
CLASSIFICATION OF NEUROANATOMICAL STRUCTURES BASED ON
NON-EUCLIDEAN GEOMETRIC OBJECT PROPERTIES

Junpyo Hong

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the University of North

Carolina at Chapel Hill.

Chapel Hill
2018

Approved by:

Stephen M. Pizer

J.S. Marron

Martin A. Styner

Beatriz Paniagua

Heather C. Hazlett



©2018
Junpyo Hong

ALL RIGHTS RESERVED

ii



ABSTRACT

JUNPYO HONG: Classification of Neuroanatomical Structures based on
Non-Euclidean Geometric Object Properties

(Under the direction of Stephen M. Pizer)

Studying the observed morphological differences in neuroanatomical structures between individuals with neu-

rodevelopmental disorders and a control group of typically developing individuals has been an important objective.

Researchers study the differences with two goals: to assist an accurate diagnosis of the disease and to gain insights into

underlying mechanisms of the disease that cause such changes.

Shape classification is commonly utilized in such studies. An effective classification is difficult because it requires

1) a choice of an object model that can provide rich geometric object properties (GOPs) relevant for a given classification

task, and 2) a choice of a statistical classification method that accounts for the non-Euclidean nature of GOPs.

I lay out my methodological contributions to address the aforementioned challenges in the context of early diagnosis

and detection of Autism Spectrum Disorder (ASD) in infants based on shapes of hippocampi and caudate nuclei;

morphological deviations in these structures between individuals with ASD and typically developing individuals have

been reported in the literature. These contributions respectively lead to 1) an effective modeling of shapes of objects of

interest and 2) an effective classification.

As the first contribution for modeling shapes of objects, I propose a method to obtain a set of skeletal models called

s-reps from a set of 3D objects. First, the method iteratively deforms the object surface via Mean Curvature Flow

(MCF) until the deformed surface is approximately ellipsoidal. Then, an s-rep of the approximate ellipsoid is obtained

analytically. Finally, the ellipsoid s-rep is deformed via a series of inverse MCF transformations. The method has two

important properties: 1) it is fully automatic, and 2) it yields a set of s-reps with good correspondence across the set.

The method is shown effective in generating a set of s-reps for a few neuroanatomical structures.

As the second contribution with respect to modeling shapes of objects, I introduce an extension to the current s-rep

for representing an object with a narrowing sharp tail. This includes a spoke interpolation method for interpolating

a discrete s-rep of an object with a narrowing sharp tail into a continuous object. This extension is necessary for

representing surface geometry of objects whose boundary has a singular point. I demonstrate that this extension allows

appropriate surface modeling of a narrowing sharp tail region of the caudate nucleus. In addition, I show that the

extension is beneficial in classifying autistic and non-autistic infants at high risk of ASD based on shapes of caudate

nuclei.
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As the first contribution with respect to statistical methods, I propose a novel shape classification framework that

uses the s-rep to capture rich localized geometric descriptions of an object, a statistical method called Principal Nested

Spheres (PNS) analysis to handle the non-Euclidean s-rep GOPs, and a classification method called Distance Weighted

Discrimination (DWD). I evaluate the effectiveness of the proposed method in classifying autistic and non-autistic

infants based on either hippocampal shapes or caudate shapes in terms of the Area Under the ROC curve (AUC). In

addition, I show that the proposed method is superior to commonly used shape classification methods in the literature.

As my final methodological contribution, I extend the proposed shape classification method to perform the

classifcation task based on temporal shape differences. DWD learns a class separation direction based on the temporal

shape differences that are obtained by taking differences of the temporal pair of Euclideanized s-reps. In the context of

early diagnosis and detection of ASD in young infants, the proposed temporal shape difference classification produces

some interesting results; the temporal differences in shapes of hippocampi and caudate nuclei do not seem to be as

predictive as the cross-sectional shape of these structures alone.
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CHAPTER 1: INTRODUCTION

1.1 Overview

The driving biomedical problem of this dissertation is an early diagnosis and detection of Autism Spectrum Disorder

(ASD). This work focuses on classifying the autistic from the non-autistic among infants at high familial risk (HR) of

ASD based on shapes of hippocampi or caudate nuclei. Among these infants at high risk of ASD, I refer those who are

later diagnosed with ASD as HR-ASD and those who are not as HR-Neg. There are two important factors to consider

for this shape classification problem:

• A choice of an object model to represent the shape of the hippocampus and the caudate nucleus.

• A choice of a method to learn a classification rule based on shape descriptions of hippocampi and caudate nuclei.

An effective shape classification is difficult because of several challenges associated with each design choice.

Firstly, with numerous object models having been proposed in the literature, choosing an object model capable of

providing shape descriptions of the object that may be relevant for a classification task at hand is in itself challenging.

Secondly, one has to consider whether an object model can be fitted to a set of object segmentation with reasonably

good correspondence to obtain a sensitive classification result. Finally, after settling the choice of the object model

that satisfies the two aforementioned concerns, choosing a classification method capable of yielding an effective

classification rule poses yet another challenge.

In order to effectively discriminate the HR-ASD from the HR-Neg infants based on morphological traits of

hippocampi and caudate nuclei, the following properties are necessary for each component of the shape classification.

• An object model needs to

– provide rich localized descriptions of those structures that are sensitive to any subtle morphological

difference.

– be fitted to an object segmentation robustly and automatically with good correspondence in the target objects

across the sample population.

– be able to adequately represent surface geometry of an object with a singular point, e.g., the caudate nucleus.
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• A classification method needs to

– robustly classify cases when the input feature dimension is larger than the sample size.

– account for the fact that GOPs abstractly live on a curved manifold.

This dissertation describes novel methodological contributions in each of these areas. In subsequent sections of this

chapter, I first overview the current findings in the driving application problem. Then, I provide details on the intuition

behind each of my contributions. Finally, I conclude this chapter with my thesis statement and the organization of the

remaining chapters.

1.2 Current Findings on ASD from Neuroimaging Studies

ASD is a neurodevelopmental disorder characterized by a few core symptoms including repetitive behaviors and

difficulties in social interaction and communication. ASD manifests very early in life. Previous behavioral studies of

ASD show that clinical symptoms may appear as early as 12 months with most infants receiving a diagnosis by the age

of 4. This relatively narrow window of birth to age of onset of symptoms provides opportunities to study the underlying

neurodevelopmental process of infants with ASD.

Recent longitudinal infant brain imaging studies of infants have yielded many important insights about the

developmental process of infants who are diagnosed with autism by the age of 2. Findings include increased cortical

gray and white matter volumes, increased amygdala volumes, and atypical neurodevelopmental trajectories (Hazlett

et al., 2012; Wolff et al., 2013).

However, not much is known about localized morphological differences of subcortical structures between the

individuals with and without ASD during this early developmental period. In older children there have been a number

of studies showing that subcortical structures including the caudate nuclei and the hippocampi are implicated in ASD.

This has motivated me to develop classification methods based on local geometric properties of the hippocampus and

the caudate nucleus from the perspective of shape classification.

1.3 Common Object Models used in Shape Classification

Classification methods based on a global volume of the objects (Hazlett et al., 2012) have been common due

to the simplicity of computing and understanding the measure. However, such methods may not yield an effective

discrimination when classifying anatomical structures between patients at the early stage of the disease and healthy

control subjects because a single measure such as the global volume may not adequately explain subtle morphological

differences between the two groups. In addition, those methods have weakness in providing localized insights into
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causes of the observed difference in volume, e.g., that the volume change is driven by one or more regions of the

structures. The localized analysis could yield an important biological insight into the disease.

The Point Distribution Model (PDM) (Cootes et al., 1992) has been a popular object model in shape classifica-

tion (Davies et al., 2003). The PDM describes a shape of the object as a tuple of enumerated points usually placed

along the boundary of the object. The PDM has several desirable traits such as being easy to create from image

data (Davies et al., 2003; Styner et al., 2006) and supporting a localized analysis of the shape of the objects. However,

the localized analysis of the shape of the objects with PDMs is still limited due to PDMs only explicitly capturing

positional geometrical properties of the objects; therefore, the PDM-based analysis is limited in accurately modeling

inter-class shape variations involving a local direction and a local width.

1.4 Skeletal Representations

Skeletal representations describe the shape of an object via a collection of geometric primitives each of which has

an associated skeletal position. The s-rep is a skeletal representation whose geometric primitives are vectors called

spokes pointing to the object boundary from each skeletal position to the object boundary. These spokes provide the

rich localized shape properties of the object, i.e., orientation, width, and position. These GOPs are capable of modeling

a localized nonlinear inter-class shape difference that may be a useful insight into the classification task.

However, these GOPs, e.g., a set of local directions, are non-Euclidean. Therefore, a classification method has to be

chosen carefully because of non-Euclidean nature of the s-rep GOPs: without properly handling the nonlinearity of

GOPs, a classification method, e.g., the Support Vector Machine, designed to classify Euclidean data fails to learn a

sensible classification rule (Sen, 2008). I use an alternative approach called Euclideanization where these non-Euclidean

s-rep GOPs are properly transformed into a Euclidean feature tuple before learning the classification rule.

1.5 Automatic Generation of S-reps with Good Correspondence

For each target object in the training set, a set of s-reps have been obtained by registering an implied boundary

surface of the template s-rep model to each target object boundary. The template s-rep has been deformed to roughly fit

each target object boundary via the Thin Plate Spline (TPS) transformation computed based on the correspondence

established by Thin Shell Demons (TSD). Then, spokes of each warped template s-rep have been further refined so

that the s-rep tightly fits the target object boundary. This process yields a set of fitted s-reps that have a reasonable

correspondence in spokes across the set.

The template s-rep has been often chosen to be the s-rep fitted to the same target object in the past. However, the

template s-rep model, e.g., the left hippocampus s-rep of a young adult, often does not reflect shape variations observed

in the given sample population of the target object, e.g., a set of left hippocampi of young infants. In short, establishing
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a reasonable correspondence in spokes by warping a single s-rep model to each target object in the set poses another

challenge when the chosen template s-rep is not representative of the sample population.

However, an analytical expression of the s-rep is known for an ellipsoid. Thus, the ellipsoid s-rep can be deformed

to fit each target object if a mapping between the ellipsoid and the target object is established. I use Mean Curvature

Flow (MCF) to obtain the ellipsoidal mapping of the target surface. Then, I apply a deformation that is the inverse of

MCF to an ellipsoid s-rep followed by refinements in spokes to the deformed ellipsoid s-rep to obtain a fitted s-rep.

Reasonable correspondence in spokes is achieved because ellipsoids are related by scaling each axis of the ellipsoid.

1.6 Extensions of the Discrete S-rep to Model a Singular Point

My driving medical problem requires appropriately capturing geometric properties of the caudate nucleus (CN).

The literature reports morphological deviations of the CN between individuals with and without ASD. Especially

notable is the association of ASD patients’ restricted and repetitive behaviors with enlargement of the CN’s global

volume. However, detailed analysis of the local shape differences of the CN between the two groups is lacking.

The input boundary surface of the CN derived from a medical image, e.g., structural Magnetic Resonance Imaging,

tends to have a tapering sharp tail, i.e., a singular point. The singular point on the boundary of the caudate nucleus

makes it difficult to represent the structure with an s-rep becuase it causes the skeletal surface to collapse to a point.

This degeneracy of the skeletal surface causes a number of issues in modeling the surface geometry of the caudate

nucleus.

To address this challenge in modeling neuroanatomical structures with a singular point, e.g., the caudate nucleus,

via the s-rep I introduce an additional geometric primitive dedicated to represent the singular point to account for the

degeneracy. Then, I extend the current quad-based spoke interpolation method so that the interpolated boundary surface

patches are C2 continuous up to the singular point.

1.7 Common Classification Methods used in Shape Classification

Accurate classification of medically imaged objects on the basis of their GOPs is difficult. In such a setting the

input feature space is a curved manifold due to the non-Euclidean nature of the GOPs. However, a classification method

designed to find an optimal classification rule on the non-Euclidean feature space is lacking. Direct application of the

Euclidean classification methods on GOPs yields a suboptimal classification rule; as demonstrated in (Sen, 2008) it

might even be invalid. In this dissertation I apply Principal Nested Spheres Analysis (PNS) to the GOPs to transform

the non-Euclidean nature into the Euclidean. PNS yields a set of the best-fitting submanifolds of the GOPs as well

as their signed geodesic distances to the respective best-fitting submanifold. These signed distances can be regarded
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as the Euclidean counterparts to the original GOPs; the original non-Euclidean GOPs appear now to be reasonably

Euclideanized for the Euclidean classification methods.

The shape classification problem is often a High Dimensional Low Sample Size (HDLSS) problem in which the

dimension of the input GOPs tuple is larger than the number of available data samples. In the HDLSS classification

problem Marron (Marron et al., 2007) has shown that many classifiers, e.g., the Support Vector Machine and the Mean

Difference Classifier, lose generalizability due to a phenomenon called data piling. To account for this phenomenon

in my shape classification tasks, I use Distance Weighted Discrimination, which is designed to learn a generalizable

classification rule in HDLSS classification problems.

1.8 Classification based on Temporal Shape Differences

A number of recent psychiatric studies have shown that the brain developmental trajectories of HR-ASD infants

noticeably deviate from those of the typically developing infants (Hazlett et al., 2017). However, not much is known

about the correlation between ASD and the developmental trajectories of the implicated subcortical structures. This has

motivated me to investigate the problem of classifying objects based on growth information as to whether the disease is

present. For the early diagnosis of ASD, I have chosen to investigate growth information of hippocampi and caudate

nuclei between 6 months and 12 months.

The main task is to accurately encode the growth information as the temporal difference in GOPs of an object

between the two time points into the DWD classifier’s feature tuple. This raises a statistical question whether the GOPs

of each of the s-rep are analyzed together or separately for PNS. In this work I adopt the latter approach in which the

Euclideanized input feature tuple is obtained by taking difference between the s-rep GOPs that are Euclideanized by a

common polar system produced from a union of s-reps across the time points and across the classes.

I have evaluated the effectiveness of the temporal difference classification method in two scenarios: 1) ASD

classification given the temporal pair of hippocampi of 6-month olds and 12-month olds, 2) ASD classification given

the temporal pair of caudate nuclei of 6-month olds and 12-month olds.

1.9 Thesis and Contributions

Thesis: Classification of medically imaged neuroanatomical structures based on their geometric object properties

benefits from the following:

1. An object model providing local object width and orientation in addition to positional information

2. An object modeling procedure that efficiently yields geometric correspondence across a population

3. A classification method capable of learning on a curved manifold
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The major methodological contributions of this dissertation are as follows:

1. A fully automatic procedure to obtain a set of s-reps fitted to each target object boundary data with reasonably

good correspondence in spokes.

2. An extension to the current s-rep modeling framework for appropriately representing an object with a singular

point, e.g., the caudate nucleus.

3. A non-Euclidean classification method that uses PNS to obtain the Euclideanized s-rep GOPs on which DWD

classifier is trained.

4. A statistical technique to compare different shape classification methods.

5. A non-Euclidean classification method for classifying a temporal difference of s-reps in which the input feature

tuple to DWD is formed by taking the difference of the Euclideanized s-rep GOPs for each time point

In addition to the above methodological contributions, I have also accomplished the following engineering

contributions:

1. Redesign of the computer representation of the discrete s-rep, which allows modeling objects with different

topologies including the spherical (slabular), the quasi-tubular, and the toroidal

2. Integration of Pablo, the main piece of software used to fit and visualize s-reps into 3D Slicer for easier distribution

of the s-rep modules to the medical image analysis community

3. Modernization of the s-rep modules

4. Implementation of the module that converts a legacy s-rep into the new s-rep

5. Implementation of the module that visualizes a legacy s-rep in 3D Slicer

6. Improvement of the numerical stability of estimating surface normals and principal curvatures from the implicit

representation of the object by a signed distance image.
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CHAPTER 2: BACKGROUND

In this chapter I lay out background information that is common for each of the subsequent chapters. I first overview

object models. Then, I overview statistical methods to understand the shape of an object and then classification methods.

2.1 Object Models

At a high level there are two categories of object models that have been proposed for statistical analysis: continuous,

parameterized models modulo parameterization (Kurtek et al., 2012; Jermyn et al., 2012; Bauer et al., 2010, 2012;

Durrleman et al., 2014) and discrete models. Due to the discrete models’ strengths in explicitly dealing with localized

features, I focus on those models. Among the discrete models are those based on deformations of an atlas (Beg et al.,

2005; Miller et al., 2002; Wang et al., 2007), those based on the B-PDM (Cootes et al., 1995; Styner et al., 2006; Davies

et al., 2003), and those based on skeletal models (Styner et al., 2004; Yushkevich and Zhang, 2013; Bouix et al., 2005;

Schulz et al., 2016). The B-PDM-based models have been the most popular. The skeletal models were designed to add

local object width features and local directional features to those provided by PDMs.

I overview the two object models that I compare in this work: the PDM and the s-rep. For each model, I provide

• a brief description of the representation

• a brief description on fitting the object model to a boundary description provided as input

• a brief description of the curved manifold on which shape features of the representation live.

2.1.1 The Point Distribution Model

The PDM is a point tuple for each object in a training set. In the boundary PDM (B-PDM) each example object in

the set has a set of enumerated points along its boundary, with points with corresponding index in each object chosen so

as to be in correspondence across the training set.

There are several ways to produce a set of PDMs with reasonable correspondence from a set of objects, including

manual placements of landmarks, automatic placements of points based a criterion such as minimum description

length (Davies et al., 2003) or spherical harmonics (Styner et al., 2004, 2006).
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The PDM GOPs, i.e., a tuple of point coordinates, are often interpreted in two ways: 1) as a point on a flat Euclidean

space or 2) as a point on a curved manifold (Kendall, 1984). Consider the B-PDM in the training set P with n boundary

points. By scaling the entire point tuple such that the sum of squares of all the center-of-mass-relative point features has

unit value, this can be thought of projecting the point tuple onto the unit hypersphere S3n−4. The dimensionality of

3n− 4 comes from the fact that three degrees of freedom were used during alignment and one more degree of freedom

was used to normalize the scale to unity. Therefore, as rigorously shown by Kendall in his work (Kendall, 1984), the

translationally aligned B-PDM can be represented as a concatenation of this scaling factor and this normalized tuple of

points: the B-PDM abstractly lives on the manifold R+ × S3n−4.

2.1.2 The S-Rep

The discrete s-rep is a skeletal discretization of the interior of the object. It consists of a set of points sampled on

the skeletal surface, which is a folded surface with the object’s topology, in this dissertation spherical topology, and

vectors called spokes associated with each of the skeletal points that are approximately normal to the object boundary

surface and whose tips are approximately incident to the object’s boundary surface. These spokes explicitly capture

local direction and local width information of the object. An example discrete s-rep of a hippocampus can be seen in

figure. 2.1.

(a) (b)

Figure 2.1: (a) Skeletal model of a hippocampus s-rep; (b) solid model implied by that s-rep. Yellow spheres are
sample points along the skeletal surface. Solid lines extending from these sample points are spoke vectors, which
are approximately normal to the boundary surface. Interpolation of a discrete s-rep into a continuous skeleton with a
continuous field of spokes forms a continuous s-rep whose spokes completely fill the interior of the object they are
representing.

Heretofore s-reps have been fitted to an object via a posterior optimization that tries to match the boundary surface

implied by the continuous s-rep interpolated from the discrete spokes by Vicory’s work in (Tu et al., 2016) to the

input object boundary from the image data while remaining as medial as possible. The optimization is initialized by

deforming a reference s-rep to an individual case via the TPS transformation that is computed based on boundary

correspondence between the reference object and the target object. The boundary correspondence is established by TSD.
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Then, the deformed reference s-rep is refined to fit tighter to the input object boundary by lengthening or shortening

spokes. This process yields a set of s-reps whose spokes are in reasonable correspondence in the training set.

S-rep GOPs, i.e. a tuple of positions, local widths, local orientations, lie on a curved manifold. Consider a discrete

s-rep s with n spoke vectors and m skeletal points. The set of skeletal points forms a PDM that is aligned such that its

center of gravity is at the origin. Additionally, this tuple of centered points is scaled by a factor making the sum of

squared distances to the origin to be unity. Therefore, this PDM is described by a tuple of centered points that abstractly

lives on the unit hypersphere S3m−4 and an associated log-transformed scaling factor. The directional component of

each spoke abstractly lives on the unit 2-sphere S2, and the log-transformed associated length component of each spoke

lives on the Euclidean space R1. Thus, a single discrete s-rep abstractly lives on Rn+1 × S3m−4 ×
(
S2
)n

.

2.2 Statistical Methods

I provide brief descriptions of statistical methods commonly used to understand the input shape description of

an object. I first overview PCA, the conventional approach. Then, I overview PNS analysis, a variant of PCA to

analyze data that live on abstract spheres. I briefly describe CPNS, a statistical analysis technique that is appropriate

for analyzing the data that live on a Cartesian product of Euclidean space and hyperspheres. Finally, I finally briefly

describe Polysphere PCA (PPCA), a method designed as an extension to PNS to properly understand the correlation of

variables in a Cartesian product of hyperspheres, i.e., polysphere.

2.2.1 Principal Component Analysis

Principal component analysis (PCA) is an important statistical method for analyzing Euclidean data. It provides a

means of reducing the intrinsic dimension of data by capturing its major modes of variation. PCA has been widely used

in the field of medical image analysis and computer vision because descriptions of objects of interest are often high

dimensional whereas the important variations can be quite low dimensional. Those modes of variation are often quite

illuminating and relevant to the task at hand.

PCA can be understood in terms of a forward or backward procedure. The forward method progressively builds

up the dimension of the approximating subspace being fitted to the data, whereas the backward method progressively

reduces the dimension of the subspace being fitted to the data. Both approaches yield the same result when the data

lie on a Euclidean space. However, GOPs do not lie on a Euclidean space. The backward approach typically yields

different results from the forward approach when applied to non-Euclidean data. As noted in (Damon and Marron,

2013), the backward approach is usually more appropriate to analyze those non-Euclidean features.

The forward PCA increases dimension by adding the component that captures the most remaining variance; at each

iteration a component that best describes the data and that is orthogonal to previous components is added to form a new
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best fitting manifold so that the current manifold is the best fitting submanifold of the data in the original dimension.

The principal component scores are found by projecting all the data onto the found submanifold.

In contrast, the backward view of PCA progressively reduces the intrinsic dimension of the manifold by removing

the component of the least variance from all the data points; at the beginning of each iteration the data is projected onto

the submanifold found in the previous iteration, and then the best fitting submanifold is found by minimizing the sum of

squared distances of all the projected data.

2.2.2 Principal Nested Spheres Analysis

Principal Nested Spheres (PNS) analysis is a special case of backward PCA on hyperspheres. PNS progressively

reduces intrinsic dimension by finding the best fitting subsphere Sk−1 that is nested in the current hypersphere Sk. At

each iteration, the data points are first projected onto the subsphere found in the previous iteration; then the fitting is done

by minimizing the sum of squared geodesic distances of all the projected data points to the subsphere. Over the training

cases PNS will yield a tuple of signed geodesic distances to the best fitting subsphere for each dimension-reduction

iteration.

These signed geodesic distances are a Euclideanized form of their spherical counterparts; I call this process

Euclideanization. The final result of PNS yields Euclideanized variables and a set of polar systems that provide a means

of transformations between the original space and Euclideanized space and vice versa.The dimension 0 point in feature

space produced at the end of this iteration is called the backwards mean. (Jung et al., 2012) provides more information

on the method.

2.2.3 Commensuration of Spherical GOPs

Suppose the data of interest live on a Cartesian product of a Euclidean space and hyperspheres. Such an instance

includes any model described by a combination of GOPs involving PDMs, lengths, directions, and scaling. In this case,

PNS is applied independently to each GOP that lives on a hypersphere.

In the case of s-reps PNS is applied to the set of centered scale-normalized point tuples and to the set of instances

of each spoke direction separately. Each application of PNS on spherical GOPs produce their Euclidean counterparts.

To make the components appropriately commensurate (Jung et al., 2010) when analyzing a set of s-reps, I multiply

each Euclideanized value derived from a PDM by the geometric mean of the scale factors in the training population,

and I multiply each Euclideanized value derived from a direction by the geometric mean of its associated length. In

addition, having applied the log-transform to the respective size features, namely the scale factor of the PDM and the

spoke lengths, all are normalized by their respective geometric mean so as to be mean-centered. Then, these resulting
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values are commensurated by multiplying each by their respective geometric mean. Finally, these commensurated

log-transformed size features and commensurated spherical GOPs together form a Euclideanized feature tuple.

2.3 Classification Methods

At a high level there are two categories of classification methods: likelihood based methods and separating direction

based methods. See (Duda et al., 2012) and (Friedman et al., 2001) for an overview of common existing classification

methods. In this dissertation I focus on the methods based on finding an optimal separating direction that points

from one class to the other in the feature space because the inter-class shape difference can easily be visualized by

interpolating points in the feature space along the separation direction. Given a separation direction, the class label is

decided based on scalar projection of data points onto the separation direction.

I concentrate on linear classification methods because 1) in High Dimensional Low Sample Size (HDLSS) setting

(when the dimension of data is larger than the sample size), El Karoui demonstrated that there is little value added by

Kernel tricks since the kernel method is asymptotically linear method in this setting (El Karoui et al., 2010); 2) I want

to gain insights into the driving application problem, e.g. classfying autistic infants from non-autistic infants by directly

inspecting features. I especially pay attention to the separating direction vector since large entries in the vector indicate

that the corresponding feature is relevant. A good separating direction provides additional information and insight into

the data by visualizing the trends between the classes by linearly interpolating and then synthesizing the data in the

original feature space along the direction.

2.3.1 Support Vector Machine

The SVM (Cortes and Vapnik, 1995) is a binary classification method that yields a separation direction in the

feature space by minimizing the gap between the two classes. SVM then classifies a new example by thresholding the

scalar value of the projection of it’s feature tuple onto this direction.

2.3.2 Distance Weighted Discrimination

DWD is a classification method similar to SVM but which is more robust to noise and limited sample size. Like the

SVM, DWD takes in two classes of data and yields a separating direction that can be used to classify new data points

through projection and thresholding. Unlike SVM, the separating direction computed by DWD is influenced by all

points in the data set. A full description of DWD can be found in (Marron et al., 2007).
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CHAPTER 3: MATERIALS

The image dataset which I analyze was acquired from an NIH-funded study of Autism referred to as the Infant

Brain Imaging Study (IBIS). I focus on the subset of the participants of this study who are at high familial risk (HR)

of ASD because they have an older sibling already diagnosed with ASD. There are 49 infants who were clinically

diagnosed with ASD at age 24 months (HR-ASD) and 149 infants who did not meet criteria for ASD (HR-Neg). MRI

scans (Siemens 3T TIM Trio scanners, T1-weighted imaging at 1.0× 1.0× 1.0 mm voxel resolution) were acquired

while infants were naturally sleeping. The infants were scanned longitudinally at the age of 6 months, 12 months, and

24 months. The MRI scans were aligned to a common coordinate system. Subcortical structures were automatically

segmented from the aligned MRI scans (Wang et al., 2014). Details on the original MRI dataset can be found in (Hazlett

et al., 2017; Wolff et al., 2015; Lewis et al., 2014).

Bilateral hippocampi and the caudate nuclei are expected to be associated with ASD. However, I fitted the s-rep to

the left hippocampus and the left caudate nucleus for method development. 15 records for the HR-ASD at 6-months

and 6 records for the HR-Neg were not available to us at the time of the analysis. Thus, the dataset we use in this study

consists of 34 autistic infants and 143 non-autistic infants.

In this dissertation, I study the following classification tasks between HR-ASD infants and HR-Neg infants based

on 1) the left hippocampi s-reps at 6 months 2) the left caudate nuclei s-reps at 6 months 3) the temporal difference of

the left hippocampi s-reps of the infants at 6 months and 12 months 4) the temporal difference of the left caudate nuclei

s-reps of the infants at 6 months and 12 months.
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CHAPTER 4: AUTOMATIC GENERATION OF CASE-SPECIFIC S-REPS

4.1 Introduction

The s-rep has been shown to be a powerful shape representation in various statistical shape analysis tasks including

hypothesis testing (Schulz et al., 2016), classification (Hong et al., 2016), shape probability distribution estimation,

and segmentation (Vicory, 2016). For these tasks it is important that the set of s-reps have good correspondence in

spokes across the set to yield meaningful statistical insights related to the morphology of the target object in the sample

population. Tu et al. (Tu et al., 2018) proposed an entropy-based method to improve the s-rep spoke correspondence.

However, for a set of s-reps of even moderate size (e.g., 30 cases) the method cannot be applied because of its prohibitive

computational cost.

As mentioned in section 2.1.2, one approach to establish the s-rep correspondence across the set is to warp a

single template s-rep to fit each target object surface. However, using a single template model as a basis of the spoke

correspondence tends to cause difficulties for the s-rep fitting process. This approach often yields a set of s-reps that

contain geometric artifacts, e.g., creases and folds, on the boundary surface implied by the fitted s-reps as can be seen in

figure 4.1. These artifacts arise because of 1) the difficulty in finding the appropriate template s-rep that is representative

of the population of interest and 2) the difficulty in estimating the deformation that respects the skeletal geometry of the

target object.

I argue that the following properties are desirable for the optimal template s-rep:

1. It is case-specific.

2. It is obtained from an analytical expression.

3. The correspondence across the cases in the set can be achieved with a simple transformation.

In this chapter I present a novel method to automatically generate a set of fitted s-reps with reasonably good

correspondence across the cases. The method works as follows:

1. Deform a target object surface to an ellipsoid via Mean Curvature Flow (MCF).

2. Obtain a skeletal model of the ellipsoid from a known analytical expression.
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(a) (b)

Figure 4.1: (a) The solid model of the template hippocampus s-rep; (b) The solid model of a warped template
hippocampus s-rep.

3. Deform the ellipsoid s-rep back to the original object via reverse MCF transformations.

The remainder of this chapter is organized as follows. First, I provide a brief description of MCF and the Thin Plate

Splines (TPS). Then, I describe the method in detail. I demonstrate that the method is effective at generating s-reps for

6-month old infants’ hippocampi, caudate nuclei, and neonates’ lateral ventricles. Finally, I conclude this chapter with

discussion.

4.2 Background

4.2.1 Mean Curvature Flow

Mean Curvature Flow (MCF) is a geometric flow method in which the input surface evolves along the surface

normal proportional to the mean curvature of the surface. MCF is mathematically defined as the following:

∂

∂t
S (x, t) = H (x, t)N (x, t)

S (x, 0) = S0 (x)

where S0 is the original surface, S is the deforming surface, x is a point on S ,H (x, t) is the mean curvature ofM at x

at time t, and N (x, t) is the surface normal ofM at x at time t. A well-studied asymptotic behavior of MCF for a

class of objects which include most anatomical structures is that S will converge to a sphere as t→∞. MCF can be

formulated both continuously and discretely. In this work I use a discrete formulation of MCF: MCF on a triangle mesh.

Given a triangle mesh S (V,E) where V and E denote vertices and edges of the mesh respectively, the mean curvature
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H at each vertex x ∈ V is estimated as the average of dihedral angles of the triangles that share the vertex x. A more

extensive introduction of MCF is available in (Mantegazza, 2011).

4.2.2 Thin Plate Splines

Thin Plate Splines (TPS) has been commonly used in non-rigid image registration given two sets of landmarks. The

method generates a full 3D deformation field by interpolating the displacement of the landmarks. TPS is not guaranteed

to produce a diffeomorphic transformation; it can produce folds within the deformation field. However, this can be

prevented if the displacement vectors are short enough. A more comprehensive reference on using TPS for image

registration is available in (Bookstein, 1997).

4.3 Method for Automatic S-rep Fitting

Figure 4.2: The illustration of the workflow of the method to obtain the s-rep fitted to the input boundary surface

Figure 4.2 shows the workflow of the method. First, I iteratively deform the input target surface via MCF. At each

iteration I determine if the current deforming surface is approximately ellipsoidal. If it is, I obtain the s-rep of the

best-fitting ellipsoid to it. Then, I transform the ellipsoid s-rep first to the approximate ellipsoid and then in reverse
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direction of the MCF so that the s-rep will roughly fit the original boundary data. I provide details of each step of the

method.

4.3.1 Applying MCF to the Deforming Surface

I iteratively apply MCF to the triangle mesh of the object derived from the image data. In order to improve the

numerical stability in computing the discrete mean curvature at each vertex, at each iteration of the process prior to

applying MCF I apply Taubin smoothing (Taubin, 1995); as a side effect, the smoothing yields more regularly shaped

triangles.

4.3.2 Determining if the Deforming Surface is Ellipsoidal

After I apply MCF to the mesh, I examine the second moment of the mesh to see if it is ellipsoidal. The second

moments matrix of the mesh is computed as the following.
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where xi, yi, zi are coordinates of ith boundary vertex relative to the center of mass of those vertices.

The eigendecomposition of the matrix yields the three principal axes and spread of the data along each principal

axis. Using the result of the eigenanalysis, I derive the analytical expression of the best-fitting ellipsoid for the mesh.

Then, I compute absolute value of shortest distance between each vertex of the deforming mesh and the best fitting

ellipsoid. If the 95% quantile of the distance is less than a threshold, I conclude that the current surface is ellipsoidal

enough. I save all the intermediate deforming meshes Si i = 1, 2, ..., n for later computation of the reverse MCF

transformation.

4.3.3 Obtaining the S-rep of the Best-Fitting Ellipsoid

Once the surface deformed by MCF is ellipsoidal enough, the best-fitting ellipsoid’s s-rep is analytically derived as

the following:

1. Sampling the skeletal surface of the ellipsoid

2. Obtaining spokes of the sampled skeletal points.
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Given the principal radii rx, ry, rz of the ellipsoid that is aligned so that the radii are ordered as rx > ry > rz , the

skeletal sheet of the ellipsoid is an ellipse that satisfies the following equation:

x2

m2
x

+
y2

m2
y

≤ 1 (4.1)

where mx =
r2x−r

2
z

rx
,my =

r2y−r
2
z

ry
.

Figure 4.3: Skeletal ellipse of an ellipsoid whose principal radii are 23, 8, and 5. The red circles are the sampled
internal skeletal points of the skeletal ellipse, and the black boundary curve is the end curve of the true skeletal ellipse.
To support the legacy representation of the s-rep, the black ellipse is slightly eroded to the blue ellipse. The black points
are the true end skeletal points of the true skeletal ellipse, and these are pulled toward to the eroded ellipse. These
pulled points are blue points on the blue ellipse. In this case, the skeletal points are sampled to form 5× 7 grid. After
the end skeletal points are sampled along the end curve, the interior skeletal points are uniformly sampled along the
blue lines until the lines intersect the medial curve of the skeletal ellipse, i.e., the horizontal line at y = 0.

Once the analytical expression of the skeletal ellipse is obtained, I need to produce a sampled skeleton in a way

that supports classification on the set of fitted s-reps. To do this, I sample n1 points along the major axis u1 and n2

points along the minor axis u2 of the ellipse to generate a grid of skeletal points on the ellipse. Both n1 and n2 are

odd numbers. In our own research group the choice of n1 and n2 is made on the basis of level of detail of the surface

geometry that we deem necessary for a statistical task on a given population of an object. Please refer to chapter 3

of (Vicory, 2016) to learn how the number of sampled skeletal points affects the level of detail on the surface geometry.

In this dissertation I won’t discuss this matter further.

Given how many points to sample on the skeleton, I want to sample the skeleton such that the quadrilaterals formed

by neighboring vertices are uniformly shaped. I first uniformly sample along the boundary of the ellipse. Then, I sample

the interior skeletal points uniformly along the ellipse’s normal at each boundary skeletal point other than the first and
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last n1 points; the interior points are sampled until they intersect with the medial curve of the ellipse, i.e., the horizontal

line at y = 0. Figure 4.3 shows an example of a sampled skeletal ellipse.

Given a grid of sampled skeletal points on the skeletal ellipse, I need to compute the ellipsoid’s spoke vectors for

all the skeletal points. I compute spoke vectors by finding the ellipsoid’s boundary points implied by the spokes. Let q

be a boundary point implied by a spoke and p be a skeletal point to which the spoke is attached. Using the spherical

parametrization of the ellipsoid, the coordinate of q is (rx cos (θ) cos (φ) , ry sin (θ) cos (φ) , rz sin (φ)). According to

the skeletal geometry, a valid spoke vector ~pq satisfies the following property: q lies on a bitangent sphere centered at p

maximally contained within the ellipsoid. Therefore, the unit vector ~pq
| ~pq| is the surface normal of the ellipsoid at q. I

need to compute θ and φ of q that satisfy the skeletal geometric constraint to compute the spoke vector. Given that the

skeletal point p = (x, y, 0), θ and φ are computed as the following:

tan (θ) =
ymx

xmy

cos (φ) =

√
y2m2

x + x2m2
y

mxmy

When the value of φ becomes zero, namely on the boundary of the ellipse, the spoke points to the locus of minimal

(negative) principal curvature called the crest. This spoke has two important skeletal geometric properties: 1) the spoke

lies on the tangent plane of the end curve of the skeleton and 2) the length of the spoke is the radius of that principal

curvature. An example of the computed spokes of the ellipsoid s-rep can be seen in the figure 4.4.
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Figure 4.4: The computed spokes of the same ellipsoid used in the figure 4.3. The colored lines are the spokes that are

analytically computed using the equations. The cyan and magenta lines denote spokes pointing respectively to the top

and bottom side of the ellipsoid. The red lines point to the crest of the ellipsoid.

By mathematical definition the skeletal points on the end curve of the ellipse should have only one spoke that points

to the crest of the ellipsoid. However, the true crest spokes are pulled to be attached to the nearest end skeletal points of

the eroded skeletal ellipse to support the legacy computer representation of the s-rep.

For the purpose of classification I need to obtain a set of s-reps fitted to the given population of an object with

reasonable spoke correspondence. In order to ensure reasonable spoke correspondence of the fitted s-reps, I need to

establish spoke correspondence among ellipsoid s-reps. Application of MCF on different cases in the population often

yields ellipsoid s-reps of different principal radii. Different ellipsoids can be related with each other by simple scalings

along the principal axes if the following assumptions hold:

1. Objects in the population are rotationally aligned

2. The converged ellipsoids have distinct principal radii, which can be used to establish correspondence among the

axes of the ellipsoids.

Given that the above assumptions hold, to provide correspondence among different ellipsoids I compute one single

ellipsoid whose principal radii are the repective geometric means of principal radii of all the ellipsoids. After I obtain

the mean ellipsoid s-rep, I stretch its skeletal axes of the s-rep by the respective ratios of principal radii of each ellipsoid

and principal radii of the mean ellipsoid to obtain a case-specific ellipsoid s-rep.
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4.3.4 Transforming the Ellipsoid S-rep back to the Original Surface

Given a case-specific ellipsoid s-rep, I need to deform the ellipsoid s-rep to match the original object boundary at

the spoke ends. To accomplish this, I deform the skeletal points and the spoke ends of the best-fitting ellipsoid s-rep

first to the approximate ellipsoid and then in reverse direction of the MCF. I compute the deformation as a series of

the TPS transformations. I treat the intermediate surfaces’ triangle mesh vertices saved throughout the MCF as the

landmarks to compute each successive TPS transformation: T i : Si → Si−1 where T i denotes i-th transformation, Si

and Si−1 denote i-th and i− 1-th surfaces from MCF. Figure 4.5 is an example of the s-rep fitted to one of hippocampi

in the dataset.

(a) (b)

Figure 4.5: (a) Fitted s-rep of the hippocampus using the proposed approach; (b) solid model implied by that s-rep. As
can be seen in (a), the lengths of the crest spokes are longer than expected.

Because the reverse MCF deformation is computed purely based on boundary points, some skeletal geometric

properties are not properly propagated throughout the deformation. One such property is the length of the crest spokes.

For example, in figure 4.5 many of the crest spokes are too long. This is problematic for the following two reasons:

1. It narrows the quadrilaterals formed by neighboring skeletal points, which can cause numerical instability for

spoke interpolation. It can even cause the skeletal surface to almost collapse to a curve, which can give wrong

interpretation about the topology and skeletal geometry of the object.

2. It yields a too small curvature at the end of the crest spoke.

In the subsequent section I describe a procedure to obtain the final s-rep that has more reasonable crest spoke length.
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4.3.5 Refining Skeletal Geometric Constraints of the Initial Fitted S-rep

To mitigate the problem of the initial fitted s-rep having unexpectedly longer crest spokes, I place an additional

constraint when computing the final TPS so that the computed deformation respects the curvature. To achieve this, for

the final TPS of the reverse MCF deformation I add an additional pair of landmarks at each skeletal point on the end

curve of the skeleton. The pair’s target landmarks are the crest implied loci of the end skeletal points.

The target landmarks need to be the radius of the curvature away from the crest of the object along its normal. In

order to estimate the radius of the curvature, I use the implied boundary of the initially fitted s-rep. I compute the radius

of the curvature of a curve that spans across the spokes of the end skeletal points; I fit a cubic B-spline to boundary

points obtained from spokes interpolated from the top spoke to the crest spoke and from the crest spoke to the bottom

spoke.

However, I have found the estimated radius of curvature to be an underestimate of the desired length. In contrast,

the current crest spoke length based on boundary points alone is an overestimate of the desired length. As a result, I

take the geometric mean of the estimated radius of curvature and the current crest spoke length as a reasonable estimate

for the desired crest spoke length.

Finally, I recompute the final TPS transformation with the additional pair of landmarks so that the final warped

s-rep has more appropriate crest spoke length. Figure 4.6 shows before and after the refinement on the crest spokes of

the same hippocampus s-rep seen in figure 4.5.

(a) (b)

Figure 4.6: (a) Fitted s-rep of the hippocampus before the refinement on crest spokes; (b) fitted s-rep of the hippocampus

after the refinement on crest spokes.

As a side effect of refining the crest spokes, the quadrilaterals formed by neighboring skeletal points are enlarged.

This improves the numerical stability in obtaining the smooth implied boundary of continuously interpolated spokes.
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4.4 Results

In this section I present several results of applying the proposed method to automatically obtain an s-rep of an

object. I investigated the method’s effectiveness in producing a set of s-reps for 6-month olds’ hippocampi and caudate

nuclei; for both the hippocampus and the caudate nucleus, there are 34 austic cases and 143 non-autistic cases. In

addition, to assess the method’s applicability to thin objects, I applied the method to obtain s-reps for 3 neonates’ lateral

ventricles.

In order to get a sense on the accuracy of the proposed method, I examine how well the fitted s-rep matches the

original object boundary. I examine the distribution of the distance from each spoke end of the fitted s-rep to the

original object boundary; the distance is measured in voxel units where the resolution of the image is supersampled to

0.05× 0.05× 0.05 mm. Figure 4.7 shows the histogram of the distances of a case in the population of 6-month olds’

hippocampi.

Figure 4.7: The histogram of the distances from each base spoke end of the fitted s-rep to the corresponding object

boundary for a case in the population of 6-month olds’ hippocampi.

As can be seen from figure 4.7, the majority of the distances is less than a voxel: most of the spokes match the

original boundary within 0.05 mm. The mean and the maximum distances are 0.61 voxel widths and 1.85 voxel widths

respectively, i.e., 0.0305 mm and 0.0925 mm respectively.
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In order to assess the quality of s-reps fitted to the population, I examine the distribution of the mean spoke end

distances of each hippocampus s-rep. Figure 4.8 shows the histogram of the mean spoke end distances.

Figure 4.8: The histogram of the mean spoke end distance for the population of hippocampi.

From figure 4.8 the mean spoke end distance is less than a voxel; therefore, the fitted s-reps on average achieve

sub-voxel accuracy in matching the original object boundary. The mean and the maximum of the mean spoke end

distance are 0.73 voxel widths and 1.14 voxel widths respectively.

The distribution of spoke end distances for an s-rep of the caudate nucleus of a 6 months olds infant can be seen in

figure 4.9 with the mean and the maximum being 0.66 voxel widths and 1.72 voxel widths respectively.

23



Figure 4.9: The histogram of the distances from each base spoke end of the fitted s-rep to the corresponding object

boundary for a case in the population of 6-month olds’ caudate nuclei.

Figure 4.10 shows the distribution of the mean spoke end distances of the fitted caudate nucleus s-reps. The mean

and the maximum of the mean spoke end distance are 0.65 voxel widths and 0.70 voxel widths respectively.

In order to evaluate the method’s general applicability in producing an s-rep of an object other than the hippocampus

and the caudate nucleus, I applied the method to obtain the s-rep of the lateral ventricle of a neonate. Thin structures

like the lateral ventricle have been challenging to adequately model with s-reps. Also, the lateral ventricle is a more

strongly curving structure than both the hippocampus and the caudate nucleus. Figure 4.11 shows the s-rep fitted to one

of the three lateral ventricles I fitted; in each one the fitted s-rep is capable of producing a smooth boundary, which

indicates that the s-rep adequately represents the lateral ventricle’s surface geometry.

Figure 4.12 shows the distribution of the chosen lateral ventricle s-rep’s spoke end distances with the mean and the

maximum being 0.54 and 1.40 voxel widths respectively.

In this section I empirically showed that the proposed method is effective in producing a set of fitted s-reps for the

hippocampus and the caudate nucleus. In addition, I demonstrated that the method’s applicability is not limited to these
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Figure 4.10: The histogram of the mean spoke end distance for the population of caudate nuclei.

(a) (b)

Figure 4.11: (a) Fitted s-rep of a neonate’s left lateral ventricle using the proposed approach; (b) solid model implied
by that s-rep.

two structures; it can be used to produce a reasonably well fitted lateral ventricle s-rep. However, the method failed to
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Figure 4.12: The histogram of the distances from each base spoke end of the fitted s-rep to the corresponding object
boundary for a neonate’s lateral ventricle.

produce an s-rep for the rather complicated shaped mandible. Throughout MCF, the vertices of the deforming meshes

get clustered causing numerical instability in computing the reverse MCF deformation.

4.5 Discussion and Conclusion

In this chapter I have presented a novel method to automatically generate a set of fitted s-reps with reasonably good

spoke correspondence by first deriving a case-specific ellipsoid s-rep via MCF and then applying the deformation to

warp the ellipsoid s-rep to match the original object boundary. It has produced a set of the reasonably well fitted s-reps

for hippocampi and caudate nuclei in 6 months olds. In addition, the method produces a reasonably well fitted s-rep for

the lateral ventricle that the previous s-rep fitting approach often fails to produce a satisfactorily fitted s-rep.

As it currently stands, the method fails to produce a fitted s-rep for the mandible. Mean curvature flow fails in two

aspects. First, the vertices on the condyles get clustered around the poles throughout the surface evolution, which causes

the reverse MCF deformation to fail. Secondly, the sharp bend at the chin fails to stably unbend failing to converge to
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an ellipsoid. I speculate that employing different geometric flows, e.g., Wilmore Flow or Ricci Flow, together with

remeshing can address these problems.

The fitted s-reps can be further improved in three aspects. First, the length of the spokes can be adjusted to tighten

the s-rep’s fit to the original object boundary. Secondly, the spoke directions can be adjusted to be more approximately

orthogonal to the original object boundary. Lastly, different means of mapping the ellipsoid to the original object can

be explored; especially, learning-based surface registration methods to learn reverse MCF mappings may improve

performance.

The method currently does not handle the inherent singularity of MCF. A surface evolution via the mean curvature

is known to have a singularity when the shape of the surface resembles that of a dumbbell. The method would fail

in two aspects: 1) obtaining an ellipsoid s-rep of the best-fitting ellipsoid that resembles the deforming surface close

enough and 2) computing the reverse MCF deformation so that the deformation field does not have any folds.
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CHAPTER 5: EXTENSIONS OF THE S-REP TO MODEL A SINGULAR POINT

5.1 Introduction

In the literature morphological deviation in the caudate nucleus (CN) between individuals with and without ASD

has been reported (Wolff et al., 2013; Hazlett et al., 2012). Especially notable is the association of a core symptom

of ASD, i.e., restricted and repetitive behavior, with enlargement of the structure’s global volume. However, detailed

analysis on local morphological differences of the CN between the two groups is lacking.

The CN is a subcortical structure with a long tail that forms the dorsal striatum together with the putamen. However,

the segmentation of the CN tends to be cut off at the tail due to a low contrast between the CN’s tail and the surrounding

tissue.

As it currently stands, an s-rep has difficulties in modeling an object with a singular point, e.g., the CN. The singular

point on the boundary of the object causes the skeletal surface to collapse to a point; this degeneracy of the skeletal

surface causes a number of issues in modeling the surface geometry of the object of interest. In addition, the s-rep

cannot properly model the singular point because of the s-rep’s hard constraint that no spoke can cross another; this

hard constraint is too hard to maintain at the singular point.

To address this challenge in modeling neuroanatomical structures with a singular point via the s-rep, I introduce an

additional geometric primitive dedicated to represent the singular point to account for the degeneracy of the skeletal

surface. Then, I extend the current quad-based spoke interpolation method so that the interpolated boundary surface

patches are C2 continuous up to the singular point.

This chapter is organized as follows. First, I overview the underlying mathematics of the s-rep and the current

quad-based spoke interpolation method. Then, I describe the method in detail as follows:

1. The geometric primitive to represent the singular point

2. The extension of the current spoke interpolation method to obtain the continuous s-rep

3. The method to properly Euclideanize a population of the s-reps augmented with the primitive

I demonstrate that the new primitive is beneficial to modeling the 6-month olds’ caudate nuclei with s-reps.
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5.2 Background

In this section I briefly overview background necessary to understand the proposed extension to the s-rep to model

the singular point and its interpolation into a continuous s-rep. First, I overview the mathematical definition of a

continuous s-rep. Then, I overview a geometric interpolation method to obtain an interpolated s-rep from a discrete

legacy s-rep.

5.2.1 Mathematics of S-reps

A 3D, continuous s-rep is defined by two parametric functions:

• p(u1, u2): a 2D, non-branching skeletal surface

• S(u1, u2): a field of non-crossing spokes emanating from p(u1, u2); each spoke approximately orthogonally

intersects the object boundary.

S(u1, u2) can be viewed as a product of two additional parametric functions: U(u1, u2), a unit normalized vector

field of S(u1, u2) and r(u1, u2), a scalar field of |S(u1, u2)|, the distance from p(u1, u2) to the object boundary

along the U(u1, u2). Accordingly, a point on the implied boundary of the s-rep can be expressed as B(u1, u2) =

p(u1, u2) + r(u1, u2)U(u1, u2).

This continuous s-rep is discretized to support various statistical tasks, e.g., classification. The legacy discrete s-rep

used in this work has a skeletal surface which is discretely sampled by a grid of m× n points. From each point either

two (on the interior) or three (along the fold curve of the skeleton) spokes emanate from the skeleton.

However, it is necessary to ensure that s-reps properly model the surface geometry of target objects prior to the

classification. To assess how well the fitted s-rep matches the original object boundary, I need to be able to quantify the

difference between the implied boundary of the s-rep and the object boundary. The implied boundary is obtained by

continuously interpolating the base spokes of the s-rep.

5.2.2 Mathematics of Spoke Interpolation

Interpolating a discrete s-rep into a continuous s-rep is divided this into 1) a skeletal surface interpolation operation

and 2) a spoke interpolation on the interpolated skeletal surface. The skeletal surface interpolation method uses standard

polynomial-based methods.

The spoke interpolation method depends on first interpolating the spoke directions U and then interpolating the

spoke lengths r. Our experience shows that this strategy is preferable because we have found a good way to interpolate

the directions and have found that the overall result is then very robust against approximation errors in the spoke length

interpolation.
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Let the skeletal surface be parameterized by (u1, u2), where both parameters are integers at the corners of a

quadrilateral in the grid on which the discrete s-rep is specified. Thus, the discrete s-rep gives both r and U at

these quadrilateral corners. Consider interpolation of the spoke directions U at any point p (u1, u2) within any grid

quadrilateral on the skeletal surface. Our plan for interpolation of r is based on a 2nd-order Taylor series, for which

we need not only the spoke directions U but also their first and second order derivative values Uui
and Uuiui

for

i = 1, 2 at arbitrary points in the quadrilateral. Spoke directions live on the unit 2-sphere S2. Thus, the sort of finite

difference calculations that must be used in order to compute U at our discrete skeletal points should be done on the

sphere. These calculations are done by representing the discrete spokes U as unit quaternions and thus its derivatives

with respect to ui as derivatives on the sphere. Using these derivatives, Vicory applies the squad method (Shoemake,

1987) of interpolating quaternions to estimate the spoke direction U at an arbitrary point interior to a quadrangle of

discrete points by fitting Bezier curves to the quaternions on the surface of the sphere. This approximation allows the

computation of not only the U values but also their directional derivatives of both first and second order in either u1 or

u2.

Given the ability to evaluate U and its derivatives in a quadrilateral, we need to interpolate the r values in a way

consistent with skeletal geometry. Spokes can be written S = rU . The derivatives of the spoke at a skeletal location p

with respect to a step in direction v in either of the two orthogonal directions u1 or u2 must follow Sv = rUv + rvU ,

from which it follows that rv = Sv · U . Also, Svv · U = (Sv)v · U = rvv + rU . From this a Taylor series in the length

d of a small step in direction v from a skeletal position p together with three forward distance derivative approximations

yields the following expression.

r (p+ dv) =
1

2
(S (p) + S (p+ 2dv)) (5.1)

Because the same mathematics works using a Taylor series in the backwards direction about

p+ 2dv, for symmetry and to reduce approximation error the results of the two versions should be averaged, yielding

the final formula as

r (p+ dv) = U (p+ dv) ·
(
1

2
(S (p) + S (p+ 2dv))

)
− d2

4
(S (p) · Uvv (p) + S (p+ 2dv) · Uvv (p+ 2dv))

(5.2)

This formula allows computing the spoke half-way between two horizontally adjacent quadrilateral corners and

using successive subdivision with it by halving as many times as necessary to get the desired small spacing in u1.

Applying the same method separably (on the results) in the u2 direction yields a spoke at any successively subdivided
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point within the quadrilateral. Finally, since the method gives different results when you apply it first in u2 and then in

u1, we compute using both orders and average the results.

At a skeletal fold, the skeletal surface’s lack of smoothness prevents the direct application of the aforementioned

method. We solve this problem by dilating the fold curve into a tube of very narrow radius, treating the spoke at the

curve as its value at the place it intersects the tube, and then using the method for smooth surfaces to compute the

continuation of the spoke to the object boundary.

5.3 Method for Modeling the Singular Point

As previously mentioned, the current s-rep modeling framework is limited in geometrically modeling an object

with a singular point because of the degenerate skeleton and the hard constraint of non-crossing spokes. I address this

challenge as follows:

1. I introduce a new geometric primitive to represent the singular point.

2. I modify the current interpolation method to produce interpolated s-reps with the new primitive.

3. I introduce a statistical method to analyze a set of s-reps that contain the new primitive.

5.3.1 Singular Point Primitive

The radius of the curvature at the singular point of the CN is zero, which yields a skeletal surface that not only

collapses to a point but also forms a cusp at the CN’s boundary. Based on this observation, I explicitly represent the

singular point as a point on the boundary with a direction.

5.3.2 Proposed Interpolation Method

Given the new primitive, I need to be able to produce a continuously interpolated s-rep for solid modeling of an

object with a singular point, e.g., the CN. Vicory’s quad-based interpolation method (Vicory, 2016) is not designed to

handle the degeneracy of the skeleton that I aim to model via the new primitive. I adopt a different interpolation strategy

while following the general workflow of the current interpolation method. First, I describe how to interpolate a skeleton

emanating from the base skeleton’s end curve and converging to the singular point in its designated direction; the

resulting skeleton is smooth up to the singular point. Then, I describe how I interpolate the spokes given the interpolated

skeletal positions. Finally, I address how I interpolate the spokes that go around the crest in this context.
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5.3.2.1 Skeleton Interpolation

In this section I describe how to construct a smooth, continuous skeleton up to the singular point. I construct the

skeleton from a smoothly varying series of non-crossing curves. As shown in figure 5.1, these curves emanate from the

respective positions interpolated along the base skeleton’s end curve and converge to the singular point in its designated

direction. I construct each individual curve as follows:

1. Interpolating the curve’s starting point along the base skeleton’s end curve

2. Determining an emanating direction of the curve at the starting point

3. Limiting the speed along that direction to enforce the non-crossing property of the curve

A starting point of each curve is first interpolated along the base skeleton’s end curve. The point is interpolated

from a cubic Hermite spline fitted to two adjacent skeletal points between which the point lies in s-rep’s parametric

space. Given the same parametrization of the skeleton in (u1, u2), let the interpolated starting point along the end curve

be p(u∗1, u
0
2), and let the two adjacent skeletal end points along the end curve be p(ui1, u

0
2) and p(ui+1

1 , u02). Hermite

interpolation requires 4 control values: two positional values of each point, p(ui1, u
0
2) and p(ui+1

1 , u02), and two vectors

pu1
(ui1, u

0
2) and pu1

(ui+1
1 , u02); the partial derivatives are computed via finite differences. The vector Hc containing

these control values is

Hc =
(
p
(
ui1, u

0
2

)
, p
(
ui+1
1 , u02

)
, pu1

(
ui1, u

0
2

)
, pu1

(
ui+1
1 , u02

))
Let H(x) = (H1(x), H2(x), H3(x), H4(x)), where the His are the cubic Hermite spline basis functions:

H1(x) = 2x3 − 3x2 + 1

H2(x) = −2x3 + 3x2

H3(x) = x3 − 2x2 + x

H4(x) = x3 − x2

(5.3)

Then, p(u∗1, u
0
2) can be computed by the following equation:

p(u∗1, u
0
2) = H(u∗1 − ui1) ·H>c

The same spline-based interpolation strategy is used to obtain the curve that originates from p(u∗1, u
0
2) and converges

to the singular point in the designated direction. As previously noted, the interpolation requires two positional values as

well as the two vectors tangent to the curve at p(u∗1, u
0
2) and the singular point; I need to specify the vector at p(u∗1, u

0
2)

so that the fitted curve at p(u∗1, u
0
2) does not cross other curves.
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The idea is to specify the emanating vectors at the discrete skeletal end points and to do so in a way that allows the

emanating vectors at intermediate points to be interpolated via quaternion splines. Given the two adjacent end skeletal

points p
(
ui1, u

0
2

)
and p

(
ui+1
1 , u02

)
between which the starting point lies, the direction of the vector is obtained from a

quaternion-based interpolation of pu2

(
ui1, u

0
2

)
and pu2

(
ui+1
1 , u02

)
. These partial derivatives are computed via finite

differences.

Given the direction of the vector at p(u∗1, u
0
2), I need to decide the speed along the emanating vector so that the

produced curve does not cross other curves. Two curves at two distinct interpolated starting points can cross each

other when the emanating vectors are facing each other; however, the crossing can be prevented if the speeds along the

respective vectors are constrained to be less than the half of the arc length between the two starting points. A similar

intuition is often used in image registration when obtaining a dense displacement field from a sparse set of displacement

vectors. Based on this observation, I constrain the magnitude of emanating vectors for the p(u∗1, u
0
2)s as follows:

1. Finding the minimal arc length of the two adjacent base skeletal end points; let this value be Lmin

2. Finding the maximal partial derivative of the skeleton at the discrete skeletal end points with respect to u2; let

this value be Smax

3. Computing a scale factor γ as a ratio of Lmin

2 to Smax

4. Adjusting the speed along the emanating directions at the discrete skeletal end points by γ

5. Interpolating the speed along the intermediate emanating vectors

Figure 5.1 shows a skeleton of one of the CN s-reps with the new singular point primitive.
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Figure 5.1: An interpolated skeleton of one of the CN s-reps with the new singular point primitive. The blue arrow

seen at the lower left corner of the figure is the directional component of the singular point primitive.

5.3.2.2 Spoke Interpolation

In this section I describe how to obtain a continuous s-rep from a discrete s-rep given the singular point primitive. I

construct a dense vector field of spokes on the skeleton by interpolating spokes along each skeletal curve. As shown

in figure 5.2, spokes on each curve smoothly vary from the respective spokes interpolated along the base skeleton’s

end curve to the specified direction at the singular point. The spoke vectors along each skeletal curve are obtained as

follows:

1. Interpolating the initial spoke along the base skeleton’s end curve

2. Interpolating the desired spoke from the initial spoke to the singular point.

An initial spoke is first interpolated along the base skeleton’s end curve. Let the initial spoke be S
(
u∗1, u

0
2

)
whose

tail position is the interpolated end skeletal point p
(
u∗1, u

0
2

)
. The spoke direction U

(
u∗1, u

0
2

)
is estimated from a

quaternion-based interpolation. The spoke length r
(
u∗1, u

0
2

)
is then interpolated using the aforementioned equation in

section 5.2.2.
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Given the end initial spoke S(u∗1, u
0
2), I need to interpolate the desired spoke S(u∗1, u

∗
2) along the skeletal curve

from p(u∗1, u
0
2) to the singular point. The interpolation of S(u∗1, u

∗
2) follows the same workflow: 1) the interpolation of

the spoke direction U (u∗1, u
∗
2) that is obtained from a quaternion-based interpolation between the initial spoke direction

U
(
u∗1, u

0
2

)
and the singular point direction and 2) the interpolation of the spoke length r (u∗1, u

∗
2) that is obtained using

the same expression presented in section 5.2.2 immediately following equation 5.1. Figure 5.2 shows the densely

interpolated spokes of one of the CN s-reps.

Figure 5.2: Densely interpolated spokes of the same CN s-rep previously seen in figure 5.1 with the singular point

primitive. The magenta vectors denote up spokes, the cyan vectors denote down spokes, and the red vectors denote

crest spokes.

5.3.3 Euclideanization of the Augmented S-reps

To classify HR-ASD infants and HR-Neg infants based on the caudate shape, I need to Euclideanize GOPs provided

by CN s-reps augmented with the singular point primitive. In this section I describe how to Euclideanize the augmented

s-rep GOPs: the base s-rep GOPs and the singular point GOPs, i.e., its boundary point and direction. First, I describe

how to apply PNS to Euclideanize a set of the augmented s-reps. Then, I discuss how to make the Euclideanized GOPs

of singular point primitive commensurate with the Euclideanized GOPs of the base s-rep for classification.
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The Euclideanization of the augmented s-reps is very similar to that of the regular s-reps. First, the primitive’s

boundary point is concatenated with the base skeletal points, which yields a bigger point tuple to which PNS is applied.

Then, the primitive’s direction is handled by PNS just like spoke directions.

Of importance for any statistical analysis is to make each feature commensurate. In this context I need to make

the Euclideanized primitive’s direction commensurate with other Euclideanized GOPs. To be consistent with the

commensuration of other directional primitves of the s-rep, I associate a width feature as a multiplicative scale factor

with the Euclideanized direction of the singular point.

Consider a section of the continuously interpolated augmented s-rep from the base end skeletal curve to the singular

point; the majority of the volume is concentrated at the base. Based on this observation, I associate the singular point

primitive’s direction with the geometric mean of the lengths of all base spokes along the base skeleton’s end curve. Then,

similar to how the Euclideanized GOPs of spoke directions are commensurated, I commensurate the Euclideanized

GOP of the singular point primitive’ direction by multiplying PNS-generated features by the geometric mean of end

spokes’ lengths.

5.4 Results

In this section I present results of applying the proposed method to modeling the CN. The method currently requires

a user to manually provide the boundary point and the direction for the singular point primitive. In this experiment, I

manually specify the singular point. I specify the direction that 1) lies on the tangent plane of the base end skeleton and

2) points toward the chosen singular boundary point.

I investigate how well the interpolated CN s-reps with the singular point match the original CN boundary. In order

to get a sense on the accuracy of the proposed method, I examine how well the interpolated spokes of the augmented CN

s-reps match the original object boundary. I examine the distribution of the average distances between each interpolated

spoke end and the original boundary. The average distance is measured in voxel units after the resolution of the image

is upsampled to 0.05× 0.05× 0.05mm.

Figure 5.3 shows the histogram of the average spoke end distances of the augmented CN s-reps fitted to a population

of 6-month olds’ caudate nucleus; there are 32 caudates of HR-ASD infants and 137 caudates of HR-Neg infants.
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Figure 5.3: The histogram of the average spoke end distance of the augmented CN s-rep fitted to a population of

6-month olds’ caudate nuclei.

As can be seen from figure 5.3, the majority of the distances is less than 1 voxel: most of the spokes match the

original boundary within 0.05 mm. The mean and the maximum distances are 0.40 voxels and 1.25 voxels respectively.

In addition, the newly added singular point primitive is beneficial to the discrimination of HR-ASD infants from

HR-Neg infants; the classification based on the CN s-reps with the primitive yields 3% better performance than the one

without the primitive. In the next chapter I shall describe the classification method in detail.

5.5 Conclusion and Discussion

In this chapter I have presented a novel method to represent an object with a singular point with an s-rep. I first

introduced additional geometric primitives, i.e., a boundary point and a direction, to explicitly represent the singular

point. Then, I described a method to obtain a solid model of the object by continusouly interpolating the spokes of the

s-rep augmented with the singular point primitive. I have demonstrated that the method is useful in modeling the CN of

6-month old infants; I have shown that the added primitive is beneficial to discriminating the autistic infants and the

non-autistic infants. I have shown some benefit of using the CN s-reps augmented with the singular point primitive in

the context of autism classification.
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The method currently requires a user to specify the boundary point and the direction. An optimization-based

strategy can be used to refine both the singular point primitive and the base discrete s-rep to tightly fit the original object

boundary.

As it currently stands, the method represents the cuspidal singular point. However, there are other works (Cohen

et al., 2014; Sarov and Peters, 2016) that model different types of the singular point based on a parametrized boundary

mesh representation. The underlying mathematics of their method can be adapted for s-rep-based modeling.

The proposed method can be adapted to interpolate s-rep spokes whose skeleton is a triangle mesh. To interpolate an

unknown spoke on a triangle, the similar interpolation strategy can be used. Intermediate spokes can first be interpolated

along each edge of the triangle. Then, the final spoke can be interpolated as an average of the spokes interpolated from

the intermediate spokes.
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CHAPTER 6: NON-EUCLIDEAN SHAPE CLASSIFICATION

6.1 Introduction

Binary classification of objects of interest based on medical imaging has been a common objective (e.g., (Kurtek

et al., 2011; Gorczowski et al., 2010; Zhao et al., 2014)). Researchers often wish to determine if a subject has a disease

or not based on geometric features of an anatomical structure from a medical image. Beyond simply providing a rule

for classification is the desire to gain deeper scientific insights into phenomena underlying the disease.

These geometric features are often provided by object models and should be analyzed by statistical methods

suitable for the shape of the object of interest. One of the most popular forms of shape representation is the Point

Distribution Model (PDM) (e.g., (Cootes et al., 1995; Styner et al., 2006; Davies et al., 2003)). A boundary PDM

is a tuple of boundary points on an object, with points corresponding across the training cases. Frequently, studies

using PDMs capture shape variations through the statistical method of Principal Component Analysis (PCA) (Cootes

et al., 1992, 1995), and classification is done using Linear Discriminant Analysis (LDA) or the Support Vector Machine

(SVM) (Davies et al., 2003).

In this chapter I investigate the possible improvements in classification that can arise from three modifications in

the above methods. The first is to statistically analyze the object representation data in the realization that, per (Kendall,

1984), even PDMs can be understood as lying on a curved manifold. I apply PNS-based Euclideanization for this

purpose. The second modification I consider is to use rich s-rep GOPs. The third modification is to use DWD as the

classification method.

The method of classification I propose is DWD on GOPs that are Euclideanized using PNS. I demonstrate that,

both with PDMs and with s-reps, this statistical method produces more effective classification than those making less

use of the geometry of the manifold in which the representation lies.

I apply the proposed method to the problem of classifying 3D hippocampi and caudate nuclei as autistic or

non-autistic based on their GOPs. I have evaluated my method on a dataset that consists of 143 non-autistic cases and

34 autistic cases. In this application I measure performance by calculating the area under the ROC curve (AUC). As

mathematically expected, the results show that

• the proposed method based on s-reps is superior to the classification based on s-reps without Euclideanization.
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• Euclideanization is also beneficial to the PDM-based classification; however, the observed improvement is subtle.

• Euclideanized shape-based classification is better than the conventional global volume-based classification;

the observed improvement is more notable in the hippocampal shape-based classification than in the caudate

shape-based classification.

This chapter is organized as follows. In section 6.2 I first describe the proposed classification method. In section 6.3

I provide details on the experimental setup and the classification evaluation method Then, I present the result of the

proposed classification method in section 6.4. Finally, I conclude this chapter with a discussion in section 6.5.

6.2 Classification Method

The novelty of the proposed classification method comes from the fact that I recognize that s-rep GOPs abstractly

live on a curved manifold and that I appropriately take that into account during classification. The proposed classification

method works as follows.

1. Apply PNS to Euclideanize GOPs that live on a sphere and commensurate those features to millimeters.

2. Learn the separation direction from these features concatenated with the originally Euclidean features in the

training data using DWD.

3. Compute the function that maps values projected onto the separation direction to the probability of belonging to

the autistic group based on Bayes’ Theorem (figure. 6.1).

4. Classify each case in the test set based on the probabilities computed using the function from the previous step.

In the following subsections, I provide a detailed description of each step.

6.2.1 Euclideanization of S-reps and Basis of the Transformation between S-rep Space and Euclidean Space

As previously noted, a discrete s-rep has some spherical GOPs, i.e., each spoke’s direction and the PDM formed

by its skeletal sample points. I apply PNS separately to each spherical GOP, producing corresponding Euclideanized

variables.

I consider both great subspheres and small subspheres at each iteration of PNS to Euclideanize spherical GOPs

of the representation. Chi-squared based hypothesis testing was performed to decide which subspheres to use at each

iteration of PNS. Along with the Euclideanized variables, PNS yields a polar system to be used as the basis of a

transformation from the original s-rep space to the corresponding Euclidean space, and vice versa.
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I scale the already Euclidean variables and the Euclideanized variables so that they are all commensurate. I form

the feature tuple by concatenating these commensurate variables. These variables form the feature space on which

classifiers are trained and tested. I denote these concatenated variables as the composite data matrix.

6.2.2 Learning the Separating Direction

The composite matrix computed via PNS is the input to DWD. That method learns a feature space separating

direction between the two classes, i.e., the autistic and the non-autistic group, via the training set of discrete s-reps

Euclideanized as described in the previous section.

6.2.3 Computing the Function from Projected Feature Values to the Probability of being Autistic

Given a separation direction and a case with an unknown class label, my objective is to compute that case’s posterior

probability of belonging to the autistic group. Using Bayes’ Theorem, I can express this probability in terms of a prior

and a likelihood of each class. I derive likelihood probabilities, i.e., the probability distributions of each class, given the

s-rep features, by forming a pair of histograms each describing statistics of the respective class as seen in figure. 6.1.

Figure 6.1: Visualizations of the class likelihoods of hippocampi. The empirical histogram of the scalar projection of

the non-autistic cases in the training set onto the separation direction is plotted using the blue dotted lines and with the

Gaussian probability distribution as the blue solid curve. Similarly for the autistic class in green.

Using the trained polar system, I first transform the s-rep of interest into a point in feature space. Let dX be the

scalar value resulting from projecting that data point X onto the separation direction; let {dautism} be projection values

of positive training examples, and let {dnon-autism} be projection values of negative training examples. I form a pair
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of empirical histograms of dautism and dnon-autism as shown in figure 6.1. By treating dautism and dnon-autism as random

variables, I derive a probability distribution for each class from the respective histograms.

Given the two histograms, I need to derive the class likelihood probabilities to compute the posterior probability. I

fit Gaussians to the two empirical distributions as the respective class likelihood probability distributions. To simplify

the calculation of the posterior, I examined if the two fitted Gaussians have a common standard deviation; the F-test

failed to reject the null hypothesis that the two distributions are Gaussian with a common standard deviation. Given this

outcome, the class likelihood distributions are the two Gaussians whose mean is the sample mean of the respective

histograms and whose common standard deviation is obtained from the unbiased least squares estimate of the pooled

variance of both histograms.

With these two distributions, p (dX |autism) and p (dX |non-autism), I can infer a class label of an unknown case if

the projection value of that case dX is given. It can be formulated by using Bayes’ Theorem as follows.

By Bayes’ theorem,

p (autism|dX) =
p(autism)p(dX |autism)

p(autism)p(dX |autism) + (1− p(autism))p(dX |non-autism)
(6.1)

This can be reduced to

p(autism|dX) =
p(autism)

p(autism)(1−R(dX)) +R(dX)
(6.2)

where

R(dX) = exp

[
−1

2

{(
dX − µnon-autism

σ

)2

−
(
dX − µautism

σ

)2
}]

(6.3)

. The pooled standard deviation estimate σ in equation 6.3 is computed as

σ2 =
(nautism − 1)σ2

autism + (nnon-autism − 1)σ2
non-autism

(nautism − 1) + (nnon-autism − 1)
(6.4)

where nautism denotes the number of the autistic cases, σautism denotes the standard deviation of the scalar projections

onto the direction for the autistic observations, and similarly for the non-autistics with nnon-autism and σnon-autism.

In summary, I compute the posterior p (autism|dX) given a scalar projection value dX along the separation direction

and a prior p(autism). The p (non-autism|dX) is the complement of p (autism|dX). Not only does this probability

communicate intuitively to a user how certain a classification of a new case is, but also basing it on parameterized

probability distributions allows stable predictions in the tails of the distribution.
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6.2.4 Classification based on Probability Produced by the Mapping Function

I decide the class label of an unknown case given a projected value dX and the prior p(autism) by comparing

p (autism|dX) and p (non-autism|dX).

6.3 Experimental Analysis

To evaluate the proposed method, I use repeated random hold-out so that I do not introduce bias in the testing

procedure. I first randomly partition the positive example set into 10 roughly equal size subsets and likewise with the

negative example sets. I set aside one of the subsets from each class for testing and used the union of the remaining

subsets to collect statistics necessary for the classification method.

I have conducted 2, 000 rounds of random hold-out with the prior p(autism) being set to 1/4; in the literature,

one out of four infants at high familial risk for ASD is later diagnosed with ASD. I need to be able to summarize the

performances of different classification methods that I am comparing across all the hold-out rounds. Unlike the dX

values, the posterior probabilities p (autism|dX) for test samples of different hold-out rounds can be directly compared;

this allows me to compare different classification methods based on p (autism|dX)s collected from different hold-out

rounds.

Given the prior and a trained separation direction, each hold-out round yields the posterior probability p (autism|dX)

for each test sample; I collect the p (autism|dX)s for the positive test samples separately from the negative test samples.

I obtain two distributions of p (autism|dX) for the positive (negative respectively) test samples across the hold-out

rounds. After all the hold-out rounds, I derive a ROC curve from these two p (autism|dX) distributions. For each

classification method I am comparing I report the area under the ROC curve (AUC) in section 6.4.

S-rep based method compared to boundary PDM-based methods

The boundary PDM is a common approach to represent a shape via a collection of points along the object’s

boundary. I wish to compare the qualities of classification when hippocampal/caudate shapes are represented by s-reps

vs. boundary PDMs to see if the rich geometric information provided by s-reps increases discriminative power over

classification based on boundary information. And similarly for caudate nuclei.

In order to make a fair comparison between boundary PDMs and s-reps, I need boundary PDMs that can be

compared directly to s-reps. Recall that s-reps are a collection of spoke vectors pointing from skeletal sample points

to the object’s surface and that s-reps are fitted such that the spoke vectors are in approximate correspondence across

all cases in the training population; I form boundary PDMs from these spoke endpoints. I will denote these boundary

PDMs as srep-PDMs.

43



I classify srep-PDMs in two different ways. First, we applied our DWD-based method directly to the point

coordinate features. Second, in order to understand advantages of the Euclideanization on that type of the shape

description, I applied PNS to the point tuples to yield Euclideanized features as well as a commensurated scale, and

then I applied our DWD-based method to these features. The same validation strategy used with s-reps was applied to

each of these methods. For each method, I report the final AUC in table 6.1 and in table 6.2.

6.4 Results

In this section I present the empirical results of applying the proposed method to the problem of classifying autistic

and non-autistic 6-month-old infants at high risk of ASD. Similar to b-PDMs, global volumes of hippocampi and

caudate nuclei are derived from s-reps as a global scale of boundary points implied by spoke ends.

Methods AUC
s-reps + PNS + DWD 0.6400

s-reps + DWD 0.6123
boundary srep-PDMs + PNS + DWD 0.6062

boundary srep-PDMs + DWD 0.6050
global volume + DWD 0.5560

random guessing 0.5000

Table 6.1: Table of an AUC of the ROC of the selected classification methods and the pure random guessing in
classifying the hippocampus of the autistic infants and the non-autistic infants. The result shows that as expected, the
Euclideanized s-rep-based classification performs the best.

Methods AUC
s-reps + PNS + DWD 0.5708

s-reps + DWD 0.5419
boundary srep-PDMs + PNS + DWD 0.5400

boundary srep-PDMs + DWD 0.5365
global volume + DWD 0.5372

random guessing 0.5000

Table 6.2: The parallel results to the table 6.1 in classifying the caudate nucleus. The same conclusion observed in the
table 6.1 can be drawn.

Table 6.1 reports the performance of all the aforementioned methods in terms of the AUC in classifying the

hippocampus of the autistic infants and the non-autistic infants. For s-reps, classification using Euclideanization is

superior to that without Euclideanization. For PDMs, classification using Euclideanization yields a higher AUC, but

the difference is subtle. With Euclideanization both forms of model yield similar if not better classification than the

common approach in the literature, a volume-based classification of autistic hippocampi. S-rep-based classification

with Euclideanization is superior to all the other methods of classifying autistic infants from non-autistic infants based

on hippocampal shape.
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Table 6.2 reports the AUC of the same methods in classifying the caudate nucleus. The same conclusion as the

hippocampal shape-based classification can be drawn.

6.5 Conclusion and Discussion

In this chapter I have presented a novel classification method that recognizes that rich geometric information

is provided by s-reps and that relevant shape information does not live in Euclidean space. I have shown benefit

to the classification performance when all of the GOPs of either s-reps or boundary PDMs derived from s-reps are

Euclideanized via PNS analysis.

In the context of the autism classification based on 1) the hippocampal shape and 2) the caudate shape, I have shown

that both the s-rep-based classification and the PDM-based classification provide an advantage over a volume-based

classification; therefore, I claim that shape information adds additional discriminative power. I have also shown

improvement when using s-reps over b-PDMs when both GOPs are appropriately Euclideanized; I also show that local

object directions and local object width add discriminative power. I conclude that 1) shape descriptions add additional

discriminative power over global volume, and 2) local object directions and local object width that s-reps provide add

additional discriminative power over boundary position.

The proposed method yields a separating direction through the pooled backward mean in the feature space of the

Euclideanized s-reps. Each point on this vector can be used to generate an s-rep using the polar system. Viewing the

sequence of the s-reps as an animation yields understanding of the interclass shape changes. Figure 6.2 shows selected

frames from the sequence.

There are still some further questions to be investigated.

• As previously noted, deviations in the global volume of neuroanatomical structures, e.g., the caudate nucleus,

have been observed in individuals with ASD (Hazlett et al., 2012). Measures such as the intracranial volume

(ICV) and the body length (Hazlett et al., 2017) have been used to normalize volumes in these structures to remove

factors not related to ASD, e.g., nutrition and genetic factor. As it currently stands, such volume normalizations

have not been performed for analyses described in this work; it would be interesting to see if the same conclusions

can be drawn after normalizing volumes of hippocampi and caudate nuclei.

• As for the caudate shape-based classification reported in the table 6.2, the boundary point of the singular point

primitive described in the section 5 has not been included for the boundary PDM-based analysis. However, I

expect that adding the boundary position of the singular point to the current point tuple would not change the

result significantly. In my separate experiment not included in this work, I measured the caudate classification

performance when using boundary PDMs derived from spherical harmonics (SPHARM-PDMs), which includes

the singular point’s boundary position. The performance of SPHARM-PDM-based classification without PNS-

45



Figure 6.2: Selected frames from the sequence of the s-reps while walking along the separation direction through
the pooled backward mean from the autism class to the non-autism class. Viewing the sequence as a looping movie
(available at https://github.com/jphong89) makes the local shape changes between the two classes more
noticeable.

based Euclideanization is 0.5400, which does not differ significantly from that of s-rep-PDM-based classification

reported in the table 6.2.

• To see if our results extend to other anatomic objects and diseases, we would like to apply the method to different

application problems, e.g., classification of Alzheimer patients based on shapes of the neuroanatomical structures.

• In Euclideanizing a spoke direction using PNS, we apply PNS separately because we are making the naive

assumption that each direction is independent. However, because an object surface is continuous and smooth,

each direction is highly correlated to its neighbors. We would like to produce a Euclideanization method that

reflects this correlation. Also, others are suggesting methods for statistical analysis directly on the curved shape

manifold (Eltzner et al., 2015; Arnaudon et al., 2017), and it would be interesting to evaluate classification

methods using these ideas.
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• As previously mentioned in section 2 the method we used to achieve spoke correspondence in s-reps across the

training set could be improved. In separate work, reported in (Tu et al., 2018), we created a method to improve

the correspondence by spoke shifting on each training case, so as to minimize an entropy measure. This entropy

measure reflects both shape probability distribution tightness and uniformity of coverage of the spokes in each

training case. The shape probability distribution used is derived from the same PNS approach used in that paper.

The correspondence was shown to be improved in a set of lateral ventricles and in a subset of the hippocampi

used in this paper. It would be interesting to see whether the classification of hippocampi and caudate nuclei

could be improved using these correspondence improved s-reps. Finally, (Tu et al., 2018) also showed improved

PDM correspondence when using the spoke tips as the PDM as compared to a PDM derived from spherical

harmonics and then improved in correspondence by the entropy-based method of (Cates et al., 2006) . This

further justifies our decision to use the s-rep derived PDM instead of SPHARM-PDM in the classification study

reported in this paper.

• Other work is in progress comparing different statistical methods against DWD. It would be interesting to see

how DWD for our purpose compares to other statistical methods such as Random Forests and Deep Learning.

• It would be also interesting to measure the relative power of classification via other shape representations that

have been used in the anatomic shape analysis literature, including but not limited to parameterized surface

representations used in (Kurtek et al., 2012; Jermyn et al., 2012; Bauer et al., 2010, 2012; Durrleman et al., 2014),

deformation fields used in (Lancaster et al., 2003; Villalon-Reina et al., 2012), the spherical harmonic coefficients

used in (Gerig et al., 2001), spherical wavelet coefficients used in (Nain et al., 2007), and atlas deformation

representations such as LDDMM momentum (Beg et al., 2005; Miller et al., 2002; Wang et al., 2007).
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CHAPTER 7: NON-EUCLIDEAN SHAPE GROWTH CLASSIFICATION

7.1 Introduction

So far in this dissertation I have discussed how to classify a set of subcortical structures in the context of the early

diagnosis of infants at high familial risk to develop ASD. In the previous chapter, I have described the classification

method that uses rich s-rep GOPs whose non-Euclidean nature is handled by PNS. I have shown that the method

achieves 64% and 57% in classifying HR-ASD infants and HR-Neg infants at 6 months of age based respectively on

the hippocampus s-reps and the caudate nucleus s-reps.

However, an important question is whether the classification of the autistic infants and the non-autistic infants can

be improved if multiple s-rep GOPs are used to learn the classification rule. Specifically, how much does the ASD

classification benefit by studying temporal changes in the shape as opposed to the shape?

As previously shown, the s-rep based classification benefits from PNS-based Euclideanization. Therefore, I need

to properly handle the non-Euclidean nature of the GOPs of the s-rep pair. Among many possible Euclideanization

methods I consider how to apply PNS to obtain temporal s-rep differences of the hippocampus and the caudate nucleus.

The remainder of this chapter is organized as follows: First, I describe how to apply PNS to Euclideanize two

distinct s-reps, i.e. the hippocampus and the caudate nucleus. In addition, I describe how to obtain Euclideanized

temporal differences of an object s-reps. I conclude this chapter with the results followed by the discussion.

7.2 Classification Method Based on Temporal Shape Difference

In this section I describe the non-Euclidean temporal shape difference classification method. As previously

shown, the s-rep based classification benefits from Euclideanization due to highly non-Euclidean nature of s-rep GOPs.

Therefore, I need to Euclideanize the GOPs of the s-rep pairs prior to learning the classification rule. First, I describe

how to use PNS to obtain temporal differences of s-reps at two time points. Then, I describe the classification scheme

given the Euclideanized GOPs.
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7.2.1 Euclideanization of Temporal Differences of an S-rep

As mentioned in chapter 2, ASD is a lifelong neurodevelopmental disorder. In the literature brain developmental

trajectories of individuals with ASD are different from those of typically developing individuals. Would the develop-

mental trajectories of the implicated brain structures such as the hippocampus and the caudate nucleus have predictive

power?

Given a set of object pairs at two time points, I use PNS-based Euclideanization to obtain temporal shape differences

of an object between the two time points. I adopt the same Euclideanization strategy used in (Vicory, 2016), which

works as follows:

1. I apply PNS-based Euclideanization on the GOPs of the union of all training cases across the classes and across

the time points to obtain a common polar system.

2. Given the common polar system, I derive the Euclideanized temporal shape differences by subtracting the

Euclideanized GOPs of objects at the earlier time point from those at the latter time point.

7.2.2 Classification

Given the set of temporal differences of s-rep GOPs, I use DWD to learn to classify HR-ASD infants from HR-Neg

infants. The proposed classification method is evaluated as described in section 6.3 in classifying HR-ASD infants and

HR-Neg infants based on hippocampi or caudate nuclei.

7.3 Results

In this section I present results of classifying HR-ASD infants and HR-Neg infants based on growth information of

hippocampi and caudate nuclei from 6 months to 12 months. I compare discriminative power of the temporal shape

difference against the cross-sectional shape information of these structures at 6 months and 12 months.

Methods AUC
temporal difference s-reps + PNS + DWD 0.5427

6 month s-reps + PNS + DWD 0.6400
12 month s-reps + PNS + DWD 0.5837

random guessing 0.5000

Table 7.1: Table of AUCs of classifying HR-ASD and HR-Neg based on 1) temporal shape difference in hippocampi at
6 months and 12 months (the top row), 2) 6 months hippocampi shapes (the 2nd row), 3) 12 months hippocampi shapes
(the 3rd row), and 4) the pure random guessing (the bottom row).

Table 7.1 reports the performance of classifying HR-ASD infants and HR-Neg infants based on 1) temporal shape

differences of hippocampi between 6 months and 12 months, 2) 6 months hippocampal shapes, and 3) 12 months

49



Methods AUC
temporal difference s-reps + PNS + DWD 0.5041

6 month s-reps + PNS + DWD 0.5087
12 month s-reps + PNS + DWD 0.5605

random guessing 0.5000

Table 7.2: Table of AUCs of classifying HR-ASD and HR-Neg based on 1) temporal shape difference in caudate nuclei
at 6 months and 12 months (the top row), 2) 6 months caudate nuclei shapes (the 2nd row), 3) 12 months caudate nuclei
shapes (the 3rd row), and 4) the pure random guessing (the bottom row).

hippocampal shapes. As for the ASD classification based on the hippocampal shapes, the hippocampal shapes at 6

months seems to be the most discriminative predictor.

Table 7.2 reports the AUC of the same methods in the same classification task using caudate nuclei shapes (without

the singular point). When classifying HR-ASD infants and HR-Neg infants based on caudate shapes, the caudate shapes

at 12 months seems to be the most discriminative factor.

For both of the ASD classification tasks, the temporal shape difference seems to be the least discriminative.

7.4 Conclusion and Discussion

In this chapter I have adapted the idea of shape difference statistics from (Vicory, 2016) to classify HR-ASD infants

and HR-Neg infants based on growth information in the hippocampus and the caudate nucleus from 6 months to 12

months. I believe that this idea can be further extended to perform classification based on developmental trajectories of

the shape of an object involving more than two time points.

I have investigated whether a temporal shape difference between 6 months and 12 months is an important predictor

in classifying HR-ASD infants and HR-Neg infants. The empirical results suggest that the temporal shape difference is

not as discriminative as compared to the cross-sectional shape of hippocampi and caudate nuclei of either 6 months or

12 months. However, I speculate that the information captured by the temporal shape differences is complementary to

that captured cross-sectionally either at 6 months or at 12 months; I expect the prediction to improve if the temporal

difference and the cross-sectional shape of these structures at either 6 months or 12 months are used together.

However, as noted in (Vicory, 2016), when the shape of an object undergoes a relatively large deformation, a

pooling-based PNS Euclideanization strategy would be less effective, since the learned basis of Euclideanization

would not be particularly representative of shapes of the object at either time point. Instead, one could employ an

Euclideanization strategy in which PNS is applied to Euclideanize shapes of the object for each class at each time point

separately and then these Euclideanized shape features are transported to a common place on the shape manifold.
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CHAPTER 8: CONCLUSIONS & DISCUSSION

In this chapter I provide a summary of my contributions in section 8.1. Then, I conclude this chapter with a further

discussion of my contributions and potential future work in section 8.2.

8.1 Summary of Contributions

This dissertation proposes a shape classification method that uses rich Geometric Object Properties (GOPs) of

s-reps, Principal Nested Spheres (PNS) based Euclideanization, and Distance Weighted Discrimination (DWD) to

classify autistic and non-autistic infants at high familial risk of Autism Spectrum Disorder (ASD) based on shapes of

hippocampi or caudate nuclei. In my driving biomedical problem I demonstrate the following:

1. The classification benefits from rich localized GOPs provided by s-reps. As shown in chapter 6, the Area Under

the Receiver Operator Characteristic (ROC) curve (AUC) of the s-rep-based classification is 0.04 higher than

that of PDM-based classification in the context of the autism classification based on the hippocampal shape.

Similarly for caudate shape-based classification, the AUC of the s-rep-based classification is 0.03 higher than

that of PDM-based classification.

2. The classification benefits from PNS-based Euclideanization for s-rep-based classification and barely for PDM-

based classification. Therefore, recognizing that GOPs lie on a curved manifold is important. As shown

in table 6.1, the AUC of the Euclideanized s-rep-based classification is 0.03 higher than that of s-rep-based

classification without PNS-based Euclideanization in the context of the hippocampal shape based classification.

Table 6.2 shows that the AUC of the s-rep-based classification with PNS is 0.03 higher than the one without PNS.

The marginal benefit is shown for the PDM-based classification; the PNS-based Euclideanization yields 0.001

and 0.004 higher AUC.

3. The classification benefits from shape information; both Euclideanized PDM-based classification and Eu-

clideanized s-rep-based classification perform better than volume-based classification. As shown in chapter 6, the

AUC of the Euclideanized s-rep-based classification is 0.14 higher than that of the volume based classification

in the hippocampal shape-based classification; the AUC of the Euclideanized s-rep-based classification is 0.04

higher than that of the volume based classification in the caudate shape-based classification. The AUC of the
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Euclideanized Point Distribution Model (PDM) based classification is 0.05 higher than that of the volume based

classification in both the hippocampal and the caudate shape-based classification.

The major methodological contributions of this dissertation are as follows:

1. Development of a fully automatic procedure to obtain a set of s-reps fitted to each target object boundary data

with reasonably good correspondence in spokes. As detailed in chapter 4, I described a general framework that

utilizes Mean Curvature Flow (MCF) to establish a mapping from the target object boundary to an ellipsoid.

Given a set of ellipsoids for each target boundary, I derive a mean ellipsoid. An s-rep for the mean ellipsoid is

obtained from the known analytical expression. Then, the mean ellipsoid s-rep is mapped to each individual

ellipsoid and each deformed mean ellipsoid s-rep is mapped back to the original target object boundary. I argue

that the resulting set of fitted s-reps have reasonable spoke correspondence because each s-rep is mapped from a

common reference s-rep. The method is shown to be effective in generating a set of fitted s-reps for hippocampi,

caudate nuclei, and lateral ventricle. However, the method failed to produce a fitted s-rep of a mandible, which

has a rather complicated-shape. I discuss below improvements to the flow that may ameliorate this problem.

2. Development of an extension to the current s-rep modeling framework for appropriately representing an object

with a singular point, e.g., the caudate nucleus. As pointed out in chapter 5, the current s-rep modeling is limited

in representing objects with a cuspidal singular point. To address this limitation, I used an additional point on the

boundary and a direction to represent the singular point. Then, I described a method to obtain a continuously

interpolated s-rep augmented with the singular point primitive. As shown in chapter 5, the primitive is beneficial

in modeling the sharp tail of the caudate nucleus. In addition, the caudate classification task also benefits from

the additional primitive; the AUC of the classification is 3% higher.

3. Development of a non-Euclidean classification method that uses PNS to obtain the Euclideanized s-rep GOPs

on which the DWD classifier is trained. In chapter 6 I showed that shape information adds discriminative

power by showing that both PDM-based classification and s-rep-based classification are superior to the volume-

based classification; the AUC of the s-rep-based classification is 0.15 higher than that of the the volume-based

classification, and the AUC of the PDM-based classification is 0.05 higher than that of the volume-based

classification. I demonstrated that both PDM-based classification and s-rep-based classification benefit from

PNS-based Euclideanization; the benefit of the PNS-based Euclideanization was most notable for the s-rep-based

classification. The observed benefits to the AUC of the s-rep-based classification when Euclideanized by PNS are

0.04 and 0.03 for the hippocampal shape classification and the caudate shape classification respectively. Last

but not least, I further showed that the classification benefits from rich localized Euclideanized s-rep GOPs, i.e.,

skeletal points plus local object widths and local object directions; as shown in table 6.1 and table 6.2, the AUC

of the s-rep-based classification is the highest.
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4. A novel technique to compare different shape classification methods. In section 6 I employed a repeated hold-out

strategy to measure the performance of the shape classification methods, i.e., the s-rep-based classification and

the PDM-based classification. For each fold I first use the training samples to obtain a polar system from PNS,

which yields Euclideanized GOPs from which DWD learns a class separation direction. From the test sample in

each fold I use the training histograms to derive posterior probabilities of test samples being autistic separately

for the positive test samples and for the negative test samples. Then, I compute the final AUC by sweeping the

collected posterior probabilities. The method allowed a more credible comparison of shape classification methods

than comparing classification methods on the basis of individual AUCs each estimated from a single hold-out.

5. Development of a non-Euclidean classification method for classifying a temporal difference of s-reps in which

the input feature tuple to DWD is formed by taking the difference of the Euclideanized s-rep GOPs of each

time point. In chapter 7 I studied whether the growth information of an object is more discriminative than the

cross sectional information of shape of the object in the context of autism classification. I have adopted the idea

of shape difference statistics proposed in (Vicory, 2016) to obtain temporal changes in s-reps; s-reps are first

Euclideanized by pooling across the classes and the time points, and then the growth information is obtained by

taking differences of the Euclideanized s-rep GOPs of the two time points. I examined discriminative powers of

the growth informaiton of the hippocampal shape and of the caudate shape from 6 months to 12 months. This

produced interesting results that could not have been produced without our comparison technique. The growth

information of the hippocampus and the caudate nucleus do not seem to be as predictive as compared to cross

sectional shape information of the hippocampus and the caudate nucleus. However, I speculate that the growth

information is complementary to the cross sectional shape of these structures at either 6 months or 12 months;

therefore, I expect the overall prediction can be improved if the growth information is used together with the

cross sectional shape of these structures at 6 months alone or at 12 months alone.

The above contributions support the following thesis:

Thesis: Classification of medically imaged neuroanatomical structures based on their geometric object properties

benefits from the following:

1. An object model providing local object width and orientation in addition to positional information

2. An object modeling procedure that efficiently yields geometric correspondence across a population

3. A classification method capable of learning a classification rule on a curved manifold

In addition to the above methodological contributions, I have also accomplished the following engineering

contributions:
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1. Integration of Pablo, the main piece of software used to fit and visualize s-reps into 3D Slicer for easier distribution

of the s-rep modules to the medical image analysis community. During my involvement in NIH funded project

called slicerSALT (Slicer Shape AnaLysis Toolbox), I achieved following software engineering accomplishments:

• Modernization of the s-rep modules.

• Redesign of the computer representation of the discrete s-rep. I redesigned the computer representation of

a discrete s-rep as networks of spokes using the VTK file format. The redesigned s-reps allow modeling

objects with different skeletal topologies including the spherical (slabular), the quasi-tubular, and the

toroidal. In addition, the redesigned s-reps are more consistent with the underlying skeletal mathematics at

the skeletal fold.

• Implementation of a module that converts a legacy s-rep into the redesigned s-rep.

• Implementation of a module that visualizes a legacy s-rep in 3D Slicer. My colleague, Zhiyuan Liu has

recently extended the visualization module to visualize the redesigned representation of s-reps.

• The code will be publicly released by the time of the 2018 MICCAI shape workshop and will be available

to download at https://github.com/Kitware/SlicerSALT

2. Improvement of the numerical stability of estimating surface normals and principal curvatures from the input

representation of the object. In Pablo objects are represented as the implicit representation of the object by a

signed distance image. Pablo used the finite difference method to estimate isovalue surface normals and principal

curvatures. I notably improved the numerical stability in estimating surface normals and principal curvatures by

fitting a local B-spline patch from which those geometric quantities are computed analytically.

8.2 Discussion and Future Work

8.2.1 S-reps Fitting

8.2.1.1 Optimization

A set of the fitted s-reps obtained from the method described in chapter 4 was improved via spoke length refinement

to tighten their fits to the original object boundary. The spoke length refinement is formulated as a posterior optimization

problem. The optimization is carried out via conjugate gradient descent where the gradient is numerically estimated.

Recently a gradient-free optimization method called NEWUOA (Powell, 2006) is being employed to replace conjugate

gradient descent. Some preliminary results of using NEWUOA to refine lengths of the spokes of the fitted s-reps are

encouraging. My colleague, Zhiyuan Liu, is currently implementing NEWUOA to optimize skeletal point locations,

spoke directions, and spoke lengths all together.
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8.2.2 Different Geometric Flows for Automatic S-reps

As noted in section 4, my MCF-based method fails to produce the fitted s-rep for a rather complicated shaped

mandible. MCF fails in two aspects: 1) throughout the surface evolution vertices on the condyles end up being clustered

on the ellipsoid, and 2) the sharp bend at the jaw does not unbend fast enough before introducing singularities on other

places on the mesh. These problems could potentially be solved by employing different types of flow, e.g., Willmore

Flow or Ricci Flow, combined with remeshing to prevent vertices from clustering. Interesting alternative curvature

measures to use in evolving the surface are C and S described in (Koenderink, 1990).

Another aspect of the method that can be improved is the use of different means of computing the reverse MCF

deformation that maps from an ellipsoid to the original object. The TPS transformation is not guaranteed to yield a

diffeomorphic transformation, which is why the method currently works with a small time step. Evolving the surface

by a small time step increases the number of the pairwise TPS transformations to be computed. Instead, different

diffeomorphic surface registration methods can be explored to allow faster convergence to an ellipsoid. Recently a

learning-based method has been reported (Yang et al., 2017) to produce a transformation that is comparable to the one

produced by traditional LDDMM with a fraction of the computational cost. Using such a learning-based method could

improve the computational performance.

8.2.3 Modeling Objects with a Singular Point

In chapter 5 I introduced an additional geometric primitive to model an object that has a sharp narrowing tail such

as the caudate nucleus with an s-rep. The primitive can be used to model other sharp points such as the tip of the horn

of the lateral ventricle or a sharp place on condyles of a mandible. When modeling these sharp places, the emanating

directions may need to be interpolated along a different side of the skeletal fold.

The method currently requires a user to specify the boundary point and the direction. An optimization-based

strategy can be used to refine both the singular point and the s-rep fit.

As it currently stands, the primitive is designed to model a cuspidal singular point; the object narrows very fast

toward the cuspidal singular point. However, there exist different types of singular points, e.g., a corner. There are

other factors to consider when modeling an object with a corner. First, the rate at which an object gets narrowed is not

as fast as compared to the one with a cuspidal singular point. Therefore, one may need to specify the desired rate of

narrowing at each base skeletal point when modeling this type of singular point. In addition, different emanating curves

can converge to the corner in different directions. Therefore, one may also need to specify a set of desired converging

directions at the corner.
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8.2.4 Non-Euclidean Shape Classification

In chapter 6 I have shown that the autism classification based on hippocampal shape or on caudate shape benefits

from rich localized s-rep GOPs when the non-Euclidean nature of s-rep GOPs is handled by PNS. However, there

are three aspects that can be further investigated: 1) object models, 2) Euclideanization methods, and 3) classification

methods.

In this work I have compared the s-rep-based classification against the PDM-based classification. However, an

interesting comparison on the same data would be the s-rep-based classification against other shape classification

methods that use object models, e.g. a tuple of normals, spherical harmonics coefficients, spherical wavelets, and atlas

deformation representation. Preliminary work has been conducted in comparing the s-rep-based classification against

the classification method that uses a tuple of normals representation called Square Root Normal Fields (SRNF) (Jermyn

et al., 2012) in a different application problem. The s-rep-based classification seems to be more discriminative than the

SRNF-based classification in that particular application problem. However, it still remains to be seen if this is the case

in the autism classification problem. Another interesting comparison would be comparing our discrete s-reps against

the continuous medial representation called

c-mreps (Yushkevich et al., 2006).

In this dissertation I only considered PNS as a means of handling the non-Euclidean nature of s-rep GOPS. However,

different means of Euclideanization can be further explored. Benjamin Eltzner (Eltzner et al., 2015) has proposed

Polysphere PCA (PPCA) in order to account for the correlation directly among the Cartesian product of spheres, i.e.,

polyspheres. There is an on-going work to compare the s-rep-based classification Euclideanized by PNS against the one

Euclideanized by PPCA. An interesting perspective of analyzing non-Euclidean GOPs in all dimensions at once has

been proposed by Xavier Pennec (Pennec, 2015); a Euclideanization method based on this perspective would be an

interesting future project.

Instead of learning a classification rule based on Euclideanized GOPs, an alternative approach is to directly work

on the shape manifold. (Arnaudon et al., 2017) has proposed a method of estimating the shape probability distribution

directly on the shape manifold obtained via a stochastic process. Then, two shape probability distributions can be

estimated for each class. Given the two shape probability distributions, an object without a class label can be classified

on the basis of these class likelihoods. In addition, there has been an early work on developing DWD that directly works

on the original manifold by Suman Sen (Sen, 2008).

In this dissertation I have used DWD to learn a classification rule in the Euclideanized feature space. However,

different classification methods, e.g., Random Forest and Deep Learning, can be explored. Especially, deep learning

based methods have been quite successful in various medical imaging tasks, e.g., image segmentation, classification, and

registration (Yang et al., 2017). Deep learning has been reported to learn and extract lower dimensional, task-relevant
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features from original high dimensional features. (Hazlett et al., 2017) used deep learning to learn a lower dimensional

latent space of a high dimensional cortical shape feature vector. Recently, there has been work to apply deep learning

for non-Euclidean data (Masci et al., 2015; Boscaini et al., 2016; Bronstein et al., 2017). For Alzheimer classification,

authors in (Mostapha et al., 2018) have applied a geodesic Convolutional Neural Network (geodesic CNN) to learn

discriminative features from cortical brain surfaces with cortical shape features defined at each vertex. An interesting

future direction is to investigate whether a deep learner can learn and extract discriminative Euclidean features from

highly non-Euclidean data such as s-rep GOPs.

8.2.5 Understanding Morphological Changes Associated with Growth

In this dissertation I have adapted the idea of shape difference statistics from (Vicory, 2016) for classifying autistic

and non-autistic infants based on temporal shape difference. I speculate that the idea can be extended to perform a

classification based on developmental trajectories of shape of an object involving more than two time points.

However, as noted in (Vicory, 2016), when the shape of the object undergoes relatively large deformations between

the two time points, pooling-based PNS Euclideanization would not be particularly representative of respective classes

and therefore would not be an effective means of Euclideanizing the s-rep GOPs. Instead, a Euclideanization method

that computes respective polar systems for each class at each time point and then transports the polar systems to a

common place, e.g., a mean of all shapes, on the manifold can be used. This approach can be also viewed as a type of

domain adaptation problem.

Instead of Euclideanizing temporal shape pairs, longitudinal shape analysis frameworks such as (Niethammer et al.,

2011; Fletcher, 2013) that recognize the non-Euclidean nature of shapes can be utilized to understand morphological

differences in developmental trajectories between the two groups of subjects.

8.2.6 Further Clinical Studies

There are interesting future directions with respect to the driving application problem behind this dissertation.

Firstly, as previously noted in section 6.5, the effects of the global volume of hippocampi and caudate nuclei in the

autism classification could have been controlled using measures such as the intracranial volume (ICV) and the body

length to remove factors not related to ASD, e.g., differences due to body size. It would be interesting to see if the

same conclusion can be drawn after controlling the effect of the global volumes in these structures. Secondly, in the

literature, the gender of ASD subjects is predominantly male; therefore, it would be interesting to investigate the gender

effect in classifying HR-ASD infants and HR-Neg infants. Thirdly, it would be an interesting future project to use

s-rep GOPs to predict symptom severity on clinical outcome measures such as the Autism Diagnostic Observation

Schedule (ADOS). Finally, the autism classification based on shapes of subcortical structures seems weak, whereas the
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classification based on cortical shape features reported in (Hazlett et al., 2017) is significantly stronger. I expect the

autism classification based on stronger biomarkers such as the cortical surface area can be further improved if the rich

s-rep GOPs of subcortical structures are properly incorporated.

8.2.7 Conclusion

While this chapter discusses limitations and potential future directions for proposed methodologies, the proposed

shape classification method that uses DWD to learn a class separation based on rich s-rep GOPs that are Euclideanized

by PNS seems sound and effective in discriminating autistic and non-autistic infants based on shapes of the hippocampus

or the caudate nucleus. It would be interesting to see if the conclusion that I have drawn in this dissertation holds for

different shape classification tasks that involves different anatomical structures for different biomedical application

problems. All of the software used in this work will be publicly available at https://github.com/jphong89

along with documentations.

58

https://github.com/jphong89


BIBLIOGRAPHY

Arnaudon, A., Holm, D. D., Pai, A., and Sommer, S. (2017). A stochastic large deformation model for computational
anatomy. In International Conference on Information Processing in Medical Imaging, pages 571–582. Springer.

Bauer, M., Harms, P., and Michor, P. W. (2010). Sobolev metrics on shape space of surfaces. arXiv preprint
arXiv:1009.3616.

Bauer, M., Harms, P., and Michor, P. W. (2012). Almost local metrics on shape space of hypersurfaces in n-space.
SIAM Journal on Imaging Sciences, 5(1):244–310.
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