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ABSTRACT 
Parallel mechanisms have been examined in more and more detail over the past two 

decades. Parallel mechanisms are essentially the same design layout, a base, multiple 

legs/limbs, and a moving platform with a single end-effector to allow the mechanism to 

complete its desired function.  

Recently, several research groups have begun looking into multiple-platform parallel 

mechanisms and/or multiple end-effectors for parallel mechanisms. The reason for the 

research in this new form of parallel mechanism stems from multiple sources, such as 

applications that would require multiple handling points being accessed simultaneously, 

a more controlled gripper motion by having the jaws of the gripper being attached at 

different platforms, or to increasing the workload of the mechanism.  

The aim of the thesis is to modify the design process of parallel mechanisms so that it 

will support the development of a new parallel mechanism with multiple platforms 

capable of moving relative to each other in at least 1-DOF and to analyse the 

improvements made on the traditional single platform mechanism through a comparison 

of the power requirements for each mechanism.  

Throughout the thesis, a modified approach to the type synthesis of a parallel mechanism 

with multiple moving platforms is proposed and used to create several case study 

mechanisms. Additionally, this thesis presents a new series of methods for determining 

the workspace, inverse kinematic and dynamic models, and the integration of these 

systems into the design of a control system. All methods are vetted through case studies 

where they are judged based on the results gained from existing published data. 

Lastly, the concepts in this thesis are combined to produce a physical multi-platform 

parallel mechanism case study with the process being developed at each stage. Finally, a 

series of proposed topics of future research are listed along with the limitations and 

contributions of this work. 
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Chapter 1 Introduction 
 

When investigating rigid-body robotics, there are typically two basic categories of 

mechanism that are researched, these are serial and parallel mechanisms. Serial 

mechanisms are constructed by having a base for the mechanism connected to an end-

effector by a single kinematic chain/limb; whereas parallel mechanisms are typically 

constructed with the base and end-effector/moving platform being connected by two or 

more kinematic chains; this chapter will detail several types of the latter in the form of a 

literature review. This is then followed by a brief review of the primary form of 

specialised mathematics used in the development of parallel mechanisms theory as well 

as several technologies to be utilised as part of the work covered in this thesis. 

1.1 Parallel Mechanisms  

The most common form of robotic mechanisms used in industry is that of a serial robot. 

A serial robot is constructed from a series of 𝑛 links connected together by (𝑛 − 1) joints. 

All the joints are typically independent and therefore form an open-loop system where 

each joint must be actuated in order to control its motion. The most common type of serial 

mechanism is designed with the human arm as a blueprint, usually consisting of a 

shoulder, elbow, and wrist design with the shoulder being attached to the base of the robot 

and the wrist being connected to the end-effector. 

The SCARA Robot (figure 1.1) is known for representing the form of a simplified human 

arm, consisting of joints and actuators allowing for the mechanism to move its end-

effector along the x-, y- and z-axes in a translational motion as well as being able to rotate 

the end-effector about its vertical z-axis. These types of motion, known as Schöenflies 

motion, are typically the desired motion types of a mechanism used in the pick-and-place 

industry.  

 

Figure 1.1: 4-degree of freedom (DOF) (3T-1R) SCARA Robot 

Unlike a serial robot, a parallel robot is described as a robot made up of two or more 

kinematic chains or links beginning either from the same or different origins but leading 

to a single shared end-effector [1.1-1.3] producing a closed-loop system. In a parallel 

robot, the joints on or close to the base plate are actuated on each kinematic link; this 

reduces the overall moving mass of the robot and allows lower torque motors to be used 

to drive the robot during its operation. This concept was developed from a universal tyre 

testing machine invented in the 1950s [1.4] into several designs including well-known 
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robots such as the Delta, Hexa, H4, and Agile Eye mechanisms [1.5] and is still used 

today in architecture types; each of which have their own operating method and achieve 

their design goals in various ways.  

Parallel and serial robots each have their own advantages over the other. Serial robots 

have a large workspace and are relatively cheap to produce; they also mimic nature rather 

well in the sense that a serial robot arm can easily be designed to represent a human arm 

or leg allowing for a wide variety of task and applications potentially dangerous for 

humans to attempt themselves. Parallel robots have a much smaller workspace but can 

operate at incredibly high speeds and can perform rapid accelerations during operation; 

they also have the ability to lift much larger masses due to the increased number of limbs 

sharing the load [1.2][1.6]. Parallel robots also have a much lower moving mass than their 

serial counterparts do as the actuators tend to be fixed on the mechanism base or cage. 

They are also much easier to model and simulate resulting in faster computations for use 

in trajectory planning during operation [1.2]. Parallel robots are also capable of very high 

precision when handling objects or moving around a load that requires accurate motion, 

i.e. the precise measurements of an object or structure [1.7] [1.8]. Due to these advantages 

over serial robots, parallel robots are becoming increasingly more likely to be found in 

factories performing pick-and-place tasks which would normally require a large work 

force to accomplish; examples of this would be the sorting of end products into shipping 

boxes and the movement of products from one conveyor belt to another in a production 

line. 

The current procedure for developing a new parallel mechanism starts with the 

determination of what the mechanism will be doing, what physical and environmental 

limitations will it be expected to operate within and any marketing, storage and sales 

requirements if the mechanism is to be commercialised. These factors are used to produce 

a product design specification, which in turn is used to outline the desired mechanism’s 

functionality. While there are many variants on the design process of parallel 

mechanisms, the procedure is usually constructed as shown in the flow chart detailed in 

figure 1.2. 

As can be seen in figure 1.2, the procedure determines the desired limb configuration 

using type synthesis first before developing the inverse kinematic model (IKM), the 

equations of which dictate how the mechanism moves from one location to another. This 

is then used to produce the workspace of the mechanism using theorised link lengths and 

limiting the motion of the joints to a range that should avoid singularities from occurring. 

Once the workspace of the desired mechanism is determined, a dynamic and static 

analysis of the mechanism can be performed by calculating the mass of the joints, links 

and end-effector in order to determine the forces or torques required to actuate the 

mechanism. It is usual at this stage that a CAD model of the mechanism is developed to 

aid in the development of the static analysis of the system through finite element analysis 

(FEA) software that determines if the mechanism will remain ridged and unbending 

during the mechanism’s operational life cycle. This process relies heavily on the designer 

having an in depth knowledge of high end mathematics such as screw theory, complex 

geometry and machine dynamics theory in order to fully develop the desired mechanism. 

Additionally, the design of the mechanism is typically checked at the fabrication of a 
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prototype stage that can potentially result in a long delay in the development process in 

the event that an issue is found. 

 

Figure 1.2: Parallel mechanism design process flow chart. 

1.2 State of the Art Parallel Mechanisms 

In 2001 Y. Li and G.M. Bone asked the question, "Are parallel manipulators more energy 

efficient than their serial counterparts?" [1.9]. In order to investigate this, the pair took a 

3-DOF serial robot arm constructed with a rotation/revolute (𝑅) joint aligned along each 
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of the world axes (�̅�𝑧�̅�𝑥�̅�𝑥) and compared its energy efficiency to that of a 3-DOF 

parallel robot similar to the Delta robot. The two were compared by the efficiency of the 

number of motors on each robot (three DC motors for each) and the amount of power 

consumed during the motion of each robot from its start point to a designated end location 

using the inverse kinematics of each robot. The average absolute power consumption for 

the robots were calculated using the equation [1.9]: 

𝑃𝑎 = ∑
1

𝑇
∫ |𝑃𝑒𝑙𝑒𝑐𝑡|𝑑𝑡

Γ

0
3
𝑛=1                                                       (1.1) 

where 𝑛 is the motor number, 𝑇 is the consumption period (how long the motor is running 

for), 𝑃𝑒𝑙𝑒𝑐𝑡 is the instantaneous motor power usage and 𝛤 is the motor torque equation for 

each motor. 

From their calculations they discovered that on average, parallel manipulators consumed 

only 26% [1.9] of the energy consumed by their serial counterparts. This revealed that 

when a task that can be performed effectively by either a parallel or a serial robot with an 

equal number of DOF, the parallel robot is the more economical and environmentally 

friendly option, providing that the parallel robot has been designed with efficiency in 

mind.  

1.2.1 Conventional parallel mechanisms 

A conventional parallel mechanism follows the design criteria of having a single moving 

platform attached to a single base platform by two or more kinematic chains or limbs. 

Several types of conventional parallel mechanisms are given below. 

1.2.1.1 Gough-Stewart platform 

During the late 1950s, V. E. Gough was researching methods of improving automotive 

stability mainly by looking at tyres which lead to him proposing a universal tyre testing 

machine which consisted of a platform (figure 1.3) capable of rotating about three axes 

to test tyre wear on different inclined surfaces, i.e. going uphill, downhill or round a 

corner [1.4]. 

Although the Gough platform was operational by the mid-1950s the platform is more 

recognisable as the Stewart platform due to a six DOF parallel robot platform that was 

proposed by D. Stewart in 1965 [1.10]. Stewart developed his platform to be used as an 

aircraft simulator due to its ability to manoeuvre like an aircraft in flight, being able to 

role, pitch and yaw about the x-, y- and z-axes and simulate turbulence by rapid oscillating 

motion along the vertical axis. This was later adapted to become a robot wrist and a tendon 

actuated parallel robot [1.7] [1.10].  

The Stewart platform was made up of a moving platform at the top of the manipulator 

connected to its base, usually in the form of feet or a plate, secured to the ground, using 

six limbs each with a linear actuator, also known as a prismatic (𝑃) joint, part way up 

each limb (figure 1.4) [1.10][1.11].  

 



5 
 

 

Figure 1.3: Photograph of the Gough platform [1.4]. 

 

Figure 1.4: Stewart Platform [1.12]  

The limbs are attached to the base and moving platform by either spherical (𝑆) or 

universal (𝑈) joints which are limited to a certain rotation on each axis to maintain rigidity 

[1.11]. The method of moving the plate revolves around extending one or more of the 𝑃 

joints while contracting others to allow the plate to rotate or translate about the x-, y- and 

z-axes. This design did mean that the length of an individual limb could not be modified 

by its P joint without affecting the others, which allowed for a smoother motion during 

operation [1.11]. 
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1.2.1.2 Delta family architecture 

In 1988, Clavel proposed a parallel manipulator, which he called the Delta robot, that 

would make use of three spatial translational DOFs [1.3] [1.6]. This robot became one of 

the most recognisable parallel manipulators, moving from theoretical studies to being 

used in industry for high speed handling applications such as pick-and-place operation 

and delicate procedures during surgery [1.6][1.13]. 

The Delta architecture designs are based around a set of kinematic chains/limbs extending 

from a base platform at either the top or bottom of a robot to an end-effector [1.1]. These 

chains are usually grouped in sets of three (Delta robot), four (H4 and I4) or six (Hexa 

robot) and allow the robot to manoeuvre the end-effector/payload combination along the 

x-, y- and z-axes making a fully parallel 3-DOF robot such as shown in figure 1.5 [1.14]. 

 

Figure 1.5: Delta robot [1.15] 

Typically the individual links are made up of either an actuated 𝑅 joint attached to a non-

actuated 𝑈, 𝑈, 𝑅 (�̅�𝑈𝑈𝑅) configuration limb (figure 1.6a) where �̅� is an actuated 𝑅 joint; 

or an actuated 𝑅 joint attached to a non-actuated double 𝑆𝑆 link finishing with an 𝑅 joint 

(�̅�(𝑆𝑆)2𝑅) configuration as shown in figure 1.6b [1.14][1.16]. The latter configuration 

will be referred to as a “Delta limb” for the remainder of this thesis.  

The middle rods of the Delta limb, the links between the 𝑆 joints, keep a common plane 

meaning that the vectors joining the 𝑆 joints together are equal for each individual limb 

on the robot. Assuming that the rods are solid objects, i.e. they cannot be twisted or bent, 

the dual link creates an impossible rotation of the rods about the vectors that joins the two 

upper/lower 𝑆 joints together.  

 

Figure 1.6: a) �̅�𝑈𝑈𝑅 limb configuration; b) �̅�(𝑆𝑆)2𝑅 limb configuration (adapted from [1.16]). 

The Delta robot success was limited by its limited DOF and therefore cannot be used for 

pick-and-place operations where the part being moved requires a certain orientation to be 
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picked up or put down that would require at least a single rotational DOF [1.6]. To solve 

the problem of the standard Delta robot not having a rotation on the payload, a fourth 

limb is sometimes added between the base plate and the end-effector, in a configuration 

similar to the initial configuration of limb (𝑅𝑈𝑃𝑈𝑅) (figure 1.7). This enables the Delta 

robot to rotate the payload about the vertical axis allowing it to perform more complex 

tasks in pick-and-place operations [1.6]. 

 

Figure 1.7: CAD model of a 4-DOF Delta robot 

1.2.1.3 Hexa robot family 

In the early 1990s a new robot was proposed by Pierrot under the name Hexa robot due 

to its 6-DOF (three translational and three rotational). Pierrot used the Delta robot 

architecture as a basis on which to expand and include the much-needed rotation required 

of the robot [1.6].  

The focus of 6-DOF robots was to outperform humans and serial robots in industrial tasks 

such as laser cutting and insertion of objects into slots at odd angles. In order to produce 

the required results the proposed robots needed to be capable of fast motion and be able 

to utilise all 6-DOF. From these requirements, three main methods were produced [1.2]. 

The first was to attach a 3-DOF (all rotation) wrist to the base of a 3-DOF (all 

translational) Delta robot that would allow for the fast translation attributed to a Delta 

robot and to provide the needed DOF required for more complex tasks. However, this 

idea proved unsuitable, as the moving mass of the robot would have to be very large on 

the wrist and, due to the need of having power cables attached to the Delta robot's actuated 

joints, the range of allowable motion would also have been compromised [1.2].  

The second method was to take the original Delta robot and add an extra-actuated R joint 

at the top of each chain with its axis of rotation being perpendicular to that of the other 

actuated 𝑅 joint, i.e. �̅�𝑥�̅�𝑧(𝑆𝑆)2𝑅. A major drawback to this method was that the first 

actuated 𝑅 joint would have to carry the load of the second, which in turn greatly increases 

the torque required for rapid motion [1.2]. 
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The final method of creating a new 6-DOF parallel robot was the Hexa robot (figure 1.8) 

which took the layout of the Delta robot and replaced each of the �̅�(𝑆𝑆)2𝑅 limbs with 

two �̅�𝑈𝑆 limbs. The 𝑅 joint of the paired limbs are able to rotate in either the same 

direction as each other producing a translation of the moving platform or the pair can 

rotate in the opposite direction to each other resulting in a rotating motion. This meant 

that the Hexa robot was capable of operating in 6-DOF but in order to function properly 

it had two operating modes resulting in it being unable to perform both rotation and 

translation at the same time [1.2]. 

 

Figure 1.8: Hexa robot (adapted from [1.17]) 

Unfortunately, due to the general complexity of the robot caused by it requiring six 

motors, one for each limb, the inverse kinematic model (IKM) was overly complex 

causing large computational times for trajectory planning [1.6]. In addition to this fault, 

the cutting process for which the Hexa robot was designed only requires five controlled 

axes plus the rotation of the spindle [1.18] [1.6]. The Hexa robot also suffers from reduced 

mobility due to its small tilting angles and the incredibly high cost to manufacture each 

individual robot. All of these problems have resulted in the robot failing to reach the same 

levels of implementation and popularity in industry as the Delta robot [1.6]. 

1.2.1.4 Manta and Kanuk robots 

The linear Manta mechanism (figure 1.9) is a 4-DOF parallel robot (3 translations and 1 

rotation in the form of the moving platform tipping sideways) [1.19] and is made up of 

three main kinematic chains, the outer two limbs being made of two components: the 

actuator axis and the arm, which is a Delta limb of fixed length. For these kinematic 

chains, the Delta limbs are used to block two potential rotations about the vertical axis 

and the axis of the 𝑃 joints [1.19] [1.20]. The central arm transmits a rotational torque 

through a single bar linked to two 2-DOF 𝑈 joints and enables the tilting of the moving 

platform.  
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Figure 1.9: Linear Manta robot principle. [1.20] 

The Kanuk concept is closely related to the Manta. It constitutes four main kinematics 

chains that are also made of the same two components: the actuator axis and the fixed 

length arm (figure 1.10). The Kanuk linear version is powered by linear actuators such as 

the Manta. To make the construction of the robot as simple as possible, two 𝑃 joints are 

mounted to each rail, which can be made as long as required. 

 

Figure 1.10: Linear Kanuk robot [1.20] 

1.2.1.5 Orthoglide mechanism 

In 2000, a new parallel mechanism architecture was developed by Philippe Wenger and 

Damien Chablat in order to produce a high speed machine tool parallel mechanism that 

included a regular workspace, homogenous performance and a stable dynamic 

performance while being capable of operating through an all translational 3-DOF motion 

pattern [1.21-1.23]. The parallel mechanism is made of three kinematic chains, each 

constructed in a 𝑃𝑅𝑃𝑎𝑅 format (figure 1.11), where the P joint is the actuated joint of the 

mechanism, and 𝑃𝑎 represents a parallelogram joint that acts similarly to the 

parallelogram in the limb of a Delta robot, named the "Orthoglide" mechanism.  

The Orthoglide mechanism is particularly impressive in design as it is both without 

singular configuration within its viable workspace [1.24] [1.25] and is completely self-

collision free allowing the mechanism to be operated with no risk of destabilisation [1.24] 

[1.26].  
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Figure 1.11: Orthoglide mechanism [1.24] 

1.2.1.6 3-DOF 3-𝐶𝑅𝑅 translational parallel mechanism 

In [1.27] a 3-𝐶𝑅𝑅 all translational 3-DOF parallel manipulator is investigated for its 

inverse kinematic model and singularities. This mechanism is constructed out of three 

kinematic chains in the form of a cylindrical (𝐶) joint and two 𝑅 joints set perpendicular 

to the axis of the 𝐶 joint (figure 1.12). The unique characteristics of this mechanism is 

that it has a set of linear input-output equations.  

 

Figure 1.12: 3-𝐶𝑅𝑅 3-DOF all translational parallel mechanism [1.27]. 

The moving platform is unable to move when all actuated joints are locked in place. This 

prevents any uncertainty in the position of the moving platform for the controller also 

known as "uncertainty singularities". The mechanism is also mostly singularity free with 
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the only possible singularities occurring when the axes of all the 𝐶 and 𝑅 joints with a leg 

are coplanar. This configuration only occurs when the mechanism is at the boundary of 

its workspace, and therefore easily avoided. 

1.2.1.7 Quadrupteron mechanism 

The Quadrupteron mechanism is a four-limbed mechanism connecting to a singular point. 

The kinematic chains of the mechanism form a partially decoupled 1-𝐶𝑅𝑅-3-𝐶𝑅𝑅𝑅 4-

DOF parallel mechanism (figure 1.13) that produces three translational and one rotational 

DOF Schöenflies (SCARA) motions [1.28].  

 

Figure 1.13: Quadrupteron 4-DOF parallel mechanism kinematic chain layout [1.29]. 

The partially decoupled state of the parallel mechanism simplified the inverse kinematics 

and workspace analysis resulting in a more efficient control system, enabling the 

mechanism to operate at higher speeds than a fully coupled parallel mechanism. 

1.2.2 Generalised parallel mechanism 

In the development of both parallel and serial mechanisms, the process is the same, 

beginning with a simple architecture and then developing to become more complex. In 

Xianwen Kong's MSc dissertation (in Chinese) published in 1990 [1.30], a series of 

mechanisms are shown to illustrate this process. With the initial mechanism being a 

simple serial mechanism that extends from a base to an end-effector, this mechanism is 

then developed to position the end-effector halfway along and attaching both ends to the 

base, thus turning it into a parallel mechanism. The mechanism is then developed to a 

more complicated mechanism by adding an additional kinematic chain. The next two 

stages of this development incorporate additional kinematic chains and moving platforms 

in order to produce a generalised approach to the mechanism.  

An example of a generalised mechanism is displayed in [1.31] where a mechanism is 

given a tree branch structure replacing the rigid design structure by having a base and 

moving platform connected by one or more kinematic chains (figure 1.14).  
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Another example of a generalised mechanism is displayed in [1.32], in which the parallel 

mechanism is designed so as not be considered as a single rigid link between the base of 

the mechanism and its moving platform. This mechanism shown in figure 1.15 was 

inspired by the walking motion of a six legged insect in which the body of the insect is 

capable of rearranging itself slightly to allow for more fluidic motion when walking. 

 

Figure 1.14: 13-DOF Parallel mechanism with tree like kinematic chains, a base, and moving 

platform [1.31]. 

 

Figure 1.15: Parallel mechanism inspired by the walking gait of a 6-legged animal or insect 

[1.32]. 

The last generalised parallel mechanism to be detailed in this section looks at a parallel 

mechanism with a reconfigurable moving platform [1.33]. This mechanism is designed 

to allow the kinematic chains of the mechanism to reposition the two end-effectors in 

order to achieve a given task. This type of reconfigurable parallel mechanism can be 

applied in numerous industries including search and rescue, pick-and-place operations 

and the oil industry where the mechanism manoeuvres through pipes that vary in size. 
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1.2.2.1 H4 robot family 

For most applications robots with 3-DOF, such as the Delta robot, have too few DOF and 

robots with 6, like the Hexa robot, have too many and are too complex for pick-and-place 

applications, whereas 4-DOF (3 translational, 1 rotational) is generally accepted as the 

minimum and preferred number of DOF to produce a high speed pick-and-place motion 

[1.18] [1.34]. Similar to the Delta robot design, the H4 design is based around a set of 

four links stemming from a either a shared base plate or individual runners located along 

the framework of the robot [1.18] [1.34]. The four chains are typically made in the form 

of an actuated R or P joint followed by a dual link of 𝑈𝑆 joints that are then coupled to 

one of the other chains via the moving platform where another R joint connects the two 

chains at the end-effector to form the full robot [1.34] as shown in figure 1.16. 

 

Figure 1.16: H4 joint map [1.34] 

In 2003, Pierrot proposed a new form of the H4 robot also called "H4" as the term H4 

was more the name of the architecture rather than the name of a single robot, which robot 

was to have an overhaul to its trajectory-tracking accuracy by using a dynamic control 

system originally proposed by Pierrot with the original H4 concept [1.6] 

The basis of the new H4 design was to have the U joints replaced by S joints but still 

using the same concept for the rest of the limbs [1.35] [1.36] and the moving platform by 

having it made from two lateral bars and one centre bar connected by two R joints, one R 

joint operates a large gear which helps rotate the centre section of the moving platform 

allowing the end-effector to rotate about the vertical axis [1.36] [1.37]. 

1.2.2.2 I4 robot  

The I4 robot was conceived to investigate the limitations of the H4 robots moving 

platform as the 𝑅𝑅𝑅 joint could become problematic as it sometimes caused the two 

sections of the moving platform to collide with each other. The I4 moving platform was 

designed to see if the problems could be averted by modifying the plate to be made from 

two lateral parts connected to a central section by two P joints [1.38] as shown in figure 

1.17. 
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Figure 1.17: I4 moving platform [1.38] 

The I4 architecture is based around the Delta/H4 architecture by having the actuated joints 

attached to the base of the robot in order to reduce the moving part mass of the robot. 

These joints are then attached to the same Delta limb model of two rods in parallel 

connected at each end by S joints (figure 1.6b). The I4 robot design proposed in [1.38] is 

constructed using actuated P joints which operate along two runners in parallel with each 

other; each joint is then connected to a Delta limb and then onto one of the end points at 

the moving platform as shown in figure 1.18a; the joint map for the I4 robot is shown in 

figure 1.18b.  

 

Figure 1.18: a) I4 robot build configuration [1.38]; b) I4 Joint map [1.38]. 

1.2.2.3 Par4 robot 

The Par4 robot is the latest member of the H4 architecture family. The Par4 robot is based 

upon the original H4 robot but is similar to the I4 robot; it has a modified moving platform 

and it has a unique modified base on which the axes of the rotation joints are at 90° to the 

next R joint (figure 1.19). 
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Figure 1.19: Par4 robot [1.39] 

The modified moving platform is made up of two main sections where the two of the 

robot's limbs attach to the moving platform via the S joints; these main sections are then 

connected by two connecting rods that are connected to the main part in between the 

individual limb's S joints (figure 1.20). This set up increases the stability of the moving 

platform’s rotation about the y-axis however; it also limits the rotation of the end-effector 

to ±45° . The moving platform makes use of an amplification system in the form of either 

gears or a pulley/belt system to add an extra ±180° to the y-axis rotation of the end-

effector [1.39]. This design for the moving platform eliminates the problem, usually 

found in 3-DOF Delta robots, that requires a telescopic limb to add a 4th DOF to the robot 

(see section 1.2.1.2). 

 

Figure 1.20: Moving platform design of the Par4 robot (adapted from [1.39]) 

The Par4 robot has been designed to respond to the shortcomings of both the H4 and I4 

robots, namely the I4's P joint being worn out during high acceleration motion and the 

H4's actuated joint locations causing numerous internal singularity configurations. 

1.2.3 Reconfigurable parallel mechanisms 

A reconfigurable parallel mechanism is defined as a mechanism that can change the 

configuration or operation of one or more of its kinematic chains or moving platform in 
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order to switch between operation modes. This section will therefore give details on this 

type of mechanism. 

1.2.3.1 DIRECTOR: disassembly-free reconfigurable parallel manipulator 

The DIRECTOR mechanism developed at Heriot-Watt University in 2012 is a 3-DOF 

(two translational, one rotational) multi-mode parallel mechanism, consisting of two 𝑃𝑅𝑈 

kinematic chains and one 𝑃𝑈𝑈 kinematic chain [1.40]. The limbs of the mechanism are 

arranged in a triangular format in which the two 𝑃𝑅𝑈 chains are located to the sides of 

the front face of the mechanism and the 𝑃𝑈𝑈 chain is located in the middle of the back 

face (figure 1.21).  

The mechanism has lockable joints, which change the rotational DOF from parallel to the 

plane of motion to perpendicular. This kind of mechanism design allows the user to 

perform multiple tasks with a single mechanism without having to pass one or more 

kinematic chains through singular configurations in order to switch between operation 

modes [1.40]. 

1.2.3.2 3-5R Parallel mechanism 

Another reconfigurable mechanism is the 3-𝑅𝑅𝑅𝑅𝑅 (3-5𝑅) parallel mechanism in which 

the links that connect the last R joint of each limb is connected to each other via another 

R joint (figure 1.22). 

This moving platform design is often referred to as a Bricard-linkage [1.41] and, due to 

the arrangement of the six R joints across the moving platform, the mechanism is capable 

of being arranged into key orientations that allow for several operation modes to be 

realised (see Fig. 2 [1.41]). This is due to the arrangement of each of the limb's R joints 

in which the first R joint of each chain is aligned to meet at a single point; the fifth joint 

in each chain is coaxial with the axis of one of the other moving platform R joints. In 

order to switch between operation modes, one of the R joints on the Bricard-linkage is 

locked when the mechanism is in a certain configuration. This causes it to operate in one 

of its 3-DOF operational modes: a 3-DOF spatial translation motion, a spherical motion, 

zero torsion motion and a planar motion. 
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Figure 1.21: DIRECTOR mechanism (section view of mechanism to display kinematic limbs). 

 

Figure 1.22: 3-5R parallel mechanism. 

 

1.3 Screw Theory 

Screw theory looks at joint and link motion and constraints in the form of two separate 

types: twists and wrenches. A spatial displacement of a rigid body by means of a rotation 

and translation about a line (along the link) or axis is also known as “Screw 

Displacement” [1.42].  
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The spatial displacement is made up of six parameters: three Euler angles, which define 

the rotation about the x-, y- and z-axes, and a three dimensional translational vector along 

the x, y and z axes (figure 1.23). 

 

Figure 1.23: CAD model representation of a Screw. 

A screw is typically represented by two 3-dimensional vectors [1.43]: 

 $ = [
�̂�

𝑠𝑂
]                                                             (1.2) 

where �̂� is the unit vector about the axis and 𝑠𝑂 is the moment about a fixed point O when 

�̂� acts upon the rigid body.  

The moment about the fixed point is defined by the equation [1.42] [1.44]: 

𝑠𝑂 = �̂� × 𝑟𝑂 + ℎ�̂�                                                 (1.3) 

where ℎ is the pitch of the screw, 𝑟𝑂 is the vector of the screw motion and × is the cross 

product. 

If the pitch of the screw is infinite then the screw is reduced to: 

$ = [
�̂� ℎ⁄

(�̂� × 𝑟𝑂) ℎ⁄ + �̂�
]                                                (1.4) 

$ = [
�̂� ∞⁄

(�̂� × 𝑟𝑂) ∞⁄ + �̂�
]                                                (1.5) 

 

 And becomes a prismatic pair of vectors and mimics a 𝑃 joint [1.43-1.46]: 

$ = [
0
�̂�

]                                                        (1.6) 

Likewise if the pitch of the screw is equal to zero the screw is reduced to a rotation pair 

and can be defined as pure rotation [1.43-1.45]: 

$ = [
�̂�

�̂� × 𝑟𝑂 + 0 × �̂�
]                                               (1.7) 

$ = [
�̂�

�̂� × 𝑟𝑂
]                                                        (1.8) 
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When investigating multiple screws, Lie algebra or motor algebra is used as it is 

sometimes known to calculate the arithmetic of the screws as follows [1.44] [1.47]: 

 Addition 

$1 + $2 = [
�̂�1 + �̂�2

𝑠𝑂1
+ 𝑠𝑂2

]                                            (1.9) 

 Multiplication by scalar 

𝜀$ = [
𝜀�̂�

𝜀𝑠𝑂
]                                                    (1.10) 

 Dual motor product 

[$1     $2] = [
�̂�1 × �̂�2

�̂�1 × 𝑠𝑂2
− �̂�2 × 𝑠𝑂1

]                                (1.11) 

In instantaneous kinematics and statics of a parallel robot, the spatial motion of a rigid 

body is a screw motion about a line called the “screw axis”.  The rotation and translation 

of the screw motion is coupled by the scalar quantity 𝑝 (the twist pitch) [1.48].  The screw 

in this form of kinematics is referred to as a “twist” and is represented by a pair of 3-

dimensional vectors: 

 The linear velocity (𝑉) 

 The angular velocity (Ω) 

The twist can be written as: 

�̂� = (Ω|𝑉)                                                    (1.12) 

where the linear and angular velocities are: 

Ω = 𝜔𝑠                                             (1.13) 

V = 𝑐 × 𝜔𝑠 + 𝑣𝑠                                                 (1.14) 

where 𝑠 is the direction of the twist, 𝑐 is a point on the screw axis, 𝜔 is a scalar value of 

the magnitude of the twists angular velocity about the screw axis and 𝑣 is the magnitude 

of the twists partial linear velocity along the screw axis. 

The pitch of a twist is defined as the ratio of the linear and angular velocity and, as stated 

above, two special cases can be found in which a pure rotation or translation can be found 

when the twist pitch, 𝜀, is either zero or infinite respectively [1.48]. 

In the static analysis of a parallel robot, a wrench consists of two vectors representing the 

moment 𝑀 acting on a rigid body and the force 𝐹 being applied to the body.  The force 

applied to the rigid body is calculated using the equation [1.48]: 

𝐹 = 𝑓�̂�                                                       (1.15) 

where 𝑓 is a scalar magnitude of the force being applied along the screw axis and �̂� is the 

direction of the wrench axis  
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The moment acting on the rigid body can likewise be calculated by: 

𝑀 = 𝑟 × 𝑓�̂� + 𝑚�̂�                                             (1.16) 

where 𝑟 is a point on the wrench axis and 𝑚 is the magnitude of the partial moment acting 

upon the screw axis. 

The wrench can then be written as: 

�̂� = (𝐹|𝑀) = (𝑓�̂� |  𝑟 × 𝑓�̂� + 𝑚�̂�)                              (1.17) 

Just as with the screw and twist, the wrench has the same two special cases where the 

wrench pitch, is represented as:  

𝑞 =
𝑓

𝑚
                                                       (1.18) 

Therefore it can be either a pure force or a moment when 𝑞 is equal to either zero or 

infinite respectively [1.48] [1.49]. 

Screw theory is used typically for the study of instantaneous motion in robotics.  The 

principle of reciprocal screws in screw theory is the interaction between two screws on 

the same mechanism.  Two screws are reciprocal to each other if they meet the following 

conditions [1.46] [1.49] [1.50]: 

{

No conditions                                                        if both screws pitches are infinite
cos λ = 0                                       if h1 or h2 is infinite
(h1 + h2) cos λ − r12 sin λ = 0   if h1 and h2 are finite

 

where λ is the angle between the screw axes, r12 is the distance between the screw axes 

and h𝑖 is the pitch of the 𝑖th screw. 

From this, we can see that:  

 two screws of infinite pitch, i.e. pure translation, are always reciprocal to each 

other; 

 if one screw has an infinite pitch and another has either a finite or zero pitch, i.e. 

pure rotation, they are only reciprocal if they are perpendicular to each other; 

 if both screws have finite or zero pitch they are only reciprocal if they are 

coplanar, i.e. they are on the same plane. 

For an 𝑛-system of screws where 𝑛 is the total number of screws in the system 

(0 ≤ 𝑛 ≤ 6), all of the screws which are reciprocal to the original screw system form 

their own (6 − 𝑛)-system of screws which can be obtained using the reciprocity 

conditions listed above [1.46]. 

The interaction of screws in a system has been shown to aid in the identification of 

singular configurations that cause static singularities [1.51].  This is done by investigating 

the planar pencil forces produced by the limbs of the mechanism, and how their reciprocal 

screw systems interact with each other concerning the overall order of the system; this is 

covered in detail in [1.50]. 
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1.4 Improvements in CAD Design 

Since the invention of 3D CAD modelling software in the 1970s designers have been 

increasing the rate and accuracy of their designs as the technology progressed from a 

program developed by Mathematics Application Group, Inc. for 3D nuclear radiation 

exposure analysis called “SynthaVision” [1.52] through the use of CAD programs which 

created 3D models from 2D drawings such as “I-DEAS” to modern packages such as 

“SolidWorks” and "Creo” (previously known as "Pro Engineer").  These modern 

programs use solid body extrusions to produce realistic, life like parts in a virtual 

environment so that designers can run various tests and simulations such as finite element 

analysis, motion studies and determine if new parts will fit into existing assemblies 

without the need to build a real world prototype which can be costly if the part does not 

behave in the manner expected or is not capable of being attached to a physical assembly.  

With the development of CAD software progressing in this manner, it has become 

increasingly easier to develop new architectures for parallel and serial mechanisms 

without the need of complex computation as the virtual mechanism should give the 

designer a realistic idea as to how the mechanism will move and interact within its 

environment and with itself.  

1.5 Graphical Programming Software 

Graphical programming software uses specially designed blocks on a graphical 

workspace to produce a computer code based on the type of blocks used and the method 

in which they are connected.  Each block in this type of programming software adds to 

the program a background subroutine code that is compiled by the computer when the 

operation is run.  The blocks are given inputs and output variables by the code, which can 

be wired up to other blocks in order to create the main program.  Several examples of this 

type of programming software exist, such as the Matlab add-on software Simulink [1.53], 

the new Maplesoft software MapleSim [1.54] and National Instruments control software 

Labview [1.55].   

The types of programming blocks vary between software but the main concept behind 

them remains the same i.e. connect blocks to form a complete code.  In the Simulink 

software the type of connection between all blocks is determined by the software and is 

represented by using a simple grey line (figure 1.24).   

 

Figure 1.24: Example of Simulink code [1.56]. 
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However, in MapleSim and Labview software, the types of connections between blocks 

are based on the type of output that is expected by the input/output ports of the different 

blocks.  In the MapleSim software, the input/output port types are colour coded in order 

to inform the user as to what type of block and connection is expected in order to wire up 

the block to the rest of the software.  The types of connections are listed below [1.57] and 

an example of these is shown in figure 1.25:  

 grey connections for multibody and 1D rotational component connections; 

 red connections for hydraulic and thermal component connections; 

 blue connections for numerical data connections; 

 green connections for 1D translational component connections; 

 orange connections for magnetic component connections; 

 purple connection for electronic component connections. 

The Labview software in comparison uses the colour of its connections in order to display 

the type of data being transferred between blocks.  The types of connections are detailed 

below with an example code displayed in figure 1.26: 

 blue connections indicate integer data transfer; 

 orange connections indicate float data transfer; 

 pink connections indicate string data transfer; 

 green connections indicate Boolean data transfer; 

 yellow connections indicate error data transfer. 

with thickset connecting wires representing array data of the type indicated by the 

connection's colour. 
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Figure 1.25: Example of MapleSim code [1.58]. 
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Figure 1.26: Example of Labview code [1.59]. 
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1.6 Aim, Research Questions and Objectives of the Research 

In the scope of research being carried out on parallel mechanisms, there has been a distinct 

lack of research being done on parallel mechanisms with multiple moving 

platforms.  These mechanisms have the potential to be more energy efficient in terms of 

work done when compared to a parallel mechanism with only one moving platform.  This 

statement can be envisioned by the example of a person moving bags of groceries from a 

car to a house.  In this case, the person would carry multiple bags using both hands in 

order to ensure the work was done faster and more efficiently, as the increase in work 

done during the single trip would typically be less than the work done performing the 

procedure multiple times.   

The aim of this study is to modify and enhance key stages of the current design process 

for such devices so that it will support the rapid development of energy efficient, cost 

effective parallel mechanisms.  To achieve this goal, four research questions were defined 

revolving around the development of a parallel mechanism using the current process and 

how this can either be modified or improved upon.  These were as follows: 

1. Can current type synthesis methods be modified to incorporate the design of 

multi-platform parallel mechanisms using multiple virtual chains? 

2. Can virtual chains support a more intuitive graphical-based approach to the 

conceptualisation, evaluation and definition of the workspace, inverse kinematic 

and dynamic analyses for parallel mechanisms? 

3. Can generic cost and energy efficiency models be developed for parallel 

mechanisms? 

4. How can a modified design process be evaluated and rigorously tested to address 

the proposed research aim? 

In order to answer these questions, the research objectives of this thesis are as follows: 

1. To investigate the design process of parallel mechanisms by systematically 

investigating a class of parallel mechanisms with multiple platforms in order to 

identify any potential improvements to the design process.   

2. To define the functionality of a parallel mechanism by applying virtual chains to 

analyse the mechanism’s workspace in CAD to produce a more visual 

representation of its limitations. 

3. To determine whether the constraints of the workspace of the parallel mechanism 

can be used with virtual chains to produce an inverse kinematic model 

subsequently used to: (i) develop an inverse dynamic model; (ii) apply it within 

the control system.   

4. To determine if it is possible to produce a method for evaluating the energy 

efficiency and cost of a parallel mechanism. 

5. To formalise the modification of the design process for parallel mechanisms and 

to test each modification through a series of comparative case studies and design 

a more complex mechanism through the proposed processes. 



26 
 

1.7 Outline of the Thesis 

In the second chapter of this thesis, the current method of type synthesis is reviewed with 

the current process involving the concept of virtual chains being used to represent the 

motion pattern of the mechanism being investigated.  This method is then extended in 

Chapter 3 to incorporate the use of type synthesis with a class of multiple platform 

mechanisms before being used to produce several concept designs of multi-platform 

mechanisms.  In Chapter 4 the concept of virtual chain will be extended upon to control 

mechanisms in a 3D CAD environment in order to produce the workspaces of several 

mechanisms.  In Chapter 5 the virtual chains concept is extended further still into 

controlling a mechanism in the mathematical modelling software MapleSim, which will 

be used to produce an inverse kinematic model of several mechanisms as well as 

producing a dynamic analysis of a mechanism.  Chapter 6 looks at the control element of 

robotics and how the inverse kinematic model produced in MapleSim can be utilised to 

control a parallel mechanism through a Labview VI.   Chapter 7 investigates producing a 

working initial prototype of a mechanism designed and controlled using the concepts laid 

out in the previous chapters.  Finally, in Chapter 8 the conclusions of the work will be 

presented along with the contributions of the work and a plan for further work to be done 

on the methodologies presented in this thesis. 
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Chapter 2 Virtual chain approach to the type synthesis of parallel 

mechanisms 
 

This chapter details the design process used to produce a parallel mechanism utilising a 

process called "Type Synthesis" which is well documented in the literature.  This process 

investigates the number of constraints and DOF required for a particular task and assigns 

potential limb configurations for the final design.  The virtual chain approach is one of 

the key approaches within type synthesis where the desired motion pattern of the 

mechanism is used to produce single-loop kinematic chains that both describe the motion 

of the desired mechanism but also contain the kinematic chain that will be used to 

construct a limb of the mechanism. 

2.1 Introduction to Type Synthesis 

The moving platform of a parallel mechanism with ℱ-DOF can have numerous types of 

motion depending on several factors.  An example of this is a 3-DOF mechanism, which 

can have the motion type of a Delta robot (all translational), a planar motion with a 

rotation, a spherical motion where all 3-DOF of rotation are about a central point or any 

other combination of 3-DOF motion.  This means that knowing only the number of DOF 

is insufficient to describe the motion of the mechanism.  Therefore, type synthesis is used 

to develop all the possible types of parallel mechanisms that have ℱ-DOF or a specific 

motion pattern, and then a concept mechanism design can be produced.   

Numerous published works [2.1-2.3] use type synthesis to produce parallel mechanisms 

for a specified number of DOF.  This method is based on the mobility criterion of the 

mechanism described by the general mobility criterion equation (2.1) or the independent 

constraint equation (2.2): 

ℱ = 𝑑(𝑛 − 𝑔 − 1) + ∑ 𝑓𝑗
𝑔
𝑗=1                                                  (2.1) 

where ℱ is the mobility or relative DOF of a kinematic chain, 𝑛 is the number of links 

including the base, 𝑔 is the number or joints, 𝑓𝑗 is the freedom of the j-th joint, and 𝑑 is 

the number of independent constraint equations within a loop. 

𝑓 =  ∑ 𝑓𝑗 − min ∑ 𝑑𝑖
𝑣
𝑖=1

𝑔
𝑗=1                                                  (2.2) 

where f is the number of degrees of freedom of the mechanism or kinematic chain, v is 

the number of independent loops in the mechanism, and 𝑑𝑖 is the number of independent 

constraints within loop 𝑖.  This form of type synthesis allows for the various forms of ℱ-

DOF parallel mechanisms to be generated [2.1] [2.4].  This approach is well suited for 

the production of mechanisms that satisfy the general mobility criterion (2.1) but it is not 

robust enough to determine parallel mechanisms that do not meet this criterion.  For these 

types of parallel mechanism, Kong and Gosselin [2.5] proposed a method of utilising 

virtual chains to act as the desired motion pattern for a mechanism and then performing 

type synthesis with both the virtual chain and a single kinematic chain of the mechanism 

forming a single-loop kinematic chain.   
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In this chapter, the method proposed in [2.5] for investigating the type synthesis for a 

specific classification of mechanisms by utilising virtual chains will be reviewed with the 

intention of expanding this method in future chapters. 

2.2 Virtual Chain Approach [2.1] 

In order to perform type synthesis on a parallel mechanism the desired motion of the 

mechanism should be established.  This is done to clarify the type of mechanism is being 

designed since the number of DOF, does not accurately describe its motion.  For example, 

the Delta Robot (figure 2.1a), the spherical parallel mechanism (figure 2.1b) and the 3-

𝑅𝑃𝑆 robot (figure 2.1c) all have 3DOF but different motion patterns.  The Delta robot has 

three translational DOF whereas the 3-𝑅𝑃𝑆 mechanism has one translational DOF and 

two rotational DOF about the horizontal axis.  The spherical parallel mechanism has three 

rotational DOF about a single point.   

 

Figure 2.1: a) Delta Robot [2.6]; b) Spherical parallel Mechanism [2.7]; c) 3-𝑅𝑃𝑆 robot [2.8]. 

The motion pattern or desired motion of a mechanism represents the required motion of 

the moving platform or end-effector.  One of the most common examples of a motion 

pattern in pick-and-place operations is the SCARA robot motion i.e. a three translational, 

one rotational 4-DOF motion pattern that allows the mechanism to manoeuvre around a 

production line and adjust the orientation of the end-effector in order to collect and place 

components.  
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2.2.1 Virtual chain 

A virtual chain is a representation of the motion capabilities of the moving platform/end-

effector of a mechanism.  A virtual chain can be thought of as a series of kinematic joints 

and links that extend from the base of the mechanism or some arbitrary point to its moving 

platform or end-effector that accurately replicates the required motion pattern.  It is 

generally taken as a rule that the most accurate and simplest representation of the motion 

pattern is selected as the virtual chain for the mechanism.  This can be seen when using 

the wrench system represented by the 𝑃𝑃𝑃 and 𝑃𝑅𝑅𝑅 virtual chains in figure 2.2, both 

of which represent a 3-𝜁∞-system when the axes of the 𝑅 joints are perpendicular to the 

axis of translation of the first 𝑃 joint in the 𝑃𝑅𝑅𝑅 chain.  Since both of these systems are 

suitable as a motion pattern, the simplest motion pattern for the proposed system is 

chosen, which in this case is the 𝑃𝑃𝑃 virtual chain. 

 

Figure 2.2: a) 𝑃𝑃𝑃 virtual chain; b) 𝑃𝑅𝑅𝑅 virtual chain. 

Virtual chains are produced in either serial or parallel versions.  A serial virtual chain is 

constructed as a single unbroken kinematic chain from the base of the mechanism to the 

moving platform or end-effector and represents the entire motion pattern of the 

mechanism.  Parallel virtual chains are a minimum of two kinematic chains that also start 

at the base and extend to the moving platform of the mechanism.   

2.2.2 Typical motion patterns of parallel mechanisms 

In this section, several typical virtual chains of several motion patterns will be presented. 

𝑃𝑃𝑃 virtual chain (figure 2.2a): The 𝑃𝑃𝑃 virtual chain can adjust the translational 

position along any axis of the moving platform of the mechanism, while forcing it to 

maintain its orientation to the base.  As the wrench system of this virtual chain is a 3-𝜁∞-

system, the type of parallel mechanism most suited to this virtual chain would be a 

translational 3-DOF parallel mechanism. 

𝐸 virtual chain (figure 2.3a): The 𝐸 virtual chain can adjust the translational position 

along the horizontal axes of a mechanism and rotate the system about the vertical axis.  

As the wrench system of this virtual chain is a 2-𝜁∞-1-𝜁0-system where the 𝜁∞ act along 

the horizontal plane and the 𝜁0 acts perpendicular to the axis of all 𝜀∞.  The type of parallel 

mechanism most suited is a planar 3-DOF mechanism.  
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𝑆 virtual chain (figure 2.3b): The 𝑆 virtual chain is capable of rotating the moving 

platform about the centre of the S joint but prevents the translation of the centre of the S 

joint along any direction.  The wrench system for this virtual chain is a 3-𝜁0-system where 

all 𝜁0 pass through the centre of the 𝑆 joint.  The type of parallel mechanisms most suited 

for this virtual chain would be spherical. 

The 𝑃𝑃𝑃𝑅 virtual chain (figure 2.3c): The 𝑃𝑃𝑃𝑅 virtual chain produces Schönflies 

motion, more commonly known as SCARA motion.  Schönflies motion is made up of 

three translational components as well as a single rotational component about one of the 

axes.  The wrench system of this virtual chain is a 2-𝜁∞-system in which all the 𝜁∞ are 

perpendicular to the axis of the 𝑅 joint.  The type of mechanism recommended for this 

virtual chain is a 3T1R parallel mechanism.   

 

Figure 2.3: a) 𝐸 virtual chain; b) 𝑆 virtual chain; c) 𝑃𝑃𝑃𝑅 virtual chain. 

The 𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑅 virtual chains are ideal for the types of mechanism found in pick-

and-place and as such will be utilised in later chapters. 

2.2.3 Type synthesis of parallel mechanisms 

The virtual chain method to carry out type synthesis is determined by investigating the 

motion pattern of a mechanism and a specified number of over (or redundant) constraints 

(Δ) present.  The reasoning behind this approach is that for many applications, a specific 

motion pattern is required for the parallel mechanism to complete its task and the number 

of over constraints aids the characterisation of the mechanisms mechanical properties.  
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For this approach, we need to know the connectivity between each link of the kinematic 

chain using the following equations (chapter 2 of [2.5]): 

∑ 𝑐𝑖 = 6 − 𝐶 + Δ = 6 −𝑚
𝑖=1 ℱ + Δ                                          (2.3) 

where 𝑐 is the connectivity (number of DOF) between two links, usually the base and 

moving platform for parallel mechanisms; 𝑚 is number of kinematic chains between the 

base and moving platform of the parallel mechanism not counting the virtual chain; 𝐶 is 

the twist system of a single-loop kinematic chain; ℱ is the mobility (total number of DOF) 

of the parallel mechanism; 𝑖 is the ith leg of the parallel mechanism.  We also need to 

determine the wrench of the system using the following equation: 

𝒲 = ∑ 𝒲𝑖𝑚
𝑖=1                                                               (2.4) 

where 𝒲 is the wrench system of the mechanism or kinematic chain. 

𝑓𝑖 = 6 − 𝑐𝑖                                                               (2.5) 

where 𝑓𝑖 is the number of DOF in the ith kinematic chain. 

During the type synthesis of the parallel mechanism being designed in order to produce a 

more generalized method, Δ can range from zero to a maximum value determined by 

equation (2.3).  The motion pattern corresponding to a virtual chain will be referred to as 

a V-motion and a parallel mechanism which generates a particular V-motion will be 

referred to as V= parallel mechanism which stands for a parallel mechanism whose 

motion is equivalent to that of the V joint.  Considering a 3-DOF V= parallel mechanism, 

connecting the base and moving platform of the parallel mechanism with a parallel 

kinematic chain and the desired virtual chain produces the V-motion of the parallel 

mechanism; the function of the mechanism will not be affected.  Therefore, any of the 

kinematic chains of the parallel mechanism and associated virtual chain constitutes a 3-

DOF single-loop kinematic chain, which means that the wrench system must be the same 

as the virtual chain for any general configuration.  Therefore, a parallel mechanism is a 

V= parallel mechanism if it meets the following two criteria:  

1. Each kinematic chain of the parallel mechanism and a virtual chain make an ℱ-

DOF single-loop kinematic chain. 

2. The wrench system of the parallel mechanism is the same as the virtual chain in 

any general configuration. 

This ensures that the moving platform can achieve the prescribed V-motion and that the 

virtual chain and the parallel mechanism have the same number of DOF.  This setup 

results in the kinematic chains being over constrained due to the virtual chain constraining 

the mechanism to its prescribed motion pattern as it already constrains all the constraint 

wrenches. 

The steps for developing the type synthesis of a parallel mechanism using the virtual chain 

approach will now be defined: 

2.2.3.1 Step 1: Decomposition of the wrench system of a parallel manipulator 

The first step of the type synthesis process is to determine all the leg-wrench systems and 

all the possible combinations of m-leg layouts for the chosen V= parallel mechanism and 
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a specified number of over constraints for the mechanism which is done using equations 

(2.3) and (2.4).   

To determine the leg-wrench system (the wrench system of a single kinematic chain of 

the parallel mechanism) it is known that any leg-wrench system in a V= parallel 

mechanism must be a sub-system of the virtual chain’s wrench system.  The sub-system 

of the leg-wrench system is composed of a combination of the available wrenches in the 

V= parallel mechanism wrench system.  For example, a translational parallel mechanism, 

which has a 𝑃𝑃𝑃 virtual chain (figure 2.2a), has a 3-𝜁∞-system so therefore the sub-

system for the legs can either be: a) a 0-system; b) a 1-𝜁∞-system; c) a 2-𝜁∞-system; or 

d) the full 3-𝜁∞-system.  The sub-systems of the wrench system must combine to reform 

the full leg-wrench system.  This can be seen using a 3-𝜁∞ leg-wrench system in which 

the mechanism has 3 kinematic chains, if the first kinematic chain is a 2-𝜁∞-system and 

the second and third are a 1-𝜁∞-system then the kinematic chains used are acceptable only 

if two of the 𝜁∞ are parallel with the other two being perpendicular to each other and the 

two linear 𝜁∞.   

The motion patterns being considered in this thesis will primarily comprise wrenches of 

the same pitch i.e. ∞ pitch or 0 pitch.  The connectivity of the leg-wrench systems of a 

mechanism are classified as 𝑐𝑖(0 ≤ 𝑐𝑖 ≤ 𝑐)-systems of the same pitch and the 

combination of these leg-wrench systems can be represented by the combination of the 

order of 𝑐𝑖 (see equation (2.3)).  An example for the combinations of 𝑐𝑖 for a 3-DOF 

parallel mechanism with two or three legs is shown in table 2.1 [2.5]. 

2.2.3.2 Step 2: Type synthesis legs for mechanisms 

With the establishment of the available combinations of leg-wrench systems, the 

kinematic chains that instantiate these combinations can be formed.  This is done in two 

stages:  

a) The type synthesis of an ℱ-DOF single-loop kinematic chain that includes the 

virtual chain and one of the desired leg-wrench systems. 

b) Generate the type of legs for the V= parallel mechanism by removing the virtual 

chain from the chain gained in step a). 

In this section a 3-DOF single-loop kinematic chain will be studied.  The first stage is to 

perform the type synthesis of the single-loop kinematic chain that includes a 𝑃𝑃𝑃 

connection that represents the virtual chain component of the kinematic chain.   

To perform type synthesis, the following sequence of analysis must first be taken: 

(1) Determine the number of joints.  The number of joints is calculated with the equation 

below: 

𝑓 = 𝐹 + (6 − 𝑐)                                                           (2.6) 

where 𝑓 is the number of 1-DOF joints and 𝐹 is the mobility of the single-loop kinematic 

chain.   
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Table 2.1: Combinations of 𝑐𝑖 for a 3-DOF parallel manipulator with two to four legs [2.5]. 

𝒎 𝒄 𝚫 𝒄𝟏 𝒄𝟐 𝒄𝟑 

2 3 

3 3 3 

 

2 3 2 

1 
3 1 

2 2 

0 
3 0 

2 1 

3 3 

6 3 3 3 

5 3 3 2 

4 
3 3 1 

3 2 2 

3 

3 3 0 

3 2 1 

2 2 2 

2 

3 2 0 

2 1 1 

2 2 1 

1 

3 1 0 

2 2 0 

2 1 1 

0 

3 0 0 

2 1 0 

1 1 1 

 

 (2) Find the geometric conditions on the joint axes based on the twist-wrench 

relationships based on the conditions given in section 1.3. This can be any of the 

following: 

 The axis of an R joint is coplanar with the axis of any 𝜁0 within the desired wrench 

system. 

 The direction of a P joint is perpendicular to the axis of any 𝜁0 within the desired 

wrench system. 

 The axis of an R joint is perpendicular to the axis of any 𝜁∞ within the desired 

wrench system. 

(3) Identify the types of single-loop kinematic chains with the desired wrench system. 

From (2) a set of single-loop kinematic chains with the desired wrench system that can 

be constructed using compositional units (see chapter 2, page 30 - 32 of [2.5]).  By 

inserting 𝑝 co-axial or co-directional compositional units into a 𝑐-𝜁-system to make a 

(𝑐 + 𝑝)-𝜁-system, single loop kinematic chains can be obtained.  The DOF and number 

of joints of a single-loop kinematic chain with a (𝑐 + 𝑝)-𝜁-system is: 

ℱ′ = ℱ − (𝑓𝑝 − 𝑝)                                                        (2.7) 
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where 𝑓𝑝 is the total number of 1-DOF joints within the 𝑝 compositional units, ℱ′ is the 

mobility of the parallel mechanism when all its actuated joints are blocked and 

𝑓′ = 𝑓 − 𝑓𝑝                                                               (2.8) 

In the 𝑃𝑃𝑃= parallel mechanism (3-𝜁∞-system) case the first step is solved by identifying 

that the connectivity of the system (𝑐) is 3, which means that from equation (2.6) we get 

the number of joints (𝑓) as 𝐹 + 3.  (2) uses the fact that the 3-𝜁∞-system can be chosen 

to be three 𝜁∞ that are not parallel to a plane (figure 2.4).   

 

Figure 2.4: 3-𝜁∞ system  

This means that the system geometric conditions for the joints comprise zero R joints that, 

if true, indicates that no R joint whose axis of rotation is perpendicular to the three 

wrenches can exist. 

This assumes that these types of single-loop kinematic chains with the desired wrench 

system contain a special translational compositional unit (𝑃𝑃𝑃) composed of 𝑓 =
(𝐹 + 3) P joints arranged with their axes of translation being perpendicular to each other.  

As this compositional unit gives the loop all three of the 𝜁∞ desired for the system, the 

rest of the loop only has to achieve a 3-𝜁∞-system or less depending on the desired system 

mobility. 

Once the single-loop kinematic chains are categorised, any single-loop kinematic chains 

that have twists not included in the virtual chain can be discarded.  Again using the 3-

DOF single-loop kinematic chain, while considering the desired wrench system to be a 

2-𝜁∞-system utilising the 𝑃𝑃𝑃 virtual chain section, the number of joints is equal to 𝐹 +

4.  If the mobility of the mechanism is 3-DOF then the total number of joints will be 

seven, with three of those joints making up the 𝑃𝑃𝑃 virtual chain.  While the P joints of 

the virtual chain can be placed throughout a single-loop kinematic chain and still produce 

the same result, only the configurations in which three P joints are together and aligned 

along different axes are considered.  The resulting single-loop kinematic chains are then 

inspected and the ones that do not satisfy the twists criteria of all the joints, excluding 

those in the virtual chain, are linearly dependent.  Examples of this would be the (𝑅𝑅𝑅𝑅𝑉) 

single-loop kinematic chain, where V stands for the prescribed virtual chain which in this 

case is a chain of three P joints (figure 2.5a) due to the twists of the R joints being linearly 

dependent and the nature of the (𝑃𝑅𝑅𝑅𝑉) single-loop kinematic chain (figure 2.5b). 
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There are numerous cases in which the twists of the joints within one kinematic chain are 

linearly dependent; however, the following conditions allow us to gain kinematic chains 

where the twists of the joints are linearly independent [2.5]: 

 There are no coaxial 𝑅 joints. 

 There are no 𝑃 joints operating along the same direction. 

 The operating direction of at most one 𝑃 joint is parallel to the axis of an 𝑅 joint. 

 At most three 𝑅 joints have parallel axes. 

 The axes of at most three 𝑅 joints are passing through a single point. 

 The operating directions of at most two 𝑃 joints are parallel to the same plane. 

 The sum of the number of 𝑅 joints with parallel axes and the number of 𝑃 joints 

is not greater than four. 

 The operating directions of 𝑥 P joints are perpendicular to the axes of rotation of 

𝑦 𝑅 joints with parallel axes then 𝑥 + 𝑦 ≤ 3. 

 

Figure 2.5: a) 𝑅𝑅𝑅𝑅𝑉 single-loop kinematic chain; b) 𝑃𝑅𝑅𝑅𝑉 single-loop kinematic chain. 

To generate the type of legs in the parallel mechanism having already obtained the types 

of ℱ-DOF single-loop kinematic chains that include a viable virtual chain and consist of 

a desired leg-wrench system; the types of parallel mechanism legs required can be 

generated by removing the virtual chain from the single-loop kinematic chain.  By doing 

this, the geometric conditions ensure that each leg, when put together with the same 

virtual chain, will constitute an ℱ-DOF single-loop kinematic chain.   

2.2.3.3 Step 3: Assembly of legs 

The type synthesis of parallel mechanisms consists of obtaining the different types of 

kinematic chains and assembling them in the form of the kinematic chains from Step 2 in 

accordance to the combinations of the 𝑚 leg-wrench systems gained from Step 1. 

When a parallel manipulator's kinematic chains have unchanging leg-wrench systems, i.e. 

all leg-wrench systems remain unchanged with regards to the base and/or the moving 
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platform, then the condition that ensures that the linear combination of all of the parallel 

mechanisms leg-wrench systems make up the leg-wrench system of the virtual chain will 

be revealed.  If the parallel manipulator's kinematic chains are capable of change then all 

of the kinematic chains of a mechanism must produce the desired wrench system. 

An example of this can be found when performing Step 3 on the 3-𝑃𝑅𝑅𝑅 parallel 

mechanism with a V-motion of 𝑃𝑃𝑃= parallel mechanism.  The leg-wrench systems are 

of the former variety in which they do not change about the base or moving platform of 

the mechanism.  By ensuring that the R joints connected to the moving platform are not 

parallel, it is guaranteed that the linear combination of the three 2-𝜁∞-systems form the 

3-𝜁∞-system produced by the virtual chain. 

In the event of the leg-wrench system varying with the configuration of the mechanism it 

is possible to enter a constraint singularity.  A constraint singularity is a configuration of 

the parallel mechanisms when an extra DOF becomes available to the moving platform 

that cannot be controlled by actuators of the mechanism.  This is caused by the constraint 

wrench system degenerating when the configuration of the mechanism causes the moving 

platform to have fewer DOF than the number of joints in any leg.   

2.2.3.4 Step 4: Selection of the actuated joints 

The process of selecting the actuated joints of the parallel mechanism requires 

identification of all of the possible parallel mechanisms that uses a particular V-motion 

for a given set of kinematic chains and removing those for which the actuated joints are 

invalid.  For any selection, the following rules are followed: 

1. The actuated joints should be distributed evenly between the kinematic chains 

2. The actuated joints should be located towards (if not at) the base of the mechanism 

3. 𝑃 joints should always be actuated. 

The reasoning behind rule 3 is that a 𝑃 joint tends to perform poorly due to sliding friction 

and any offset angle or bending will lead to an increase in force being required to operate 

the joint.  The first two rules are useful in the optimisation of the mechanism since a 

distributed set of actuated joints will ensure a more even power distribution among its 

kinematic chains as well as providing greater control.  Also having the actuated joints 

closer to the base of the mechanism will aid the reduction of the moving mass of the 

mechanism and increase its efficiency.  

As discovering all the possible combinations legs of V= parallel mechanisms is trivial, 

the selection of the actuated joints and their location will be used to determine the 

candidate for the V= parallel mechanism.   

The number of actuated joints recommended for an ℱ-DOF parallel mechanism is ℱ.  The 

selection of which joints should be actuated should be a set of joints that, when the 

mechanism is in a general configuration, the number of DOF blocked by the actuated 

joints should be zero. 

The validity condition for the selection of actuated joints is performed by looking at the 

actuation wrenches of the proposed actuated joints.  Let 𝒲⊅𝑗
𝑖  be the set of all wrenches 

that are not reciprocal to the twist of joint j and are reciprocal to all of the twists of the 
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other joints within the given kinematic chain, then 𝒲⊅𝑗
𝑖  is the set of wrenches that 

imposed upon the moving platform through actuating that kinematic chain’s actuated 

joint.   

Using 𝜁𝑗
𝑖 to represent the basis of the wrench system 𝒲𝑖 and using 𝜁⊅𝑗

𝑖  to represent any 

one wrench that is part of 𝒲⊅𝑗
𝑖 , then any wrench in 𝒲⊅𝑗

𝑖  can be expressed as: 

𝜁⊅𝑗
′𝑖 = 𝛼𝜁⊅𝑗

𝑖 + ∑ (𝛽𝑘
𝑖 𝜁𝑘

𝑖 )𝑐𝑖

𝑘=1 , 𝛼 ≠ 0                                            (2.9) 

where 𝜁⊅𝑗
𝑖  is referred to as the actuation wrench of joint 𝑗 in chain 𝑖.  For a non-redundant 

ℱ-DOF parallel mechanism, a set of actuated joints are considered valid if ℱ′ = 0.  From 

equation (2.3): 

𝑐′ = 6 − ℱ′ = 6                                                          (2.10) 

where 𝑐′ is the order of the wrench system of the parallel mechanism with all of its 

actuated joints blocked.  From this it can be stated that for an ℱ-DOF parallel mechanism 

in which all twists within a single kinematic chain are linearly independent in a general 

configuration, then a set of ℱ actuated joints are valid only if the basis wrenches of the 

wrench system of the mechanism is of an order of 6 when all actuated joints are blocked. 

The procedure for the detection of a valid set of actuated joints for a parallel mechanism 

will now be outlined: 

a) If one or more of the actuated joints of a candidate parallel manipulator are 

inactive then the proposed set of actuated joints is to be considered invalid.  For 

the kinematic chains obtained in utilising the virtual chain approach to type 

synthesis the inactive joints are revealed during the type synthesis of the 

mechanism.   

b) If the determinant of an ℱ × ℱ matrix of the t-components of all the actuation 

wrenches of actuated joints is always zero then the set of actuated joints for the 

kinematic chain satisfying these conditions is invalid, causing the candidate 

parallel mechanism to be discarded.  Only the parallel manipulators in which all 

of the elements of the ℱ × ℱ matrix are constant and the determinant non-zero are 

to be considered proper and will have no constraint singularities.   

2.3 Summary 

In this chapter the process laid out in [2.5] for utilising virtual chains to perform type 

synthesis on a desired motion pattern was detailed for use in the future development of 

producing an extended theory, incorporating multiple moving platform mechanisms.  The 

next chapter begins the investigation of the design process in which the first step is to 

develop the type synthesis method to allow for the development of parallel mechanisms 

that have multiple moving platforms with connecting kinematic chains between them. 
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Chapter 3 Multi-platform parallel mechanism design 
From the literature on the virtual-chain method for type synthesis in Chapter 2 and screw 

theory in Chapter 1, this chapter further develops the virtual chain type synthesis 

methodology to incorporate a class of parallel mechanisms with multiple platforms.  This 

methodology will then be tested on two parallel mechanisms to a design specification 

with the intention of further developing the best candidate into a physical prototype in 

Chapter 7. 

3.1 Introduction 

This chapter investigates the initial design ideas for a novel parallel mechanism.  The 

concept of type synthesis outlined in Chapter 2 will be expanded to incorporate the 

existence of multiple moving platforms and then applied to the design process approach.  

The mechanism to be designed will be detailed in section 3.2 with the industrial focus 

being a pick-and-place parallel mechanism similar to the operation of the Delta robot 

described in Chapter 1. 

The primary reason for designing a mechanism with multiple moving platforms and end-

effectors is to determine how such a mechanism can be made, how the mechanism could 

potentially operate in an industrial capacity and if the mechanism can be made more 

efficient than a single end-effector variant.  As this process is followed, the design process 

will be studied to determine if a more intuitive operational focus approach can be 

developed. 

Another reason for developing a multi-platform parallel mechanism comes from the 

theory that if a person were to move a stack of books from one area of a room to another, 

they would use both hands to carry twice the load a single hand could carry, as it would 

be more efficient than the latter.  Therefore, taking this analogy through to the concept of 

parallel robotics, the concept of having a parallel mechanism that is capable of completing 

twice the number of tasks would theoretically be more efficient than a traditional 

mechanism.   

3.2 Design Specifications 

The design requirements of the proposed parallel mechanism are as follow: 

 The mechanism must be capable of utilising multiple end effectors, which operate 

either in unison or independently of each other. 

 The mechanism must have at least two or more moving platforms. 

 The mechanism must have a minimum of three translational DOF for each moving 

platform and at least one relative DOF between each moving platform. 

To fulfil these requirements, the mechanisms will have three translational DOF acting 

along the three world axes and a pair of moving platforms capable of 1- or 2- relative 

DOF (rDOF) along the horizontal axes, maintaining a common plane of operation for the 

end-effectors. 

3.3 Type Synthesis of Multi-Platform Parallel Mechanisms 

From the method detailed in Chapter 2, the virtual chain approach to type synthesis can 

be expanded to include parallel mechanisms that have multiple moving platforms that 

have x-rDOF of motion between the individual platforms (figure 3.1).  
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This means that the end-effectors of the mechanism can operate independently of each 

other within the confines of the rDOF of the mechanism.  In order to determine the type 

synthesis of such mechanisms, the desired motion pattern needs to be determined and 

then the simplest virtual chain design applied to allow for the desired motion pattern of 

each platform while offering no additional DOF to the overall mechanism.  

 

 

Figure 3.1: Multiple moving platforms with 2-rDOF. 

Once the virtual chains for the platforms have been chosen, they and the moving platforms 

form a single-loop kinematic chain where the connecting link between the platforms 

forms the main constraint on the system’s motion, limiting the rDOF of the system (figure 

3.2).   

 

Figure 3.2: Single-loop kinematic chain with two virtual chains, moving platforms and 

connecting link. 

The following section details the procedure to determine whether the proposed changes 

to the type synthesis method can achieve the desired result of producing various parallel 

mechanisms with a predetermined number of rDOF between two moving platforms.   
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This is done by graphically determining the total constraint couples on each moving 

platform within this single-loop mechanism by using the reciprocal screw theory detailed 

in Chapter 1.  From this point, the methodology on type synthesis with virtual chains laid 

out in Chapter 2 is then followed. 

3.4 Type Synthesis of Multiple Operation Mode Mechanisms 

The virtual chain approach to type synthesis can also be applied to mechanisms with 

multiple operation modes by first investigating the mechanism from the perspective of 

one operational mode and then the next until all operational modes have been 

investigated.  The resulting virtual chains from the numerous type syntheses can then be 

combined to form a serial or parallel virtual chain capable of performing each operational 

mode movement while not adding additional DOF to other operational modes.   

An example of this is the DIRECTOR mechanism described in Chapter 1.  The 

mechanism has two operational modes: a planar translation along the vertical and 

horizontal (y- and x-) axes when observed from the front and a rotation about the 

horizontal axis; and the same translational DOF however, the rotation of the moving 

platform is altered to be about the z-axis.  The change between operational modes is 

achieved through the locking of certain joints that prevent one rotation or another. 

The virtual chain for this mechanism therefore would be a pair of 𝑃𝑃𝑅 virtual chains 

where the virtual 𝑃 joints are aligned along the same axes but the virtual 𝑅 joints are 

perpendicular.  From this point the type synthesis of the mechanism can be performed 

much in the same manner as detailed in Chapter 2. 

3.5 4-DOF Parallel Manipulators 

In this section, the architecture being investigated will be of a 4-DOF configuration, 

where the robot will have a combination of three translational DOF and one rDOF with 

the single rDOF consisting of either a translational DOF between the two end-effectors 

or a constant radius DOF where one platform is manoeuvred around a particular point 

with a constant radius. 

Using the extension to the type synthesis of a mechanism, the virtual chain pair that fits 

the desired motion pattern can either be a pair of 𝑃𝑃𝑃 virtual chains or 𝑃𝑅𝑅𝑅 virtual 

chains.  Since the simplest solution is the one being used, both virtual chains will consist 

of a 𝑃𝑃𝑃 chain with each P joint aligned along a different world coordinate.  The 

constraint couples formed by the moving platform link will limit the motion of the moving 

platform to a single rDOF.   This means that the proposed mechanisms will require either 

a combination of P joints forming a single, more robust P joint in order to connect the 

moving platforms or, using the rules of reciprocal screws stated in Chapter 1, one or more 

kinematic chains made of coplanar R joints.   

The potential moving platform links being investigated in this Chapter are split into a 1-

rDOF and 2-rDOF designs with the resulting mechanism having 4-DOF and 5-DOF 

respectively.  The 1-rDOF designs proposed are as follows:  

 A pair of 𝑅𝑅 links that form a parallelogram that produce a translational motion 

of one of the end-effectors along a curved path (figure 3.3).   
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 A Sarrus mechanism, which comprises of a pair of 𝑅𝑅𝑅 links whose planes are 

offset by 90° from each other producing a single translational rDOF (figure 3.4b). 

 A P joint producing a single translational rDOF (figures 3.4a and 3.4c) 

With the moving platform connection links determined, the kinematic chains of the 

mechanism can be determined.  Using the method laid out in Chapter 2, the type synthesis 

of the kinematic chains of the mechanism can be determined.  The table for the 

connectivity is displayed in table 3.1. 

From table 3.1, a series of potential kinematic chains can be constructed to produce the 

desired motion pattern.  Some of these kinematic chains are detailed in the following sub-

sections.  

 

 

Figure 3.3: Single-loop 1-rDOF kinematic chain with moving platform having a parallelogram 

connecting kinematic chain. 

It can be found, that the total constraints on each platform is a 3-couple system, therefore 

each leg can be a leg with an n-couple system (table 3.1) where n is a value between zero 

and the full couple system of the mechanism.   This means that the kinematic chains of a 

given mechanism must be limited to producing at a maximum, the complete n-couple 

system of the mechanism.   
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Figure 3.4: Single-loop 1-rDOF kinematic chain with a) Generalised case of 𝑃 joint linkage; b) 

Dual 𝑅𝑅𝑅 moving platform connecting links; c) Triple 𝑃 joint moving platform connecting link.  

For example, a four-legged parallel mechanism (figure 3.7) can be represented by a 2-

𝑃𝑅𝑅𝑅-(MP1-P-MP2)-2-𝑃𝑅𝑅𝑅.  In which, the 2-𝑃𝑅𝑅𝑅 legs connect the primary moving 

platform to the base of the mechanism and the 2-𝑃𝑅𝑅𝑅 legs connect the secondary 

moving platform also to the base of the mechanism, while the two platforms are connected 

by a 𝑃 joint (represented in figure 3.7 by a trio of 𝑃 joints to improve stability).  

Table 3.1: Combinations of kinematic chains for two legged platforms. 

𝒎 𝒄 𝚫 𝒄𝟏 𝒄𝟐 

2 2 

4 3 3 

3 3 2 

2 3 1 

1 
3 0 

2 1 

0 
2 0 

1 1 

2 3 

3 3 3 

2 3 2 

1 
3 1 

2 2 

0 
3 0 

2 1 
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3.5.1 4-DOF Parallel Mechanism Design 1 

The initial design again uses kinematic chains with a connectivity of 3 or 4 each.  The 

layout for the kinematic chains for this mechanism is a 𝑃𝑅𝑅𝑅 format, in which each 𝑅 

joint is perpendicular to the 𝑃 joint.  The kinematic chains are spaced out evenly again 

with a 90° angle between each limb.  The two limbs with a shared axis are to be connected 

to separate moving platforms in order to allow the rDOF to occur.  The joint map for this 

design is shown below in figure 3.5. 

 

Figure 3.5: Joint map of 4-DOF Parallel Mechanism 1 Design 1. 

For this mechanism, the last two 1-rDOF moving platform designs are utilised. The reason the 

first is ignored is due to the radial rDOF being impossible to fully control in this limb format.  The 

designs of the mechanism with each moving platform design are shown below in figures 3.6 and 

3.7. 

 

Figure 3.6: 4-DOF Parallel Mechanism Design 1 with dual 𝑅𝑅𝑅 moving platform link. 
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Figure 3.7: 4-DOF Parallel Mechanism Design 1 with 𝑃 joint moving platform link. 

The 𝑃 joints of each limb is chosen as the actuated joints for the mechanism due to the 

fact that the third rule for selecting the actuated joints of a parallel mechanism detailed in 

Chapter 2 states that 𝑃 joints should always be actuated.  The 𝑃 joints are also closest to 

the base of the mechanism and evenly distributed between the limbs. 

3.5.2 4-DOF Parallel Mechanism Design 2 
The second design also utilises kinematic chains with a connectivity of 3-DOF.  The layout for 

the kinematic chains for this mechanism is a 𝑃𝑈𝑈 format constructed from four 𝑅 joints set 

perpendicular to their respective U joint companion, where the first and fourth 𝑅 joint and second 

and third 𝑅 joint pairs are parallel with each other.  The kinematic chains are again spaced out 

evenly with a 90° angle between each limb.  The joint map for this design is shown below in 

figure 3.8. 

 

Figure 3.8: Joint map of 4-DOF Parallel Mechanism Design 2 
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For this mechanism, all three proposed moving platform links are investigated in order to 

determine how well each link design can be controlled by the mechanism design.  The designs of 

the mechanism with each moving platform design are shown below in figures 3.9, 3.10 and 3.11. 

 

Figure 3.9: 4-DOF Parallel Mechanism Design 2 with parallelogram moving platform kinematic 

chain. 

 

Figure 3.10: 4-DOF Parallel Mechanism Design 2 with dual 𝑅𝑅𝑅 moving platform link. 
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Figure 3.11: 4-DOF Parallel Mechanism 2 Design 2 with parallel 3𝑃 joint moving platform link. 

The 𝑃 joints of each limb are once again chosen as the actuated joints as they are the only 

joints that fulfil the criteria of set out in Chapter 2. 

3.6 5-DOF Parallel Manipulators 

This section investigates 5-DOF designs that have a combination of three translational 

DOF and two rDOF.  Again using the extension to the type synthesis of a mechanism, the 

virtual chain pair that fits the desired motion pattern for the proposed mechanism is a pair 

of 𝑃𝑃𝑃 virtual chains.  The constraint couples formed by the moving platform link in this 

section will limit the motion of the moving platform to a pair of rDOF.  This means that 

the proposed mechanisms will require only 𝑅 joint links to produce the required motion.   

As stated in section 3.4, the moving platform link designs are split into 1-rDOF and 2-

rDOF in order to produce the desired motion of the moving platforms.  In this section, the 

following 2-rDOF moving platform link designs will be investigated: 

 A single 𝑅𝑅𝑅 chain (figure 3.12). 

 A pair of 𝑅𝑅𝑅 chains with either an R or P joint between the centre 𝑅 joints to 

allow for a greater range in motion of the two rDOF produced (figure 3.13). 
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Figure 3.12: Single-loop 2-rDOF kinematic chain with an 𝑅𝑅𝑅 moving platform link. 

 

Figure 3.13: Single-loop 2-rDOF kinematic chain with a dual 𝑅𝑅𝑅 moving platform and a) 

Central 𝑅𝑅𝑅 moving platform link. b) Central 𝑅𝑃𝑅 moving platform link. 

Again using the method laid out in Chapter 2, the type synthesis of the kinematic chains 

of the mechanism can be determined.  As the 5-DOF mechanism will include 2-rDOF 

there will be a need to investigate a mechanism in which one or more moving platforms 

have three limbs attached to it.  The table for three limbed moving platforms is shown in 

table 3.2. 

From tables 3.1 and 3.2, a series of potential kinematic chains can be constructed to 

produce the desired motion pattern.  Some of these kinematic chains are detailed in the 

following sub-sections.  
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Table 3.2: Combinations of kinematic chains for three legged platforms. 

𝒎 𝒄 𝚫 𝒄𝟏 𝒄𝟐 𝒄𝟑 

3 2 

6 3 3 2 

5 
3 3 1 

3 2 2 

4 
3 3 0 

3 2 1 

3 
3 2 0 

3 1 1 

2 

3 1 0 

2 2 0 

2 1 1 

1 

3 0 0 

2 1 0 

1 1 1 

0 
2 0 0 

1 1 0 

3 3 

6 3 3 3 

5 3 3 2 

4 
3 3 1 

3 2 2 

3 

3 3 0 

3 2 1 

2 2 2 

2 

3 2 0 

3 1 1 

2 2 1 

1 

3 1 0 

2 2 0 

2 1 1 

0 

3 0 0 

2 1 0 

1 1 1 

 

3.6.1 5-DOF Parallel Mechanism Design 1 

The first 5-DOF design incorporates a moving platform with three limbs attaching it to 

the base and a moving platform with two.  Using the information displayed in table 3.2, 

the type of kinematic chains available to allow the moving platform to operate in its 

desired motion pattern can be discerned.  The kinematic chain layout for this design is a 

set of three kinematic chains with a connectivity of three DOF.  The format for the 

kinematic chains is a 𝑃𝑅𝑅𝑅 layout with the same joint alignment as the second 4-DOF 

design.  The positioning of the kinematic chains is as follows: the first two kinematic 

chains connect directly to the moving platform and the third connecting to the centre of 

the moving platform connection link.   The joint map for this mechanism is shown in 

figure 3.14. 



54 
 

 

Figure 3.14: Joint map for 5-DOF Parallel Mechanism Design 1. 

For this design, the moving platforms displayed in figure 3.13 are considered.  The 

resulting mechanisms are displayed in figures 3.15 and 3.16. 

 

Figure 3.15: 5-DOF Parallel Mechanism Design 1 assembly with 𝑅𝑅𝑅 moving platform link 
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Figure 3.16: 5-DOF Parallel Mechanism Design 1 assembly with 𝑅𝑃𝑅 moving platform link 

The rules for actuating the joints of a parallel mechanism show that the mechanism shown 

in figure 3.15 is the most suitable moving platform design as the 𝑃 joint in the connecting 

link would need to be actuated in order to improve the control of the mechanism. 

3.6.2 5-DOF Parallel Mechanism Design 2 

The second 5-DOF design investigates a mechanism that has three legs connecting each 

platform to the base of the mechanism.  This time by only using the information displayed 

in table 3.2, the type of kinematic chains available for the desired motion pattern can be 

determined.  Once again, the kinematic chain layout for this design is a set of three 

kinematic chains with a connectivity of three DOF.  The format for the kinematic chains 

is a 𝑃𝑅𝑅𝑅 layout with the same joint alignment as the second 5-DOF design.  In this 

mechanism, the three kinematic chains will all be mounted to the moving platforms of 

the mechanism, with the kinematic chains operating along the horizontal axes mounted 

to the top face of the moving platform and the vertical kinematic chains attaching the 

bottom of the moving platforms.   The joint map for this mechanism is shown in figure 

3.17. 

For the final design, all of the moving platforms detailed at the start of this section are 

considered.  The resulting mechanisms are displayed in figures 3.18, 3.19, and 3.20. 

Again the rules for actuating the joints of a parallel mechanism show that the either the 

mechanism shown in figure 3.18 or figure 3.19 is the most suitable moving platform 

designs as the 𝑃 joint in the connecting link of figure 3.20 would need to be actuated in 

order to keep to the rules of actuation. 

 

 



56 
 

 

Figure 3.17: Joint map for 5-DOF Parallel Mechanism Design 2. 

 

Figure 3.18: 5-DOF Parallel Mechanism Design 2 assembly with single 𝑅𝑅𝑅 moving platform 

link. 

3.7 Variations on Existing Parallel Mechanisms 

The mechanisms laid out in section 3.6 are multi-platform mechanisms completely 

generated from the extended type synthesis method.  While this is the preferred method 

of developing a mechanism, it is possible to take a pre-existing mechanism and apply the 

extended type synthesis method in order to alter the moving platform to become a multi-

platform parallel mechanism.  In this section the Delta robot will be shown with a 1-rDOF 

and 2-rDOF multi-platform variation. 

3.7.1 4-DOF multi-platform Delta robot 

The 4-DOF multi-platform Delta robot design detailed in this section incorporates the 

radial rDOF and Sarrus mechanism connecting links.  The modified joint map of the Delta 

robot is displayed below in figure 3.21 with the CAD assemblies displayed in figures 3.22 

and 3.23 for the radial and Sarrus connecting links respectively. 
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Figure 3.19: 5-DOF Parallel Mechanism Design assembly with dual 𝑅𝑅𝑅 moving platform link 

and 𝑅𝑅𝑅 central link. 

 

Figure 3.20: 5-DOF Parallel Mechanism Design 2 assembly with dual 𝑅𝑅𝑅 moving platform 

link and 𝑅𝑃𝑅 central link. 



58 
 

 

Figure 3.21: Joint map of Design 1. 

 

Figure 3.22: 4-DOF Parallel Mechanism Design 1 with radial rDOF moving platform link 

 

Figure 3.23: 4-DOF Parallel Mechanism Design 1 with dual 𝑅𝑅𝑅 moving platform link.  



59 
 

The modified Delta robot designs are easily capable of the desired motion pattern 

specified in the design brief and, from publications on the standard Delta robot, the 

limitations of the architecture for the mechanism is well documented.  The main drawback 

to this type of multi-platform mechanism is that each of the actuated joints on the 

mechanism needs to be engaged for any motion of either moving platform.   

3.7.2 5-DOF multi-platform Delta robot 

The moving platform selected for the 5-DOF multi-platform design of the Delta robot 

utilises the first 2-rDOF connecting link design displayed in figure 3.12; the joint map for 

the full mechanism is displayed in figure 3.24 and the assembled mechanism is displayed 

in figure 3.25.  

 

Figure 3.24: Mechanism’s joint map. 

 

Figure 3.25: 5-DOF Parallel Mechanism Design 1 with single 𝑅𝑅𝑅 moving platform link.  

When testing the motion of the 5-DOF multi-platform design numerous stability and 

control problems were highlighted.   The most obvious of these is attributed to the 𝑅𝑅𝑅 



60 
 

moving platform connecting link that would either move into a singular configuration 

(figure 3.26a) when the plates were moved to the maximum relative distance or allow the 

plates to rotate uncontrollably about the z axis (figure 3.26b).   

 

Figure 3.26: Concept moving platform a) in singular configuration; b) experiencing unwanted 

rotation.  

In order to rectify these, the design was altered to include a second 𝑅𝑅𝑅 link in parallel 

with the first between the moving platforms to produce a parallelogram; the intention 

being to improve the stability of the link as well as preventing the rotation of the 

platforms.  Finally, a limit was placed on the central R joint in order to prevent the 

mechanism from entering the singular configuration (figure 3.27).  

 

Figure 3.27: Moving platform with modified connecting link design. 

Unlike the 4-DOF variation of the Delta robot, the 5-DOF multi-platform design only 

requires two of the four actuated joints to be engaged when making a single platform 

move as the other two can be locked to prevent the movement of the other platform.  Since 

the main purpose of a multi-platform mechanism is to be more efficient than single-

platform counterparts then this is vital, as it would effectively reduce the required power 

output by half.  

3.8 Comparison of Parallel Mechanisms 

The designs laid out in this chapter represent the basic potential design for a prototype 

mechanism.  In order to determine the best mechanism for further development, each 
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mechanism must be compared against the other for mobility, ease of actuation and control 

stability.   This section will initially look at the differences between the 4-DOF and 5-

DOF designs to determine the best of each archetype, and subsequently the best of each 

will be compared to determine which mechanism will be taken forward for further 

research.  

3.8.1 4-DOF Parallel Mechanism designs  

While both of the 4-DOF designs in section 3.5 are capable of meeting the desired motion 

pattern set out by the dual 𝑃𝑃𝑃 virtual chains, the initial design for the 4-DOF system can 

be considered a simpler option.   This is because the kinematic chains of the first design 

are less likely to collide with the others or the moving platform during motion. 

Comparing the first design with the Delta robot version shows that while again both 

mechanisms are capable of achieving the desired motion pattern, the first 4-DOF design 

is more desirable due to its simplicity in the actuation of the mechanism.   

3.8.2 5-DOF Parallel Mechanism designs 

The first 5-DOF design (figure 3.15) showed promise as it is capable of achieving the 

desired motion pattern for the mechanism; however due to the positioning of the vertical 

kinematic chain a high amount of stress could be produced on the moving platform 

connecting links during motion to the point that it could potentially limit the available 

motion of the mechanism.   

The second 5-DOF design (figure 3.18) greatly improved the mechanism’s stability, as 

the pair of vertical kinematic chains would share the load, allowing minimal deformation 

in the system.  The only drawback is that the vertical kinematic chains would have to 

operate at exactly the same rate as any deviation in the motion speeds of the P joints 

would result in unwanted tilting of the moving platforms.  

For the Delta robot variant of the 5-DOF mechanism (figure 3.25), the actuation causes 

several problems due to multiple actuators being required for any motion of the moving 

platform.  Therefore, compared to the other 5-DOF mechanisms, the Delta robot variant 

can be considered unsuitable. 

3.9 Summary 

In this chapter, the method of using virtual chains to determine the motion pattern of a 

parallel mechanism for performing type synthesis to develop a series of parallel 

mechanisms is expanded upon to include the methodology for developing a class of 

parallel mechanisms with multiple moving platforms.  The expanded methodology is then 

utilised to produce several designs of two parallel manipulator architecture types that are 

taken through the type synthesis process and developed into 3D CAD models using the 

SolidWorks CAD package.  The designs are then given a multiple versions of multiple 

moving platforms in order to determine which mechanism best achieves the design 

criteria set out at the start of the chapter.  

After comparing these mechanisms, the first design option was chosen as the best 

mechanism design for the 4-DOF case it will be easy to control with each actuated joint 

controlling a single DOF.  For the 5-DOF case, the second mechanism proved the most 

stable and easily controlled as the vertical pair improved its structural stability. 
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The design being developed further will therefore be the second 4-DOF design, since the 

reduced cost of actuators and component parts will make the production of a physical 

prototype more feasible.  Additionally, the issue of vertical actuation of the 5-DOF design 

would require either two actuators operating at precisely the same speeds or a gear chain 

between the actuator and both vertical actuated P joints in order to allow the mechanism 

to operate as intended. 

In the next chapter, the concepts of multi-platform type synthesis and virtual chains are 

applied to a set of case studies in order to develop a viable visual representation of a 

parallel mechanism’s workspace using a CAD software based approach.   
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Chapter 4 Workspace analysis 
 

As described in Chapters 2 and 3, virtual chains are used to represent the desired motion 

pattern of a mechanism.  This concept is adapted into a methodology that uses visual 

representation by means of 3D CAD software, in which a mechanism designed through 

type synthesis can be built with specified dimensions and simulated by utilising the virtual 

chain joints as the actuated joints for the mechanism itself.  This approach differs from 

the traditional process, as rather than implementing an IKM and then determining the 

workspace through mathematical constraints in which link collisions are rarely 

incorporated, the simulation of the mechanism will produce a visual workspace of the 

total viable workspace in which no link collisions can occur. 

4.1 Introduction 

The main reason for investigating the workspace of a parallel mechanism is to determine 

the area or volume in which the mechanism can operate without over exerting itself, 

entering a singularity or colliding with itself or any other objects in the surrounding area.  

The workspace of a serial mechanism is also investigated to determine a safe distance 

from it at which people can operate without the risk of being hurt.  The workspace of a 

parallel mechanism is usually enclosed within the external casing of the mechanism, thus 

already giving a visual area in which personnel are able to operate. 

Traditionally the method for determining the workspace of a serial or parallel manipulator 

is to derive a set of equations that describes either the extremities or the permitted motion 

of the moving platform or allocated end-effector. These methods tend to use a set of 

equations that can be input into mathematical modelling and programming software 

packages, which have the ability to create 2D and 3D images of the manipulator 

workspace.  This method of workspace analysis is well-documented [4.1-4.4] and, 

therefore, will not be investigated in this thesis.  Recently, a new method of workspace 

analysis has been developed in which 3D CAD software is used to develop a virtual model 

of a proposed mechanism before producing a motion study in which the actuated joints 

of the mechanism are controlled to produce the workspace [4.5]. 

The work presented in this Chapter investigates the workspace of parallel mechanisms 

and suggests a new method of producing them with the assumption that all mechanisms 

designed in this chapter are statically stable and therefore affected by static singularities 

in which the actuators of the mechanism are locked but the moving platform is still 

capable of moving.  A virtual chain is an imaginary kinematic limb extending either from 

the base of the mechanism or from an arbitrary point to the end effector of the mechanism.  

The VC is a virtual representation of the range of motion for the end-effector of the 

mechanism along and about the three world-coordinates axes (x, y and z).  The virtual 

chain is only represented in a virtual environment and is not intended to be part of the 

mechanism, in this sense any collisions or interferences of the VC from the simulation 

restraints of the mechanism can be removed, allowing for the production of a full 

workspace. 

The VC approach is then applied to a series of three case studies with the intent of proving 

the validity of the process on both spatial and planar mechanisms before being 

implemented on the chosen prototype.  The workspaces formed by the virtual chain 
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approach will be compared to previously published results from experts in the field to 

ensure the method is sound.  Following this chapter, the virtual chain approach will be 

applied to the finalised prototype designs in Chapter 7. 

4.2 Virtual Chain Approach 

This section investigates the method in which components of a virtual chain are produced 

in CAD software and how it can be constructed and then implemented into an existing 

Parallel Mechanism CAD model in order to produce the motion of the mechanism.   

A VC is produced by modelling two types of joints in CAD and arranging them in various 

configurations suited to the motion of the mechanism being investigated.  The 

representations of the two main types of joints, 𝑅 and 𝑃 joints, are now given:  

 𝑃 joints are represented in the form of two cuboid extrusions.  The outer casing of 

the joint being the larger of the two and being hollowed out to allow the insertion 

of the prismatic yoke. 

 𝑅 joints are composed of two cylinders with the same radius connected together 

by a variable radius. 

Modelling the required virtual joints is relatively straightforward as they are designed to 

be simple shapes and can be bulky as they will not be included when investigating the 

collisions of the manipulator’s components during simulation.  The procedure for 

developing the VC is detailed below, the steps being written using terminology used in 

the production of SolidWorks parts and assemblies: 

1. Create a model of the parallel manipulator to investigate. 

2. Model the required virtual joints and links in order to add to the mechanisms 

model an appropriate virtual chain.  The virtual chain could be selected according 

to [4.6] for a parallel mechanism with a serial virtual chain or it can be selected as 

a 6-DOF virtual chain for a parallel mechanism with a parallel virtual chain.  

3. Determine the location of motion to control, usually the moving platform of the 

manipulator. 

4. Using a standard mate, attach the first joint of the virtual chain to either the point 

of motion  or the origin/world coordinates of the robot and align with the desired 

axis. 

5. Continue to attach the virtual joints to the previous virtual joint until the VC is 

complete.  

6. Once the VC and mechanism are in their initial positions for simulation, right 

click the end of the furthermost 𝑃 joint yoke and select the fix option, preventing 

it from moving during simulated motion. 

The virtual chain can be constructed into numerous forms (figure 4.1) with multiple joints 

being either coupled with another, individually driven or fixed in place in order to 

investigate movement when an axis of motion is denied to the mechanism.   
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Figure 4.1: A selection of virtual chains constructed from virtual 𝑃 and 𝑅 joints: a) 6-DOF 

𝑃𝑃𝑃𝑅𝑅𝑅 virtual chain; b) 3-DOF 𝑅𝑅𝑅 virtual chain; c) 4-DOF 𝑃𝑃𝑃𝑅 virtual chain. 

4.2.1 Virtual chain force method 

With the virtual chain integrated into the mechanism CAD model, the workspace of the 

mechanism can then be investigated.  The procedure for producing the 2D and 3D 

workspaces are essentially the same, with an additional few steps for the 3D workspace.  

For the initial investigation of a mechanism’s workspace, a planar mechanism with a 𝑃𝑃𝑅 

virtual chain (figure 4.2) is used to illustrate the method.  

After the component parts of the mechanism and virtual chain have been modelled, they 

are assembled into an assembly file using standard mates.  Once the mechanism is built, 

the virtual chain joints and links are added to finish the mechanism.  With the mechanism 

complete, if the assembly file has no premade motion study in the motion manager bar at 

the bottom of the screen (figure 4.3), select the "Motion Study" option in the toolbar 

ribbon (figure 4.4). 
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Figure 4.2: Planar parallel mechanism with a 𝑃𝑃𝑅 virtual chain. 

 

Figure 4.3: SolidWorks motion manager selection bar. 

 

Figure 4.4: Motion Study button on SolidWorks toolbar. 

Selecting the new motion study in the Motion Manager selection bar, the motion study 

type is modified from "Analysis" to "Motion Analysis" (figure 4.5).  This option will only 

be available if the SolidWorks Motion add-on is installed and enabled for the document. 

The next step of the process is to assign contact pairs to the links of the mechanism in 

order to prevent any unwanted motion.  The contact pairs can either be assigned by first 

selecting the components that should not come into contact and then selecting the contact 

option in the Motion Manager toolbar (figure 4.6) or to select the Contact option on the 

toolbar and then select the components once the Contact Pairs option window opens 

(figure 4.7). 
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Figure 4.5: Motion study type dropdown window.   

 

Figure 4.6: Contact option on the Motion Manager Toolbar. 

Components that should not be included in contact pairs include the entire virtual chain, 

as they should not affect the motion of the mechanism other than to drive it and any 

components that are constantly in contact with each other, i.e. the pin of an R joint and 

its sockets.  Multiple sets of contact pairs can be assigned to cover the full extent of 

potential impacts occurring during simulation as each pair will be looked at before motion 

rendering will take per frame. 

In order to prevent the presence of singular configurations in the kinematic chains of the 

mechanism "Limited Angle Mates" can be used.  This will prevent singularities such as a 

collinear configuration of a planar serial 𝑅𝑅𝑅 sub-chain.  To add limited angle mates, the 

"Mate" option is first selected on the SolidWorks toolbar (figure 4.8).  

In the window that opens, "Advanced Mate" option (figure 4.9) is selected which opens 

a new set of mate options that allow for ranges of motion, specified motion paths, and 

various other methods of limiting the available motion between two components of the 

mechanism.  Selecting the advanced mate angle option produces two additional field 

input boxes that allow a maximum and minimum angle to be specified while the initial 

input box indicates the current angle of the joint at the time the components were selected 

(figure 4.10). 
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Figure 4.7: Contact option window with example selection 

 

Figure 4.8: Mate button on SolidWorks toolbar. 
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Figure 4.9: Mate builder window with Advanced Mates option highlighted. 

With the kinematic links setup for collision detection and singular configuration 

avoidance, the next step is to add the motion drivers for the simulation.  This is done by 

first determining what kind of workspace is desired.  For 2D workspaces the virtual joint 

aligned with the axis not being investigated should be fixed in place by right clicking on 

the component and selecting the "Fix" option.  This will prevent the component from 

moving during simulation regardless of any forces acting upon it.   

For a 3D workspace, a motor component is applied to the virtual joint assigned to have 

the least variance in motion, typically the virtual joint aligned along the vertical axis.  To 

add a motor to the simulation, the "Motor" button located on the Motion Manager Toolbar 

(figure 4.11) is selected.  This opens a new window in which the type of actuator, linear 

or rotation, can be selected (figure 4.12).  Next the location of the motor needs to be 

selected along with the position and direction of the motion in which the component is 

being driven.   

In the motor options window, the type of motion can be determined by altering the option 

in the motion dropdown window as highlighted in figure 4.12.  Using this dropdown box, 

several motion options become available.  In order to produce a user defined controlled 

motion, the option of "Data Points" should be selected.  This opens a new function builder 

window that allows for time stamps and motion components to be input to the degree of 

accuracy required for the simulation (figure 4.13). 
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Figure 4.10: Advanced angle mate (A.K.A. Limited angle mate). 

In order to produce the force method workspace of a mechanism in either 2D or 3D, the 

remaining virtual joints need to be actuated by force components, which apply a given 

force as either a point force or a torque on the chosen components in the desired direction.  

The "Force" button is likewise located on the Motion Manager Toolbar (figure 4.14) and 

produces a new window similar to that of the motor component (figure 4.14).  As with 

the motor component, the method in which the force is applied can be specified by the 

user by selecting the Force Function dropdown box and selecting the "Data Points" 

option.  This opens a similar function builder to figure 4.15 with the only exception being 

that it can only operate on Force values. 

 

 

Figure 4.11: Motor option button on Motion Manager Toolbar. 
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Figure 4.12: Motor option window. 

The data points used for the motor component in a 3D force method workspace simulation 

need to begin at the lowest point that the mechanism can reach; this is typically set to zero 

by setting the mechanism to begin at the centre of its workspace at the lowest point before 

the simulation begins.  This means that the motor component will only be required to 

move in a single direction in increments that suit the resolution of the 3D workspace 

desired.   

The data points for the force/torque components for both a 2D and a 3D Force Method 

workspace simulation need to produce enough force in a positive and negative direction 

to complete a full rotation of the mechanism, which then needs to be repeated for each 

increment of the motor component in a 3D workspace. 

With the motion of the mechanism finalised a plot tool needs to be assigned to the location 

being tracked.  This is typically either the centre of the moving platform, the 

edges/corners of the moving platform or the location of the end-effector of the 

mechanism.  The "Results and Plots" button is located on the Motion Manager Toolbar 

(figure 4.16) and when selected opens a new window in which numerous types of plots 

can be produced (figure 4.17).   
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Figure 4.13: Motor Data Points Function Builder window. 

 

Figure 4.14: Force option button on the Motion Manager Toolbar. 

The first dropdown box at the top of figure 4.17 determines the type of result desired at 

the end of the simulation.  This dropdown box includes the values of the components 

displacement/velocity/acceleration, Force values acting on the mechanism in certain 

locations, Momentum/Energy/Power values at certain locations on the mechanism, as 

well as other forms of data.  Utilising the Displacement/Velocity/Acceleration option, as 

shown in figure 4.17, the second dropdown box becomes active allowing displacement, 

velocity and acceleration values to be selected along individual axes.  Included in this 

dropdown box is the option of "Trace Path" which takes one or more vertices of the 

simulated model and produces a black line tracing that point's path through the simulation.  

This option can also be used to give information on the positional data in order to refine 

the workspace. 
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Figure 4.15: Force/Torque option window with Force Function dropdown box highlighted. 

 

Figure 4.16: Results and Plots button on the Motion Manager Toolbar. 

 

Figure 4.17: Results and Plots window. 
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Once the mechanism is complete, the final step is to press the simulation button.  This is 

located at the right of the Motion Manager Toolbar next to the Motion Study Type 

dropdown box (figure 4.18).  Once the simulation has completed, any sensor data, such 

as displacement values, forces, etc, will appear in individual windows that can be 

manipulated to gather the data required. 

 

Figure 4.18: Simulation button on the Motion Manager Toolbar. 

4.2.2 Virtual chain motor refinement method 

For the initial workspace of the mechanism, the workspace is often crude and usually has 

several paths that have translated across the workspace due to joint configurations 

impeding certain motions during the simulation.  To improve upon this method, the motor 

refinement method can be used.  This method is setup in the same manner as the force 

method but with the motor components in place of the force/torque components and the 

data plots being redone based on information gained from the displacement sensors used 

in the force method simulation.   

The motor components of the SolidWorks motion study tend to ignore limitations created 

by contact pairs that can compromise the simulation of the workspace.  For this reason 

the workspace of the mechanism is reduced by a small amount, removing any outlying 

areas or sections of the workspace that will not be used during the life cycle of the 

mechanism.  

The motor refinement method workspace requires the user to look at the results from the 

force method and produce a data point system that accurately replicates the discovered 

workspace but without the rough edges and intersecting lines.  It should be noted that in 

the production of 3D workspaces this method requires that the mechanism be reset to the 

origin position before each increment of the original motor component from the force 

method.   

4.3 Case Studies 

To prove the validity of the method presented for the production of a 2D workspace in 

the previous section a series of case studies will be investigated and compared with pre-

existing information.  The mechanisms involved in these case studies are the 3-𝑅𝑃𝑆 

mechanism, the spherical parallel mechanism [4.7], and the Delta robot. 

4.3.1 3-𝑅𝑃𝑆 mechanism 

The first case study looks at a 3-𝑅𝑃𝑆 parallel mechanism (see [4.6] [4.8-4.12] for 

examples).  The mechanism has been designed (figure 4.19) with the lower base plate 

having an external diameter of 250mm, the upper moving platform having an external 

diameter of 130mm, the 𝑅𝑃𝑆 links having a minimum length of 94.4mm extending to a 

maximum length of 150.5mm and raising the platform height being varied from 78mm to 

147.75mm. 

The VC of the mechanism is a 6DOF VC that consists of 3𝑃 joints representing the 

translational motion of the mechanism along the world x-, y- and z-axes (figure 4.1a) and 
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3𝑅 joints representing the rotational motion of the mechanism about the local x-, y- and 

z-axes.    

 

 

Figure 4.19: 3-𝑅𝑃𝑆 mechanism. 

The central axis of the rotational VC is centred in the middle of the moving platform.  

While the translational VC is centred to the middle of the plate via a concentric mate with 

a hole on the moving platform, it is not coincident with the moving platform's plane 

allowing the VC to remain on the world axes while the moving platform rotates and 

moves (figure 4.20). The mechanism in figure 4.20 has 3-DOF; therefore three joints in 

the VC, including the one along the Z-axis, should be actuated when determining the 

workspace.   

 

Figure 4.20: 3-𝑅𝑃𝑆 Mechanism complete with 6-DOF virtual chain. 

For the simulation, one of the horizontal 𝑃 joints on the all translational VCs are fixed in 

place allowing for the mechanism to be operated with torques applied to all but one of the 

horizontal 𝑅 joints of the rotational VC.  The point being traced in this case study is the 

highest point of the moving platform's vertical axis as shown in figure 4.20.  The 

simulation was run multiple times while adjusting the vertical height of the moving 
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platform via the vertical 𝑃 joint in the all-translational VC.  The results of the simulations 

are shown in figure 4.21, where the black trace lines inside each section of the workspace 

are produced by the movement of platform when applying random torques to the 𝑅 joints 

of the VC.  This reduces simulation time while locating the external boundaries of the 

workspace of the mechanism. 

 

Figure 4.21: Horizontal workspace with a vertical height of: a) z = 142.5mm. b)  z = 137.5mm. 

c) z = 132.5mm. d) z = 127.5mm. e) z = 122.5mm. f) z = 117.5mm. g) z = 112.5mm. h) z = 

107.5mm. i) z = 102.5mm.  

Comparing this to the workspace presented in figure 9 of [4.8], which utilised the 

traditional process of producing workspace equations from the inverse kinematic model 

and feeding these into Matlab, produced near identical results. 

4.3.2 Spherical parallel mechanism 

For the second case study, the mechanism studied is a spherical parallel mechanism [4.7] 

constructed from three kinematic chains of 3𝑅 joints each offset from the last by 120°, 

with the second 𝑅 joint raised so that it will sit above the first 𝑅 joint of the next kinematic 

chain.  The last 𝑅 joint is inverted so that, when the mechanism is in its starting position 

(figure 4.22a), the 𝑅 joint is coaxial with the axis of the third kinematic chains first 𝑅 

joint and the second 𝑅 joint of the second kinematic chain.  



77 
 

The spherical parallel mechanism is capable of producing an approximation of an 

actuated spherical joint about a single point where the axes of all three 𝑅 joints of each 

chain meet.  The virtual chain for this mechanism is in the form of three virtual 𝑅 joints 

laid out, as shown in figure 4.1b and added to the mechanism in figure 4.22b. 

 

 

Figure 4.22:  a) 3-𝑅𝑅𝑅 spherical robot with a common point of motion; b) spherical mechanism 

with virtual chain 

To discover the available workspace, the force method is applied.  A constant torque is 

applied to the virtual chain R joints and collision pairs assigned to the two link pairs 

separately to prevent the mechanism from seizing up since the middle R joint section of 

both links remain in contact throughout the simulation.  The resulting workspace is 

displayed in figure 4.23 below. 

 

Figure 4.23: Workspace of the spherical parallel mechanism as produced via the force method. 

In order to compare this mechanism to a workspace defined in an earlier publication, the 

motor method representation of the mechanism was developed to match that of the 
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workspace displayed in [4.7].  As this publication gives the workspace of the mechanism 

in terms of degrees of rotation, the motors attached to the virtual chain can be manipulated 

to match these values (figure 4.24).   

 

Figure 4.24: a) Predefined workspace of the spherical parallel [4.7]; b) Motor refinement 

method workspace of the spherical parallel with mechanism included; c) Motor refinement 

method workspace without mechanism; d) Comparison of the workspaces. 

The resulting workspace from the motor refinement method shows that the methodology 

for discovering the workspace of the spherical parallel mechanism is almost exact, with 

only small deviations from the established workspace from [4.7] (figure 4.24d).  These 

inconsistencies are most likely due to the inclusion of collision detection in the links 

which themselves have been designed in a different style to allow the link sizes to be 

easily modified. 

4.3.3 Delta robot 

For the final case study, the well-known Delta robot (section 1.2.2.) has the virtual chain 

2D and 3D workspace methods applied and then compared against the theoretical data 

gained from [4.13] and [4.14].  The Delta robot in this case study has been designed with 

an equilateral triangle shaped moving platform where each side of the triangle measures 

at 37mm (figure 4.25a).  The motion pattern prescribed for the Delta robot is a 3 

translational, 0 rotational pattern resulting in the simplest available virtual chain to be 

made from three 𝑃 joints where each 𝑃 joint acts along a separate axis from the other two 

(figure 4.25b).   
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Figure 4.25: a) Delta robot model; b) with virtual chain. 

To investigate the workspace of the Delta robot and compare it to that of the recorded 

workspace from [4.12], the vertical 𝑃 joint of the virtual chain is limited to a height of 

30mm.  The remaining horizontal 𝑃 joints were then actuated by an oscillating force 

applied to the external casings.  After the motion study was simulated, the traced path 

component resulted in the rough workspace of the mechanism being produced (figure 

4.26).  In order to refine the workspace of the mechanism to bring it in line with previously 

found workspaces, displacement sensors were added to the location of the mechanism’s 

end-effector.  This produced the horizontal displacement values of the end-effector, 

which are shown in figure 4.27. 

 

Figure 4.26: Horizontal workspace of the Delta robot from virtual chain force method. 

From the displacement values in figure 4.27, a more refined workspace can be produced 

to better display the operational workspace for this mechanism.  For comparison with the 

theoretical results shown in [4.12] the new workspace utilises the motor refinement 

method detailed in section 4.2.2 and is used to produce a circular workspace with a 25mm 

radius, from the centre of the mechanism (figure 4.28) which is within the limits of the x 

and z displacement values. 
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Figure 4.27: Displacement values for the horizontal workspace of the Delta robot from the 

virtual chain force method.  

   

 

Figure 4.28: Refined horizontal workspace of the Delta robot using the virtual chain motor 

refinement method. 

From the resulting workspace shown in figure 4.28, the method can be compared to the 

existing theoretical results gained in [4.12] (figure 4.29). 

Figure 4.29c shows that the virtual chains method is capable of producing near identical 

workspace models for the outlying points of the Delta robot's moving platform to those 

produced via the traditional process. It should be noted that as the Delta robot from [4.12] 

does not give the dimensions of the mechanism or the final radius of the mechanism’s 
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workspace.  If this information had been provided in the paper, the workspaces would be 

identical. 

 

Figure 4.29: a) Theoretical workspace of the Delta robot [4.12]; b) Simulated workspace of the 

Delta robot (only moving platform shown for clarity); c) Comparison of theoretical and 

simulated workspaces.  

With the successful reproduction of the 2D workspace, the 3D methodology will be 

applied to the mechanism to test its accuracy.  The first method to be investigated is the 

virtual chain force method in which the vertical virtual 𝑃 joint is actuated to manoeuvre 

through an incremental position changes of 2.5mm to allow a layered workspace to be 

formed.  For this test, the traced location of the workspace is changed from the outer 

reaches of the moving platform to the centre of the platform where the mechanism’s end-

effector would be located.  The displacement sensor for the vertical component of the 

mechanism’s workspace is set as the distance between the underside of the base of the 

mechanism to the topside of the moving platform with a positive direction being in the 

upward direction.   The result of the initial workspace is shown in figure 4.30 and the 

positional data from the displacement sensors of each axis are displayed in figure 4.31 

where each graph shows the motion along a single axis resulting in an oscillating value 

as the moving platform moves back and forth along each axis past the starting value. 
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Figure 4.30: 3D workspace of the Delta robot from virtual chain force method. 

 

Figure 4.31: Displacement values for the 3D workspace of the Delta robot from the virtual chain 

force method for the x-, y-, and z-axes. 

From the positional data shown in figure 4.31, the motor refinement method can be 

applied.  The information from the displacement sensors allows the motor refinement 
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method to be optimised since the changes in the radius of the 2D slices will dictate the 

rate at which the slices are taken from the mechanism.  The results of the motor refinement 

method are shown in figure 4.32 with a comparison of the resulting workspace made with 

the calculated workspace of a Delta robot using the traditional process [4.12] as displayed 

in figure 4.33.  

From this, it can be seen that the workspace produced through the proposed method is 

capable of replicating the generalised shape of the Delta robot’s workspace as calculated 

in [4.12] proving that the proposed methodology is valid.   

The work completed in this section addresses the second objective of this thesis where 

virtual chains are utilised to develop a visual representation of parallel mechanisms' 

workspaces and the limitations there in by including the collision detection feature of the 

SolidWorks Motion Analysis simulation tool. 

 

 

Figure 4.32: 3D workspace of the Delta robot from virtual chain motor refinement method. 
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Figure 4.33: Theoretical workspace of the Delta robot [4.12]; Bottom: Simulated 3D workspace 

of the Delta robot using the motor refinement method. 

4.4 Summary 

In this chapter, a novel method of producing the workspace for a parallel mechanism with 

the application of the virtual chain method has been presented.  The steps required for the 

production of initial 2D and 3D workspaces of parallel mechanisms are laid out in detail 

in the virtual chain force method and the concept refined by modifying the method to 

produce a motor refinement method workspace.  These methods have then been 

investigated, successfully compared and proven with the use of three case study 

mechanisms.  This novel approach enables the user to quickly build and simulate the 

model and workspace of any mechanism, with the external boundary of the workspace 

being the location of either a link or joint collision or the limitation of a joint in order to 

prevent a singularity from potentially occurring.  This allows the user to modify the 

mechanism to suit a predetermined area of influence that the mechanism can operate in 

or allow the user to define the safe working area for personnel that will be working near 

the mechanism.  This work therefore has addressed the second objective in section 1.6. 

In the next chapter, the virtual chain approach used in this chapter and in previous 

chapters will be applied to the determination of the inverse kinematic model of the 

mechanism using the MapleSim software. 
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Chapter 5 Inverse kinematic and dynamic analysis of parallel 

mechanisms using MapleSim and the concept of virtual chain 
 

Following the work in Chapters 2, 3, and 4, this chapter investigates a novel approach to 

analysis and developing inverse kinematic and dynamic models for parallel mechanisms 

by using the graphical programming software capability of MapleSim.   

5.1 Introduction 

When investigating the motion of a mechanism, there are two basic methods of 

determining its state, forward (direct) kinematic modelling or inverse kinematic 

modelling.   

Forward kinematic modelling requires the joint angles of the mechanism to be known in 

order to determine the location of the end-effector of the mechanism.  This method is 

preferred by the robot's operator as they can program the mechanism through a series of 

nodes that are not yet determined.   

Inverse kinematics is the geometric study of a mechanism in which the position of the 

end-effector is known and the joint angles of the various joints along its limb(s) are the 

desired outcome of the calculations.  The primary advantages of inverse kinematic 

modelling are that a location position can be specified for the mechanism’s end-effector 

from which the control system can determine how the joints should be positioned to 

achieve the motion.  This method provides a more intuitive design approach because it 

supports the analysis from a more practical application and allows for the development 

of a more functional product.  For the purposes of mechanism control, the inverse 

kinematic modelling method will be used throughout the rest of this thesis. 

In a similar fashion, to the inverse kinematic modelling of a mechanism, its inverse 

dynamic model is determined by first taking into consideration its desired motion and 

then calculating the amount of force required to produce the desired movement.  This is 

particularly important when developing a new mechanism as the inverse dynamic model 

allows the designer to determine the maximum actuator forces required in order to enable 

the mechanism to perform to the desired speed and lifting power in relation to the design 

specification.  

In this chapter, the theoretical methods of producing both inverse kinematic and dynamic 

models will be compared to a proposed novel method that uses the virtual chain approach 

to produce a simulated representation of these design elements.  The chapter introduces 

the graphical programming software "MapleSim" and details how a mechanism can first 

be produced, by implementing the necessary virtual chain in order to quickly and 

intuitively create its inverse kinematic model.   It then outlines the development of this 

approach by determining a dynamic model of a 3-𝑅𝑅𝑅 planar parallel robot.  Lastly, a 

method to produce a mechanical efficiency model of a mechanism is developed in order 

to determine whether the system’s design is efficient. 

5.2 MapleSim 

MapleSim is a graphical programming software that uses pre-programmed component 

blocks to write mathematical code for a number of different physical phenomenon from 

electrical circuits and magnetic physics components through to mechanisms. It also 
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produces a visual representation of the allocated components [5.1].  These mechanism 

blocks are referred to as multi-body components and are the focus of this chapter. 

5.2.1 MapleSim interface 

The interface of MapleSim is designed to allow the user to create numerous mathematical, 

electronic, and mechanical simulations with a basic understanding of how the components 

function in relation to each other.  Figure 5.1 shows the general layout of the MapleSim 

Interface with several sections highlighted and numbered.   

Section 1 in figure 5.1 shows the "Main Toolbar" (figure 5.2).  This consists of the main 

buttons for running the simulation, copying and pasting components, 

creating/opening/saving a model and adding attachments to the model such as external 

data files and export file wizards for the model or its components. 

Section 2 is the "Navigation Toolbar" (figure 5.3).  This toolbar allows the user to switch 

between the base Maple code, which is represented by the model, its graphical 

representation, a list of the models parameters, and any model subgroups. 

Sections 3 and 6 are collectively known as the "Pallets Pane" with Section 3 (figure 5.4) 

providing the display for the currently selected component and a search window to locate 

a particular component block.  Section 6 (figure 5.5) includes the eight different 

component block options as well as any example models or projects installed within 

MapleSim as well as a section dedicated to "favourite" components where any block can 

be dropped as a convenient place from which to copy them later.  

The eight-dropdown selections in the component library represent different types of 

blocks that can be used in MapleSim.  A brief description of each option’s component 

type is now detailed [5.1]:  

 Signal Blocks: any components that are designed to manipulate or generate an 

input or output signal in the model.   

 Electrical: any components intended to model electrical analogue or digital 

circuits, single-phase and multiphase systems and machines. 

 1-D Mechanical: any components designed to represent single dimensional 

mechanical motion (translational and rotational). 

 Multibody: any components that will have a graphical representation and any 

components that control the force, motion or any other feature of such 

components.  This option will be used primarily in this thesis as the components 

within it allow the production of mechanisms for use later in this and the following 

chapters. 

 Hydraulic: any components that model the control system or represent a hydraulic 

system. 

 Thermal: any components that model heat flow and/or heat transfer of the model. 

 Magnetic: any components designed to simulate magnetic circuits. 
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Figure 5.1: MapleSim Interface. 
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Figure 5.2: MapleSim Main Toolbar. 

 

Figure 5.3: MapleSim Navigation Toolbar. 

 

Figure 5.4: Pallet Pane search/current Component Box 

The fourth highlighted section of figure 5.1 shows the "Model Workspace Toolbar" 

(figure 5.6).  This allows the user to manipulate the model by use of the select tool (mouse 

pointer button), erase sections using the eraser button and add annotations with the text, 

line and shape buttons.  The final three buttons on the toolbar allow the user to add a 

probe to the model in order to determine the value of a signal or joint angle/position or 

any other type of desired information.  The middle of these three buttons allows the user 

to add a new parameter to the model and the final button allows the user to enable or 

disable any model selected components and connections. 

The fifth section is the "Parameters Pane" (Figure 5.7).  This allows the user to modify a 

selected component's parameters from the length, position and orientation of a link to the 

amplitude and frequency of an input signal's wavelength it also helps to define what 

information a probe placed into the model should record.   

In the parameters pane, the manner in which the model's multibody components are 

arranged is set.  This is done by manipulating either the position of the component, the 

length along the component's x-, y- and z-axes and/or the rotation of the component's end.  

The coordinate frames for the components are determined by the local coordinates of the 

model component that, by default, are set to the world coordinates; this means that any 

force, rotation or position data gathered by the probes will initially be set to these 

coordinates.  By adjusting the rotation of the component to match that of the desired 

orientation of the model's component, the user can redefine how the probe data is 

orientated, resulting in a local value for any force, rotation or position. 

The final two highlighted sections are the "Model Workspace" (7 on figure 5.1) and the 

"MapleSim Console" (8 on figure 5.1).  The model workspace is the area in which all 

components are placed in order to produce the MapleSim model.  In this window the 

components are connected by selecting the output port of a component and connecting it 

to the input port of another.  The colour of the port determines the type of connection that 

can be made with grey representing a multibody connection, blue a signal connection and 

green a 1D mechanical translation component connection. 
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Figure 5.5: Pallet Pane Component Library. 

 

Figure 5.6: MapleSim Model Workspace Toolbar. 
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Figure 5.7: MapleSim Parameter's Pane. 

The console section (figure 5.8) is split into two sections: the message console at the top 

of the section and the console toolbar at the bottom.  The message console gives detailed 

information on the progress of the simulation and, in the event of a failed simulation, it 

displays the error with a location in the model subgroups in order for the user to quickly 

locate the issue and fix it.   

 

Figure 5.8: MapleSim Console. 

The console toolbar allows the user to alter the amount of information displayed on the 

console, erase the information in the console and change the type of information being 

displayed. 

5.2.2 Model creation 

Creating a MapleSim model begins with determining the parts required for the 

mechanism to be correctly represented in the software’s 3D environment.  This is 

achieved by utilising the extensive list of multibody components available in the 

MapleSim library to represent components of a mechanism such as “Rigid Body Frame” 

components for a link and plate lengths and “Rigid Body” components for the mass of 

the mechanism's parts (figure 5.9).   
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Figure 5.9: Rigid body frame and rigid body components from the MapleSim multibody library. 

MapleSim models are fixed in place by “Fixed Frame” components that have a single 

multibody port and are defined in the virtual environment by a given value for the frame's 

x-, y- and z-coordinates as well as the initial rotation of the frame in relation to the world 

coordinates.  As all frames used in multibody components take their orientation from the 

output port of the previous multibody component, it is especially important to re-orientate 

the initial frame if the kinematic chains of the mechanism are offset from the world 

coordinates, as is the case with the Delta Robot.   

Due to the fixed frames being able to be located at the point where the kinematic chain 

meets the base plate, it is not usually necessary to include the mechanism's base plate in 

a MapleSim model, although for thoroughness the base plate can still be modelled 

utilising a single fixed frame for the location of the base plates centre.   With this in mind, 

the kinematic chains of the mechanism are initially built up from the fixed frame 

component with the initial joint link usually an R joint or a P joint both of which can be 

represented in MapleSim using “Revolute” and “Prismatic” multibody components 

(figure 5.10) by connecting the output port of the fixed frame to the input port (port A) of 

the joint.  The joints are then connected to a rigid body frame in the same manner as 

before.  For a standard link of any length it is usual to represent the link with a pair of 

rigid body frames with a rigid body component in the centre as the mass moment of inertia 

can be controlled through the rigid body frame’s properties window. 

 

Figure 5.10: Revolute and prismatic components from the MapleSim Multibody library. 

5.2.3 Case study 

The first case study of this chapter looks at a planar parallel mechanism that is operated 

using a prismatic multibody component (figure 5.11).  The mechanism has two limbs, 

each operating along a different axis on the horizontal plane.  The kinematic chains are 

𝑃𝑅𝑅 chains and meet at a single location in the centre of the mechanism where the end-

effector would be located (figure 5.12).  As the mechanism has actuated P joints, the 



93 
 

method of controlling the actuated joints differs in the controlling block where the 

revolute multibody component requires rotational position components; the revolute joint 

component requires “Translational Position” 1D mechanical translational motion driver 

components.  The method of feeding control signals into the translational position driver 

components is the same as the rotational position motion driver components and in this 

case, the mechanism will be driven from two time lookup table components that require 

data from a spreadsheet.  The data from the spreadsheet is laid out so that the first column 

represents the time stamp of the simulation and the following columns are called up by 

the time lookup table component to produce a signal.  For this case study, the data in table 

5.1 gives the link parameters and masses of the links while table 5.2 is used to produce 

the motion the results of which are taken from the MapleSim probes outputs shown in 

figure 5.13. 

 

Figure 5.11: Planar parallel mechanism CAD model. 

For the simulation to succeed the initial conditions for the simulated mechanisms joint 

positions are essential.  For this case study the position of the prismatic joints are initially 

set to 0m from the fixed frame and the revolute joints are set at -30° and 30° for joints 𝑅1 

and 𝑅2 of one arm respectively and -60° and 60° for joints 𝑅3 and 𝑅4 for arm 2 

respectively.  From this case study, it can be seen that while it is possible to produce the 

motion of a parallel mechanism using a time look up table component combined with a 

translational move motion driver component, the actual motion of the mechanism can be 

unpredictable as the equations are generated by the Maple mathematics program and are 

not directly controlled by the user. 
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Figure 5.12: a) MapleSim block diagram of the planar parallel mechanism case study; b) 3D 

visual representation of the mechanism. 
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Table 5.1: Link parameters for the planar parallel mechanism. 

Link Length (m) Mass (kg) 

PR link 1 1 

RR link 1 1 

R to end-effector link  

(Moving Platform) 
1 1 

 

Table 5.2: Motion plot in meters from the centre of the workspace used for the time lookup 

tables in case study 3. 

Time (s) 
Position on x-axis 

(m) 

Position on z-axis 

(m) 

0 0 0 

1 1 0 

2 1 -1 

3 -1 -1 

4 -1 1 

5 1 1 

6 1 -1 

7 -1 -1 

8 -1 1 

9 1 1 

10 1 -1 
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Figure 5.13: Probe data from the motion of the planar parallel mechanism case study MapleSim 

model during simulation. 
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5.3 Inverse Kinematic Analysis  

As already stated, the basis of the virtual chain is that it is a representation of the output 

motion of a mechanism.  As the virtual chain can be actuated to produce the workspace 

rather than its joints (chapter 4), the mechanism and virtual chain can be considered 

together as a visual representation of its inverse kinematic model.  By applying a virtual 

chain to a MapleSim model of a parallel mechanism and controlling the virtual chain, the 

mechanism can be manipulated to produce the joint positions required for the mechanism 

during motion, giving results that would normally be produced through an inverse 

kinematic model.   

To test this method, a case study involving a 3-𝑅𝑅𝑅 planar parallel mechanism is 

presented.  The mechanism in question is shown in figure 5.14 as a CAD model with a 

𝑃𝑃𝑅 virtual chain attached to the moving platform.  The mechanism is then converted 

into a MapleSim model with the virtual chain attached to the rigid body component that 

represents the middle of the moving platform as shown in figure 5.15. 

 

Figure 5.14: 3-𝑅𝑅𝑅 planar parallel mechanism with 𝑃𝑃𝑅 virtual chain. 
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Figure 5.15: MapleSim representation of 3-𝑅𝑅𝑅 planar mechanism with virtual chain. 

As the desired motion pattern of the mechanism is planar in nature, the 𝑃𝑃𝑅 virtual chain 

is selected where the axes of translation for the 𝑃 joints and the axis of rotation for the 𝑅 

joint are all perpendicular.  Normally each joint of the virtual chain would include a 

motion controller to define the motion path of the mechanism; however in this case the 𝑅 

joint is left free so that the simulation is simplified. 
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The initial conditions of the mechanism’s joints are inputted into the parameters pane of 

the individual joints with the virtual joint’s starting positions set to "strictly enforce" so 

that the mechanism begins at the desired starting location.  The sinusoidal signal blocks 

are then given a generic harmonic waveform subsequently translated into a positional 

movement for the virtual 𝑃 joints by their attached transitional move components.  These 

harmonic waveforms take on the desired position for the end-effector of the mechanism 

with the orientation of the moving platform being free to be determined by the required 

arrangement of kinematic limbs of the mechanism so that the desired motion can be 

realised.  The simulation is then run to ensure that the motion path is viable with the 

lengths of the mechanism linkages and the rotation values of the revolute components at 

the base of each kinematic limb recorded by attaching probes to the real number output 

of the 1D rotational "Angle Sensor" components (figure 5.16).  

 

Figure 5.16: MapleSim 1D rotational angle sensor component block. 

The results of the simulation are shown in figure 5.17. 

In order to determine whether the inverse kinematic model is completely successful, the 

mechanism’s model is copied into the model workspace and the inverse kinematic model 

component placed into a subgroup.  The values of the angle sensors are wired to the 

external walls of the subgroup and then connected to "Angular Rotation Move" 

components ("Translational Position Move" component for 𝑃 joints) (figure 5.18).  These 

are then connected to flange_b of the first 𝑅 joints in each kinematic chain in the 

secondary mechanism.  Finally, the fixed frames of the second mechanism are translated 

across the x-axis by 1.5 meters so that the mechanisms can be distinguished in the visual 

representation after simulation.  The MapleSim model is then simulated and the 

movement of both mechanisms inspected in the visual rendering of the model (figure 

5.19).  

From the simulation of the two mechanisms, it was determined that the virtual chain 

method for producing an inverse kinematic model was successful since the secondary 

mechanism mirrored the motion of the inverse kinematic model mechanism perfectly. 

A comparison of this methodology is presented in [5.2] in which the inverse kinematic 

model of the 3-𝑅𝑅𝑅 planar parallel mechanism is developed.  The resulting inverse 

kinematic equations for the actuated joint positions are given by equation (5.1). 
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Figure 5.17: Probe data on the motion of the case study MapleSim model during simulation. 
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Figure 5.18: Translational position move and angular rotation move MapleSim blocks 

 

Figure 5.19: MapleSim visual representation of the two 3-𝑅𝑅𝑅 planar parallel mechanisms. 

𝜃𝑖 = 𝐴 tan 2(𝐾𝑖 , 𝐹𝑖) ± 𝐴 tan 2 (√(𝐾𝑖
2 + 𝐹𝑖

2 − 𝐸𝑖
2), 𝐸𝑖)                    (5.1) 

where: 

𝐸𝑖 = 𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙𝐴𝑖
2 + 𝑙𝐵𝑖

2 + 𝑥𝐴𝑖
2 + 𝑦𝑎𝑖

2 − 2𝑃𝑥𝑙𝑑𝑖 cos(𝜎𝑖 + 𝜑) − 2𝑃𝑥𝑥𝐴𝑖

+ 2𝑙𝑑𝑖𝑥𝐴𝑖 cos(𝜎𝑖 + 𝜑) − 2𝑃𝑦𝑙𝑑𝑖 sin(𝜎𝑖 + 𝜑) − 2𝑃𝑦𝑦𝐴𝑖

+ 2𝑙𝑑𝑖𝑦𝐴𝑖 sin(𝜎𝑖 + 𝜑) 

𝐹𝑖 = −2𝑙𝐴𝑖 + 2𝑙𝐴𝑖𝑙𝑑𝑖 cos(𝜎𝑖 + 𝜑) + 2𝑙𝐴𝑖𝑥𝐴𝑖                              (5.2) 

𝐾𝑖 = −[−2𝑃𝑦𝑙𝐴𝑖 + 2𝑙𝐴𝑖𝑙𝑑𝑖 sin(𝜎𝑖 + 𝜑) + 2𝑙𝐴𝑖𝑦𝐴𝑖] 

where 𝑃𝑛 is the central point of the moving platform when 𝑛 =  𝑥, 𝑦 𝑜𝑟 𝑧, 𝑙𝐴𝑖 is the length 

of the link between the actuated 𝑅 joint and the secondary 𝑅 joint, 𝑙𝐵𝑖 is the length of the 

link between the secondary 𝑅 joint and the final 𝑅 joint, 𝑙𝑑𝑖 is the distance from the final 

𝑅 joint to the central point of the moving platform, 𝑥𝐴𝑖 and 𝑦𝐴𝑖 are the coordinates of the 

𝑖𝑡ℎ actuated joint, 𝜑 is the orientation angle of the moving platform, and 𝜎𝑖 is the angle 

between the central point of the moving platform and the final 𝑅 joint of the 𝑖𝑡ℎ kinematic 

chain. 

The work completed in this section addresses the first portion of the third objective laid 

out in Chapter 1, where virtual chains are utilised to develop a the inverse kinematic 

model of a parallel mechanism. Additionally this section continues to address the second 
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objective by producing a visual representation of a parallel mechanism's inverse 

kinematic model with the ability to change portions of the mechanism in solve any issues 

that may arise during the simulation of the model. 

5.4 Inverse Dynamic Analysis 

In the previous section, the virtual chain approach was applied to a MapleSim model in 

order to replicate an inverse kinematic model.  The next stage in developing this method 

is to determine the dynamics of the system by measuring both the dynamic forces being 

input to the system and the forces acting at the location of the moving platform.   

Traditionally this is done by utilising one of three methods for calculating a parallel 

mechanism’s dynamic model.  These are known as: the Newton-Euler approach ([5.3-

5.6]), the Lagrange approach ([5.7-5.9]) and the virtual work/Kane’s method ([5.10]) 

[5.11].  All three methods will produce a dynamic model of a mechanism [5.13-5.16] so 

only one needs to be investigated to prove the validity of the proposed method.  

As the dynamic model of a mechanism investigates the forces acting upon the moving 

platform of a mechanism including the generalised weight component, the case study for 

this section will not be compared to a pre-existing mechanism from published work.  The 

mechanism that will be investigated is the same 3-𝑅𝑅𝑅 planar mechanism used in the 

inverse kinematic model case study in the previous section (figure 5.14). 

For the development of a dynamic model in MapleSim, the method of attaching a virtual 

chain to the end-effector or moving platform and controlling it through it will not produce 

an accurate dynamic model, as there will be a greater amount of force acting on the 

moving platform than the total amount of force present at the actuated joints.  This is due 

to gravity being applied to the model in the simulation settings as well as any friction 

components that are being applied to the model.  These friction components can be either: 

a "Bearing Friction" component for rotational friction of 𝑅 and 𝑆 joints; a "Translational 

Friction" component for the friction produced by 𝑃 joints or when two objects slide 

against each other (figure 5.20); or a custom MapleSim block which simulates the friction 

of a bearing and then applies the resulting reduction in motion to the movement of the 

joint.  These friction components cause the model to lose force as it passes through the 

mechanism from the moving platform to the actuated joints of each kinematic chain.  

 

Figure 5.20: Bearing Friction and Translational Friction MapleSim blocks 

To avoid this problem, the additional mechanism used in the inverse kinematic model 

case study, used to identify whether the values of joint motion gained in the simulation 

were accurate, is modified slightly in order to record the forces required to move the 
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actuated joints through the desired motion and to determine the forces present at the 

moving platform of the mechanism.  

The reason for using this method is that the virtual chain controlled mechanism will be 

manoeuvred through a given path with the virtual chain joints controlling the mechanism 

itself.  The selected actuated joints then have their position (for 𝑃 joints) or their rotation 

(𝑅 joints) recorded using either a "Translational Position Sensor" or an angular rotation 

sensor component.  These components read the position or rotation of the joint and then 

output a real value signal that can be taken and placed directly into a translational position 

move or an angular rotation move component, which when attached to a prismatic or 

revolute multibody component moves the joint in exactly the same manner as the joint 

being read.   

This allows the virtual chain driven mechanism to drive the second mechanism from the 

actuated joints, effectively making the first mechanism an inverse kinematic model 

control system for the second mechanism.  The second mechanism can then be 

investigated to determine the forces acting upon the kinematic chains and the moving 

platform, which can then be recorded via probes, thus giving the user the ability to find 

the dynamic forces acting within the mechanism.  The force lost through the system can 

be determined by calculating the difference between the total force produced at the 

actuated joints and the force acting upon the moving platform (equation 5.3). 

𝐹𝐿 = ∑ 𝐹𝑖 − 𝐹𝑒                                                        (5.3) 

where 𝐹𝐿 is the force lost through the motion of the mechanism, 𝐹𝑒 is the force acting 

upon the moving platform, 𝐹𝑖 is the force produced at actuated joint 𝑖. 

To record the forces produced at each 𝑅 joint and at the moving platform, a "Force and 

Moment" sensor component is placed into the mechanism between the joints and the rigid 

body frames of each kinematic chain as well as between the rigid body frames and the 

rigid body component at the location of the end-effector (figure 5.21).   

 

Figure 5.21: Force and Moment sensor block 

The Force and Moment sensor component produces two (3 × 1) force vectors of real 

numerical data, the force and torque of being applied to the inboard node.  These arrays 

consist of three numerical values, one for each local axis.  This means that the arrays are 

orientated by the rotation of the node they are connected to via the inboard port and 
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therefore must be rotated back to a standardised global coordinate frame if they are to be 

accurately applied to equation (5.3) (figure 5.22).   

 

Figure 5.22: Force and moment frames in the a) global coordinate frame. b) local coordinate 

frame. 

The MapleSim block diagram for the inverse dynamic model of the 3-𝑅𝑅𝑅 planar parallel 

mechanism is shown in figure 5.23 and the results for the torque values of the inverse 

dynamic model are detailed in figures 5.24 and 5.25 for the kinematic chains and moving 

platform respectively.  

The force lost through the system is then calculated by adding the actuator torques 

together and subtracting the total force found at the end-effector.  The results of which 

are shown in figure 5.26. 

The work completed here addresses the third objective's requirement of using the inverse 

kinematic model of a parallel mechanism to develop an inverse dynamic model of the 

mechanism.   

5.5 Efficiency Calculation 

As stated in chapter 1, the efficiency of parallel mechanisms has been extremely under 

researched with the only noticeable case being written by Y. Li and G.M. Bone in their 

paper on whether parallel mechanisms are more efficient than serial mechanisms [5.12].  

In this section, a method of determining the total input and output power of the 3-𝑅𝑅𝑅 

planar mechanism to determine the mechanical efficiency of the system is laid out.  The 

equation for mechanical efficiency is shown below in equation (5.4) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑖𝑑𝑒𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
× 100%                                         (5.4) 

where the actual power of the system is the recorded power at the end-effector of the 

mechanism and the ideal power is the total input power of the actuated joints of the 

system, as a 100% efficient system would have no power loss throughout. 

To determine the mechanical power of the actuated joints and moving platform equation 

(5.5) can be used. 
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Figure 5.23: MapleSim Inverse Dynamic Model of the 3-𝑅𝑅𝑅 planar parallel mechanism. 
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Figure 5.24: Force values for the actuators of 3-𝑅𝑅𝑅 planar parallel mechanism.  
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Figure 5.25: Force values for the moving platforms of the 3-𝑅𝑅𝑅 planar parallel mechanism. 

𝑃(𝑡) =  
𝑊

𝑡
                                                            (5.5) 

where 𝑊 is the work done, and 𝑡 is the time taken to complete the work.  As work is 

calculated as force applied over a distance, the equation becomes 

𝑃(𝑡) =  
𝐹∙𝑑

𝑡
= �⃗� ∙ �⃗�                                                     (5.6) 

where 𝐹 is the force applied, 𝑑 is the distance moved, and 𝑣 is the velocity of the object 

during motion.  For torques this equation becomes: 

𝑃(𝑡) = 𝜏 ∙ 𝜔                                                          (5.7) 

where 𝜏 is the torque applied and 𝜔 is the angular velocity of the object during motion. 

To calculate the efficiency of the MapleSim model, the inverse dynamic model is 

modified to identify the angular velocity values for the actuated joints of the mechanism.   

This is done by adding 1D rotational "Angular Velocity Sensor" blocks (figure 5.27) to 

the revolute joints of the secondary mechanism. 

The torque values recorded from the actuated joints of the secondary mechanism are 

passed through an "Absolute Vector" signal block (figure 5.28a) in order to convert the 

3x1-force vector to a real signal.  The resulting real numerical signal is then passed to the 

𝑢1 port of a "Product" component block (figure 5.28b) while the real numerical signal 

from the angular velocity sensor is passed to the 𝑢2 port, resulting in the power required 

at each actuator.  The power values for each actuated joint are passed through absolute 
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value signal blocks (figure 5.25c) to convert any negative power values, caused by 

rotations in an anti-clockwise direction, to positive to help determine the full input power. 

 

Figure 5.26: Total force lost during the motion of the mechanism. 
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Figure 5.27: 1D rotational "Angular Velocity Sensor". 

 

Figure 5.28: a) MapleSim Absolute Vector component block. b) MapleSim Product component 

block. c) MapleSim Absolute Value component block. 

In order to determine the output power of the system a virtual chain, identical to the 

inverse kinematic model virtual chain, is added to the second mechanism by connecting 

the R joint to the rigid body located at the intended location of the mechanism’s end-

effector.  The joint velocities of this virtual chain represent the velocity of the end-effector 

as it is manoeuvred throughout the simulation and therefore are combined in a Pythagoras 

theorem calculation to determine the total end-effector velocity.  The force value 

determined at the end-effector is then combined with the total velocity from the virtual 

chain in order to calculate the output power.   

Finally, the power value from the end-effector is passed to the 𝑢1 port of a "Division" 

signal component block (figure 5.29) and the total input power of the actuated joints is 

passed to the 𝑢2 port.  The resulting value is then combined with a constant signal block 

with its k value set to 100 to determine the efficiency of the system. 

 

Figure 5.29: MapleSim "Division" signal component block. 

The block diagram of for the efficiency study of the 3-𝑅𝑅𝑅 planar parallel mechanism is 

displayed in figure 5.30 and the resulting power in, power out and efficiency are displayed 

in figure 5.31. 
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Figure 5.30: Block diagram of efficiency calculations. 
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Figure 5.31: Probe data from the efficiency calculation. 
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The sudden spike at around 0.5 seconds into the motion of the mechanism suggests the 

presence of a singular configuration where one or more of the actuated joints are applying 

next to no power in order to manoeuvre the moving platform from its current location.  

The motion pattern of mechanism was then loaded into the CAD model of the mechanism 

and run in a motion study by setting up the mechanism with the motor refinement method 

described in section 4.2.2.  The results of this are shown in figure 5.32, which shows the 

left most kinematic limb entering a singular configuration where the upper portion of the 

limb crosses above the lower portion of the limb. 

 

Figure 5.32: CAD rendering of the motion of the 3-𝑅𝑅𝑅 Planar Parallel mechanism in singular 

configuration. 

The work completed in this section again addresses the second objective of this thesis 

where virtual chains are utilised to determine a potential singularity in the mechanism's 

viable workspace in which one of the kinematic chains overlaps itself during the 

programmed motion.  Additionally this section further addresses the fourth objective as 

the inverse dynamic model is modified to development a method of determining the 

mechanical energy efficiency of the system. 

5.6 Summary 

In this chapter, the MapleSim mathematical programming language was fully introduced 

with its interface detailed.  The software was utilised to produce mechanisms and 

manipulate them using virtual chains to produce the inverse kinematics of a 3-𝑅𝑅𝑅 planar 

parallel mechanism.   

The method was then further developed in the form of a case study in which the inverse 

dynamic analysis of the mechanism was produced.  This case study detailed how the 
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forces of the mechanism can be determined by producing an identical version of the 

mechanism in the same model workspace and controlling its actuated joints by recording 

the motion of the inverse kinematic model mechanism model and converting the motion 

into force to drive the second mechanism. 

Finally, the inverse dynamic model was further developed to allow the efficiency of the 

mechanism to be determined by converting the force/torque values into their power 

equivalents and comparing the simulated actual power at the end-effector of the 

mechanism to that of the ideal power of the system applied across the mechanism’s 

actuated joints.  From these results it can be stated that the proposed method for 

determining the inverse kinematic and inverse dynamic models of a system can be done 

without needing to have the advanced engineering knowledge base required in the design 

process.  Additionally the proposed method of producing the mechanical energy 

efficiency of a parallel mechanism has been validated as the work by Liu [5.12] shows 

that the average efficiency of a parallel mechanism would be similar to the values gained 

from the energy efficiency study. 

These methods are further utilised in chapter 7 in the production of a physical mechanism 

prototype and the inverse kinematic model generation method further utilised in chapter 

6 in order to produce a control system in Labview. 

This chapter addressed objectives 3 and 4 of this thesis as the inverse kinematic model, 

inverse dynamic model and energy efficiency of a 3-𝑅𝑅𝑅 planar parallel robot were 

developed utilising virtual chains as a forward kinematic model of the systems motion 

pattern. 
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Chapter 6 Inverse kinematics based parallel robot control 
In this chapter, the methodology of developing an inverse kinematic model of a 

mechanism is further developed to inform and produce a viable control system.  This 

concept focuses on the MapleSim to Labview connector add-on in order to create a 

custom simulation block in Labview to control a mechanism. 

6.1 Introduction  

To achieve the high speeds, acceleration and accuracy expected of parallel robots, 

advanced model based controllers are designed and implemented to ensure that such 

robots perform to the required levels for each task [6.1]. 

In general, typical robot control systems consist of a trajectory generator, an inverse 

kinematic model (IKM), the controller and the robot itself usually with some form of 

feedback to the controller reporting the current joint position error to allow for 

adjustment; this concept is detailed in figure 6.1 below. 

 

Figure 6.1: Typical Robot Control System. 

However, there is also a need to see the position of the robotic mechanism.  Therefore, in 

addition to the control system in figure 6.1, a Direct or Forward Kinematic Model (DKM 

or FKM) and Graphical User Interface (GUI) are added at the node where the robot relays 

the position error to the controller so that the robot movement can be observed.   The 

addition of these components allows the user to input locations of target positions to 

which the robot must move via the GUI, thus giving the user direct control over the robot 

as shown in figure 6.2 [6.2]. 

 

 

Figure 6.2: Control system of a typical robot [6.2]. 

When working with parallel mechanisms, errors in the non-actuated joints can occur due 

to a number of issues such as control errors where the position of the robot and the 
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requested position match, kinematic model errors usually caused by inaccurate calibration 

due to the design not perfectly matching the physical robot, or higher order errors caused 

by deformation in the robot due to thermal and/or mechanical faults [6.2] which can cause 

it not to reach the desired location.  These errors do not appear to affect the standard 

control models for a parallel manipulator as the non-actuated joint angles go unrecorded.   

In order to prevent these errors, redundant sensors can be placed at choice locations along 

each limb on the non-actuated joints [6.2] providing that they do not interfere with the 

robot's range of motion or its ability to operate. 

As shown in figure 6.3, to solve kinematic model and higher order errors an additional 

kinematic model based on the redundant sensor readings can produce a model output 

showing the desired locations. 

 

Figure 6.3: Control system of a typical robot with a redundant kinematic model [6.2]. 

From this, the trajectory generator produces a single co-ordinate location for the end 

effector that is then fed into the IKM and the RKM, which each subsequently produce a 

model of where the desired joint angles should be located.  These model outputs are then 

added together to produce a single signal which generates a final trajectory that is fed into 

the controller and moves the robot's actuators.   

For the purposes of this chapter, the IKM of the control system is implemented using the 

MapleSim methodology detailed in Chapter 5 and the controller block and feedback loop 

implemented using a Labview-based approach. 

6.2 Labview Virtual Instruments 

Labview virtual instruments (VIs) [6.3] are designed using the software's two panel 

system windows: the front panel for producing a GUI and the block diagram panel for 

building up the VI's code.  When building a VI the user can opt to either: (i) set up a GUI 

prototype on the front panel by placing intractable virtual devices such as numerical 

inputs, switches, and probes (figure 6.4).  Allowing the user to manipulate the program 

and observe the data passing through the system in one form or another (figure 6.5); or 

(ii) start by building up the background code of the VI through the use of pre-programmed 

blocks in the block diagram panel.   
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The GUI interface screen starts as a blank grey grid window, which allows for a particular 

family of programming blocks, known as control blocks to be placed upon it.  Once 

placed, these can be manipulated to work within the functional criteria required by the 

user.   

 

Figure 6.4: Labview front panel GUI example. 

 

Figure 6.5: Example Labview block diagram program 

6.2.1 Labview data types 

In Labview, three types of data can be passed or manipulated in the block diagram using 

control blocks, these are numerical, string and Boolean.  The controls and indicators 

associated with each type are explained below: 

 Numerical Controls and Indicators [6.4]: Numerical data is the overreaching data 

type whether it is real numbers, integers, floats or double numbers, etc.  These 

data types are represented through blue (integer) or orange (float/double) 

connecting wires, blocks and ports in the block diagram and are typically 

manipulated through control blocks in numerous forms such as numerical sliders, 
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increment/decrement buttons and analogue dials (figure 6.6).  This type of data 

can be typically indicated as a numerical value or as a signal wave using numerical 

indicators such as a scope block or a numeric indicator window (figure 6.7).  

 

Figure 6.6: Labview front panel numerical control examples. 

 

Figure 6.7: Labview front panel numerical indicator examples. 

 String Controls and Indicators [6.5]: String data is the data type that uses 

characters and numbers that have no other meaning other than the order in which 

they are written.  This type of data is typically used for user names and passwords 

for a more secure program but can also be used for other tasks.  The string data 

type is represented in the interface through pink connecting wires, blocks and 

ports and is controlled using text boxes or tables that allow the user to input string 

data by selecting the box and typing in commands or information (figure 6.8).  

Output string data is also usually indicated once again by using a text box or file 

path that has been set-up to have a read only function (figure 6.9). 

 

Figure 6.8: Labview front panel string control examples. 
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Figure 6.9: Labview front panel string indicator examples. 

 Boolean Controls and Indicators [6.6]:  The final type is Boolean data, also known 

as the high/low data in which the value passed is either a 1 or a 0.  Boolean data 

is indicated in the block diagram using green connecting wires, blocks and ports, 

is controlled using two-position toggle switch control blocks and typically 

indicated by two state indicators like lights (figure 6.10).  Boolean data is typically 

used to activate a process upon selection, such as selecting a particular subroutine 

to run or changing between two system states in conditional coding blocks. 

 

Figure 6.10: Labview front panel Boolean control and indicator examples.  

6.2.2 Labview block diagram functions 

The block diagram functions are the primary operating elements of the Labview code and 

can appear as simple mathematical functions like add or subtract or as complex system 

tools such as pointers to other VIs which operate as subroutines within the code.  These 

function blocks differ from the control blocks on the front panel, as they are not displayed 

on the front panel GUI. 

One of the main function blocks used in Labview programming is the SubVI node that 

attaches an additional VI to the current VI in a similar manner to a subroutine in text-

based code.  The node acts as an equivalent to call statements in text based codes, which 

point to a section of additional code to be run outside the main program any number of 

times and are typically used to keep the main program, or in this case the VI, tidier and 

easier to read.   

Another aspect of coding which can be utilised in Labview is the ability to produce 

complex execution structures that allow for the continuous manipulation of data so long 

as certain requirements are met.  These execution structures are utilised in several ways 

including loops and case structures that allow processes to be repeated several times until 

a condition is met or to run only in the event of a particular set of criteria being met.  The 

case structure function creates an area in which additional code can be placed  

All GUI panel blocks placed on the front panel of the VI automatically place their 

corresponding block diagram view counterparts onto the block diagram layout.  The block 

diagram view is the section of the VI that resembles the MATLAB Simulink software as 

well as traditional coding languages, where variables, mathematical functions, I/O 

devices and signal modifiers are combined together using the wiring system detailed in 

Chapter 1 to produce a full-bodied code.  
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6.3 MapleSim to Labview Connector 

To test these methods, two case studies are presented focusing on determining the inverse 

kinematic model of an 𝑅𝑅𝑅 serial robot arm.  The first case study investigates the inverse 

kinematics of the 𝑅𝑅𝑅 serial robotic arm by utilising the traditional process for 

determining the IKM of a mechanism, the results of which are produced using Matlab.  

The second case study uses the methodology developed in chapter 5 to produce a 

MapleSim IKM of the mechanism and then, using a virtual chain, determine the required 

joint angles for the arm's end position. 

6.3.1 Traditional process case study 

This method looks at the geometry of the mechanism with the user inputting the world 

coordinates of the mechanism's end-effector (x, y) and its orientation (𝜙); the proof is 

given in [6.7].  The component parts of the mechanism are as shown in figure 6.11, with 

the mechanism's end-effector being denoted by "E", the R joints being  denoted as having 

origin locations of 𝑂1, 𝑂2 and 𝑂3.   

 

Figure 6.11: 𝑅𝑅𝑅 serial robot arm 

Taking a vector between the origin of the robot at the initial R joint (𝑂1) to the third R 

joint (𝑂3) for the vector elements 𝑥′ and  𝑦′ the following equations are obtained: 

𝑥′ = 𝑥 − 𝑙3 cos 𝜙 

                                                        (6.1) 

𝑦′ = 𝑦 − 𝑙3 sin 𝜙 

where 𝑙3 is the length of the third link, 𝜙 is the angle between the horizontal plane and 

the rotated plane of the final link and 𝑥 and 𝑦 are the vector components between the 

origin of the mechanism (𝑂1) and the end-effector. 
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The next equation utilises the required joint angles of the mechanism to calculate the 

rotation of the second R joint (𝑂2): 

𝑥′2 + 𝑦′2 = 𝑙1
2 + 𝑙2

2 − 2𝑙1𝑙2 cos(180 − 𝜃2)                                     (6.2) 

 

which can be re arranged to make: 

cos 𝜃2 =
𝑥′2+𝑦′2−𝑙1

2−𝑙2
2

2𝑙1𝑙2
                                                 (6.3) 

This presents only one component of the second R joint's position for future calculations 

sin 𝜃2 is also required, therefore, by utilising Pythagoras theorem: 

 sin 𝜃2 = ±(1 − cos2 𝜃2)1 2⁄                                                  (6.4) 

This produces two possible orientations for the second R joint, i.e. the next joint is either 

above or below the horizontal component of the joint angle (figure 6.12).   

 

Figure 6.12: An 𝑅𝑅𝑅 serial robot with two orientations of the second joint (adapted from [6.8]). 

From figure 6.12, the two linkages and the vector of {𝑥′ + 𝑦′} form a triangle.  Using the 

cosine rule the value for 𝜓 can be found: 

cos 𝜓 =
𝑥′2+𝑦′2+𝑙1

2−𝑙2
2

2𝑙1(𝑥′2+𝑦′2)1 2⁄                                                   (6.5) 

and from the sine rule: 

sin 𝜓 = (
𝑙2

(𝑥′2+𝑦′2)1 2⁄ ) sin 𝜃2                                           (6.6) 

To find the angle of the first R joint, 𝜃1, the total angle between the horizontal and the 

vector of {𝑥′ + 𝑦′}, β, needs to be calculated: 
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sin 𝛽 =
𝑦′

(𝑥′2 + 𝑦′2)1 2⁄
 

                                                        (6.7) 

cos 𝛽 =
𝑥′

(𝑥′2 + 𝑦′2)1 2⁄
 

From equations (6.4), (6.5), (6.6) and (6.7) the value of 𝜃1 can be calculated: 

𝜃1 = 𝛽 − 𝜓                                                              (6.8) 

With 𝜃1 and 𝜃2 now known, 𝜃3 can be calculated: 

𝜃1 + 𝜃2 + 𝜃3 = 𝜙 

                                                        (6.9) 

∴ 𝜃3 = 𝜙 − 𝜃1 − 𝜃2 

To test these equations, the values of the mechanism's link lengths and the end position and 

orientation of the end-effector are used.  These are as follows: 

 Link 1 (𝑙1) = 10m 

 Link 2 (𝑙2) = 8m 

 Link 3 (𝑙3) = 5m 

 End-effector position vector (𝑥, 𝑦) = (16, 5)  

 End-effector orientation (𝜙) = 
𝜋

2
 

The equations have been written out in full in Matlab with the above values inputted.  The 

results are shown in Table 6.1 and the resulting mechanism displayed as a Matlab plot in 

figure 6.13. 

Table 6.1: Joint angle values 

R Joint Angle (°) 

𝜃1 -23.44 

𝜃2 54.901 

𝜃3 59.244 
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Figure 6.13: Matlab plot representation of mechanism in end location and orientation. 

6.3.2 MapleSim inverse kinematic model method case study 

The corresponding MapleSim model representation is displayed in figure 6.14 and shows 

a virtual chain of two prismatic components and one revolute component.  The virtual 

chain's prismatic components act along the vertical axis (y-axis in MapleSim) and along 

one of the horizontal axes (x-axis); the revolute joint rotates about the remaining 

horizontal axis (z-axis).  The lengths of the mechanisms links are the same as in the 

previous case and the end-effector position vector values and orientation, set in radians, 

are fed into their respective virtual joints.   

 

Figure 6.14: MapleSim block diagram of 𝑅𝑅𝑅 serial robot with 𝑃𝑃𝑅 virtual chain. 
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The rotation values of the mechanism's revolute components are recorded using angle 

sensor components.  The results of the simulation are shown in figure 6.15 and the visual 

representation of the mechanism shown in figure 6.16. 

When compared, the results shown in figures 6.13 and 6.16 show that the values gained 

through the MapleSim inverse kinematic model and the traditional process are the same, 

further proving the validity of this process.  

6.3.3 MapleSim to Labview connector 

The MapleSim connector for LabVIEW and NI VeriStand Software is an add-on 

component that can be purchased from Maplesoft and is used to export any MapleSim 

model to Labview, the process is detailed in a video in [6.9].  The MapleSim model is 

exported as a dynamic link library (.dll) file type to be uploaded to Labview VI using the 

Exported Model function block found in the Utilities section of the Simulation function 

block list for the block diagram window.  In order to produce a viable MapleSim model 

for conversion to Labview, the following steps must be followed: 

 Step1: Set up the model 

 Step 2: Define inputs and outputs 

 Step 3: Export the model 

 Step 4 Import the model into Labview 

Each step is now described in detail below. 
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Figure 6.15: Probe data of the mechanisms rotation joints. 
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Figure 6.16: 3D visualisation of the serial mechanisms inverse kinematic MapleSim model at 

the start and end of simulation (1 square = 1m along axis). 

6.3.3.1 Step 1: Setup the model. 

The first step in preparing the MapleSim model for being exported to Labview is to 

convert the Labview model to a subgroup of the MapleSim model file.  This is done by 

selecting all of the model's components that represent the physical form of the mechanism 

and any control aspects included in the model (figure 6.17).  Using the hotkey shortcut 

Shift + G, a small window will appear asking for a name to identify the subgroup to be 

formed (figure 6.18).  Once entered, the selected components are enclosed into a subgroup 
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component block.  By double clicking on the component block, the subgroup can be 

accessed, allowing modifications to be made to the model of the mechanism (Figure 

6.19). 

 

Figure 6.17: MapleSim representation of the mechanism. 
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Figure 6.18: MapleSim window for creating a Subgroup. 

6.3.3.2 Step 2: Defining inputs and outputs 

With the mechanism enclosed in a subgroup the inputs and outputs of the block are now 

required; these will be replaced later by Labview components.  Output components are 

traditionally in the form of real numerical values that represent various aspects of the 

MapleSim model; typical examples of outputs are position or angle values for the P and 

R joints, and required torque or force values of actuators.  Input components tend to be 

the main control values of the system, usually in the form of signals for motion drivers or 

power curves for motors.  To place an input or output node into the subgroup the main 

control and sensor components need to be placed into the subgroup model at the 

appropriate places (figure 6.20).   

From these components, the control component's inboard nodes and outboard nodes can 

be connected to the dotted exterior of the subgroup (figure 6.21).  The subgroup now has 

the desired inboard and outboard nodes visible on the subgroup component block and can 

now be given meaningful names, which aids in the construction of the model when 

connected to the inputs components and output probes (figure 6.22). 

It should be noted that this step could be avoided if, in creating the model, the inputs, 

control components, sensors and output systems have all been put in place before the 

model is converted into a subgroup.  In this scenario, the model should be selected along 

with all other components excluding any existing input and output components. 

6.3.3.3 Step 3: Exporting the model 

Using the templates menu in the main toolbar of the MapleSim window, the NI LabVIEW 

EMI Block Generation template option is selected to begin the process of exporting the 

constructed model.  Selecting this option produces a "MapleSim custom component block 

creation" setup window to complete the process of producing the Labview block (figure 

6.23). 
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Figure 6.19: MapleSim model in subgroup level. 



130 
 

 

Figure 6.20: Subgroup mechanism with input motion drivers and output sensors 

 

Figure 6.21: Subgroup inputs and outputs added to block diagram 
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Figure 6.22: Subgroup with meaningful names and control/probe elements for testing 

 

Figure 6.23: Select the NI LabVIEW EMI Component Block Generation option 

Inside of the model panel, make sure that the subgroup block is selected and press the 

Retrieve System button in order to populate the input and output fields of the template.  

Next, the directories for the block generation, LabVIEW and the Visual C++ directories 

need to be assigned so that the block is created in the correct location, and all of the coding 

libraries and components required to generate the block can be found while the LabVIEW 

component is generated (figure 6.24).  The final step in this section is to click the Generate 

to LabVIEW button at the bottom of the window, which will produce the Visual Studio 

project and dynamic link library file (.dll) for the LabVIEW EMI block.  
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Figure 6.24: EMI Block Generation window 
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6.3.3.4 Step 4: Importing the EMI block into LabVIEW 

In LabVIEW, open a new VI and access the block window view of the project.  In the 

functions menu, select the Control and Simulation Loop component from the Simulations 

section and draw a simulation loop box that will eventually house the MapleSim model 

and allow it to run repeatedly while the VI is active (figure 6.25).   

 

Figure 6.25: LabVIEW Control and Simulation Loop block 

With the simulation loop block added, drag the External Models block into the simulation 

link, which will result in a file path window to open.  Using the browse option in the 

window, select the .dll file produced in step 3 (section 6.3.3).  This will produce a custom 

LabVIEW block with the inputs and outputs of the MapleSim model to appear with the 

names for each port being given the name entered in the original MapleSim file.  Wire up 

the inputs to designated control blocks in the VI that will give the desired type of input 

data and the outputs of the model block to the intended output such as scopes, numerical 

indicators, motor drivers, etc and run the program. 

6.4 MapleSim to LabVIEW Virtual Chain Inverse Kinematic Model Design  

In this section the process of using a virtual chain, driven IKM produced in MapleSim 

and then converted to a LabVIEW external model component for control purposes is 

tested in a case study utilising the serial 𝑅𝑅𝑅 mechanism from the previous chapter.  

Following the steps laid out in section 6.3, a new LabVIEW VI is built up and the 

MapleSim model added to the system.  From here, key numerical inputs, such as the 

numerical control that represent the virtual chain joint positions and rotation, are added 

to the front panel of the VI to allow for the desired end position of the workspace of the 

𝑅𝑅𝑅 serial mechanism to be inputted.  On the block diagram panel, these inputs are then 

wired into the simulation loop and then into the custom MapleSim external model block.  

Next the output ports form the custom MapleSim block are wired to the external wall of 

the simulation loop before being loaded into numerical indicators which show the desired 

joint angle of each of the robot's joints.  These were then wired into subtraction blocks 

along with a local variable that reference the current joint angle of the 𝑅𝑅𝑅 robot at the 
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start of the iteration.  The subtraction block's output is then wired up in to a numerical 

indicator that shows the amount of rotation required for each joint from its current 

position.   

The entire VI is then enclosed inside of a frame sequence block to ensure that this process 

takes place before anything else in the sequence.  In the second frame, local variables of 

the desired joint angles of the system are fed into numerical indicators that represent the 

current values of each joint angle.  This allows the system to simulate the movement of 

the mechanism to its new location and then allow the system's operator to move the 

mechanism again.  Finally the entire VI is enclosed in a while loop block which allows 

the simulation to run until a stop button is pressed on the front panel, ensuring that the 

system runs until the user determines that the system is finished.  The front panel view is 

shown in figure 6.26 and the block diagram panel is shown in figure 6.27. 

Finally, the system is tested by inputting various end-effector positions into the system 

inputs with the values placed from the previous chapter's case study being displayed in 

figure 6.28.  By investigating the full range of the mobility of the mechanism, it was 

discovered that when a desired position for the end-effector exceeded the range of motion 

of the mechanism, the system crashed. 

This shows that after the program was run, the Labview system successfully recreated the 

motion of the MapleSim model as the desired values that were calculated through the 

exported model component generated the same values as gained in the traditional process 

and the MapleSim model. 

This issue can be dealt with in multiple ways, the first being to modify the maximum and 

minimum limit values for inputted information into the numerical input components on 

the front panel thus preventing the mechanism from exceeding those values.  This is best 

suited for parallel mechanisms as the actuated joints only have a set range of motion that 

will enable them to operate inside their workspace.  The second way to deal with this is 

to include a type of redundant IKM which has the maximum and minimum values set up 

for the potential inputs, this can then be wired into an Or logic gate with the inputs looking 

into which simulation loop produces an error code.  This then activates whichever 

simulation loop allows for a viable motion path with the user-controlled loop having 

priority in the event that both supply a viable motion. 

Observing the results from the theoretical case study in section 6.3.1 against the values 

gained in the Labview control program, it can be seen that the methodology produced the 

same values for the joint angles.  This shows that in the event of a physical robot arm 

being connected to the control system the inverse kinematic model produced in MapleSim 

would work as well as an inverse kinematic model directly coded into the software using 

the equations from the traditional process. 

This section addresses the second point in the third objective of this thesis where inverse 

kinematic model of a mechanism is utilised in the development of a Labview control 

system through the MapleSim to Labview connector add-on. 
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Figure 6.26: Front panel for case study mechanism. 
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Figure 6.27: Block diagram panel of case study mechanism. 
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Figure 6.28: Front panel of case study mechanism after desired position is inputted. 

6.5 Summary 

In this chapter, the development of a control system utilising the inverse kinematic model 

developed in Chapter 5 has been achieved.  The control system methodology detailed in 
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this chapter shows how to modify a MapleSim model to allow it to be exported and run 

in a Labview VI via the MapleSim to Labview Connector add-on to MapleSim.  A series 

of case studies were investigated, detailing how the control system can be built up to 

allow a virtual or actual mechanism to be controlled in this manner while allowing for a 

comparison between the different methodologies.  From the work detailed in this chapter, 

it can be seen that the proposed method of developing an inverse kinematic model in 

MapleSim can be modified in order to produce part of the control system of a physical or 

virtual mechanism as validated by comparing the traditional process to that of the 

proposed process. 

This methodology will be implemented in the next chapter in the production of the control 

system for a physical multi-platform parallel mechanism prototype. 

From the work detailed in Chapters 3-6, the modified design process stages can be 

summarised in flow diagrams similar to figure 1.2 in Chapter 1.  These modifications 

include novel design processes that allow a designer to produce a new mechanism using 

basic knowledge of CAD design and MapleSim modelling throughout which a visual 

representation of the various stages is given.  The flow charts for the proposed changes 

are shown in figure 6.29. 

These proposed design process modifications address the fifth objective of the thesis by 

potentially formalising the modifications to several of the design process stages for the 

development of a new multi-platform mechanism in a more visual manner. 

 

Figure 6.29: Modification of the design process' a) dimensional design stage; b) detailed design 

stage; c) control simulation stage. 
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Chapter 7 Prototype development 
 

In this chapter, the novel processes and methodologies described in chapters 3-6 are 

integrated into novel changes to the design process and validated via the development of 

a new multi-platform parallel mechanism.  The initial design step will produce the type 

synthesis of the intended mechanism, which will utilise the extended virtual chain 

approach to develop a 4-DOF parallel mechanism with two moving platforms connected 

by a 𝑃 joint.  The next step is the determination of the workspace of the mechanism using 

the virtual chain approach laid out in Chapter 4.  This workspace calculation allows the 

entire workspace to be visually created, ensuring that the finished mechanism will be 

capable of performing the required task.  Following this, the development of the inverse 

kinematic model and dynamic model of the mechanism is implemented in MapleSim to 

allow for the minimum specifications for motors to be determined.  The last step in the 

design stage is the production of the mechanism's control system using the MapleSim to 

Labview connector.  The final section of this chapter will be the production of a physical 

prototype to demonstrate that the new methodologies for the production of the inverse 

kinematic model and control system proposed in this thesis are valid. 

7.1 Type Synthesis  

Using the expanded virtual chain approach for type synthesis detailed in Chapter 3, the 

multi-platform parallel mechanism is designed.   

The first step is to identify the wrench system of the mechanism.  The proposed 

mechanism utilises a 3-𝜁∞-system on the primary platform and a 3-𝜁∞-system on the 

secondary platform with a single 𝜀∞ connecting twist between the two platforms.  This 

means that the motion pattern of the mechanism is 3-tranlational for both platforms but 

with a relative translational DOF between the two platforms.  Therefore, the potential 

wrench systems of a leg of the parallel mechanisms can either be: a 0-system; a 1-𝜁∞-

system; a 2-𝜁∞-system; or a 3-𝜁∞-system.   

For the prototype, the specification states that the mechanism should have a total of no 

more than three kinematic chains on the primary platform and no more than two kinematic 

chains on the secondary platform.  The table for the viable kinematic chains for the 

proposed prototype mechanism is displayed in table 3.1 in chapter 3.  

The virtual chain for this mechanism was determined to be a pair of 𝑃𝑃𝑃 kinematic chains 

as both platforms are required to be able to translate along all three axes simultaneously.  

The connecting link between the platforms, producing the 1-rDOF of the mechanism can 

therefore be one of the following:  

 A Sarrus mechanism, which is comparable to a combination of 𝑃 joints in parallel. 

 A pair of 𝑅𝑅𝑅 kinematic chains. 

As the design concept chosen at the end of chapter 3 was the 4-DOF system (3-DOF, 

1rDOF), the layout of the kinematic chains can be determined in the same manner as two 

pairs of 𝑃𝑅𝑅𝑅 kinematic chains.  The axes of  rotation for the 𝑅 joints and axis of 

translation of the 𝑃 joint all act along a single axis for each kinematic chain, where two 

chains act along the same axis but are connected to different platforms producing the 
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single rDOF. Following the rules of actuator selection the 𝑃 joints of each of the kinematic 

chains have been selected as the actuated joints in order to improve the mechanism’s 

operational quality. 

7.2 CAD Concept Designs and Analysis 

As the chains of the mechanism have been selected to be two pairs of 𝑃𝑅𝑅𝑅 kinematic 

chains attached to each platform and the platforms will be joined by a 1-DOF kinematic 

chain or joint, the mechanism can be developed into a 3D CAD model for analysis.  As 

discussed in Chapter 1 concerning the H4, I4 and Par4 mechanisms, it was found that an 

even rotation of the kinematic chains greatly improves the stability of the mechanism 

being designed.  With this in mind, each kinematic chain is orientated to be perpendicular 

from its partner with the two kinematic chains that share an axis being distributed between 

the two platforms.  The various 1-DOF kinematic chains or joints can be arranged in 

several forms as shown in figures 7.1 and 7.2 for the Sarrus mechanism link and 𝑃 joint 

link respectively. 

 

Figure 7.1: Kinematic chain layout with a Sarrus mechanism. 

Connecting the two platforms with the either connecting link produces a mechanism 

capable of the desired DOF and that can be analysed for static displacement and 

workspace capabilities. 

7.2.1 Non-actuated prototype development 

In order to determine the practicality of the chosen mechanism, it was decided to produce 

a non-actuated scaled down prototype.   To reduce the cost of production and to save on 

manufacturing time and complexity, the model mechanism has been design to be 

produced using a 3D printer to produce the complex components in PLA and a laser cutter 

was used to produce the links and moving platforms from Perspex.  The design in section 

7.2 required modification to suit the chosen materials.  The 𝑃 joint casing was reworked 
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to include two cylindrical aluminium rods as runners which would pass through a 3D 

printed block in place of the original square hollow design. 

 

Figure 7.2: Moving platform concept with 1-DOF kinematic chains.  

In order to laser cut the upper and lower arm links the design was altered to speed up 

production time.  In order to increase the rigidity of the design the first 𝑅𝑅 kinematic link 

was increased from a single running strut to three, while the second 𝑅𝑅 kinematic link 

was increased from a single strut to being a pair, which allows the first link to hold the 

second firmly. 

The moving platform remains mostly unchanged in shape but in order to reduce the 

complexity of the mechanism as a whole the kinematic chain connectors have been 

redesigned to allow the new kinematic links to be slotted around the connector.  Likewise 

the moving platform 𝑅𝑅𝑅 connecting links were redesigned to improve the viability of 

the 3D printing as the 3D printer has difficulty printing at angles greater than 45°. 

The mechanism is then constructed in the same manner as its counterpart in section 7.2 

with the only difference being the two shared axis 𝑃 joints running along the same 

aluminium rods to save on costs. 

Constructing the non-actuated prototype scaled model requires a cage to be built to secure 

the aluminium rods in place.  To this end, a cage was designed out of equal angle 

aluminium extrusions.  Holes were added along each length to allow for the adjustment 

of the positions of the aluminium rods as well as any modification required. 

Finally, the mechanism was placed into the cage and secured by the 8mm aluminium 

rods.  The aluminium rods were altered to be threaded rods to allow nuts to be added on 

the external faces of the cage to prevent unwanted movement (figure 7.3). 
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Figure 7.3: Final non-actuated prototype design with cage. 

The non-actuated prototype was built to specification and is shown in figure 7.4. 

 

Figure 7.4: Completed physical non-actuated prototype model 

Once the non-actuated prototype had been constructed, there were several design flaws 

apparent regarding to the integrity of the 𝑅𝑅𝑅 links of the moving platform.  It was found 

that the links were not rigid enough in their current state to maintain the horizontal plane 
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of the two moving platforms.  The single vertical kinematic chain of the mechanism was 

found to be incapable of supporting the entire weight of the mechanism.  This issue can 

be solved with one of the following solutions:  

 Adding a pulley-counter weight system that will be suspended above the 

mechanisms centre. 

 Adding another vertical kinematic chain that would be either actuated through a 

gear chain, attached to the primary vertical kinematic chain's servomotor coupling 

or left un-actuated.  This would allow the system to distribute the load between 

both vertical kinematic chains equally. 

 Adding springs which would be attached across the two 𝑅𝑅 links in each arm, 

which would restrict the overall motion of the joint allowing for the platform to 

retain its rigidity 

 Replacing the moving platform 𝑅𝑅𝑅 link with the paired 𝑃 joint link design along 

with the modification of the moving platform to allow for a more rigid design.   

Despite the design flaws in the system the non-actuated prototype displayed that, with 

modification, the mechanism would be capable of the desired motion pattern when 

manipulated by hand.  While the development of a scaled-down model of the proposed 

mechanism is not a necessary part of the design process, it can be advantageous as it can 

be used to aid in the determination of physical design flaws and limitations early in the 

development process.  It will therefore be added to the proposed changes to the design 

process as an optional block. 

7.2.2 Dimensional design of the actuated prototype 

Following the results from the non-actuated prototype, the design of the mechanism was 

altered to increase the structural integrity of the kinematic chains and the moving 

platforms.  The mechanism has been designed to be constructed from flat bar aluminium 

lengths in order to reduce potential bending in the links and moving platform.    

The 𝑃 joints of the non-actuated prototype worked well in testing resulting in the design 

for the actuated prototype being based upon this.  The 𝑃 joints for the actuated prototype 

are driven by motors attached via a coupling to a power transmission lead.  In order to 

prevent the 𝑃 joint from rotating, a pair of 5mm aluminium guiding rods has been added 

to the mechanism in parallel with the lead screw.  As the components for the kinematic 

chain are designed from aluminium flat bar sections, the 𝑃𝑅 link, 𝑅𝑅 link, and 𝑅 to 

moving platform link in each chain had to be altered to allow the new material to work.  

The chosen solution involves a slot design in which the 𝑅 joint of the previous link slots 

around the coupled 𝑅 joint of the current link allowing a pin to be placed along the axis 

to hold the two components together.  All of the concept designs in this section utilise the 

same arm sizing to maintain a comparable result.  The lengths of the 𝑃𝑅, primary 𝑅𝑅, 

and secondary 𝑅𝑅 links are 100mm, 200mm, and 180mm respectively with each having 

a width of 44.5mm and a depth of 25.4mm.  The 𝑅 joint pins are designed to be 6mm in 

diameter and 44.5mm in length to allow for a flush fit with the rest of the arm.  Finally 

the 𝑃 joint socket is designed to be 18mm in diameter to allow for the corresponding nut 

for a 10x3mm power transmission lead screw to be attached to the block during the final 

build of the mechanism.  
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The final section of each kinematic chain comprises the moving platform connectors that 

are designed as inverted T shaped blocks for the horizontal (x and y) kinematic chains 

and a dual slotted connecting block.  The dual slotted connecting block fits into the end 

of the secondary 𝑅𝑅 link of the vertical (z) kinematic chain that is then connected to the 

moving platform by slotting the platform into the final slot of the connector.  Both types 

of connecting blocks are pinned in place by a pair of bolts, removing any unwanted 

additional rotations that the motion of kinematic chains could impose on the moving 

platform.   

As stated, the connecting links designed to connect the two moving platforms for the 

prototype will either be a pair of 𝑅𝑅𝑅 links set perpendicular to each other in order to 

reduce the available rDOF between the two platforms to one or a combination of parallel 

P joints to improve rigidity of the connection.  The dual 𝑅𝑅𝑅 link is designed to use the 

inverted T-shaped R to moving platform connectors used to attach the kinematic chains 

of the mechanism to the moving platforms for the raised 𝑅𝑅𝑅 link.  The horizontal 𝑅𝑅𝑅 

links are instead designed to have the moving platforms slotted inside of the first and last 

𝑅 joint with the remaining 𝑅 joints of the two links slotting into each other.  The parallel 

𝑃 joint link has two separate designs, the first is similar to the one proposed at the start of 

this section where, in this case, three cylindrical 𝑃 joints are aligned with the direction of 

the shared axis to allow for an increased stability and a reduction in the friction caused 

when 𝑃 joints are used.  The second design has one moving platform in the shape of a U 

and the other in the shape of a T with the two gripper's positions placed at the cross section 

of each platform.  The second platform is then located inside of the slot created by the U-

shaped hole and a pair of 𝑃 joints passed across the gap, starting at one side of the first 

platform and ending at the other with the second platform connected via a raised block.   

The last components sized are the bearings that are used in all 𝑅 joints of the kinematic 

chains.  As each kinematic chain is designed to apply force only along the axis of motion 

along which its 𝑃 joint translates, the axial load for each bearing is reduced to near 0N.  

Therefore the bearings to be selected need only be reliable and of a practical size so that 

the 6mm pin used to hold together each 𝑅 joint can be placed through the bearing's centre.  

With this in mind, NSK Deep Grove Ball Bearings were selected.  The bearings were 

modelled into SolidWorks and appropriate slots were incorporated into the kinematic 

chain's links.  The final mechanism designs are shown in figures 7.5, 7.6 and 7.5. 

7.2.3 Static analysis of designs 

Using the three designs from the previous section, a static finite element analysis (FEA) 

was performed on each fully assembled model.  The faces of the 𝑃𝑅 link block closest to 

the pair of guiding rods are set to be the grounded locations of the FEA model and all 

components are given their particular material types.  All 6mm pins have been replaced 

by Pin components within the FEA system to make the system more robust and, in the 

case of concept designs 2 and 3, the P joints setup as appropriate in order to allow any 

deflection to move the joint rather than deflect the whole system.  Gravity is then applied 

to the system and the mechanisms are placed into several configurations in order to 

determine a range of stresses and displacements of each mechanism.  The results for static 

stresses and displacement are displayed in figures 7.8, 7.9 and 7.10 for concept Design 1, 

figures 7.11, 7.12 and 7.13 for concept Design 2, and figures 7.14, 7.15 and 7.16 for 

concept Design 3. 



146 
 

 

Figure 7.5: Fully assembled prototype concept Design 1. 

 

Figure 7.6: Fully assembled prototype concept Design 2. 

 

Figure 7.7: Fully assembled prototype concept Design 3. 

 



147 
 

 

Figure 7.8: Prototype concept Design 1 position 1 FEA of: a) static stresses in the system under 

load; b) static displacements in the system under load. 
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Figure 7.9: Prototype concept Design 1 position 2 FEA of: a) static stresses in the system under 

load; b) static displacements in the system under load. 
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Figure 7.10: Prototype concept Design 1 position 3 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 

 

Comparing the results of the finite element analysis of concept designs 1 and 2, it can be 

seen that the inclusion of the P joints caused the mechanism to undergo lower levels of 

displacement with marginally higher levels of stress in the horizontal axis.  Additionally 

the modification of the moving platform in concept Design 3 when compared to that of 

concept design, showed that the third design was more statically robust as lower stress 

levels were detected in the mechanism and the amount of deformation in the system was 

half that of the other mechanisms at its highest point.  Due to the results of the non-

actuated prototype, the FEA step will be added to the design process to improve upon the 

success rate of the method as shown in figure 7.17. 
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Figure 7.11: Prototype concept Design 2 position 1 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 
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Figure 7.12: Prototype concept Design 2 position 2 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 
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Figure 7.13: Prototype concept Design 2 position 3 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 
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Figure 7.14: Prototype concept Design 3 position 1 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 
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Figure 7.15: Prototype concept Design 3 position 2 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 
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Figure 7.16: Prototype concept Design 3 position 3 FEA of: a) static stresses in the system 

under load; b) static displacements in the system under load. 
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Figure 7.17: FEA step inputted into place in the proposed modification to dimensional design 

stage. 

7.2.4 Workspace analysis of designs 

Using the process of developing a visual representation of a mechanism’s workspace as 

detailed in Chapter 4, the workspaces of each mechanism is produced.  As each of the 

mechanism designs allow only for a single rDOF, the two virtual chains can be combined 

to simplify the model.  This is done by combining the two axes of motion incapable of 

differing in position from each other; in this case, the vertical P joints and the horizontal 

P joint aligned perpendicular to the rDOF axis.  The remaining P joints that share the 

rDOF are placed on the same P joint yoke to allow the simulation to be as straight forward 

as possible (figure 7.18).   

In order to produce the workspaces of the three concept designs a base for each 

mechanism needs to be implemented.  This is done through the addition of a basic cage 

in which, four bars are suspended between vertical, and in the case of the z-axis, 

horizontal struts.  The layout of these bars, which represent the lead screws in the system, 

requires a slightly different layout for concept 3 when compared to the others due to the 

way in which the kinematic chains are laid out.  The cage design for concept designs 1 

and 2 is displayed in figure 7.19 and for concept 3 in figure 7.20.  In these figures, the 

bars are coloured blue to help distinguish them from the cage's framework. 
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Figure 7.18: Simplified virtual chain design for concept designs. 

 

Figure 7.19: Cage design for mechanism concept designs 1 and 2. 
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Figure 7.20: Cage design for mechanism concept Design 3. 

Applying these cages to the mechanism allows the force method of generating 

workspaces to be applied.  For the simulation of a multi-platform mechanism’s 

workspace, the force method needs to be applied multiple times in order to produce the 

active workspace of each individual platform.  The results for the primary and secondary 

moving platform of concept Design 1 are shown in figures 7.21 and 7.22 respectively.  

Additionally the results for the primary and secondary moving platforms of concept 

Design 2 are displayed likewise in figures 7.23 and 7.24 respectively. 

The final set of force method workspace results are displayed below in figures 7.25 and 

7.26; these represent the results of the force method generated workspaces for the primary 

and secondary platforms of concept Design 3 respectively. 
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Figure 7.21: Workspaces for the primary platform of concept Design 1 on the a) x-z plane, and 

b) y-z plane. 
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Figure 7.22: Workspaces for the secondary platform of concept Design 1 on the a) x-z plane, 

and b) y-z plane. 
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Figure 7.23: Workspaces for the primary platform of concept Design 2 on the a) x-z plane, and 

b) y-z plane. 
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Figure 7.24: Workspaces for the secondary platform of concept Design 2 on the a) x-z plane, 

and b) y-z plane. 
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Figure 7.25: Workspaces for the primary platform of concept Design 3 on the a) x-z plane, and 

b) y-z plane. 
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 Figure 7.26: Workspaces for the secondary platform of concept Design 3 on the a) x-z plane, 

and b) y-z plane. 

From the data gained from the workspace and static analysis, the decision was made to 

proceed with the development of the third concept design into a full scale, fully actuated 

prototype as it has the largest are of cross over in the workspaces of the two moving 

platforms.  With concept Design 3 chosen as the finalised design, the motor refinement 

method can now be applied to improve the visual of the viable workspace for the two 

platforms.  As stated in chapter 4, this is done by first determining the actual size of the 

workspace and then producing a motor driven version of the workspace of the 
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mechanism.  The actual workspace displacement for this concept design is taken with 

reference from a corner section of the cage, which will mean that the displacement graphs 

will need to be offset in order to produce the final workspace.  The workspace 

displacements for the primary and secondary moving platforms of concept 3 are shown 

in figures 7.27 and 7.28 respectively.    

It should be noted that the displacement required to offset the primary platform results to 

the origin point of the moving platform is 310.15mm in the x-axis, 52.12mm in the y-axis 

and 270.5mm in the z-axis.  The offset required to set the displacement of the secondary 

moving platform to its original location at the start of the simulation is 304.34mm in the 

x-axis, 52.12mm in the y-axis, and 409.49mm in the z-axis. 

A profile of the viable workspace can be developed in which the primary moving platform 

is kept within the range of displacement values gained by the force method.  From figures 

7.23 and 7.24, the adjusted range of motion for the motor method workspaces for both 

platforms at the starting position for the mechanism across the x-axis is from -110mm 

from the origin to 50mm from the origin, the adjusted range for the z-axis is -50 to 150mm 

from the origin.  The values for the rest of the workspace are summarised in table 7.1 for 

the primary and secondary moving platforms. 

Table 7.1: Motor refinement method ranges. 

x-axis range (mm) z-axis range (mm) y-axis range (mm) 

-100 to 50 -50 to 150 0 to 95 

-100 to 50 0 to 150 95 to 110 

-50 to 50 0 to 150 110 to 125 

-50 to 50 15 to 150 125 to 155 
 

The resulting motor refinement workspaces of the primary and secondary moving 

platforms are shown in figures 7.29 and 7.30 respectively. 
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Figure 7.27: Displacement graphs for the primary moving platform of concept Design 3 using 

the force method. 
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Figure 7.28: Displacement graphs for the secondary moving platform of concept Design 3 using 

the force method. 
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Figure 7.29: Primary moving platform's workspace using the motor refinement method. 

 

Figure 7.30: Primary moving platform's workspace using the motor refinement method. 
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7.3 Inverse Kinematic Model  

The inverse kinematic model is developed using the virtual chain approach laid out in 

chapter 5.  This method first required the development of the MapleSim multibody model 

of the proposed mechanism design. 

With each leg having a layout of 𝑃𝑅𝑅𝑅 (figure 7.31), the MapleSim model for an 

individual kinematic chain is built using a fixed frame which represents the centre point 

of motion for each arm connected to a prismatic multibody component with the motion 

of actuation set to the particular axis of motion designated for that particular kinematic 

chain.  The outboard frame of the prismatic component is attached to a subgroup 

constructed out of two rigid body frame multibody components set to the length of the P-

R link and a rigid body multibody component set to the mass of the component.   This 

subgroup is then connected to a revolute multibody component set to rotate about the 

same axis as the prismatic joint's axis of motion.  The remainder of each arm is built using 

the same subgroup setup only with the lengths and masses modified to allow for the 

differences in the mechanisms link lengths and masses with revolute components 

representing the remaining two R joints (figure 7.32).  The component’s dimensions and 

masses are listed in table 7.2 below.  

Table 7.2: Mechanism link parameters. 

Component Name 
Length 

(mm) 

Width 

(mm) 

Depth 

(mm) 

Mass 

(kg) 

𝑃 joint block 100 44.45 25.4 0.18 

Upper limb link 200 44.45 25.4 0.45 

Lower limb link 180 44.45 25.4 0.36 

Horizontal limb connector 60 12/38.1 25.4 0.05 

Vertical limb connector 80 44.45 20/25.4 0.15 

 

 

Figure 7.31: 𝑃𝑅𝑅𝑅 leg. 

 

Figure 7.32: MapleSim model representation of kinematic chain. 
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The moving platforms of the mechanism are produced using a rigid body frame and rigid 

body components laid out in the same manner as the moving platforms of the mechanism.  

The two P joints connecting the two platforms are replaced with a single prismatic 

multibody component attached at the midpoint between the two P joints in order to 

simplify the model (figure 7.33).   

The virtual chain of the mechanism as stated in section 7.1 is produced using two groups 

of virtual P joints along the shared axes of motion of the mechanism and a pair of P joints 

with a shared axis of translation.  This is produced in MapleSim by placing a fixed frame 

component at the centre location of motion for the workspace of the mechanism and then 

attaching the virtual P joint that translates along the vertical axis. 

This section addresses the final part of the third objective's first condition as the 

limitations imposed by the generated workspace are incorporated into the MapleSim 

inverse kinematic model to ensure that the mechanism does not attempt to leave its own 

workspace. 

7.4 Dynamic Model and Power Comparison 

In this section, the method for producing an inverse dynamic model from Chapter 5 is 

used on the IKM gained from the previous section in order to determine the actuator 

torques required in order to manoeuvre the mechanism.  The second part of this section 

investigates how the dual platform mechanism compares to a single platform mechanism 

using the same kinematic limb structure but will only include three kinematic chains and 

a single T-shaped moving platform (figure 7.34).  The power of the two mechanisms will 

be recorded by probes in MapleSim using the method detailed in section 5.5. 

7.4.1 Inverse dynamic model 

From the inverse kinematic model, force sensors were added to the secondary mechanism 

of the MapleSim model and simulated in order to determine the required amount of linear 

force that would be needed for the actuation of the mechanism.   

The methodology laid out in section 5.4.2 for producing the dynamic model of a 

mechanism is applied to the inverse kinematic model in order to calculate the minimum 

force requirement for moving the mechanism through a prepared path (figure 7.35).   

In order to make the dynamic model as accurate as possible, a pre-planned scenario for 

the movement of the mechanism was prepared.  The mechanism will move its two end-

effectors from a starting location to a pair of locations within the workspace of the 

mechanism and then return to the starting location.  The simulation is of a pick-and-place 

mechanism collecting two offset objects from a conveyor system and then placing them 

in-line in a depositing area.  The layout for this simulation is detailed in figure 7.36 and 

the detailed motion of the mechanism is given in table 7.3. 
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Figure 7.33: MapleSim model representation of full mechanism. 
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Figure 7.34: Single moving platform version of the prototype mechanism   

Table 7.3: Motion path values for the multi-platform mechanism.  

Time (s) X1-axis (m) X2-axis (m) Y-axis (m) Z-axis (m) 

0 0.2 0.02 -0.03 0 

1 0.015 0.01 -0.02 0 

2 0 0.005 -0.01 -0.01 

3 -0.03 -0.04 0 -0.02 

4 0 -0.005 -0.01 -0.01 

5 0.01 0.005 -0.02 0 

6 0.02 0.02 -0.03 -0.01 

7 0.02 0.02 -0.03 -0.02 

8 0.02 0.02 -0.03 -0.01 

9 0.02 0.02 -0.03 0 

 

The force values required for actuating the 𝑃 joints for the kinematic chains on the 

primary platform are displayed below in figure 7.37 and the secondary platform results 

are displayed in figure 7.38. 

From this simulation it can be seen that the required driving force is at a maximum value 

of 0.75Nm which when converted into a driving torque about the 10mm diameter lead 

screw gives a maximum required torque value of 3.75x10-3Nm.  Using this as a minimum 

requirement, the servomotors selected for the physical prototype had the capability to 

produce a maximum torque of 0.84Nm; the robust encoders and the compatibility of the 

servo drivers with the Labview cRio device and the National Instruments 9415 modules 

were selected for this project. 
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Figure 7.35: MapleSim prototype dynamic model. 
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Figure 7.36: Diagram of intended task key locations (all dimensions in mm).  

 

Figure 7.37: Force requirements for the primary platform 
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Figure 7.38: Force requirements for the secondary platform 

7.4.2 Power comparison with a single platform mechanism 

In order to determine the power requirements for the multi-platform and single platform 

mechanism, the forces of the mechanisms must first be converted to power values.  This 

is done in the same manner as detailed in Chapter 5, where the force/torque recorded at 

the actuated joint on the secondary model is multiplied to the joint velocity/angular 

velocity to produce the power of the system.  As the joints will be moving in both possible 

directions the velocity and force profiles will have negative components.  This is rectified 

by applying a vector norm signal block to the output of the product component block, 

ensuring that all power values remain positive.  Next the power signals are added together 

to produce the total power in signal that in turn is then passed through a Sum signal block 

to give the accumulated total input power for the mechanism.  The MapleSim block 

diagram for this is shown in figure 7.39. 
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Figure 7.39: MapleSim block diagram of power calculation. 

In order to compare two mechanisms, the pre-planned path used in the dynamic 

simulation of the multi-platform mechanism is used to simulate both mechanisms 

collecting the objects and returning them to set locations.  The path planned for this test 

will have both mechanisms starting at the same location and then going through the 

necessary movements in order to complete the task in the same amount of time.  The 

detailed motion of the single gripper version of the mechanism is detailed in table 7.4.    

Table 7.4: Motion path values for the single-platform mechanism. 

Time (s) X1-axis (m) Y-axis (m) Z-axis (m) 

0 0.02 -0.03 0 

1 -0.03 0 -0.02 

2 0 -0.015 0 

3 0.02 -0.03 -0.02 

4 0 -0.015 0 

5 -0.04 0 -0.02 

6 0 -0.015 0 

7 0.02 -0.03 -0.02 

8 0.02 -0.03 0 

9 0.02 -0.03 0 

 

By applying the equation to the MapleSim model of the prototype, the resulting power 

values are shown in figure 7.40. 

As can be seen from figure 7.40, the total power required for the entire manoeuvre is just 

under 6W.  When analysing the data it can be seen that there is a sudden drop in power at 

the 3-second mark, using the motor refinement method for determining the workspace of 

a mechanism, the problem can be identified (figure 7.41).   
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Figure 7.40: Results of power test on the multi-platform mechanism. 

From figure 7.41, it can be seen that while one of the upper arm links becomes parallel 

with the P joint block, another upper arm link has collided with the lower arm link of the 

same leg; these factors would therefore explain this sudden drop in power.  With the value 

now known for the multi-platform mechanism case, the single platform mechanism 

shown in figure 7.34 is converted into a MapleSim inverse dynamic model (figure 7.42) 

and then is simulated using the path detailed in table 7.4.  The results of the test are shown 

in figure 7.43. 
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Figure 7.41: Power drop configuration. 

As can be seen in figure 7.43, the total power required to run the single platform 

mechanism through the same task as the multi-platform mechanism and in the same 

amount of time required is 8.5W.  The simulation was then run to determine the power 

consumed when the multi-platform mechanism operated at the same speeds as the single 

platform mechanism.  The motion path taken for the high-speed test is detailed in table 

7.5 and the resulting probe readings displayed in figure 7.44. 

Table 7.5: Motion path values for the high-speed multi-platform test.  

Time (s) X1-axis (m) X2-axis (m) Y-axis (m) Z-axis (m) 

0 0.02 0.02 -0.03 0 

1 -0.03 -0.04 0 -0.02 

2 0 0.005 -0.015 0 

3 0.02 0.02 -0.03 -0.02 

4 0.02 0.02 -0.03 0 
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Figure 7.42: MapleSim inverse dynamic model of the single platform mechanism 
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Figure 7.43: Results of the power test on the single-platform mechanism 

Figure 7.44 shows that the total power requirements for the multi-platform mechanism to 

perform at a high enough speed to match the operational time of a single collection of the 

single gripper mechanisms is about 8.1W of power.  From these results, it can therefore 

be determined that the multi-platform mechanism is a more efficient mechanism when 

compared to its single platform variant as both simulations of the multi-platform 

mechanism resulted in a lower total power requirement when compared to the single 

platform. 

This section fully addresses the fourth objective of this thesis as the displayed method not 

only provides an additional method for determining the mechanical efficiency of the 

mechanism but also allows for the comparison of two similar mechanisms to determine 

which mechanism would have the lowest operational costing.  This therefore answers the 

third research question as this method, when combined with the method given in Chapter 

5, allows for a generic methodology for determining the cost and energy efficiency of a 

mechanism to be determined. 
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Figure 7.44: Results of the high-speed multi-platform power test 

7.5 MapleSim to Labview Control System 

Following the technique laid out in chapter 6, the subgroup of the inverse dynamic model 

for the prototype displayed in figure 7.35 was converted to a .dll file for use as an external 

model in the Labview control system.  The initial setup for the VI simulation loop was 

performed on the .dll file, with the external model being placed inside of the simulation 

loop and the input/output nodes being wired to the external walls of the loop.  Lastly, the 

entire program was enclosed within a While loop function with a stop button wired to the 

exit clause.  The input values were initially wired into numerical increments and the 

output nodes were wired up to numerical indicators so that the .dll file could be tested to 

ensure there were no issues with the conversion.   

The next step in the development of the control system was to determine how the VI 

would be constructed to work with the servomotors and the .dll file.  Normally, a 

simulation file can be uploaded to an external controller like the cRio device that we are 

using however, as the cRio device uses a Linux based operating system and the .dll file 
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is a Windows based file type, the file could not be uploaded.  Therefore, rather than have 

a single VI that would allow the entire program to be run from the cRio, the control system 

was split into two, the simulation VI and the servomotor VI. 

Having confirmed that the MapleSim model had indeed been converted correctly, the 

inputs to the simulation were wired into a division function block along with a constant 

value of 1000.  This modification allows the input of movements in metres and for the 

control system to convert them to millimetres as the simulation is designed to expect 

millimetre input for the virtual chain joints.  The outputs from the simulation were 

likewise wired into multiplication blocks with a constant value of 1000, to convert the 

values back to metres, and then passed into another division function block along with a 

constant value block set to 3 (determined by the pitch of the screw thread) in order to 

determine the number of rotations that are required to complete the move.  The resulting 

values are then placed into global variables labelled by the axis of motion the signal 

represented along with the suffix "Desired Position".   

Once this was accomplished, control elements were added to the user interface so that the 

user could set an end position without the mechanism moving while the position was 

being set.  This was done by enclosing the entire Labview program in a case structure and 

adding a Boolean toggle switch that when the switch is set to true will run the simulation 

to determine the motion of the mechanism.  The resulting front panel GUI for the control 

system is displayed in figure 7.45 below. 

 

Figure 7.45: GUI of the prototype control system. 
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In the "false case" window of the case structure, a series of global variables also labelled 

with the axis of motion the signal represents along with the suffix CPos which represented 

the current position of the P joint along a given axis.  These variables were then wired 

into the numerical indicators labelled in the same manner with the suffix being DPos 

(desired position).  The last step for setting up the VI was to add a timing function of 

100ms to ensure that false signals were not sent during run time and a sequence structure 

added outside of the while loop so that on initialisation of the control system, the preset 

starting position for the various P joints were loaded into the system.  The finished VI is 

displayed in figures 7.46 and 7.47 for the true and false cases respectively.  

With the simulation of the mechanisms working in a control system format, a servomotor 

VI that communicates the number of rotations to the servomotors is available.  The 

servomotor drivers come with a custom Labview block that allows the user to incorporate 

the motors into a VI.  Applying a While loop to the new VI, the first components to be 

added to the VI were the Straight-Line Move controller blocks for the motors.  These 

component blocks allow for a motor position (number of turns), motor velocity and motor 

driver to be assigned to the block in order to control the motor when ran.  For this chapter 

the motor velocity for each motor was set to 2rps so that the mechanism could move at 

speed but would not be at risk of damaging itself in the event that something went wrong.   

The position value connector for the straight-line move block was connected to the exit 

node of a subtraction function block that takes the desired position of the mechanism via 

a global variable and subtracts from it the current position of the motor in order to 

determine the number of rotations required to reach the desired position and fix the motor 

direction. 

This section of the VI was then placed into a sequence structure that passes Boolean 

values from the first frame to the second which return a high value if the desired position 

of the mechanism and the current position of the mechanism are the same.  In side of the 

second structure frame, a series of special Read blocks, designed to take information out 

of the motors allows the VI to read the current number of rotations the motor made from 

its zero position.  These position nodes are wired into the global variables for the axes 

CPos variables.  Finally a shift register is placed inside of the While loop and around all 

the other components to allow the CPos values to be fed back around to the start of the 

program. 

Lastly, the initialisation of the CPos variable values was completed in the same sequence 

structure setup as in the simulation VI.  The completed VI block diagram schematic is 

displayed in figure 7.48. 
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Figure 7.46: Simulation Labview VI true case. 
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Figure 7.47: Simulation Labview VI false case. 



186 
 

 

Figure 7.48: Servomotor Labview VI. 
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This answers the second research question as the concept of virtual chains have been 

utilised to produce a fully graphical-based approach to the development of a parallel 

mechanism and the remainder of this chapter will investigate the fabrication of a physical 

prototype to confirm this assumption. 

7.6 Physical Prototype 

With the concept dimensional design of the mechanism finalised, the components of 

design were modified to include cover plates that would prevent the R joint pins from 

slipping out of the mechanism during motion.  From the results of the refined motor 

method for chosen design, the decision was made to include the presence of chamfers on 

the corners of the kinematic chains links to improve the workspace reliability.  Lastly, the 

moving platforms of the mechanism were modified to include a cut out section where the 

grippers had to be inserted and the locations in which components are attached to each 

other with screws reworked to represent the screw thread sizes intended in the physical 

prototype.   

Lastly the bearings and R joint pins were drawn up and added to the CAD model of the 

mechanism to ensure that all the components fit correctly (figure 7.49a).   

Taking the design concept of the non-actuated cage of the prototype as the base of the 

mechanism, a more refined cage was designed to house the mechanism and its 

servomotors.  As the motors are large and require at least 100mm of cable length before 

the cables become flexible, the motor cages were placed outside of the main cage.  This 

prevents the mechanism from losing any of its viable workspace due to a kinematic chain 

potentially colliding with another chain’s motor cage.   

The cage was designed using 20 x 20mm aluminium profile extrusions, with 20 x 20mm 

three way cubic connectors being used to secure the corner sections and inner brackets to 

connect the vertical and horizontal sections that extend part way along an extrusion to the 

opposite side of the cage.  The reasons extrusions were selected was due to their low cost, 

availability and robust design.  The resulting design cage is detailed in figure 7.49b. 

In order to finalise the design of the mechanism, the method for connecting the kinematic 

chains to the cage was chosen; this was done through the application of aluminium 

guiding blocks designed to allow the kinematic chain's lead screw to pass through and be 

connected to the servomotors while securing the lead screw to the cage.  The guiding 

blocks also serve as a stopper to the aluminium guiding rods that have been designed to 

ensure that the kinematic chain does not rotate during motion. 

Finally, the supports for the servomotors of the mechanism had to be designed so that the 

motors could be mounted onto the cage.  First however, the servomotors themselves 

needed to be measured and built into a CAD model so that the mounting plates could be 

made accurately.   

With the servo motors modelled, the plates were designed to be produced from 3mm thick 

sheet aluminium that would first be cut out by a laser cutter and then be bent into shape 

using a bending press.   

With the final components modelled, the various CAD models of the kinematic chain 

components, moving platform components, servomotors, servo motor mounting brackets 
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and cage were compiled into a single CAD assembly file to produce the finalised design 

shown in figure 7.49c.  

 

Figure 7.49: a) Fully assembled prototype kinematic chains and moving platform with pin 

covers. b) Fully assembled prototype cage CAD design. c) Fully assembled prototype CAD 

design. 
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7.6.1 Prototype build 

With the intention of reducing the cost of production the entire kinematic chain and 

moving platform assembly were designed to be produced from a single block of 6 inch 

by 1 inch aluminium flatbar.  This flat bar section was cut into the components of the 

kinematic chains, moving platform and guiding blocks.  Finally the various rods and lead 

screws were turned down to the required dimensions. 

With the components of the mechanism fabricated, the KJN cage was built to the layout 

designed in Figure 7.49b.  With the cage finished the kinematic chains were constructed 

as in the layout detailed in figure 7.49a.  Once the kinematic chains had been constructed 

it was discovered that the pin joints were acting as a tolerance fit with the joint's bearings 

due to the stock being slightly larger than the ordered size.  This meant that the face plates 

for the kinematic chain’s links were no longer necessary as the contact with the inner 

walls of each of the joint’s bearings would meant that the pin would be incapible of sliding 

during initial testing, allowing for the kinematic chains to be taken apart and modified 

with ease if necessary.  

Once the kinematic chains were constructed, the 𝑃 joint linear bearings were mounted 

into the 𝑃 block guide which was then mounted onto the T shaped moving platorm.  The 

8mm aluminium bars were then slid through the guiding block and then secured into the 

two 𝑃 joint holding blocks before they were mounted onto the two protruding legs of the 

U shaped moving platform. 

Finally, the components for connecting the moving platforms to the kinematic chains 

were attached to the ends of their respective kinematic chains and then mounted onto their 

designated moving platforms as shown in figure 7.49a.   

With the mechanism constructed the lead screw nuts were placed into the slots cut out 

into the actuated 𝑃 joints and the 10x3mm lead screws were wound through.  The 5mm 

aluminium guiding rods were then passed through each of their 𝑃 joints before mounting 

the ends of each lead screw were fitted through the aluminium guiding blocks before one 

end was slotted into the servomotor coupling.  Lastly the mechanism was mounted to the 

cage and the servomotor couplings were aligned with the servomotors of the mechanism. 

Once the mechanism was mounted, it became clear that the mechanism had a small 

amount of deflection along the three horizontal lead screws that increased the required 

torque of the motors to beyond their specifications.   

This was solved by adding to each kinematic chain a steel plate that runs above the lead 

screws and attaching them to the two guiding blocks on either side and to the 𝑃 joint block 

of the kinematic chain via a slotted hole.  This allows for the 𝑃 joint to maneouver through 

its maximum desired range of motion while preventing the mass of the mechanism from 

bending the lead screw.  This modification is shown in figure 7.50. 
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Figure 7.50: Final prototype design with steel plates. 

The material supplies for the components of the prototype mechanism were then ordered 

and subsequently fabricated in the University’s Mechanical Engineering Workshop.  The 

mechanism was then constructed to produce a physical prototype as shown below in 

figure 7.51 with a close up of mechanism shown in figure 7.52. 
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Figure 7.51: Physical prototype mechanism and cage. 

 

Figure 7.52: Close up of physical prototype mechanism. 
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7.6.2 Testing of prototype 

Using the feedback information from the servomotors as a digital check and the motion 

of the mechanism via a visual check, the parallel mechanism was tested using the control 

system designed in section 7.5.  From the motion of the mechanism, it was seen that a 

small amount of deflection occurred at the moving platform that, while this did not 

prevent the mechanism from moving, did hamper its accuracy as the kinematic chain for 

the vertical P joint extended outwards.  This was rectified by adding a pulley-

counterweight system above the central aluminium extrusions and attaching the central 

arm of the T-shaped moving platform to the non-weighted end.  This improved the motion 

considerably and allowed the mechanism to complete a path programmed into the 

Labview control system, which proved that the MapleSim inverse kinematic model was 

working accurately.   

7.7 Summary 

In this chapter, the novel changes to the design process laid out at the end of Chapter 6, 

the various steps of which were developed in detail in Chapters 3-6, was implemented 

into the development of a new parallel mechanism that incorporated the multiple moving 

platform extension of type synthesis.  The dynamic modelling techniques produced in 

Chapter 5 were successfully implemented to determine the forces required to operate a 

physical prototype of the chosen design.  The inverse dynamic model was then modified 

to determine the total power requirements necessary to operate the prototype mechanism 

through a series of pre-planned points to simulate the mechanism in motion.   

The mechanism design was then compared to a single platform in order to determine 

which mechanism required the least amount of power to manoeuvre through a 

predetermined exercise.  This was done with the assumption that if both mechanisms 

utilised the same motor setup then the efficiency of the mechanism could be determined 

simply through which mechanism required the most power to move it.  The test showed 

that while the multi-platform design required less power than that of its single platform 

counterpart, it did enter a singular configuration during the motion resulting in a power 

drop.  This discovery will alter the current flow diagram of the proposed changes to the 

design process, as this stage will potentially identify any singular configurations not 

identified previously in the development process.  

The inverse kinematic modelling technique was applied to the design to allow for the 

motion of the mechanism to be simulated and then implemented into a Labview control 

system that allowed the finished mechanism to be controlled as intended. 

The workspace design methodology gave insight into the most suitable moving platform 

link arrangement and allowed for the addition of steel plates in the final mechanism to 

ensure that there was no interference with the desired workspace of the mechanism 

without any additional calculations being required. 

Lastly, the development of a non-actuated prototype gave evidence to issues with the 

current design model, allowing changes to be made to the design of a fully actuated 

physical prototype.  The prototype was then built and tested with the Labview control 

system and resulted in the desired motion path being achieved.   
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Chapter 8 Conclusions and Future Work 
 

The main goal of this thesis was to propose a method for the rapid development of multi-

platform parallel mechanisms.  This aim was then broken down into three main research 

goals: to investigate whether virtual chains could be used to produce a more graphically 

based approach to the conceptualisation of a class of generalised parallel mechanisms; 

whether a generic cost and energy efficiency model could be developed for parallel 

mechanisms; and whether an alternative design approach could be evaluated and tested 

in order to address the original aim.   

Additionally, another motivation for this work was to determine if it was possible to not 

only speed up the development time for designing a parallel mechanism by using only 

visual methods but also to determine whether the efficiency of a mechanism could be 

determined via a simulation. 

This thesis begins with a detailed look at parallel mechanisms, the mathematics behind 

their development, conception in the way of type synthesis, and the various software 

packages used to devise them. 

Then, the concept of type synthesis using virtual chains has been extended to Parallel 

Mechanisms with multiple platforms allowing the method to be applied to more 

mechanism architectures.  The extension incorporates the virtual chain type synthesis 

methodology into the design of multi-platform parallel mechanisms.  

This thesis also provides a new method of determining the workspace of parallel 

mechanism using a CAD based approach as well as the inverse kinematic, and inverse 

dynamic models of parallel mechanisms by utilising the MapleSim software, and a 

method of combining the inverse kinematic model developed in MapleSim with a 

Labview VI in order to produce a workable control system for parallel mechanisms.  

Lastly, the methodologies laid out in this thesis have been tested using various case 

studies before being applied to the development of a new multi-platform mechanism 

concept design.  The design was then converted into a full-scale physical prototype that 

was actuated using servomotors selected based on the results of the inverse dynamic 

model produced using the MapleSim method.  The mechanism was tested by 

manoeuvring the platforms through a prepared path and was found to function suitably 

when a counter weight was applied to aid in levelling out the moving platform. 

8.1 Main Contributions 

The work presented in this thesis has shown that the design of a mechanism can be 

produced with a visual approach that, rather than relying upon traditional design 

processes for workspace and dynamic analysis, and the production of an inverse 

kinematic model, the production of these elements can be done with CAD and graphic 

mathematical modelling software.  The main contributions of this thesis are as follows.  

Type synthesis is a method of using screw theory to develop a parallel mechanism from 

the intended motion pattern produced by the desired product.  The new method involves 

initially investigating the number of DOF in the system, number of kinematic chains, and 
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over constraints in order to produce a table of legs with a list of how many DOF would 

be available on each leg.   

The novel expansion of this method allows a designer to include multiple moving 

platforms or end-effectors with relative DOF in the design process and answers the first 

research question.  This allows for an already robust system of developing parallel 

mechanisms to allow the method to incorporate all future iterations of this system.   

The traditional process for producing a workspace has always fallen short of being able 

to replicate the motion of the mechanisms kinematic chains and the individual links.  This 

has led to the production of a viable workspace for any given mechanism to be reduced 

from a larger workspace as the designer must take into consideration any potential link 

interferences while the mechanism is operating.  

The new and novel workspace analysis method presented in Chapter 4 of this thesis 

allows the user to set limitations to the desired manoeuvrability of certain joint angles and 

to include link interferences into the calculation of the mechanisms workspace.  The 

designer, using this method, can get a more refined idea of what the mechanism they have 

designed would be capable of and where potential collisions can occur without having to 

produce a prototype beforehand.  This means that a mechanisms workspace can be 

maximised to the point that the user can be sure that no link interference or singularities 

can occur or modify the mechanism to avoid such events happening without a waste in 

physical resources.   

This work allowed the second objective of the thesis to be fully addressed as the novel 

method allowed for the workspace of several parallel mechanisms to be developed using 

virtual chains in a more visual-based approach.  Additionally this work addressed aspects 

of the fourth research question directly by testing the method through a series of 

comparisons with previously published work ranging from simple 2D workspace slices, 

to a full 3D workspace image. 

The theory used in producing an inverse kinematic model for a parallel mechanism relies 

heavily on the use of specialised mathematics in the form of screw theory.  This means 

that for a developer to produce the inverse kinematic model for a mechanism, they must 

first be capable of fully understanding the mathematics.  

The work presented in Chapters 5, 6 and 7 give a series of new process stage layouts in 

which a designer working on a mechanism can produce the concept design of a 

mechanism first using the type synthesis method detailed in Chapters 2 and 3, and then 

produce a CAD model of the mechanism.  The design of the mechanism can then be 

converted into an inverse kinematic model using the object orientated mathematical 

modelling software MapleSim.   

This work showed that the range of viable motion in a parallel mechanism's generated 

workspace could be used to develop the inverse kinematic model of the mechanism when 

combined with virtual chains, which addresses the first condition in the third objective.  

This work also goes towards addressing the fourth research question as the method is 

compared with the traditional process of a 3-𝑅𝑅𝑅 planar parallel mechanism as well as 

an 𝑅𝑅𝑅 serial robot arm. 
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In addition to the inverse kinematic model, the inverse dynamic analysis of a parallel 

mechanism, similarly to the inverse kinematic model, requires the designer to have an 

understanding of complex mathematical formulae that look at the propagation of forces 

through a mechanism from the moving platform to the actuated joint in order to determine 

the force or torque required to manoeuvre the mechanism in a desired manner. 

The inverse dynamic analysis extension to the inverse kinematic model detailed in 

Chapter 5 allows the designer to simply add a copy of the inverse kinematic model 

mechanism, remove the virtual chain and then control the mechanism using the positional 

information taken from the actuated joints of the inverse kinematic model.  The MapleSim 

software approach also allows for a modification of components masses, centre of mass 

and joint lengths to allow the user to determine the most optimal arrangement of 

components in the mechanism. 

Similarly, this work addresses the requirements of the third objective and fourth research 

question by showing that the inverse kinematic model produced in MapleSim can be used 

to develop a working inverse dynamic model and then comparing it to previously 

published work on a 3-𝑅𝑅𝑅 planar parallel mechanism. 

The topic on the efficiency of parallel and serial mechanisms is heavily neglected, with 

only a few examples having been published.  The new and novel work detailed in Chapter 

5 gives a new method for quickly determining the efficiency of a mechanism based on 

the forces obtained from the MapleSim inverse dynamic model and then using a 

secondary virtual chain to determine the forces at the end-effector or moving platform of 

the mechanism. 

Additionally, the comparison in Chapter 7 shows another method in which the various 

requirements of two similar mechanisms can be determined by again modifying the 

MapleSim inverse dynamic model of each mechanism.  Lastly, the comparison in Chapter 

7 showed that multi-platform mechanisms are more efficient when compared to a single 

platform variant when performing the same task in the same amount of time. 

The novel work in this thesis on energy efficiency allows a designer to determine the 

mechanical energy efficiency of their mechanism without the need to fabricate a physical 

prototype.  This work directly addresses the fourth objective and in doing so answers the 

third research question.  This work also addresses the fourth research question as the 

testing of the energy efficiency of the proposed prototype detailed multiple work 

scenarios to determine whether the mechanism was more or less energy efficient than its 

single-platform variant. 

The proposed MapleSim to Labview control system method detailed in Chapter 6, shows 

how a virtual chain generated inverse kinematic model can be applied to a control system.  

This methodology removes the need for a mathematical variant of the inverse kinematic 

model to be generated by the user prior to or during the build of a control system.  The 

special servomotor Labview blocks used in the control system allowed the actuators of 

the mechanism to return current values on the number of rotations the motor had made 

from its zero position in order to act as an error value to the inverse kinematic model's 

expected position.   
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The MapleSim to Labview Control System is also an example of utilising the 

communication protocols between the cRio and hub computer in order to pass vital 

information regarding the position of the mechanism to ensure that the mechanism is 

where it is meant to be at, at all times.  

This novel work addresses the last remaining component of the third objective as it details 

the procedure for modifying the inverse kinematic model produced in MapleSim to be 

compatible with the graphical programming software Labview where it is utilised in the 

production of a control system. 

The resulting work detailed in Chapters 3-6, allowed the modification to the current 

design process to be formalised.  This new process allows a designer to produce a new 

parallel mechanism without the need of advanced programming and mathematical skills.   

The novel changes to the process also gives a graphical representation of the mechanism 

and its components throughout the development process while also allowing the user to 

modify components of the mechanism quickly and efficiently at each stage of 

development.   

The work given in Chapter 7 further develops the proposed changes by adding a static 

analysis stage to the development process using the SolidWorks FEA add-on software as 

well as the optional stage of developing a non-actuated scaled model of the mechanism 

that allows the designer to get a more tactile impression of how the mechanism will 

operate once completed.  This also allows the user to modify the design of the mechanism 

before resources are committed to the production of a fully actuated prototype. 

From the work detailed in Chapter 7, the current proposed flow diagram for the modified 

design process can be updated to include the optional scaled down non-actuated model 

and FEA steps as shown in figure 8.1 where the red highlights identify contribution 

sections in figure 8.1.  In figures 8.2, 8.3 and 8.4, the individual design processes are 

expanded with red highlights to identify novel design processes being implemented; 

yellow highlights to identify optional extra steps to stages; and green highlights to identify 

steps that have been moved to new stages to suit the new process.    
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Figure 8.1: Highlighted flow diagram of the design process for multi-platform parallel 

mechanisms with highlighted stages where contributions have been made. 
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Figure 8.2: Highlighted flow diagram of the dimensional design stage 

 

Figure 8.3: Highlighted flow diagram of the: a) Detailed design stage, and b) Control system 

stage. 
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From the development of the multi-platform parallel mechanism in Chapter 7, it can be 

seen that the proposed changes to the design process are validated since a full scale, fully 

actuated multi-platform parallel mechanism was developed from an initial concept 

design, in addition to a non-actuated scaled model which has been added to the design 

process, through to being fabricated in a short time frame.  This therefore achieves the 

final objective of the thesis  

The proposed changes to the process allows a designer to quickly and intuitively design 

and improve a new parallel mechanism with little to no programming knowledge and 

without the need of a background in advanced mathematical and engineering practices 

while having fully visualised representations of the mechanism and its component parts 

throughout the process.  This therefore completes the fourth research question as this 

formalised novel changes to the design process have been tested at each stage through 

various case studies on numerous different parallel mechanisms.  

From the completion of the objectives it can be summarised that: the second research 

question was addressed by the creation and formalisation of the modifications to the 

design process that allows a user to develop a new parallel mechanism using a graphical-

based approach by utilising the concept of virtual chains in a CAD and graphical 

programming software environments, the third research question was addressed by the 

development of a method of determining the mechanical power required to manoeuvre a 

mechanism through a given path and then comparing the total power with that of the 

power received at the end-effector of the mechanism and by comparing the power 

between two separate mechanisms that are performing the same task, and the final 

research question was addressed throughout this thesis as each stage of the new design 

process was rigorously tested against published works in order to validate the methods as 

well as identify any issues the proposed method may have. 

From the work detailed in this study, the aim of creating novel methods within the design 

process of a parallel mechanism that supports the rapid development of an energy 

efficient, cost effective parallel mechanism has been achieved due to the four research 

questions being answered by the work developed throughout the chapters of this study.  

The finalised design process proposed in figure 8.1 is the accumulation of the work 

presented in this study in which, a novel method for determining the energy efficiency of 

a mechanism’s mechanical structure is proposed.   

An additional contribution relates to the novel method of using virtual chains to determine 

the workspace of a parallel mechanism using CAD software and the development of 

inverse kinematic and inverse dynamic models using MapleSim as well as the application 

of an inverse kinematic model to produce a novel method for creating a control system 

using the MapleSim to Labview connector add-on and Labview allow for a more intuitive 

graphical-based design process. 

8.2 Limitations of Work 

The primary limitation for the impact of this work is that the system has only been run 

through completely for a single multi-platform parallel mechanism with 1-rDOF, while 

the individual stages have been put through numerous comparisons of individual 

mechanisms, more applications for testing should be done in order to continue to refine 

the proposed changes to the design process. 
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The approach detailed in chapter 4 for the development of a mechanisms workspace is 

not able to account for static singularities in its current form as the current method 

assumes that the mechanism is statically stable. 

Additionally the work completed in Chapter 7 showed that the non-actuated model failed 

to remain rigid, while this led to the inclusion of new steps in the design process, further 

development is required to ensure that the mechanism will remain rigid once constructed. 

Another limitation of the work is that the energy efficiency study of the mechanism is 

only a theoretical study and requires further development to allow the study to be refined 

to a greater level of detail. 

Lastly, the energy efficiency of multi-platform mechanisms needs to be improved upon 

in order to allow for the total system energy of the mechanism to be determined which 

incorporates when only one platform is in motion, both platforms are moving together 

and both platforms are moving apart.  

These limitations are known at this point, which allows the required work to be 

investigated in future projects and studies. 

8.3 Future Research 

With the physical mechanism accurately being controlled by a virtual chain included 

within the inverse kinematic MapleSim model, the following future work are proposed in 

order to improve the work presented in this thesis.   

8.3.1 Improvements to the design of the mechanism 

From the results of the physical prototype, an additional non-actuated kinematic chain 

aligned along the vertical axis should be included on the moving platform with only 

horizontally aligned kinematic chains in order to improve the stability of the mechanism 

and to reduce the bending of the moving platforms. 

8.3.2 A more robust MapleSim model 

The current MapleSim models being used utilise the standard graphical designs of its 

components.  This can be improved upon by including attachments of CAD designed 

versions of the kinematic chains components and the moving platforms.  This would 

allow the user to see how the intended movements of the mechanism would affect the 

mechanism similarly to the CAD based workspace approach detailed in Chapter 4.  

Additionally, the MapleSim model can include further frictional forces to determine how 

the joints motion affects the systems force requirements.  This would also allow for the 

energy efficiency of the mechanism to be calculated. 

8.3.3 Control system positional errors 

In order to make control systems more robust, they traditionally have a direct or forward 

kinematic model taking inputs from positional sensors on the mechanisms joints in order 

to identify errors that have arisen from motor and joint tolerances.  To produce this kind 

of model, a MapleSim model could be produced that would be produced in a similar 

method to the secondary model in the IKM and IDM models with the only exception 

being that the non-actuated joints are driven by inputs from sensors mounted to the 

physical model.  A virtual chain can then be attached to the end-effector and be used to 

identify the exact position of the mechanism in its current form.  The control system 
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would then be able to use this data, compare it to that of the desired position, and make 

adjustments based on the resulting information. 

8.3.4 Energy efficiency study  

The current efficiency study method determines the efficiency of the system based on the 

current motion of the mechanism only.  To improve upon this, the method should be 

expanded upon to allow for the determination of the total system efficiency based on the 

various motions that the mechanism is capable of achieving. 

Additionally the electronic efficiency of the electronic components of the mechanism can 

be simulated in a similar way to the mechanical efficiency, allowing for a full system 

efficiency tests to be carried out on a mechanism before the mechanism reaches the 

prototype production stage.  This could potentially save the designer time and money in 

the event that the system is not able to perform to the degree expected of it due to 

electronic power restraints. 

8.3.5 Incorporate a vision system to take over the user interface 

With the completion of the user controlled control system, the next step would be to 

develop and incorporate a vision system into the control system that would replace the 

user-inputted locations.   

This can be done by placing the mechanism above a conveyor belt to simulate a pick-and-

place environment and then adding a camera ahead of the mechanism.  The camera would 

then feed into a LabVIEW VI that would identify components needing to be picked up 

and then assigning one of the end-effectors to collect the specified object while assigning 

the other end-effector to collect the next object on the conveyor belt.   

The vision system would allow the mechanism to be operated at the speed required for a 

pick-and-place mechanism and would allow the theory that multiple platform 

mechanisms are more efficient than their single platform counterparts are.  

8.3.6 Inverse kinematic and dynamic models for mechanisms with multiple actuation 

modes 

The concept detailed in Chapter 5 can be expanded upon to allow for the production of 

an IKM and IDM for parallel mechanisms with multiple actuation modes by duplicating 

the first model several times, or one for each actuation method, while each new model 

would have a different actuation mode’s virtual chain.  Then through the process of either 

a series of Boolean values or a single integer value applied by the user that interrupts the 

signals from all but one IKM, the secondary mechanism model can be controlled by the 

IKM with the required actuation mode virtual chain producing results for the IKM and 

IDM of each actuation modes. 

This method could then be expanded upon to produce a full control system for the 

mechanism where the various IKM MapleSim models are loaded into the control system 

and then the desired actuation mode can be once again selected by the user. 

8.3.7. Singular configurations identified in the workspace 

In Chapter 4, the workspace of a parallel mechanism is determined by the limited joint 

angle mates applied by the user to prevent obvious configuration singularities.  The 

simulation is then run in order to produce the external area of the workspace.  This method 
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therefore does not necessarily identify additional singular configurations within the 

defined are of the mechanisms workspace, meaning that over-mobility or under-mobility 

singularities could exist within the specified workspace.  Therefore, more work is 

required into the identification of any singular configurations present and how they can 

be eliminated from the mechanisms viable workspace within the CAD software.  Finally, 

the IKM and IDM can be modified to remove any identified singular configurations by 

limiting certain joint angles on the first mechanism in each model. 


