• Secret key: N , p, q, C−1, and v−1 mod N;
• Public key: F .

Remark 1. In fact, to decrypt a given ciphertext, we also need to compute and store the values of ci = gcd(an, . . . , an−i+1),
di = gcd(bn, . . . , bn−i+1), i = 1, . . . , n, the set G = {gi = (g1i, g2i) = (ci−1/ci, di−1/di)|i = 2, . . . , n}, and n − 1 tables
generated via I mod gi for i = 2, . . . , n. However, these values are easily computed from the public and secret keys. As in
other knapsack cryptosystems, the public cargo vector F can be permutated and re-indexed for increased security.

We use Algorithm 2 to generate two cargo vectors A and B satisfying the requirements of Theorem 1.

Algorithm 2. 1. Randomly choose n− 1 integer pairs g ′i = (g
′

1i, g
′

2i) ∈ J , i = 2, . . . , nwith repetition permitted.
2. Randomly choose 2(n−1) numbers s1, . . . , sn−1 and t1, . . . , tn−1 satisfying the following requirements. (1). gcd(si, g ′1j) =
1. (2). gcd(ti, g ′2j) = 1. (3). gcd(si, si+1) = 1; (4). gcd(ti, ti+1) = 1.

3. Let a1 = s1, b1 = t1. Compute

ai = si
n∏

j=n−i+2

g ′1j, bi = ti
n∏

j=n−i+2

g ′2j, i = 2, . . . , n− 1,

an =
n∏
j=2

g ′1j, bn =
n∏
j=2

g ′2j.

4. Output A = (a1, . . . , an), B = (b1, . . . , bn), and exit.

We prove that the generated vectors A and B really satisfy the requirement of Theorem 1.

Theorem 2. The generated vectors A and B satisfy the requirements of Theorem 1.

Proof. Denote ci and di as the gcd of the latter i components of A and B respectively. Hence, we only need to show that for
each i = 2, . . . , n, gi = (ci−1/ci, di−1/di) ∈ J .
It is easy to verify that

c1 = an =
n∏
j=2

g ′1j, d1 = bn =
n∏
j=2

g ′2j,

ci = gcd

(
n∏
j=2

g ′1j, . . . , sn−i+1
n∏

j=i+1

g ′1j

)
= gcd

(
n∏
j=2

g ′1j, . . . ,
n∏

j=i+1

g ′1j

)
=

n∏
j=i+1

g ′1j,

di =
n∏

j=i+1

g ′2j, i = 2, . . . , n− 1,

cn = gcd(cn−1, s1) = gcd(g ′in, s1) = 1, dn = 1.
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So for i = 2, . . . , n− 1, we have

gi =
(
ci−1
ci
,
di−1
di

)
=


n∏
j=i
g ′1j

n∏
j=i+1

g ′1j

,

n∏
j=i
g ′2j

n∏
j=i+1

g ′2j

 = (g ′1i, g ′2i) = g ′i ∈ J,
gn =

(
cn−1
cn
,
dn−1
dn

)
= (cn−1, dn−1) =

(
g ′1n, g

′

2n

)
= g ′n ∈ J,

as desired. �

4.2. Encryption

The messageM = (m1, . . . ,mn)with |mi|2 = 4, i.e.,mi ∈ {0, . . . , 15}, is encrypted into,

c =
n∑
i=1

fim2i . (7)

4.3. Decryption

To decipher a ciphertext c , the receiver does the followings.

1. Compute

t ≡ cv−1 ≡
n∑
i=1

eim2i (mod N) . (8)

2. Compute tp ≡ t(mod p), tq ≡ t(mod q), and (sA, sB)T = C−1
(
tp, tq

)T .
3. Solve the following simultaneous quadratic compact knapsack problem to recover the plaintext by using Algorithm 1,

sA =
n∑
i=1

aim2i , sB =
n∑
i=1

bim2i , m2i ∈ I. (9)

4.4. Why decryption works?

We show how to recover the plaintext by solving the quadratic compact knapsack problem (7) according to the
knowledge of the secret key and Algorithm 1. From (8) and (5), we have tp ≡ t ≡

∑n
i=1 âim

2
i (mod p), tq ≡ t ≡∑n

i=1 b̂im
2
i (mod q). From the size conditions p > 225

∑n
i=1 âi and q > 225

∑n
i=1 b̂i, we obtain tp =

∑n
i=1 âim

2
i and

tq =
∑n
i=1 b̂im

2
i . Therefore,(

sA
sB

)
= C−1

(
tp
tq

)
= C−1

(
Â
B̂

)m
2
1
...

m2n

 = (AB
)m

2
1
...

m2n

 ,
that is, (9). According to Theorem 1, this is a simultaneous quadratic compact knapsack problem, and can be efficiently
solved by using Algorithm 1.

5. Suggested parameters and performance

5.1. Suggested parameters

We should choose p and q slightly greater than 225
∑n
i=1 âi and 225

∑n
i=1 b̂i respectively. Hence, we always can assume

that p ≈ 225
∑n
i=1 âi ≈ 225

∑n
i=1 ai and q ≈ 225

∑n
i=1 b̂i ≈ 225

∑n
i=1 bi in that the entries of C is bounded by O(1). In

Algorithm 2, we need to choose si and ti carefully in order that the generated ai and bi always have the same binary length.
In fact, we can choose those si and ti with lengths

|si|2 =

∣∣∣∣∣ n∏
j=2

g ′1j

∣∣∣∣∣
2

−

∣∣∣∣∣ n∏
j=n−i+2

g ′1j

∣∣∣∣∣
2

, |ti|2 =

∣∣∣∣∣ n∏
j=2

g ′2j

∣∣∣∣∣
2

−

∣∣∣∣∣ n∏
j=n−i+2

g ′2j

∣∣∣∣∣
2

.
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So,

|a1|2 ≈ |a2|2 ≈ · · · ≈ |an|2 =

∣∣∣∣∣ n∏
j=2

g ′1j

∣∣∣∣∣
2

,

|b1|2 ≈ |b2|2 ≈ · · · ≈ |bn|2 =

∣∣∣∣∣ n∏
j=2

g ′2j

∣∣∣∣∣
2

.

In implementation, n = 100 is suggested. We recommend to choose C as

C1 =
(
2 1
3 2

)
or C2 =

(
1 2
2 5

)
.

We note that the recommended parameter n = 100 happens to be identical to the cardinality of J , |J| = 100. However, this
does not mean we cannot choose a larger n. In fact, we have stated in the first step of Algorithm 2 that the n − 1 integer
pairs g ′i = (g

′

1i, g
′

2i) ∈ J for i = 2, . . . , n are generated with repetition permitted. Hence, we can choose as many g
′

i ’s as we
want. If repetitions were not permitted, we only can generate at most |J| = 100 g ′i ’s, and hence n is at most |J| + 1 = 101.
If n > 101, there must exist a g ′i ∈ J that is chosen at least two times. We recommend n = 100 mainly due to security
considerations. In Section 6.1, we show that when n = 100, the attacker needs to perform n16n/2 ≈ 2206.6 operations to
recover the plaintext. In Section 6.2, we show that for a ciphertext, there are about 2151 preimages. So we think that n = 100
is sufficient to obtain a high level of security.

5.2. Public-key size

We first assume that the randomly chosen g ′i = (g
′

1i, g
′

2i) is uniformly distributed over J . Hence, the expected value for
g ′1ig

′

2i should be the geometric mean of all the 100 products g1ig2i, which is about

g ′1ig
′

2i ≈ 100

√ ∏
(g1i,g2i)∈J

g1ig2i = 50

√ ∏
(w1,w2)∈W

w1w2 ≈ 60.86. (10)

The binary length of the public key of the proposed cryptosystem is
n∑
i=1

dlog2 fie ≈ n|f1|2 ≈ · · · ≈ n|fn|2 ≈ n|N|2.

Note that

fi ≈ N = pq ≈ 2252
(

n∑
i=1

âi

)(
n∑
i=1

b̂i

)
≈ 2252n2ânb̂n

≈ 2252n2anbn = 2252n2
n∏
i=2

g ′1ig
′

2i ≈ 225
2n260.86n−1.

So the binary length of N is |N|2 = (n − 1)|60.86|2 + 2|225n|2, which is bounded by O(n). The public-key size is about
100|2252n260.86n−1|2 ≈ 6157 bits when n = 100.

5.3. Information rate

The information rate defined as the ratio of the binary length of the message to that of the ciphertext of the proposed
cryptosystem is ρ = 4n/ log2 Cmax. Note that

Cmax = 225
n∑
i=1

fi ≈ 225nN ≈ 2253n360.86n−1. (11)

So the information rate is evaluated by ρ ≈ 4n/ log2(225
3n360.86n−1). When n = 100, the information rate is about 0.63.

5.4. Computational complexity

The encryption of the cryptosystem only performs O(n) multiplication and addition operations. The binary lengths
of the involved integers are bounded by O(n) and O(1) respectively, so the complexity of the encryption is O(n2). The
decryption needs a modular multiplication operation for two large numbers, whose lengths are bounded by O(n). So the
computational complexity for carrying out themodular multiplication operation is given as O(n2). Furthermore, to decipher
a given ciphertext, the decryption algorithm has to perform a 2-dimensional matrix-vector multiplication, O(n) table-query
operations and O(n) modular multiplications and divisions with small integers. So the computational complexity of the
decryption algorithm is O(n2).
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6. Security analysis

Like all the other knapsack cryptosystems, our system does not match the provable security goals, either. In this section,
we only discuss some known attacks on the proposed cryptosystem. However, we do not consider some specialized attacks
such as Shamir’s attack [36] on the basic Merkle–Hellman cryptosystem [1] to recover the super-increasing sequences and
Vaudenay’s algebraic attack [37] on the Chor–Rivest cryptosystem [24].

6.1. On solving the quadratic compact knapsack problem

One straightforward way to break the system is to solve (7) forM = (m1, . . . ,mn). The attacker can exhaust
∑n
i=1 fim

2
i

for m2i ∈ I . This attack needs 16
n steps. A better method is to first compute S1 = {

∑n/2
i=1 fim

2
i }, S2 = {c −

∑n
j=n/2+1 fjm

2
j }.

Then the attacker looks up S1 and S2 and expects to find an element s ∈ S1 ∩ S2. If there exists an element s =
∑n/2
i=1 fim

2
i =

c −
∑n
j=n/2+1 fjm

2
j , then c =

∑n
i=1 fim

2
i and mi is extracted. This attack requires about n16

n/2 steps [22]. For a sufficiently
large parameter n, the attack is computationally infeasible.

6.2. Relinearization attack

One of the reasons for the insecurities of some additive knapsack-type cryptosystems is that these systems are basically
linear, as observed in [18]. In our cryptosystem, the encryption function (7) is nonlinear about the plaintext vector. Of course,
the attacker can obtain a linear function just by setting yi = m2i ,

c =
n∑
i=1

fiyi, yi ∈ I. (12)

The lattice basis reduction algorithms are always used to find a ‘‘small’’ solution to a linear equation. Naturally, the attacker
views (12) as a compact knapsack problem and then launches a low-density subset-sum attack. However, (12) is not a
standard compact knapsack problem. In fact, when he launches a low-density subset-sum attack, the problem that the
attacker wants to solve is the following standard compact knapsack problem

c =
n∑
i=1

fiyi, 0 ≤ yi ≤ 225, i.e., yi ∈ Z226. (13)

For a solution Y = (y1, . . . , yn) to (13), Y is also a solution to (12) only when every yi is a square. Otherwise, Y contains
little information about the plaintext and hence is useless for the attacker. In other words, in the relinearization attack
model, we just select a small space In as the plaintext space from a big space Zn226. The difference of the two sets Zn226 − I

n

is the redundant information added into the messages. A similar method has been used in the Chor–Rivest [24] and
Okamoto–Tanaka–Uchiyama [25] schemes. In their schemes, the big space is {0, 1}n, while the small space consists of those
vectors whose Hamming weight is exactly h.
In the sequel, we begin to show the infeasibility of solving the compact knapsack problem (13) for the plaintext by using

lattice reduction algorithms.

6.2.1. Evaluation of density
Now we begin to investigate the effects of the powerful low-density attacks on the security of the proposed system.

When applied to a specific knapsack instance, the low-density attacks depend on the density of the knapsack. If we adopt
the definition given in [32], we can estimate the density of (13) via

d =
nb

log2 max
1≤i≤n

ai
.

When n = 100, d ≈ 1.3. If we use the definition in [33], the density turns out to be

d =

n∑
i=1
ei

log2 Cmax
≈

ndlog2 226e
log2

(
2253n360.86n−1

) .
When n = 100, the density of (13) is about 1.27, which is sufficiently high.
Now we cannot claim the security of the cryptosystem against the low-density subset-sum attacks due to the following

considers. Firstly, no general results are obtained for low-density attacks on compact knapsack problems. We note that
Coster et al.’s bound 0.9408 [17] only applies to 0-1 knapsack problems, and Lee and Park’s attack applies to compact
knapsackswith b = dlog2(k+1)emuch larger than n and density d < 1 [32]. All these things say nothing about the compact
knapsack problem (13). So we cannot conclude that the proposed knapsack cryptosystem is secure only by observing that
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Table 1
An example to illustrate the non-injectivity.

n, C n = 9, C = C1

A, B A = (506731, 514454, 546346, 551242, 536486555458, 620806, 1012894, 1012894);
B = (506743, 506729, 502727, 501983, 502603, 546809, 566029, 685193, 923521)

Â, B̂ Â = (1520205, 1535637, 1595419, 1604467, 1575575, 1657725, 1807641, 2710981, 2949309);
B̂ = (2533679, 2556820, 2644492, 2657692, 2614664, 2759992, 2994476, 4409068, 4885724)

p, q, N p = 3737151991, q = 5344529191, N = 19973317907103269281
E (9000586516901272772, 5505351675426338988, 10499027714189237482, 2509752144226035369,

6504240071281348953, 19487681762645276734, 7504741862919801584, 9508426486509793436,
17500715120317378711)

v, v−1 v = 9779036791, v−1 mod N = 2042462702
F (11983552636085612996, 10999467547886443030, 15792325467390277628,

10445813110882639381, 9252643203486974008, 17826100034189837380, 1136144594347297305,
1012216192024971939, 10263527667452230037)

M , c (3, 7, 15, 8, 6, 9, 11, 13, 10), 7980531210038881739482

d > 0.9408 or d > 1. Secondly, some knapsack cryptosystems achieving high density are also shown vulnerable to low-
density subset-sum attacks. For example, the Chor–Rivest [24] and Okamoto–Tanaka–Uchiyama cryptosystems [25] were
shownalso vulnerable to low-density attacks [26–29]. The success of the low-density subset-sumalgorithms in attacking the
Chor–Rivest and Okamoto–Tanaka–Uchiyama cryptosystems depends on the fact that the two schemes choose low-weight
vectors as the valid plaintext vectors. To claim the security of the proposed cryptosystem against low-density subset-sum
attacks, we need to establish a stronger security argument.

6.2.2. Non-injectivity
The basic idea of low-density subset-sum and hence low-weight attacks is to find one [26,27] or polynomially many [28]

n-dimensional spheres covering the solution candidates. The success of low-weight attacks depends on the fact that we can
use a ‘‘small’’ sphere to cover a lattice point. In our cryptosystem, we should note that (13) always has many (denote the
number of solutions as t) solutions and the unique solution to (12) is not necessarily the shortest vector no matter what
norms are used. The only difference between the solution (y1, . . . , yn) of (12) and other solutions of (13) is that every yi is a
square. However, the lattice basis reduction algorithms, say the LLL algorithm [30], only considers the size of the entries of
a vector. Hence, the special structure of yi ∈ I cannot be used by the lattice reduction algorithms. So we can assume that the
lattice reduction algorithms just find a random vector in the t solutions. In real life practice, the practical lattice reduction
algorithms always can serve as a lattice oracle to output a shortest vector of a low-dimensional lattice. See [26–28]. In fact,
when d > 1, the compact knapsack problem (13) has many solutions, i.e., the function (13) about Y is non-injective. It
may be a difficult task to estimate the lower bound for the number of the solutions that (13) has. The authors only find the
estimations of the upper bound in [26]. Generally speaking, the number t is the ratio of the cardinality of the set Zn226 to the
number of the possible ciphertexts,

t ≈
226n

Cmax + 1
≈

226n

2253n360.86n−1
.

The number t exponentially increases in n. When n = 100, t ≈ 2151. So the encryption function is non-injective under
the relinearization attack model. Hence, the low-density subset-sum attack can find the valid plaintext only with a non-
negligible probability 1/t ≈ 1/2151 when n = 100.
To summarize, we assume that the low-density subset-sum attack can find a solution to (13) and that YM = (m21, . . . ,m

2
n)

is uniformly distributed over all the t solutions to (13). Hence, the attacker succeeds to obtain YM with a probability P = 1/t .
We showed that t exponentially increases with n. Therefore the probability P = 1/t is a negligible function about n.
When discussing the low-weight attacks, we do not prevent the reduction from solving (13) to the shortest vector

problem over a lattice. However, we want to point out a fact about the low-weight cryptosystems and our cryptosystem.
In a low-weight cryptosystem, the lattice point covered by a sphere, i.e., the shortest vector, is always the unique plaintext.
In our cryptosystem, any sphere covering the plaintext lattice point always covers exponentially many solutions to (13). It
may be possible to find polynomially many solutions to (13). But it is highly impractical to enumerate all of these solutions,
let alone to find them.

6.2.3. An example
The discussion in Section 6.2.2 shows that even if a lattice oracle is available and the attacker can find a solution to

the compact knapsack problem (13), the probability is still negligible. Now we use a small example to illustrate the non-
injectivity of the knapsack cryptosystem. The parameters are given in Table 1.
In the example, we use Matlab to find that the compact knapsack problem, c =

∑9
i=1 fiyi with 0 ≤ yi ≤ 225,

has t = 486 solutions in total, which are not listed in Table 1 for space limitations. Hence, if a low-density attack can
output a random solution among the 486 solutions, the attacker will succeed with a probability 1/486. We also note that
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M = (3, 7, 15, 8, 6, 9, 11, 13, 10), and that YM = (9, 49, 225, 64, 36, 81, 121, 169, 100) with ‖Y‖ = 118 262 is not the
shortest solution among all the 486 solutions. In fact, in the 486 solutions, there exist 152 solutions enjoying an Euclidean
norm smaller than 118262. Hence, YM is not the shortest solution. In fact, the shortest solution is (77, 77, 84, 81, 99, 87, 5,
188, 134), which has an Euclidean norm 96170. Note that this is only a small example. If n is chosen relatively large, the
number t will be exponentially large, as it was pointed out in Section 6.2.2.

6.3. Diophantine approximation attack

If the attacker obtains N and v−1 mod N , and then factors N = pq, he can break the cryptosystem. Now, we consider
some known attacks to recover the modulus and the multiplier.
Some knapsack cryptosystems use size conditions to disguise an easy knapsack problem. In such a cryptosystem, every

mi ∈ [0, 2b − 1], the modulus is m, and the multiplier is w such that gcd(m, w) = 1. An easy knapsack vector (a1, . . . , an)
is disguised as a seemingly hard knapsack sequence B = (b1, . . . , bn) by using the size condition m > (2b − 1)

∑n
i=1 ai

and a modular multiplication bi = wai(mod m). The size condition can be utilized by the simultaneous Diophantine
approximation attack to obtain some useful information about (w,m). See [19,20] for more information about the relation
between the simultaneous Diophantine approximation problem and cryptanalytics. Another Diophantine approximation
attack due to Lagarias [19] also uses the size conditions to recover some information about the modulus and the multiplier.
The trapdoor of the proposed system is disguised using the Chinese remainder theorem, which involves no size

conditions. The attacker cannot expect finding some information about the trapdoor by launching a simultaneous
Diophantine approximation attack. So the proposed cryptosystem is also invulnerable to Lagarias’ attack. However, the
reader may doubt that the size conditions p >

∑n
i=1 âi and q >

∑n
i=1 b̂i have been used. We should observe that if the

attacker wants to launch a simultaneous Diophantine approximation attack, he must peel off the outmost shuffles (5) and
(6). We will show that this is also a difficult task.
We also point out that Shamir’s attack [36] on the basic Merkle–Hellman cryptosystem [1] does not apply to our

cryptosystem, either. This is because the basic Merkle–Hellman cryptosystem is constructed by using a super-increasing
knapsack sequence and a size condition, while the public cargo vector of the proposed cryptosystem is not constructed
from a super-increasing knapsack sequence.

6.4. Orthogonal lattice attack

Another powerful key-recovery attack on knapsack cryptosystem is orthogonal lattice attack [21]. The crucial observation
is that the attacked cryptosystem uses smooth numbers in the secret cargo vector. That is, the entries of the secret cargo
vector only have small factors. The proposed cryptosystem uses two cargo vectors A and Bwith some special structures, that
is, the entries of A and B only have small factors. However, we should note that the cargo vectors A and B are scrambled by

a matrix C . After the multiplication,
(
Â, B̂

)T
= C (A, B)T , it is highly impossible that all the entries of Â and B̂ still only have

small factors. Hence, the orthogonal lattice attack seems infeasible.

6.5. Known N attack

We assume that the exact value of N is known by the attacker. It is straightforward for the attacker to search for
v−1 mod N and then factor N to recover the trapdoor information. We note that anyone can do exhaustively search for
the matrix C . According to Algorithm 2, the only distinction between the generated ai, bi and a random integer with the
same binary length is: when i is small enough, the generated ai, bi just contain small prime factors, while a random integer
may not be. However, after the two shuffles (5) and (6), the generated vector F will be indistinguishable from a randomly
chosen n-dimensional vectors over ZN . Hence, the attacker will learn little information about ai and bi from the public cargo
vector F and without factoring N . In fact the best way for the attacker to retrieve the trapdoor seems to factor N at first and
then recover the secret vectors A and B.
However, we show that the modulus N = pq must be kept secret. Otherwise, the attacker can factor N = pq and then

break the system. Note that |N|2 = |2252n260.86n−1|2 ≈ 616 bits when n = 100. Hence, it may not be difficult enough for
the attacker to factor the modulus N .

6.6. Known p and q attack

Now we consider such a scenario that the attacker has factorized the modulus N = pq. If we denote vp and vq as the
remainder of vmodulo p and q, v−1p and v

−1
q for the inverse of vp (mod p) and vq (mod q) respectively, and set fip = fi(mod p),

fiq = fi(mod q), (6) modulo p and q result in

fip ≡ vpâi(mod p), fiq ≡ vqb̂i(mod q).

The attacker can easily compute fip and fiq. If he recovers v−1p and v
−1
q , he also recovers Â and B̂, âi ≡ v

−1
p fip(mod p), b̂i ≡

v−1q fiq(mod q).
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Without loss of generality, we let

v−1p fip − lip = âi, i = 1, . . . , n. (14)

Divide both sides of (14) by pv−1p , and we obtain

fip
p
−
li
v−1p
=

âi
pv−1p

(15)

Note that p ≈ 225
∑n
j=1 âj ≈ 225nâi. So we have,∣∣∣∣ fipp − li

v−1p

∣∣∣∣ ≈ âi
225nâiv−1p

≈
1

225nv−1p
.

We can claim that {li/v−1p } is a set of fractions with a common and relatively small denominator v
−1
p < p approximating

the set of fractions {fip/p}. Or more formally, we can assume that these fractions {li/v−1p } are the simultaneous Diophantine
approximations of the fractions {fip/p}. If there is an efficient algorithm for solving the problem, the attacker can retrieve

the secret vector Â =
(
â1, . . . , ân

)
. Using a similar method, he also can recover the vector B̂ =

(
b̂1, . . . , b̂n

)
.

If Â and B̂ are recovered, anyone can do exhaustively search for C−1 in that the entries of C−1 are bounded byO(1). Hence,

one can recover the secret cargo vectors A and B, (A, B)T = C−1
(
Â, B̂

)T
. So the gcd’s ci and di are also obtained. The attacker

obtains all the secret keys.

6.7. A word of caution

The proposed cryptosystem does not match any provable security objectives. Hence, it cannot be used directly in real
life practice. As a public-key cryptographic primitive, the proposed cryptosystem needs further studies. We encourage the
reader to examine the security of the proposed cryptosystem, and hope that some paddings can bemade to the cryptosystem
to make it satisfy some provable security goals if possible.

7. Conclusions

We proposed an easy quadratic knapsack problem and constructed a new knapsack cryptosystem. The cryptosystem
enjoys a high knapsack density by adding some redundant information to the plaintext space, and thus it is secure against
the low-density subset-sum attack. We also discussed other attacks such as the brute-force attacks and the simultaneous
Diophantine approximation attacks. None of them seems to compromise the proposed cryptosystem. However, we failed to
achieve any provable security goals. It may be interesting for further studies.
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