1,090 research outputs found

    Optimal design of a 2-DOF pick-and-place parallel robot using dynamic performance indices and angular constraints

    Get PDF
    This paper presents an approach for the optimal design of a 2-DOF translational pick-and-place parallel robot. By taking account of the normalized inertial and centrifugal/Coriolis torques of a single actuated joint, two global dynamic performance indices are proposed for minimization. The pressure angles within a limb and between two limbs are considered as the kinematic constraints to prevent direct and indirect singularities. These considerations together form a multi-objective optimization problem that can then be solved by the modified goal attainment method. A numerical example is discussed. A number of robots designed by this approach have been integrated into production lines for carton packing in the pharmaceutical industry

    Optimal design of a 2-DOF pick-and-place parallel robot using dynamic performance indices and angular constraints

    Get PDF
    This paper presents an approach for the optimal design of a 2-DOF translational pick-and-place parallel robot. By taking account of the normalized inertial and centrifugal/Coriolis torques of a single actuated joint, two global dynamic performance indices are proposed for minimization. The pressure angles within a limb and between two limbs are considered as the kinematic constraints to prevent direct and indirect singularities. These considerations together form a multi-objective optimization problem that can then be solved by the modified goal attainment method. A numerical example is discussed. A number of robots designed by this approach have been integrated into production lines for carton packing in the pharmaceutical industry

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    A Novel 4-DOF Parallel Manipulator H4

    Get PDF

    Development of a Prototype Robot Manipulator for Industrial Pick-and-Place Operations

    Get PDF
    In the industry today, continuous attempts to realize optimal efficiency and increased productivity have spawned much progress in the use of intelligent automated devices and machines to perform various operations and tasks. The thrust of this work is to present the development of a three-degree-of-freedom revolute robot manipulator amenable to pick-and-place operations in the industry. Appropriate kinematic equations of the manipulator are obtained, and then used to develop algorithms for locating predetermined positions of a small object in a customized workspace. An Arduino-based controller circuit is built to implement the algorithms, and servomotors are used to carry out independent joint control of the manipulator. The positions of the object are identified with the aid of light-dependent resistors (LDR). Besides, in order to aid easy fabrication of links and overall system assembly, a 3D model of the manipulator is designed. The results of the work, showing effective and satisfactory operation of the manipulator, are presented

    On the design of multi-platform parallel mechanisms

    Get PDF
    Parallel mechanisms have been examined in more and more detail over the past two decades. Parallel mechanisms are essentially the same design layout, a base, multiple legs/limbs, and a moving platform with a single end-effector to allow the mechanism to complete its desired function. Recently, several research groups have begun looking into multiple-platform parallel mechanisms and/or multiple end-effectors for parallel mechanisms. The reason for the research in this new form of parallel mechanism stems from multiple sources, such as applications that would require multiple handling points being accessed simultaneously, a more controlled gripper motion by having the jaws of the gripper being attached at different platforms, or to increasing the workload of the mechanism. The aim of the thesis is to modify the design process of parallel mechanisms so that it will support the development of a new parallel mechanism with multiple platforms capable of moving relative to each other in at least 1-DOF and to analyse the improvements made on the traditional single platform mechanism through a comparison of the power requirements for each mechanism. Throughout the thesis, a modified approach to the type synthesis of a parallel mechanism with multiple moving platforms is proposed and used to create several case study mechanisms. Additionally, this thesis presents a new series of methods for determining the workspace, inverse kinematic and dynamic models, and the integration of these systems into the design of a control system. All methods are vetted through case studies where they are judged based on the results gained from existing published data. Lastly, the concepts in this thesis are combined to produce a physical multi-platform parallel mechanism case study with the process being developed at each stage. Finally, a series of proposed topics of future research are listed along with the limitations and contributions of this work

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein
    corecore