9 research outputs found

    Non-Euclidean classification of medically imaged objects via s-reps

    Get PDF
    AbstractClassifying medically imaged objects, e.g., into diseased and normal classes, has been one of the important goals in medical imaging. We propose a novel classification scheme that uses a skeletal representation to provide rich non-Euclidean geometric object properties. Our statistical method combines distance weighted discrimination (DWD) with a carefully chosen Euclideanization which takes full advantage of the geometry of the manifold on which these non-Euclidean geometric object properties (GOPs) live. Our method is evaluated via the task of classifying 3D hippocampi between schizophrenics and healthy controls. We address three central questions. 1) Does adding shape features increase discriminative power over the more standard classification based only on global volume? 2) If so, does our skeletal representation provide greater discriminative power than a conventional boundary point distribution model (PDM)? 3) Especially, is Euclideanization of non-Euclidean shape properties important in achieving high discriminative power? Measuring the capability of a method in terms of area under the receiver operator characteristic (ROC) curve, we show that our proposed method achieves strongly better classification than both the classification method based on global volume alone and the s-rep-based classification method without proper Euclideanization of non-Euclidean GOPs. We show classification using Euclideanized s-reps is also superior to classification using PDMs, whether the PDMs are first Euclideanized or not. We also show improved performance with Euclideanized boundary PDMs over non-linear boundary PDMs. This demonstrates the benefit that proper Euclideanization of non-Euclidean GOPs brings not only to s-rep-based classification but also to PDM-based classification

    Skeletons, Object Shape, Statistics

    Get PDF
    Objects and object complexes in 3D, as well as those in 2D, have many possible representations. Among them skeletal representations have special advantages and some limitations. For the special form of skeletal representation called “s-reps,” these advantages include strong suitability for representing slabular object populations and statistical applications on these populations. Accomplishing these statistical applications is best if one recognizes that s-reps live on a curved shape space. Here we will lay out the definition of s-reps, their advantages and limitations, their mathematical properties, methods for fitting s-reps to single- and multi-object boundaries, methods for measuring the statistics of these object and multi-object representations, and examples of such applications involving statistics. While the basic theory, ideas, and programs for the methods are described in this paper and while many applications with evaluations have been produced, there remain many interesting open opportunities for research on comparisons to other shape representations, new areas of application and further methodological developments, many of which are explicitly discussed here

    CLASSIFICATION OF NEUROANATOMICAL STRUCTURES BASED ON NON-EUCLIDEAN GEOMETRIC OBJECT PROPERTIES

    Get PDF
    Studying the observed morphological differences in neuroanatomical structures between individuals with neurodevelopmental disorders and a control group of typically developing individuals has been an important objective. Researchers study the differences with two goals: to assist an accurate diagnosis of the disease and to gain insights into underlying mechanisms of the disease that cause such changes. Shape classification is commonly utilized in such studies. An effective classification is difficult because it requires 1) a choice of an object model that can provide rich geometric object properties (GOPs) relevant for a given classification task, and 2) a choice of a statistical classification method that accounts for the non-Euclidean nature of GOPs. I lay out my methodological contributions to address the aforementioned challenges in the context of early diagnosis and detection of Autism Spectrum Disorder (ASD) in infants based on shapes of hippocampi and caudate nuclei; morphological deviations in these structures between individuals with ASD and typically developing individuals have been reported in the literature. These contributions respectively lead to 1) an effective modeling of shapes of objects of interest and 2) an effective classification. As the first contribution for modeling shapes of objects, I propose a method to obtain a set of skeletal models called s-reps from a set of 3D objects. First, the method iteratively deforms the object surface via Mean Curvature Flow (MCF) until the deformed surface is approximately ellipsoidal. Then, an s-rep of the approximate ellipsoid is obtained analytically. Finally, the ellipsoid s-rep is deformed via a series of inverse MCF transformations. The method has two important properties: 1) it is fully automatic, and 2) it yields a set of s-reps with good correspondence across the set. The method is shown effective in generating a set of s-reps for a few neuroanatomical structures. As the second contribution with respect to modeling shapes of objects, I introduce an extension to the current s-rep for representing an object with a narrowing sharp tail. This includes a spoke interpolation method for interpolating a discrete s-rep of an object with a narrowing sharp tail into a continuous object. This extension is necessary for representing surface geometry of objects whose boundary has a singular point. I demonstrate that this extension allows appropriate surface modeling of a narrowing sharp tail region of the caudate nucleus. In addition, I show that the extension is beneficial in classifying autistic and non-autistic infants at high risk of ASD based on shapes of caudate nuclei. As the first contribution with respect to statistical methods, I propose a novel shape classification framework that uses the s-rep to capture rich localized geometric descriptions of an object, a statistical method called Principal Nested Spheres (PNS) analysis to handle the non-Euclidean s-rep GOPs, and a classification method called Distance Weighted Discrimination (DWD). I evaluate the effectiveness of the proposed method in classifying autistic and non-autistic infants based on either hippocampal shapes or caudate shapes in terms of the Area Under the ROC curve (AUC). In addition, I show that the proposed method is superior to commonly used shape classification methods in the literature. As my final methodological contribution, I extend the proposed shape classification method to perform the classifcation task based on temporal shape differences. DWD learns a class separation direction based on the temporal shape differences that are obtained by taking differences of the temporal pair of Euclideanized s-reps. In the context of early diagnosis and detection of ASD in young infants, the proposed temporal shape difference classification produces some interesting results; the temporal differences in shapes of hippocampi and caudate nuclei do not seem to be as predictive as the cross-sectional shape of these structures alone.Doctor of Philosoph

    Small sphere distributions and related topics in directional statistics

    Get PDF
    This dissertation consists of two related topics in the statistical analysis of directional data. The research conducted for the dissertation is motivated by advancing the statistical shape analysis to understand the variation of shape changes in 3D objects. The first part of the dissertation studies a parametric approach for multivariate directional data lying on a product of spheres. Two kinds of concentric unimodal-small subsphere distributions are introduced. The first kind coincides with a special case of the Fisher-Bingham distribution; the second is a novel adaption that independently models horizontal and vertical variations. In its multi-subsphere version, the second kind allows for correlation of horizontal variations over different subspheres. For both kinds, we provide new computationally feasible algorithms for simulation and estimation, and propose a large-sample test procedure for several sets of hypotheses. Working as models to fit the major modes of variation, the proposed distributions properly describe shape changes of skeletally-represented 3D objects due to rotation, twisting and bending. In particular, the multi-subsphere version of the second kind accounts for the underlying horizontal dependence appropriately. The second part is a proposal of hypothesis test that is applicable to the analysis of principal nested spheres (PNS). In PNS, determining which subsphere to fit, among the geodesic (great) subsphere and non-geodesic (small) subsphere, is an important issue and it is preferred to fit a great subsphere when there is no major direction of variation in the directional data. The proposed test utilizes the measure of multivariate kurtosis. The change of the multivariate kurtosis for rotationally symmetric distributions is investigated based on modality. The test statistic is developed by modifying the sample kurtosis. The asymptotic sampling distribution of the test statistic is also investigated. The proposed test is seen to work well in numerical studies with various data situations

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Barycentric Subspace Analysis on Manifolds

    Full text link
    This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA).Comment: Annals of Statistics, Institute of Mathematical Statistics, A Para\^itr

    Mathematical techniques for shape modelling in computer graphics: A distance-based approach.

    Get PDF
    This research is concerned with shape modelling in computer graphics. The dissertation provides a review of the main research topics and developments in shape modelling and discusses current visualisation techniques required for the display of the models produced. In computer graphics surfaces are normally defined using analytic functions. Geometry however, supplies many shapes without providing their analytic descriptions. These are defined implicitly through fundamental relationships between primitive geometrical objects. Transferring this approach in computer graphics, opens new directions in shape modelling by enabling the definition of new objects or supplying a rigorous alternative to analytical definitions of objects with complex analytical descriptions. We review, in this dissertation, relevant works in the area of implicit modelling. Based on our observations on the shortcomings of these works, we develop an implicit modelling approach which draws on a seminal technique in this area: the distance based object definition. We investigate the principles, potential and applications of this technique both in conceptual terms (modelling aspects) and on technical merit (visualisation issues). This is the context of this PhD research. The conceptual and technological frameworks developed are presented in terms of a comprehensive investigation of an object's constituent primitives and modelling constraints on the one hand, and software visualisation platforms on the other. Finally, we adopt a critical perspective of our work to discuss possible directions for further improvements and exploitation for the modelling approach we have developed

    Geometric and statistical models for multi-object shape analysis

    Get PDF
    Shape analysis of multi-object complexes is important in many applications because it reveals additional information of interest over single-object shape analysis. For example, in medical applications where multiple structures in the human body often deform together, joint shape analysis of those interrelated structures facilitates robust and efficient algorithms. Specifically, shape correlation of functionally related structures allows us to understand the common underlying biological factors (e.g., disease). Also, beyond the within-object shape relations, between-object shape relations provide additional understanding of multi-object complexes. Despite the need of multi-object shape analysis, this field has been challenged by many issues. For instance, shape variation is often coupled with pose and size variation between objects. Moreover, within-object shape variation is often coupled with between-object shape variation. These issues have prevented us from sufficiently understanding multi-object complexes. To address the issues, this dissertation proposes geometric and statistical methods for joint analysis of multi-object complexes. In particular, I base my research on skeletal representations (i.e., s-reps) that are designed to provide intrinsic shape features with good correspondences. This dissertation improves the previous method fitting an s-rep to an object such that the fitted s-reps have desirable geometric and statistical properties. This improvement allows me to analyze intrinsic shape correlation between objects. To this end, this dissertation extends the existing statistical method to effectively extract joint shape variation, leading to a method called Non-EUclidean Joint and Individual Variation Explained (NEUJIVE). NEUJIVE shows notable robustness in analyzing multi-block non-Euclidean data with different variability. Last, to decouple within- and between-object shape variation, I develop non-branching linking structures for statistical analysis of between-object shape features. To capture geometric features that are insensitive to pose variation of multi-object complexes, this dissertation extends fitted local frames on s-reps to affine frames. The fitted local affine frames show special advantage because they free multi-object shape analysis from pre-alignment. The driving problem of the proposed methods involves classifying and testing hypotheses on the shape of the hippocampus-caudate pairs between an autism group and a non-autism group. Also, this dissertation discusses other potential applications that can benefit from the proposed methods.Doctor of Philosoph
    corecore