On the design of multi-platform parallel mechanisms

Abstract

Parallel mechanisms have been examined in more and more detail over the past two decades. Parallel mechanisms are essentially the same design layout, a base, multiple legs/limbs, and a moving platform with a single end-effector to allow the mechanism to complete its desired function. Recently, several research groups have begun looking into multiple-platform parallel mechanisms and/or multiple end-effectors for parallel mechanisms. The reason for the research in this new form of parallel mechanism stems from multiple sources, such as applications that would require multiple handling points being accessed simultaneously, a more controlled gripper motion by having the jaws of the gripper being attached at different platforms, or to increasing the workload of the mechanism. The aim of the thesis is to modify the design process of parallel mechanisms so that it will support the development of a new parallel mechanism with multiple platforms capable of moving relative to each other in at least 1-DOF and to analyse the improvements made on the traditional single platform mechanism through a comparison of the power requirements for each mechanism. Throughout the thesis, a modified approach to the type synthesis of a parallel mechanism with multiple moving platforms is proposed and used to create several case study mechanisms. Additionally, this thesis presents a new series of methods for determining the workspace, inverse kinematic and dynamic models, and the integration of these systems into the design of a control system. All methods are vetted through case studies where they are judged based on the results gained from existing published data. Lastly, the concepts in this thesis are combined to produce a physical multi-platform parallel mechanism case study with the process being developed at each stage. Finally, a series of proposed topics of future research are listed along with the limitations and contributions of this work

    Similar works