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Objects and object complexes in 3D, as well as those in 2D, have many possible

representations. Among them skeletal representations have special advantages and

some limitations. For the special form of skeletal representation called “s-reps,” these

advantages include strong suitability for representing slabular object populations and

statistical applications on these populations. Accomplishing these statistical applications

is best if one recognizes that s-reps live on a curved shape space. Here we will lay out

the definition of s-reps, their advantages and limitations, their mathematical properties,

methods for fitting s-reps to single- and multi-object boundaries, methods for measuring

the statistics of these object and multi-object representations, and examples of such

applications involving statistics. While the basic theory, ideas, and programs for the

methods are described in this paper and while many applications with evaluations

have been produced, there remain many interesting open opportunities for research

on comparisons to other shape representations, new areas of application and further

methodological developments, many of which are explicitly discussed here.

Keywords: shape, skeleton, shape statistics, skeletal model, s-reps

INTRODUCTION

This paper discusses models of objects, in 3D and 2D but with special emphasis on 3D. The
concern is with both individual objects and complexes of multiple objects and, especially, objects
and complexes that appear as populations of instances. The objects of concern have curved slab-like
shapes, with no branching or a limited, fixed amount of branching. I1 call these objects “slabular,”
with tube-like objects, i.e., generalized cylinders, being a special case of slabular objects. The
examples we will start with are anatomic objects, such as the hippocampus or mandible (jaw-bone)
shown in Figure 12, but as will be seen later, the ideas apply to many manufactured objects, such as
shoe boxes or airplanes.

The purpose of this paper is to survey a few decades of work on a skeletal model called
“s-reps,” designed for statistics. The paper provides many mathematical and statistical concepts,
definitions, and properties. It describes many algorithms related to forming and using s-reps, and
it describes many uses to which they have been put. It argues that the focus of these models on the
objects themselves and capabilities of s-reps in richly capturing geometric properties, especially for
statistical applications, make it an important way of describing shape.

The most common alternative approaches to representing shape are point distribution models
(PDMs), especially focusing on boundary points, andmodels describing shape via diffeomorphisms
from a containing space enclosing the objects (e.g., Durrleman et al., 2014), as distinct from

1In this paper “I” refers to concepts and approaches specifically credited to the first author, while “we” refers to the collection

of authors.
2Many of the figures in this paper also appear in Pizer et al. (2021).

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.842637
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.842637&domain=pdf&date_stamp=2022-10-18
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pizer@cs.unc.edu
https://doi.org/10.3389/fcomp.2022.842637
https://www.frontiersin.org/articles/10.3389/fcomp.2022.842637/full


Pizer et al. Skeletons, Object Shape, and Statistics

FIGURE 1 | Left: A hippocampus, a C-shaped object. Middle: the

hippocampus with its skeletal surface (colored, with the color indicating the

width of the object there) and its spine (the curve that is its long axis). Right; a

mandible, another C-shaped object.

s-rep methods described here that are formed by
diffeomorphisms of object interiors. The experimental data
to date, cited and/or presented in this paper is that s-reps are
superior to PDMs for statistical applications and that using s-reps
to form PDMs has superiority to other approaches of forming
PDMs. We are not aware of experiments comparing s-reps to
the methods based on diffeomorphisms of a containing space for
statistical purposes, and we look forward to such comparisons.

Despite decades of development, in laboratories at or in
collaboration with mine at UNC, there are many statistical,
mathematical, algorthmic, and applications challenges still to be
met, as well as further studies comparing s-reps to other shape
representations.One of the objectives of this paper is to lay out

these remaining challenges and opportunities: each of these

are indicated in the Bold font.
For a slabular object there exists a smooth sequence of

usually non-parallel slicing planes such that no successive
planes intersect within the object and such that the object
boundary’s intersection with each plane is eccentric (one of the
two principal axes’ radii is notably longer than the other). As
described in Section Skeletal Models and S-reps: Definitions
and Mathematics, the locus of centers of the cross-sections
forms a curvilinear axis, which I call the “spine,” that is notably
longer than the axes in the cross-sections. For example, for
the hippocampus seen in Figure 1 the long axis is C-shaped
and goes from the tip (at the top of the figure) to the tail,
the short axis goes from the front of the object as seen in
Figure 1 left to the back from that point of view, and the
middle-length dimension goes from side to side as seen in that
Figure. In the mandible the shortest axis goes from the facial
side to the inside of the mouth, the longest axis goes from one
temporal-mandibular joint (TMJ, where the mandible hinges on
the skull) to the other, and the middle-length axis goes from the
teeth positions extended to the TMJs down to the chin locus
extended to the TMJs. If the longest axis terminates in the two
knob-shaped entities (called the “condyles”), the pointy figures
opposite the condyles, called the “coronoid processes,” form
subfigures. These subfigures can be found in essentially every
human mandible.

FIGURE 2 | An ellipsoid’s skeleton sampled into a grid and its spokes; spokes

at the skeletal fold are displayed as red, those on the north side of the skeleton

in cyan, and those on the south side in magenta. The spine is bold, and the

center point is displayed as a bullet.

Since all slabular objects have a central curve, formed by
the spine, and cross-sections, they can all be understood as
generalized cylinders. However, when the cross-sections’ two axes
are not too different in length, that is, the cross-sections are not
too far from circular, the generalized cylinder is more tube-like.

While the most common computer representations of
such objects capture either their boundary locations alone or
deformations of the whole ambient space in which the objects
reside, it has been seen by many (e.g., Blum and Nagel, 1978;
Amenta and Choi, 2008; Siddiqi, 2008; Székely, 2008; Yushkevich
et al., 2015) that object widths, which are captured by the
shorter cross-sectional axes, are important features as are features
derivable from the behaviors of specified directions, especially
boundary normals (Srivastava et al., 2011). Since these features
are exactly what skeletal models capture, in quite a variety of
applications such models have been shown more powerful than
those based on the other types of object representations. From
the point of view of slabular objects the skeleton (Figure 1,
middle) includes the spine as its long axis, and the cross-sectional
dimensions can be captured by line segments emanating at the
spine and ending at the edge of the skeleton (Figure 2). We call
these line segments “spokes”.

Given a population of objects skeletally represented, it is
useful to model the populations via probability densities. It
has been shown that these can be of use for objectives such
as classification into subpopulations, hypothesis testing on
differences between populations, and segmentation approaches
that use shape prior distributions as well as image intensity
features understood via the spatial correspondences that the
geometric model provides. In this paper both a particularly
effective form of skeletal model called “s-reps” will be motivated
and described, and methods of computationally deriving s-
reps from object boundaries will be overviewed. In statistical
applications, s-reps can provide an effective way to establish
locational and orientational correspondences across the shape
samples in the population. In this paper, not only the s-reps but
also means of accomplishing the statistical objectives with respect
to s-reps will be covered.

Many examples of applications of s-reps and complexes
thereof, especially in medical-imaging-based data, will be given.
However, the intent here is also to stimulate applications in many
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other areas of computer analysis and synthesis, including those
on manufactured objects.

SKELETAL MODELS AND S-REPS:
DEFINITIONS AND MATHEMATICS

Roughly speaking, a skeletal model of an object (Figures 1–3)
consists of a) a skeletal locus somehow central along the object
and b) spokes, vectors emanating from the skeleton and ending at
the object boundary, such that the spokes do not cross within the
object. Traditionally, the skeleton has been considered a possibly
branching surface or curve, but I find it much clearer to consider
it as a collocated pair of surfaces or curves formed by a sort of
collapse of the object boundary or better, which can be dilated
to form the boundary implied by the skeleton and its spokes
(Figure 4). In this way of thinking, the skeleton shares topology
with the object boundary; it just has the constraint that except
along the curve where the skeleton folds, the two copies of the
skeletal surface or curve share the same skeletal spoke end point.
This point of view allows the possibilities of having different
spoke statistics for one of the skeletal copies than the other. Later
in this paper, I will cover possibilities of relaxing the constraint of
being a perfect skeletal copy in certain segments of the skeleton.

FIGURE 3 | Skeletal models. Left: Ellipsoid (3D) with its elliptical skeleton

(grid), spine (bold), and center point (bullet). Middle left: A skeleton and its

spokes for the hippocampus (3D) shown in middle right. Only samples of the

spoke vectors are shown, but they exist continuously, i.e., with their tails at

every continuous point of the skeletal surface. Right: A skeleton (red) and its

spokes for a 2D object.

FIGURE 4 | Left: Radial onion skins in 2D. Right: Onion skins at τ2 = 0.0, 0.2,

0.4, 0.6, 0.8, and 1.0 (boundary) for a hippocampus; top row: individual onion

skins for the various τ2 values. Bottom row: two views of those onion skins

seen end-on for a cut through the object.

The history and mathematics of skeletal models, as well
as a number of algorithms for extracting them from object
boundaries, is covered in detail in the book by Siddiqi (2008).
Harry Blum, the inventor of the earliest form of skeletal model
(Blum and Nagel, 1978), which we now call the “Blum medial
axis,” felt that the major strength of medial models was that
it provided a subdivision of an object into various attached
parts. This goal turned out to be unachievable due the extreme
bushiness: deep, broad, and random branching of the Blum
medial axis; this bushiness was a consequence of the inevitable
noise in the object boundary—this will be discussed at length
shortly. However, the facts that the spoke lengths were a measure
of object (half-)width and that the spoke directions and their
derivatives were important indications of local object orientation
and curvature have turned out to be particularly powerful
measurements in object representation.

Blum, an inspired engineer, defined the Blummedial axis (that
he called the “symmetric axis”) in terms of a flow at a constant
rate (in the Euclidean metric in the object’s ambient space). He
called this flow by the word “grassfire,” collapsing the object
boundary to the medial axis. Blum and Nagel (1978) developed
some early mathematics of this mapping from boundary to
this skeletal structure, and many mathematicians took up the
challenge of providing further properties; of special interest was
the definition of a generalization they called the “symmetry set.”
In it the spokes were always orthogonal to the object boundary,
a property Damon calls “partial Blum.” Thus, it captured the
boundary normals. The work of Srivastava et al. (2011) and others
has emphasized that the behavior of these boundary normals is
an important characteristic of shape. The way that they swing
as you move along the boundary is the curvature information
promulgated by Gauss (Koenderink, 1990).

The study of the symmetry set culminated in its singularity
theoretic analysis by Giblin et al., a beautiful summary of which
appears in Giblin and Kimia (2008). This work led to the
important understanding that branching of the Blum skeleton
was generic in both 2D and 3D.

The experience of hundreds of authors attempting to produce
algorithms to map the object boundary to the Blum medial axis
yielded an understanding that small protrusions or indentations
in the boundary, either real or produced by noise, led to an
extraordinary bushiness of branching and that the bush had
to be heavily pruned if the skeletal structure was to be of any
use—but especially in 3D robust algorithms to do this pruning
were elusive. Certainly, little success in providing statistics on
these derived structures was achieved due to the variation of this
branching structure over a population of shapes.

The group I have led concluded that the branching structure
needed to be fixed in order to support statistics. Supporting this
need, my colleague James Damon invented a “reverse” type of
flow, which he called “radial flow” (Figure 4), from the skeleton
to a close approximation of the boundary. In it the skeleton,
given its spokes, flowed (dilated) at a rate proportional to the
spoke length. That is, for a spoke of length r, positions along the
spoke were considered as τ r, where τ = 0.0 on the skeleton, τ

= 1.0 on the object boundary, and τ = 0.5 halfway from the
spoke end on the skeleton and the spoke end on the boundary.
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Damon (2008), and in more mathematical detail (Damon, 2003,
2004), discovered the mathematics of radial flow and the idea
of the “onion-skin” surface at any given radial distance τ from
the skeleton; a particular accomplishment was his invention
of a matrix-valued function on the skeleton, Srad that yielded
the velocity at which the spokes swung as you moved along
the skeleton and a pair of eigenvalues called radial curvatures,
whose comparisons to the corresponding boundary curvatures
allow preventing spokes from crossing in the interior of the
object. All this applied not only to the Blum skeleton but also
to Damon’s generalization that did not need to meet all of
the Blum properties. Among other things, the two spokes with
collocated tails did not need to be of equal length and they did
not need to be orthogonal to the boundary (be “partial Blum”).
In order for the entity to capture width and direction properties, I
added soft restrictions that this axis should rather closely achieve
the properties of the Blum medial axis (Pizer et al., 2013; Liu
et al., 2021a), and I named this form of skeletal structure the
“s-rep.” S-reps are in this generalized skeletal category; almost
always they are not Blum-medial and are designed to support
statistical analysis.

The design was that a discretized form of the s-rep would be fit
to the boundary, avoiding the problem of bushiness. As described
and discussed in the next section, my colleagues and I produced
software that by such fitting yielded the s-rep whose thus-dilated
skeleton well fit the object boundary in both 2D and 3D and
would with some tolerance meet the partial-Blum objectives.

For multiple objects, the shape information should include
not only the shape of the individual objects but also their
geometric relationships. Blum and Nagel had already described
the “external medial axis,” which is the Blum medial axis of the
complement of the objects. However, as pointed out by Damon
and Gasparovic (2017), this axis was necessarily branching for
3 or more objects, even if the objects’ skeletons had consistent
branching. But using radial flow past the objects’ boundaries,
Damon extended the flow to what he called a linking axis,
which typically branches, and as described in Section Multi-
object Statistics Using Skeletal and Boundary Fitted Frames, Liu
showed how to produce such a flow that does not branch.

After some experimentation with representations that
included object angle, which were rejected because the bisector
of the object angle was ambiguous when the angle was π/2,
the UNC team settled on a representation by the spoke skeletal
location, the spoke direction, and the spoke length (object’s
local half-width) on the skeletal grid positions, since these
emphasized the properties on which statistics could best be
focused, we thought. Some applications represented a spoke by
the coordinates of its two endpoints (skeletal and boundary).

I have come to see slabular objects as diffeomorphically
deformed versions of the most basic slabular object, the (3D)
ellipsoid. This view makes it analogous to the methods of shape
representation via diffeomorphisms of a base object, but here
the diffeomorphism is specifically on the object boundary and
interior and we can take particular advantages of the inherent
parameters of the skeletal positions for an ellipsoid (Figure 5) to
produce correspondences needed for statistics.

FIGURE 5 | Top: The three parameters for an ellipsoid, as seen from a

direction called “north”. The bold line is its spine; the bullet is its center point;

the inner yellow curve is the fold of the skeleton; θ goes around the elliptical

and quasi-elliptical curves; τ1 goes along the black, non-bold lines; τ2 goes

from the skeletal plane out to the ellipsoid boundary. Bottom: the skeleton and

spine transferred to the hippocampus.

Let us first understand a 2D medial representation of an
ellipse. That (2D) ellipse, which is the medial surface for an
ellipsoid, can be represented by its skeleton, which we call the
object’s “spine,” made from a (1D) folded line, parameterized
within its interior by the cyclic value θ ǫ [0,2π], together with
spokes from that skeleton to the ellipse’s boundary. θ is taken to
be 0 at the center of the “north” side of the spine and to be π

at the center of the “south” side of the spine. The spokes of the
ellipse are parameterized by its radial flow value τ1, which, except
for the spine ends (θ = π /2 or -π /2), where τ1 ∈ [0,1], we take
it to be in (−1,1) with the sign indicating which side of the spine
the spoke is and |τ1| indicating the radial distance from the spine.
Moreover, the (1D) spine can be represented by its skeleton, a
0D entity, i.e., a point, which we call the object’s center point and
choose it on the “north side” of the skeleton, i.e., to be at θ = 0.

In fitting the s-rep to a new object by a diffeomorphism of the
ellipsoid, including its boundary, its skeleton, its skeletal spokes,
and its 3D spokes parameterized by the fraction multiples τ2,
these ellipsoid points are carried by a diffeomorphism (warp)
to form that new object, i.e., its skeletally implied boundary, its
skeleton, its spine, and its center point. The skeletal coordinates
of the ellipsoid are carried to their corresponding points in the
target object; the desire that they are also radial lengths of the
target object is so far not strictly met. This is discussed further in
Section Fitting S-reps to Single- and Multi-object Boundaries.

As described shortly, a discretization of this representation
is used in the SlicerSALT online toolkit. An interesting object
type is a generalized cylinder, which is a representation by a
central (skeletal) curve and its cross-sections. In that case one can
think of the ellipsoid for which that object is a diffeomorphism
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FIGURE 6 | Fitted frames at various places: Left: Frames fitted to skeletal and boundary points on an ellipse in 2D. The solid, thicker, black line is the skeleton, here

the spine; the dashed lines are the skeleton extension; the red curve is an onion skin; the blue curve is the ellipse boundary; arrows are local frames. Middle and Right:

The hippocampus (gray); middle: with its s-rep’s skeleton (colored, with the color at a place on the skeleton showing the width of the object at that place) and fitted

frames (blue element is normal) at the object center point and four points along and across the skeleton; right: the hippocampus boundary with fitted frames at points

at ends of spokes at the skeletal points in the middle frame.

FIGURE 7 | Skeleton and fitted frames for a hippocampus from two points of view. Upper 2 panels: frames on the skeletal locus, colored by object width, where blue

the object is thin, and where yellow it is thicker. Five fitted frames are shown on the skeleton, with the normal shown in blue; their orientation carries information as to

the curvature of the skeleton. Lower two panels: the hippocampus boundary with fitted frames at points at ends of spokes at the skeletal points in the middle frame.

as being very eccentric, i.e., having one of its principal radii
very much longer than the other two. In that situation the
ordinary 3D skeletal analysis yields a spine, or its extension to the
diffeomorphism of the endpoints of the ellipsoid, and this spine
can be taken as the central curve. Moreover, the “cross-sections”
are then defined by the skeleton parameterized by (θ , τ1) and
(θ + π, τ1), where θ ∈ (–π/2, π/2).

Repeating the idea of the transformation from a 3D ellipsoid
to its medial representation of a 2D folded ellipse, and thence
from one of the ellipses to its medial representation of a 1D folded
line, results in the further transformation from one of the lines to
its 0D medial representation, a center point. When the ellipsoid
is carried to a target object by an appropriate diffeomorphism,
that center point is carried to a place within the object that
can be taken as its center. This location, being guaranteed to

be within and reasonably central in the object, is a far better
representation than the object’s center of mass, which can even
be outside of the object. Finally, this idea can be generalized
to higher dimensional hyperellipsoids with its principal radii
notably different than the others and sortable into an increasing
sequence. The succession of 1-lower dimensional hyperellipsoids,
by a medial description of the just higher dimensional ellipsoids
would allow our skeletal ideas to be generalized to dimensions
higher than 3.

Realizing that rotationally and translationally normalizing
a set of s-reps was a difficult challenge, Taheri and Schulz
(2021) took Cartan’s idea of representing space curves and
surfaces using fitted frames and applied that idea to s-
reps. Based on Taheri’s inspiration, I created the following
structure for a fitted frame (see Figures 6, 7) (Pizer et al.,

Frontiers in Computer Science | www.frontiersin.org 5 October 2022 | Volume 4 | Article 842637

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Pizer et al. Skeletons, Object Shape, and Statistics

2021) that is consistent with skeletal geometry and with the
fact that our s-reps are fit according to a diffeomorphism
of an ellipsoid. It is based on the two radial flows just
described, parameterized respectively by τ1 and τ2. Thus,
any point inside the object represented by the s-rep is
determined by a (θ , τ1, τ2) triple, each a function of
Euclidean position within the object. If, as designed, common
ellipsoid values of (θ , τ1, τ2), coming from diffeomorphisms
from a common ellipsoid, yield statistically important
correspondences, the fitted frames will yield statistically
important orientation information.

The first vector of the fitted frame at any such point is taken to
be tangent to the curve for the fixed (τ1, τ2) as the spine parameter
θ varies, a direction tangent to the 3D onion-skin at parameter
value τ2. The second fitted frame vector there is the normal to
the τ2 onion-skin, with a sense away from the skeleton. Thus, on
the spine of the skeleton (τ1 = 0, τ2 = 0) the fitted frame has
vectors along the spine and orthogonal to the skeletal surface. Off
the spine for τ1 >0 but on the skeleton, the fitted frame has one
vector along the skeletal curve for θ varying and with fixed τ1,
and a second vector orthogonal to the skeleton. On the boundary
implied by the s-rep (for τ2 =1.0) at some θ and τ1, the first vector
in the fitted frame is tangent to the implied boundary there, and
the second vector in the fitted frame is normal to the implied
boundary there.

Now, following Elie Cartan’s idea, geometric entities at
a point should be understood according to the local fitted
frame. The rotations of the fitted frames at any point interior
to the object characterizes the local curvature of the object
independent of rotations and translations of the object, which
are important features. In Figure 6, for example, the rotation
of the hippocampus skeleton from its center point to the end
of the spine can be understood in terms of how the frame at
the center point rotates into the frame at the end of the spine.
Also, the rotation from the center point to its corresponding
position on the boundary can be understood through the two
frames at these positions. These rotations, as a function of
three dimensions of motion, capture object curvature and can
be fully characterized by three linear functions on a vector in
3-space (1-forms) measuring, respectively the rotations of the
τ2-level surface normal (∇τ2) into the other two respective
frame vectors in the tangent space and the rotation of one of
those τ2-level surface frame vectors into the other. Not only
these curvatures but also all other s-rep-relevant vectors when
expressed in that fitted frame at the tail of the vector, are
invariant to rotations and translations of the objects. Examples
of such features, are the tangent to the spine, the skeletal spokes
of the spine, and the 3D spoke directions at each sampled
spine position and the vectors from each sample point to
its neighbors in the ∇τ1 (along the 3D spokes), ∇τ2 (from
the spine toward the skeletal fold), and ∇θ (along the spine)
directions. Damon has pointed out that the fitted frames and
the associated features depend on the diffeomorphism used
from the ellipsoid to the object and thus are not inherent
unless the choice of diffeomorphism is in some sense inherent
to the object (see Section Fitting S-reps to Single- and Multi-
object Boundaries).

Nevertheless, as presented in Section Statistics on S-reps for
Single and Multiple Objects, Taheri and Schulz (2021) and Liu
et al. (2021b) have shown serious advantages to classification
and hypothesis testing when discretized features according to the
fitted frame were used in the statistics.

DISCRETE S-REPS

There have been two general ways suggested for discretizing a
skeletal model. Yushkevich et al. (2003) did that by computing
an appropriate spline, which discretizes by the discrete set of
basis function coefficients defining the spline. In the work of my
group the discretization is performed on each of the parameters
representing the s-rep: θ , τ1, and τ2, into integer submultiples of
their range, e.g., for the examples in Figures 2, 3, 5, τ2 as 0, ½, and
1; τ1 as−1, -½, 0, ½, 1 except at the spine ends, where its sampled
values are 0, ½, 1; and θ into the cyclic values –π/2 for the east end
of the spine, to π/2 for the west end of the spine, in steps of π/10
for the north side of the spine, and π/2 to 3π/2 in steps of π/10
for the south side of the spine. When the spokes are sampled only
into 0 and 1, this produces a mesh of quadrilaterals on both the
north and south sides of the skeleton, and corresponding meshes
on the north and south sides of the object boundary (Figure 3,
2nd from left).

MULTI-FIGURE S-REPS

I use the term “figure” to refer to a geometric entity with an
unbranching skeleton and which persists across a population of
objects. An example is the coronoid process in the mandible
(Figures 1, mandible and 10). Traditionally, a population of
objects in which there is a relatively sharp protrusion or
indentation in similar positions along the boundary has been
represented via the Blum medial axis (Figures 8A,B), i.e., with
a branching skeleton. There are three difficulties with this
representation: 1). It does not explicitly distinguish which two
branches correspond to the host figure and which corresponds
to the protrusion subfigure; 2). The host figure has a nonsmooth
locus in its skeleton; 3). There is a long section of the skeleton
of the protrusion branch that accounts for a very short part of
the boundary. In regard to difficulty #1, for the 2D medial axis
Katz and Pizer (2003) developed a method based on a model of
human vision to distinguish the host skeleton from the subfigure
skeleton, but this method is not mathematically characterized
and has not been generalized to 3D. A method with the same
objective in 3D has been presented in Reniers et al. (2008), albeit
based on a different approach than Katz’s.

Han et al. (2005) developed an alternative representation for
the skeleton of a 3D object that overcomes the aforementioned
difficulties. It is made from a host figure, a protrusion or
indentation subfigure, and a description of the relation between
the two. Its host skeleton is smooth and, intuitively speaking
describes the host as if it did not have the protrusion or
indentation, but it has a hole punched into its domain of
(θ, τ1) into which the subfigure skeleton is smoothly attached.
Its subfigure is either additive, for a protrusion, or subtractive,
for an indentation, and it has a skeleton that has a fold at
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one end but which is truncated at the other end. Moreover, he
devised a skeletal mechanism that attaches the truncated end
of the subfigure skeleton smoothly into the hole in the host
skeleton (Figures 8C–E). The attachment, which we call a “skirt,”
represents the small part of the object boundary transitioning
from the subfigure to the host. In the skirt the skeleton’s two
sides separate from each other; as a result, the interior object
region outside of the skirt is understood in the radial coordinates
(θ ,τ1,τ2), but the inside of the skirt contains no spokes and thus
does not have radial coordinates. Despite this drawback, this
context of s-reps with fitted frames began to be worked on. In that
situation, the relation between the subfigure and the host figure
can be expressed in terms of the fitted frames of the two figures’
s-reps. This setup has seemed attractive, but only recently has the
continuation of this work on host figures and subfigures begun.

The surfaces of many manufactured objects have curves or
points where the curvature is sharp: boxes are a good example. It
would appear that there are natural skeletons of such objects, but
the Blum skeleton will just not do. Far from the ends orthogonal
to the longest axis of the box, the Blum skeleton stops being
parallel to sides along the shortest axis and branches into long
tracks accounting for the edge curves and corner points of the
box. What is needed is for the skeleton to run from end to

end along the long and medium-length axis directions, and

it must also have some sort of specialized protrusion marker

to account for the edges and corners of the box. If such a

description were to be invented, it would allow one to bring

to bear all of the other beneficial aspects of shape analysis

via skeletons.

Another problem with manufactured objects is that many,
at least according to their design, have the form of the non-

generic entities that have circular symmetry, for example
wheels and balls. The skeletons of such objects have a different
dimension than general s-reps, so special steps would need to
be taken to include these representations.

This concludes the description of the continuous s-rep. The
following section describes the methods for fitting the discrete
s-rep into an object described by its boundary.

FITTING S-REPS TO SINGLE- AND
MULTI-OBJECT BOUNDARIES

As introduced in Section Discrete S-reps, the discrete s-rep
roughly is made from samples of the continuous s-rep, together
with a mathematically appropriate means for interpolating the
discrete s-rep into a continuous s-rep (Liu et al., 2021a).
Typically, objects from images are represented by their
boundaries or with binary images for which the cracks between
within-object pixels or voxels and outside-of-object pixels or
voxels form the object boundary. To utilize the benefits of s-reps,
a means of fitting an s-rep to the object boundary is needed.

Why must the process of s-rep determination be a fitting
to the input boundary and not a generation from the object
boundary? Transformation of an object boundary to the skeleton
has long been understood to be a process enhancing noise and
detail. Despite hundreds of algorithms designed to accomplish
this transformation, they have all foundered on the fact that little
pimples or dimples in the boundary yield either a skeleton that

FIGURE 8 | (A) A 2D figure with a protrusion. (B) The Blum representation of that object. (C) The mandible, with its protrusions. The (D) Han representation of object

a [copied from Han et al., 2005]. The s-reps for the host figure and subfigure are attached by a skirt (darkened) connecting a cut through the subfigure to a one-sided

hole in host figure skeleton. (E) At the figure, subfigure connection the boundary implied by (D), for two different values of the blending parameter. (F) The skeletal

arrangement for a host figure and subfigure, in 2D. The pairs of parallel lines are understood as collocated. The host figure is indicated by the red and blue lines; its

bottom side (blue) has spokes facing downward, and its top side (red) has spokes facing upward. The top side has a hole in which the subfigure is fit. The subfigure

skeleton (orange) is connected to the host figure skeleton by the skirt (dashed, black); together they have spokes facing right and left.
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FIGURE 9 | Fitting an s-rep into a hippocampus boundary. (A) The hippocampus, represented as a boundary mesh. (B) The ellipsoid, with its skeleton, into which (C)

a hippocampus (red) is flowed. (D) The skeleton morphed into the hippocampus. (E) The refined s-rep.

FIGURE 10 | Conformalized mean curvature flow on a mandible.

is bushily branching or one for which the implied boundary of
the resulting s-rep is unfortunately far from the object boundary
that was input to the process. Methods for pruning the bush have
been developed in 2D (Ogneiewicz and Kübler, 1995), albeit with
a result that suffers from the inaccuracy problem just mentioned.
And in 3D, despite many attempts by strong scientists, no
adequate pruning method has been found. The result is that
s-reps produced by generation from the boundary are poorly
suited to statistical applications. The variable branching is what
causes the problem.

So instead of going from the boundary to the skeleton, with its
major enhancement of noise or detail in the boundary, the inverse
operation of going from an s-rep to the input boundary has been
shown to be successful, at least for certain objects, because it
accomplishes a smoothing of the noise. The basic idea, as I see
it, is to diffeomorphically deform the simplest skeletally described
object into the target object and to carry the skeleton of the simply
described object into the target object via that diffeomorphism.
The simplest skeletally described object is the ellipsoid in 3D and
the ellipse in 2D. The challenge then becomes determining what
the diffeomorphism should be.

The idea of fitting a skeleton (Liu et al., 2021a) to a target
object boundary (see Figure 9) is to successively flow the
boundary in an efficient way by smoothing it into an ellipsoid and
then to reverse the flow while carrying the ellipsoid’s s-rep with it.
The initial try at this flow (Hong et al., 2016; Hong, 2018) moved
the boundary along boundary normals at a rate monotonic
with the curvature at each (so far smoothed) boundary point.
When the flow rate is proportional to mean curvature, it is
unstable at regions of high curvature, but Kazhdan et al.’s
(2012) conformalized mean curvature flow solves this problem
(Figure 10). For almost all slabular objects of interest, this flow
approaches an ellipsoid (an ellipse if in 2D), and one can check
whether the smoothed boundary output from some iteration is

close enough to an ellipsoid. The skeleton of that closest ellipsoid
is analytically known. If that ellipse skeleton is deformed first
to the approximate ellipse produced at the end of the flow,
then the deformations provided by the smoothing iterations are
successively reversed, and one has a diffeomorphism to the target
object. This diffeomorphism can be applied to the skeletal and
boundary ends of each of its discrete spokes, and the result is an s-
rep for the target object. If the diffeomorphism does not correctly
reflect skeletal properties (see item 1 in the next paragraph), the
s-rep can be refined by a refinement diffeomorphism achieved
by optimization of the following skeletal properties (Liu et al.,
2021a):

1) foremost, a term heavily penalizing crossing of the spokes, via
the comparison between boundary curvatures and the radial
curvatures mentioned earlier;

2) a term penalizing the deviation of the implied boundary from
the target object boundary;

3) a term penalizing the deviation of the angle of the spokes from
the corresponding boundary normals.

In addition, further closeness to mediality could be achieved

by including a term penalizing the magnitude of the difference

in the lengths of the two spokes emanating from the skeleton

points that share a Euclidean location, and a penalty on

the straightness of the spokes mapped from the ellipsoid.
The fitting algorithms found in the Slicer/SALT toolkit (Vicory
et al., 2018) optimizes an objective function made from the
first 3 terms, and at present it allows only the discrete spokes’
lengths and positions on the boundary to move, but it probably
would be effective to allow their positions on the skeleton also

to move.
Three things could be improved in this approach for

producing geometric features in correspondence across a

population:
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1) The fitted frames and their locations depend on the

diffeomorphism from an ellipsoid to each object in the

population. But no intrinsic, fully satisfactory way to

produce diffeomorphisms that works across a wide range

of object shapes and yields correspondence across a

population of similar shapes has been produced. Indeed,

the s-rep that we produce is not as close to skeletal as

is desired, as it maps straight spokes into curved ones.

This prevents the fitted frames from meeting their goals

as well as they could and makes correspondence across

objects in a population that is needed for statistics less

strong than it needs to be. Rather than having a refinement

step, it seems that a better idea is to require the stages of

backward transformation to keep the spokes straight and

the velocities along them fixed in radial distances. Damon

(2021) has shown how to do this when transforming one

ellipsoid to another. In ongoing work in our laboratory

we are attempting to generalize this to any slabular object

by insisting that the sequence of points along the spokes

stay straight.
2) The method of fitted frames produces correspondence to

the extent that objects in a population are geometrically

similar and the diffeomorphism computation for each

reflect that similarity. Thus, the fitted frames for these

objects reflect that similarity. However, the method

does not explicitly reflect the statistical variation

within the population as such, nor does it reflect any

biological correspondences.
3) Following the human vision property reported in (Burbeck

et al., 1996) that skeletal properties aremeasured at a spatial

scale proportional to the object width (spoke length), the

fitting could use this multi-scale approach.

Fitting a skeleton in 2D (Figure 3, right) operates in essentially
the same way as in 3D, except that themodel is an ellipse (Krishna
et al., 2022). The skeleton being formed from an ellipsoid’s
elliptical skeleton means that the curved skeleton formed by the
diffeomorphism also has a spine and spokes, that is, the skeleton
is also represented skeletally. Hong (2018) designed an extension
of an s-rep for objects that can be understood to end in a cusp,
such as the caudate nucleus. Vicory et al. (2022) has dealt with
the problem of objects with multiple crests that must be put
into biological correspondence by designing a diffeomorphism
preceding the curvature-flow-based deformations, where the
preceding flow smooths the high curvature regions in a way
respecting their locations on the object within the members
of its population. A principled method for this preliminary

analysis, based on the shape statistics of the boundaries in

the population from which a particular object is a statistical

sample, would be useful.

MULTI-OBJECT COMPLEXES

In many contexts, certainly in the human body, objects do
not appear by themselves but in complexes of many objects.
These objects can be separated or can share portions of
their boundaries. In populations they can be adjacent or

can pull apart, and they can slide along each other. The
shape of an individual object is often correlated with that of
nearby objects.

In our laboratory multi-object complexes in populations
began to be studied as diffeomorphisms in a space of many
objects, but with one object’s diffeomorphism related to its shape
properties and also to neighboring objects’ shape properties
(Saboo, 2011). However, we came to realize that richer geometric
properties than just voxel (or pixel) positions were needed to
describe the necessary relationships.

Multi-object and multi-figure fitting benefits from a
representation that captures not only each of the component
objects or figures but also the relations between them. Damon
and Gasparovic (2017) has considered extension of the objects’
spokes into a “linking locus” where they meet, Liu et al. (2022)
has implemented that scheme in a way that avoids folding.
Krishna et al. (2022) considers objects that share a portion of
their boundaries and uses a skeletal description of that shared
region to capture inter-object information. This requires him
to flatten that shared region before applying 2D s-rep fitting
and then to restore the curvatures of the resulting 2D skeleton
and spokes. He accomplishes that flattening by projection
of the shared boundary region onto the skeleton of one (or
both) of the objects and then projecting the skeleton back
onto the ellipsoid’s medial ellipse whence it came. Before that,
he modifies the 3D spokes of the two objects to be collinear
in the shared boundary region so that deformations will
resist interpenetration or pulling away from adjacency of the
two objects.

Taheri and Schulz (2021) describes a different means
of providing a linking locus, in which the linking is first
described among the ellipsoids from which the object were
diffeomorphically deformed and then the linking is transformed
by a diffeomorphism common to the objects.

An attractive property of these multi-object representations
is that the fitted frame can be extended from the interiors
of the objects to the space between the objects. The early
stages of doing this have been accomplished by Liu et al.
(2022).

These multi-object representations appear to be useful
not only for studying inter-class relationships but also for
segmentation and, especially, segmentation editing, as described
in Section Statistics on S-reps for Single and Multiple Objects.

STATISTICS ON S-REPS FOR SINGLE AND
MULTIPLE OBJECTS

The correspondence between spatial samples across an object’s
training or testing population is critical to the success of the
statistical operation. Because each s-rep for such a population
is fit from a single shape and because the fitting is based on a
rich set of shape features, s-reps do particularly well in producing
correspondence. Tu et al. (2016) showed that even if the ultimate
shape representation was a boundary PDM, choosing the spoke
ends of a fitted s-rep as the boundary points yielded better
statistical performance, at least on the objects she tested.
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Because they have a heavy component of directional
information and directions reside on unit spheres, the shape
space on which s-reps reside is curved. One way to characterize
an s-rep is as a tuple of n4 frames in 3D, a tuple of n3
3D directions, a tuple of n2 2D directions, a tuple of n+
positive variables such as lengths and an object size, and
possibly a tuple of nL 3D locations. That is, an s-rep lives on
(S3)n4 × (S2)n3 × (S1)n2 × (R+)n+ × (R3)nL. As discussed
in detail in Pizer and Marron, 2017, each of the positive
variables can be mapped from R+ to R1 (Euclideanized)
using the logarithm and then mean centered by subtracting
log(the geometric mean of the variable). The sphere-resident
(directional) features need also to be Euclideanized before any
of the standard statistical methods can be applied. We have
accomplished those Euclideanizations using the Principal Nested
Spheres method of Jung et al. (2012), which is a counterpart to
Principal Component Analysis (PCA) for sphere-resident feature
points. PNS is provided on the SlicerSALT toolkit (Vicory et al.,
2018).

These representations for doing statistics require some sort of
pre-alignment in position and orientation (and possibly spatial
scale) to make the directions and locations consistent. Doing the
alignment has the advantage that it can provide global object
features for the statistics, such as its volume or the position of its
center in a coordinate system based on some landmark. However,
having to do the alignment generates difficulty because how to
choose the alignment is unclear, even for a population of single
one-figure objects. It is even more unclear for a population of
multiple objects or multi-figure objects. The result is that the
variability of the alignment adds noise to the representation and
thus makes the statistical analysis less powerful.

As described in the following two subsections, Mohsen
Taheri, Zhiyuan Liu, and Akash Krishna have used their s-
rep fitted frames to generate s-rep features that do not depend
on alignment. They have found these to provide particularly
powerful hypothesis testing or classification on aspects of local
geometry. This attractive idea has had only limited application
because it is very recent, but I predict that it will become amethod
of choice quickly.

Single Object Applications
Classification into s-rep classes simply uses s-rep features as
the basis of classification, as initially studied in the work of
Hong et al. (2016) on hippocampi between typical patients
and first-episode schizophrenics and between hippocampi and
caudate nuclei between typical 6-month olds and those who later
developed symptoms of autism. He showed improvements in the
classifications that used s-rep features over those that used only
object boundary point features.

How many dimensions do the s-rep-based geometric
properties involve? If the property is given by a fitted-
frame or a rotation between a pair of frames, it lives on
a hemisphere of a 3-dimensional sphere (understood to be
embedded in 4 dimensions), so its representation requires a 3-
tuple. Euclideanization of each of these thus yields 3 features. If
the rotations of concern are with respect to positional changes

in all three basis directions, that information requires a 9-tuple
when Euclideanized.

If the geometric property is a direction related to a particular
position, such as a spoke direction in an s-rep, it can be
understood to live on its own 2-dimensional sphere representing
directions in terms of a relevant frame and thus to require a duple
when Euclideanized. However, it may be useful to understand the
direction with respect to more than one coordinate frame, e.g.,
the frame at the skeletal end of an s-rep spoke and the frame at
the boundary end of the spoke. In that example, a 4-tuple would
be needed to express the direction.

If the geometric property is a point’s position, e.g., at
some location in an s-rep’s skeleton, that position needs to be
understood in some frame, e.g., of the s-rep’s center point, or
even more than one frame. The position in each frame requires
a 3-tuple. That 3-tuple can be expressed as a coordinate 3-
tuple, or often more effectively as a direction (a duple) and a
1-dimensional, zero-mean Euclideanized length.

All of the aforementionedmeasurements can bemade at many
spatial scales to capture not only relations local to the s-rep
but more global relations. After Euclideanization a PCA on the
Euclideanized features is used to handle the covariance between
the various curvatures, spokes, lengths, etc. Alternatively, as
described in Sharma and Eltzner’s research (Sharma et al., 2021),
if the feature-tuples cluster on the Cartesian product of spheres,
they can be mapped onto a high-dimensional sphere, on which
Euclideanization can take place, directly capturing the covariance
between the various direction vectors. However, research so
far has shown little advantage to the alternative method of
Euclideanization in various classification applications, so our
standard technique is sphere-by-sphere Euclideanization.

Schulz et al. (2015) and Taheri and Schulz (2021) have
used these features to do hypothesis testing between s-rep
classes, studying which geometric object properties (feature
tuples capturing a single geometric property, such as a spoke
direction) differ significantly between the classes. Taheri showed
in experiments comparing hippocampi between typical humans
and those with Parkinson’s disease that the fitted-frame based
features produce superior detections of differences than those
using global coordinates. The introduced features, including
point locations and frame orientations, were measured based
on each fitted frame for either an object or a complex, with
Euclideanization for the orientations. Correcting for multiple
tests was accomplished via the moderate approach of Benjamini
and Hochberg (1995). Taheri and Schulz compared the left
hippocampi of 182 patients with early Parkinson’s disease (PD)
vs. a healthy control group with 108 members. Figure 11

illustrates the result of the tests where red spheres and red arrows
indicate significant positions and orientations, respectively. They
saw four significant point locations on the spine. One may
conclude that there is no bending or twisting as orientations
are similar on the spine. However, a concentration of significant
point locations and orientations at the lower middle part of the
hippocampi may reflect a bending.

The boundary ends of an s-rep’s spokes imply a boundary
Point DistributionModel (PDM). In a test data set of hippocampi
Tu et al. (2016) showed that PDMs based on entropy-based
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FIGURE 11 | Hypothesis tests on hippocampi of Parkinson’s Disease vs.

Control Group. Light-blue and red arrows indicate fitted frames representing

non-significant and significant orientations, respectively. Light-blue and red

spheres depict non-significant and significant positions. The dark-blue bullet is

the center point. The black curve is the spine. Results are after p-value

adjustment by Benjamini-Hochberg with False Discovery Rate (FDR) equal

to 0.01.

correspondence of s-reps yielded better statistical properties than
PDMs formed by entropy-based correspondence of the points
themselves (Cates et al., 2006). Liu et al. (2021b) evaluated the
jointly varying Euclideanized features from an s-rep implied
multi-object PDM using the AJIVE method (Feng et al., 2018).
He found that these jointly varying features produced better
classifications of the hippocampus, caudate nucleus pair than the
concatenation of the individual PDMs from the two objects.

Segmentation of objects from images requires knowledge both
of the object shapes in the population and of the appearances
in the image. Each of these can be represented by a probability
density involving the object representation z: p(z), giving the
shape information, and by the conditional density p(I | z),
where the elements of I are image intensity features, giving the
appearance information. There has been quite a lot of research
in our group on segmentations using s-rep features to make up
z and producing the segmentation as the most probable z given
I. When Bayes theorem is applied, it follows that the z resulting
from this segmentation approach is arg maxz [-log p(z) +

(-log p(I | z))]. This approach was most heavily developed in the
segmentation of organs in the male pelvis from CT for planning
of radiation therapy of prostate cancer (Levy et al., 2007), and the
methods were the basis of segmentation by a spinoff corporation,
Morphormics (Holloway et al., 2008), which was later bought by
Accuray. Vicory (2016) applied this notion to the segmentation
of the prostate from 3D ultrasound, given its shape in MRI. That
is, the probability densities needed were on shape change, as
opposed to on shape. This required a normalization of the MRI
shape in both the training cases and the target cases before the
statistics could be computed or used. This normalization was
accomplished by applying a mean s-rep deformation to the s-rep
from the patient’s MRI before finding the shape change with the
maximum posterior.

In Vicory’s work the intensity features were not only image
intensities but also derived texture features. Also, the appearance
log probability was based on probability densities giving the

probability of a voxel being inside the object given the intensity
and textures tuple.

Certain objects produced by automatic segmentationmethods
need editing via user interaction. When the editing is done for a
3D object, editing the image slice by slice is too time-consuming.
Thus, segmentation editing is an important objective. We
believe that this editing should combine some but limited
user specification on image slices, geometric information from
acceptable segmentations in image slices, and image appearance
information. Mostapha et al. (2017) built a system based on s-
rep statistics on shape changes needed, but it did not include a
basis on appearance information. Also needed would be s-rep-

based shape changes of neighboring objects conditioned on the

changes of the prime objects. That work is yet to be done.

Evaluations via Statistics
Since s-reps were designed to produce features useful for statistics
on shape and in particular to produce spatial and orientational
correspondences needed for statistics on populations of shapes,
the evaluations need to be according to measurements of
statistical success. The chapters (Pizer and Marron, 2017; Pizer
et al., 2019) give many such measurements. In summary, on all of
the anatomic objects tried and both of the diseases investigated
for shape effects, the s-rep features and the methods of nonlinear
statistics produced superior classification and hypothesis testing
to the more traditional methods based on boundary points.
Also, measures of generalization and specificity of the derived
probability distributions led to preference for s-reps. Whether
these preferences would follow through for features based
on diffeomorphisms in a containing space has not yet been
investigated, but the fact that object width features have been
shown to be important for good statistics and these features are
not directly available from diffeomorphisms suggest that even
there statistics via s-reps might prevail.

The next section gives some recent results showing that
statistics based onmulti-object features also has strengths relative
to alternative models.

Multi-Object Statistics Using Skeletal and
Boundary Fitted Frames
A particular capability of s-reps is how it enables powerful
statistics on multiple objects. We present two approaches that
have been developed.

Classification and Hypothesis Testing on Separated

Objects
Zhiyuan Liu has completed dissertation research (Liu, 2022)
using data from two separated subcortical brain objects in infants,
as imaged by MRI: the hippocampus and the caudate nucleus
(Figure 12). The data fall into two classes related to whether the
child will develop autism. He has developed multiple geometric
features that can be used in classifications into the two classes,
as well as hypothesis testing on the relation of features to
classes. On these bases he has compared the use of various
s-rep-related features. The results suggest that the following
aspects are especially important:

Frontiers in Computer Science | www.frontiersin.org 11 October 2022 | Volume 4 | Article 842637

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Pizer et al. Skeletons, Object Shape, and Statistics

Multi-object features that include between-object linking
information, combined with within-object features classify more
strongly than just within-object features.

i. S-rep based features are particularly powerful, and especially
affine frames produced by mapping s-rep fitted frames from
the base ellipsoid to the target object.

ii. A desired set of between-object features are lengths and
directions of link vectors extending s-rep spokes in a 1-to-1
fashion to a linking surface between the objects.

iii. Focusing on features varying jointly as an effect of a disease
provides advantage over features selected without regard to
joint variation.

These conclusions are also presented in two papers (Liu et al.,
2021b, 2022). The first of these describes a method called
NEUJIVE in which Euclideanized multi-object features are
analyzed into joint features using the statistical method called
AJIVE (Feng et al., 2018). The second describes how representing
between-object shape using links from one object to a linking

FIGURE 12 | An infant’s hippocampus (surface shown at the bottom); the

caudate nucleus, shown at the top by its boundary and skeleton; the

inter-object linking surface in the middle colored by link length from the

hippocampus; and the discrete links from the hippocampus shown for each

discrete hippocampus spoke.

surface between objects provides superior classification and
hypothesis testing.

Here we briefly detail both the definitions and use of affine
frames and of the linking vectors. The triplet of vectors in
each affine frame are no longer unit length nor need they be
orthogonal. They allow avoidance of preliminary alignment,
which is especially challenging for multi-object complexes. They
allow locations to be understood in the coordinate system of
an object’s skeletal center point. As well, the relation of each
affine frame to that at that skeletal center point captures shape
information itself.

The linking surface is formed by a use of Damon (2021)’s
linking mathematics. It smoothly and bijectively interpolates
landmark pairs from equal length spoke extensions from the two
objects’ surfaces where there is no folding due to within-object
spoke intersections. The links from an object to that surface are
thereby smoothly interpolated to connect each discrete spoke to
the linking surface (Figure 12), thereby depending on the good
correspondence properties of discrete s-reps.

However, what the best features are to describe inter-object

relations is still an open question.

Classification of Abutting Objects
Krishna et al. (2022) has work developing the ability to represent
two objects with parts of their boundaries shared (Figure 13). His
method involves providing s-reps of the two objects, where those
s-reps’ spokes are collinear within the shared boundary region.
Moreover, he computes an s-rep of the 2D shared boundary as
well. Not only are the features of the two objects understood in
terms of their own fitted frames, but the s-reps features of the
shared boundary region are understood in the fitted frames of
one of the two objects.

Krishna compared classifications on deformed ellipsoid pairs
sharing a boundary region. One experiment measured the
accuracy of classifying a pair of deformed ellipsoids where one
ellipsoid is bent from a pair of ellipsoids where neither object is
bent. The other experiment measured the accuracy of classifying
a pair of deformed ellipsoids where one ellipsoid is stretched

FIGURE 13 | Ellipsoidally based objects with a shared boundary that are used as data. Left: The two objects. Middle: one of the objects, showing the region of shared

boundary. Right: the 2 object s-reps and the shared boundary s-rep (yellow).
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relative to the other from a pair of ellipsoids where neither object
is stretched. These classification capabilities were compared
between s-rep features, using fitted frames, that ignored the
shared boundary region’s geometry vs. ones that included that
geometry.

The number of s-rep points used was the same in all of
the comparisons. His results show the benefits of inclusion
of the shared boundary’s s-rep features for object bending
but not for object stretching. He also began work on a pair
of brain structures that share part of their boundary. It did
not adequately find a way to produce a smooth region of
shared boundary from objects segmentations with individual
segmentations in the form of coarse triangular tiles. Future work
should analyze brain structures having shared boundaries

with such a technique. Also, a method using Liu’s linking

surfaces that include the shared boundary would be worthy

of development.

DIFFICULTIES WITH AND LIMITATIONS OF
SKELETAL REPRESENTATIONS

The skeleton of a 3D object is most well understood when
the principal radii of the ellipsoid generating that skeleton are
all notably different from each other. A particular problem is
populations within which in one part of the population the
longest object axis corresponds to the second longest axis in
another part of the population or the population contains objects
for which moving along the longest axis makes the second longer
axis transition to be shorter than the one that was third longest—
the transition is generic even though the transition shape, with a
circular cross-section, is not. Moreover, when the smaller two of
the principal radii remain close for an interval along the longest
axis, the resulting near-circular symmetry makes the skeletal
surface very thin and the orientation of the skeleton unstable.
When this happens for objects considered as a quasi-tube, the
skeletal orientation about the tubular axis (the spine) will seem
to discontinuously change. Work to deal with this behavior

is needed.
A strength of s-reps is that they are insensitive to noise in

the boundary that yields pimples and dimples. Yet in some
applications, e.g., where two objects must fit together tightly to
form a seal against fluid leakage, the boundary must be expressed
in a form that has no noise, e.g., with boundary intervals specified
by splines. This is a real advantage of cm-reps (Yushkevich
et al., 2015), where the implied or explicit spokes are normal
to the boundary. A challenge is to create a form of s-reps

where subregions are restricted to having spokes normal to

the boundary.
While forms of fixed branching of at most a few levels

could be easily handled by s-reps and their statistics, variable

branching, such as happens in most tubular trees in the body,

would require statistics of branching. Methods of the statistics

of branching is a somewhat immature discipline, and its

application to s-reps has not been accomplished.
In the simplest situations the fold of the skeleton in an s-rep

is opposite a crest of the boundary. However, on the boundary’s

crest region, along a principal curve crossing the crest, the zero
level curve of the derivative of principal curvature can transition
into an undulation with two crests and a trough. In that case

how the skeletal fold should behave has not been understood,

to my knowledge.
The major limitation of s-reps as the basis for statistics is

that the data is typically provided as a mesh of triangular tiles
representing the object boundary and that the s-repmust be fitted
to that mesh. This weakness is shared with the many valuable
methods for statistics based on computing a diffeomorphism
over space including an object and then doing statistics on
features derived from that diffeomorphism (see, for example,
the Deformetrica library; Durrleman et al., 2014). An interesting
alternative is the recently published work (Ambellan et al., 2021)
that does its statistics directly on deformations of the mesh itself.
Research comparing these various methods for doing statistics

on shapes would be valuable.
Other limitations come from the fact that when corners and

sharp edges are important features, as they are in manufactured
objects, s-reps at present need to treat those somewhat
unnaturally as subfigures. They also handle randomly branching
objects such as blood vessel trees poorly, as well as objects in a
single population that are in different topological classes or have
different arrangements of their subfigures.

DISCUSSION AND CONCLUSIONS

Potential Nonmedical Applications
The chapter by Leymarie and Kimia (2008) lists a large number of
applications to which skeletal models have been applied, from the
cosmological scale to the atomic scale. However, none of those

used s-reps, but they could. The following discusses applications
where s-reps could have been used, and it discusses extensions of
those as well as new opportunities for non-medical applications.

Designing objects for manufacturing or art often nicely

involves combining figures that can be understood skeletally.

Means with an intuitive interface for specifying the shape of

single figures using a limited set of primitives have already

been worked on (Wikipedia3). However, s-reps would provide

a much wider range of shapes as primitives. Means for

controlling the way figures are pasted together would need

to be invented, where these means were adequately intuitively

controllable by the designer.
Computer graphics and the subset of that field toward

visualization also could benefit from a wider set of primitives

than are presently routinely used.
The human body is made from articulated figures. Each

figure, e.g., the forearm, has a recognizable shape, which can

be statistically studied, not only statically but also in motion.

While there are many studies of the body in motion as stick

figures, it would seem helpful to study the body with flesh

on its bones using the s-rep’s efficient features. The ideas of

figure-to-figure connections described above would appear to

be useful here. Similarly, robots and other mechanical devices

3Wikipedia on 3D sculpting. Available online at: https://en.wikipedia.org/wiki/

Geometric_primitive.
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FIGURE 14 | Left: Finite elements for objects in the male pelvis. Right: finite

elements for a host figure and subfigure (Crouch et al., 2007).

made from articulated figures, such as airplanes, could benefit

from using s-reps.
Once we have mechanical models formed from skeletons, it is

natural to consider mechanical motion of these models. And this
does not need to be restricted to articulation. Crouch et al. (2007)
showed how skeletal models (albeit not s-reps) could be used
to divide an object or a group of objects into natural elements
for multi-scale finite element modeling of mechanical changes
(Figure 14). For a single-figure object the subdivisions were
along τ2 and θ. For multi-figure models including protrusions
she showed how to have the finite elements transition from the
subfigure elements to the host figure elements, providing an
alternative to Han’s approach described above. Certainly, the
shape properties revealed by a skeletal model make further

work on physically based modeling using s-rep based elements

an attractive direction.
While s-reps have been used only for data that was extracted

or is being extracted from medical images or images from

ordinary cameras, its application to data extracted or being

extracted from other sensors would be useful. For example,

the LIDAR sensors used in self-driving vehicles would be an

interesting source.
Human vision certainly divides the world into objects.

Biederman (1987) and Burbeck et al. (1996) (in our group),
and many others have adduced psychophysical evidence that it
does so via skeletal primitives, which Biederman calls “geons.”
Burbeck and Pizer also gave evidence that the human visual
system’s skeletal analysis was done at spatial scales proportional
to the object width. Indeed, there is some limited evidence that
the monocular visual system is especially sensitive at skeletal
points (Lee, 1995; Lee et al., 1998). Without some direct way
for the brain to sense objects, how else could it be so fast in
such sensing? Moreover, we have a good sense for categories of
objects, e.g., faces and trees and roads. The instances within these
classes differ geometrically from each other, but they typically
have similar skeletal topology. It seems natural to study mental

models used in recognition by using s-reps.

Desirable Future Research on S-Rep
Methodology
So far, when regions of the skeleton have been considered,

they have been limited to ones entirely on either the north

side or the south side of the skeleton. However, regions

folded on a skeleton arise, for example, when an object abuts

another across a crest into which the skeleton fits. It should be

straightforward to include such regions as a possibility.
So far, s-reps have been created only for single-figure or

multi-figure slabular objects, i.e., thosewith spherical topology

and have a skeletal surface, or for generalized cylinders,

which also have spherical topology and focus especially on

a curvilinear skeleton (Saboo, 2011). But there are many

other topologies for which a skeletal model is appropriate.

Cyclic forms of skeletal surfaces, such as closed fists, or of

skeletal curves, for example, of doughnuts could be very useful.

Likewise, s-reps for annular solids, such the myocardium

would be useful.
In some populations a pair of objects in some instances

share a boundary and in others the two objects are separated.

It can even happen that one of the objects melds with the

other object becoming a subfigure. Statisticalmethods for such

populations could be developed. Also, one might want to be

able to handle a host figure with two subfigures that can in

some instances touch and in others be separated, and even

meld together in such a way to change the number of holes

(topological index).
Other situations needing development come when there are

more than two objects. Handling how one object slides along

the other two within the population could be handled via Liu’s

linking surfaces (Liu et al., 2022), which uses fitted frames.

Also, the abutment arrangements can vary across cases, e.g.,

as one of the objects slides along the other. Cardiac valves can

present such distributions.
Multi-scale s-reps would be worthy of study. For example,

taking the spine as a whole at one spatial scale, without

reflecting the shapes of the individual verterbrae, and then

describing the vertebrae at a smaller scale, and the vertebral

parts at a yet smaller scale would provide a driving problem.
Objects can be in motion. Especially when the motion

involves deformation, as in the beating heart or breathing

lung, statistical analysis of the motion sequences is of interest.

Hong et al. (2019) has studied the progression of Huntington’s

disease statistically using cm-reps, Yushkevich et al. (2015) has

studied objects in motion using his cm-reps, but such studies

could usefully be extended to s-reps because the fitted frames

will give powerful ways of characterizing the deformation. In

general, comparisons between s-reps and cm-reps for a variety

of applications would be informative.
It seems straightforward to apply this s-rep idea to

higher-dimensional objects as long as they have codimension

1; i.e., where the ambient dimension is some n and the object

boundary has dimension n-1. Far from straightforward, but

likely important, would be the extension to a number of spatial

dimensions and time. The difficulty is that a metric in (space,

time) is complex because space and time are incommensurate.

Making them commensurate would seem to require ideas of

relativity. As exciting as this would be, it is beyond the scope of

short term research, I believe.
Because the geometry of s-reps involves frames, which live

abstractly in SO(3) (a hemisphere of S3), and directions, which
live abstractly in S2, the space describing a whole discrete
s-rep lives on a Cartesian product of spheres, i.e., a polysphere:
(R+)d1× (S2)d2× (S3)d3, where d2 counts the number of vector
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directions and d3 counts the number of frame directions.
The PNS algorithm for doing a PCA-like dimension reduction
(Sharma et al., 2021) can be applied sphere by sphere, but
it leaves the question of how to handle polyspheres that are
more toroidal. That is, research on how from points on a
toroidal polysphere of dimension d to create a subdimensional
surface of dimension d-1 that best fits the points is needed.
Such research has recently been reported (Zoubouloglou, 2021)
on Cartesian products of 1-dimensional spheres (circles), and
extension on the Cartesian product of 2-dimensional spheres is

anticipated, but extensions to polyspheres made of 1-, 2-, and

3-dimensional spheres is needed.
Good positional and orientational correspondence among

instances of an object in a population is particularly important
for statistical applications. Information as to this correspondence
can come from understanding the objects in their source
environment, e.g., biological correspondence for anatomical
objects or structural correspondence for manufactured items.
Or they can come from entropy analysis (Davies et al., 2001;
Cates et al., 2006; Tu et al., 2016), though this can be very time-
consuming and subject to local optima in optimization schemes.
Or they can come from deep learning. Methods for improving

the correspondence by such means would probably be quite

helpful to statistical or deep learning applications.
On the subject of deep learning for operations related to

objects, such as recognition or segmentation, there is the open

question of whether deep learners that are based on largely

linear operators (other than the ReLus) on base elements

such as voxel values or mesh node locations and links can

compete with deep learners that use as features s-rep frames

and connecting vectors, which are nonlinearly related to those

more basic features.

CONCLUDING REMARKS

While not every object of study is suitable for representation
by s-reps, there are many that are and that appear to be
especially suitable for statistical analysis. This is because 1) object
shape is best understood through a population of objects;
2) the s-rep methods presented here have notable advantages in
providing descriptive object features with correspondence across
the population, indicated by studies on anatomic objects. While

many of the theoretical challenges in developing and using

s-reps have been met, there are many more remaining, and

application opportunities abound. The software in the SALT
shape analysis toolkit (Vicory et al., 2018) supporting s-reps
already can provide help to developments and uses of s-reps,

and more will be forthcoming from my laboratory. Especially,

bringing the advantages of s-reps to manufactured objects and

to design remain an open challenge. I hope that this paper will
encourage others to take up this work. They will be welcome to
add their software to the SALT s-reps collection.
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