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Abstract

This research is concerned with shape modelling in computer graphics. The dissertation 

provides a review of the main research topics and developments in shape modelling and 

discusses current visualisation techniques required for the display of the models produced. 

In computer graphics surfaces are normally defined using analytic functions. Geometry 

however, supplies many shapes without providing their analytic descriptions. These are 

defined implicitly through fundamental relationships between primitive geometrical objects. 

Transferring this approach in computer graphics, opens new directions in shape modelling by 

enabling the definition of new objects or supplying a rigorous alternative to analytical 

definitions of objects with complex analytical descriptions. We review, in this dissertation, 

relevant works in the area of implicit modelling. Based on our observations on the 

shortcomings of these works, we develop an implicit modelling approach which draws on a 

seminal technique in this area: the distance based object definition. We investigate the 

principles, potential and applications of this technique both in conceptual terms (modelling 

aspects) and on technical merit (visualisation issues). This is the context of this PhD research. 

The conceptual and technological frameworks developed are presented in terms of a 

comprehensive investigation of an object’s constituent primitives and modelling constraints 

on the one hand, and software visualisation platforms on the other. Finally, we adopt a critical 

perspective of our work to discuss possible directions for further improvements and 

exploitation for the modelling approach we have developed.
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Chapter 1 An introduction to computer graphics

1.1 A brief history of computer graphics

Computer graphics is the part of Information Technology concerned with the visual 

representation of data. We can identify two major categories of such data; data which is the 

output of other systems and data that is constructed for the purpose of producing a particular 

image.

Data from other systems is either the output of software packages like databases, 

spreadsheets and other statistical and scientific applications, or from other specifically 

designed input peripherals such as two or three-dimensional scanners, and other sensors. The 

benefit from visualising such data sets — typically of numerical nature — is that through 

the effective utilisation of shapes and colours it is much easier to present an overall ‘picture’ 

of this data. It is anticipated that such representation will reveal to the user potential areas 

of interest in the data set under study. The most critical factors for such an application are 

the accuracy of the input data, the effective use of colours and shapes (e.g. bar graphs, 

scatter plots, histograms, colour coded dimensions etc.), and the adequate preparation of the 

input data for visualisation purposes (e.g. isolation of the required sub-set, scaling, various 

consistency checks, formatting of data and other types of preprocessing).

For many applications, however, the emphasis is not in the collection of data, but in the 

construction of the necessary data to produce a required image. Such images are usually 

reproductions of real life objects, and their shape is approximated at a certain level of detail 

with the use of geometrical methods that may vary significantly in complexity. The input 

data in such an application will usually be descriptions of the shapes and colours of the 

details of all the real life objects that need to be visualised.

Recent advances in hardware technologies have played a very important role in enabling 

computer graphics techniques to be used in a great range of applications. The computational 

demands of computer graphics techniques have been met by innovations in computer
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architectures including RISC processor sets (e.g. IBM’s POWER), dedicated video bus (e.g. 

VL VESA bus), additional graphics processors (e.g. XGA chipset), application specific 

graphics boards (e.g. IBM’s hipfmgex 3-D High Performance Graphics Processor for 

polygon rendering, and z-buffers for hidden object elimination) and multiprocessor 

arrangements (e.g. transputer clusters, distributed computing environments). As a result, 

nowadays computer graphics applications include business graphics, computer aided design 

(CAD), human - computer interaction (HCI), computer aided education (CAE), multimedia 

(MM), computer animation, medical imaging, document image processing (DIP), and virtual 

reality (VR). These categories of applications are classified according to the type, or types, 

of data they primarily manipulate.

For example, the domain of business graphics is concerned with the graphical representation 

of numerical data and relates to graphical forms such as bar graphs, line drawings and pie 

charts. The visualisation of more complex sets of data geared towards the needs of a 

particular problem are encompassed under the general term of scientific visualisation. Such 

an application area is that of medical imaging, where data, usually scanned from the human 

body, are visualised and processed to depict pathological areas accurately. Another approach 

to visualisation is taken with computer aided design (CAD) which is concerned with the 

design and subsequent visualisation of geometrical shapes, usually models of real-life 

objects. There, the user is able to have a preview of an object yet to be manufactured. 

Additional software may be used to enable a thorough testing of some of the physical 

properties of the modelled objects. Usually the implementation of computer aided design 

applications is complemented by suitable computer aided manufacturing (CAM) applications, 

where CAD designs are being transformed into instructions for manufacturing tools in order 

to facilitate efficient and accurate manufacture of the CAD models.

Another less ambitious application for computer graphics, but of great commercial interest, 

is that of computer animation, where the effect of object motion is added to that of object 

visualisation. This approach has been successfully introduced in the production of television 

(TV) advertisements. Recently it has also entered the courts of justice where (usually) the 

defence presents its case of events via computer generated animation that re-creates the 

alleged crime from the viewpoint of the accused, the victim, or other witnesses involved.
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The domain of human - computer interaction (HCI) is orientated towards the study of the 

presentation of both textual and numerical information in order to facilitate efficient 

interaction between computer software and users. Here important issues include the choice 

of colours used depending on the importance of the information presented, the density of 

characters presented on the computer screen at any given time, the character sets used, the 

number, location and size of windows used, the use of pointing devices and other equipment 

necessary for user interaction.

Computer aided education and document image processing are both involved with the 

manipulation and sophisticated retrieval mechanisms of information in the form of pictures. 

Here the emphasis is on the presentation of images that are relevant to the user’s search 

queries. In computer aided education systems, the user is presented with pictorial 

information, usually for the purpose of a tutorial, where context sensitive help can be 

provided. In document image processing applications, the user is not only presented with 

images of the documents that need to be consulted but in many cases the user is also 

expected to amend them, thus progressing towards the realization of the dream of the 

‘paperless office’.

Recently, a new application domain that encompasses the utilities of most of the above has 

emerged. This is ‘virtual reality’, that involves the design and visualisation of models of 

objects, their motion through a virtual space, and the active participation of users who are 

able to ‘wander around’ this space. The potential of such an application has been appreciated 

in fields where the training of new personnel necessitates realistic conditions that are too 

expensive, too dangerous or impossible to control, for example for the training of pilots, 

astronauts, special army personnel etc.

Despite the differences the above application domains may present, both in terms of the 

nature of data used and the purpose of the images produced, they all share the common need 

of data preparation, or modelling, before data visualisation. This observation illustrates the 

fundamental principle that computer graphics is a two phase process that involves the 

modelling and the subsequent visualisation of models of objects. Depending on the 

application, the emphasis on either phase (i.e. modelling, visualisation) may vary, but both
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phases are necessary in all applications. For each phase there exist a number of different 

approaches such as polygonal mesh approximation and analytical modelling with regard to 

modelling, and scan line and ray tracing with regard to visualisation, all of which will be 

presented in subsequent chapters.

The linkage between modelling and visualisation approaches will determine the balance 

between response time and image quality for a given application. Response time is an 

objective measure that is defined by the time it takes a particular installation (hardware / 

software) to produce the required image. Image quality is a rather subjective criterion for 

assessing how (photo-) ‘realistic’ the produced image is. The demands of the particular 

application in terms of image quality and response time will effectively dictate the hardware 

platform and the combination of modelling and visualisation approaches best used.

In this dissertation, the emphasis is given to the techniques used in computer graphics and 

especially in modelling, and therefore the particulars of an individual application domain 

will not be thoroughly examined unless they are an essential ingredient to our approach. 

More specifically, the aim of this thesis is to develop a technique that defines a new family 

of geometric shapes. Our approach is to exploit the power of computer graphics in order to 

achieve the visualisation and initial study of geometrical objects that are too complex, or 

impossible, to be described analytically.

We define such objects as the sets of points that fulfil a number of constraints (i.e. 

geometrical loci). We will use a simple but powerful constraint that emerges from 

extensions to the measure of distance, as will be explained in subsequent chapters. A 

formalisation of linear combinations of such an extended measure of distance will construct 

a generic definition of several new types of geometrical objects. Usually these objects are 

sets of surfaces but there are special cases where they degenerate into discrete points or even 

empty sets. The nature of the produced objects (i.e. points, surfaces, ...) as well as their 

characteristics (i.e. size, area, curvature, ...) are parameterized thus enabling the generation 

of families of such objects.
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This technique for surface generation extends contemporary methods for defining simple 

geometric objects like the circle and the ellipsoid. Its power comes by enabling visualisation 

and initial study of geometric objects that are impossible to be described and therefore 

studied by traditional analytical means. Nevertheless, this new technique will employ 

modifications of currently used computer graphics methods for both phases of modelling and 

visualisation, in order to enable an initial study of this new family of geometric objects.

In this chapter, an introduction to the fundamental principles of computer graphics will be 

presented. This will include an explanation of the relevant terminology, a presentation of the 

necessary mathematics concerning n-dimensional Euclidean spaces, a breakdown analysis 

of the comprising stages of a (typical) computer graphics application, and, finally, a 

presentation of the actual hardware and software platforms we used to develop and test the 

implementation of our proposed object generation technique. The next two chapters will be 

devoted to the presentation and analysis of the main modelling and visualisation techniques 

currently used in computer graphics applications. The presentation of these techniques will 

be followed by our evaluation and criticisms concerning their suitability to the object 

generation technique that this dissertation proposes.

Having presented all the necessary background information needed for establishing common 

ground of understanding with the reader, in chapter four we will present recent advances in 

modelling including research relevant to our proposed technique; namely implicit modelling. 

Chapter five will be devoted to the definition of the proposed object generation technique. 

This will include the rationalisation of an extended measure of distance and the presentation 

of a generic mathematical definition out of which a number of interesting special cases will 

be isolated and investigated further. In chapter six we will examine the challenges we met 

during visualisation of such defined objects. There, an analysis of various alternative 

visualisation techniques will be discussed and followed by the presentation of the preferred 

alternatives. Finally, chapter seven will entail a demonstration of the potential of the 

proposed object generation technique. There, some special cases of the proposed technique 

will be used to illustrate its power and its potential with regard to the contemporary 

techniques. This contrast will be analysed to show future directions for further 

generalisations and expansions of the proposed approach.
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1.2 Definitions

The aim of any computer graphics application is to produce an image (or a series of images) 

on display device. Such a device could be the monitor of a computer, a television screen, 

a film surface etc. [Smarte 1988]. Except for the class of direct volume display devices 

(DVDD) [Clifton III and Wefer 1993], this display device is assumed to be a two- 

dimensional area that for the remainder of this dissertation will be called the viewport.

As mentioned earlier, the underlying principle in all computer graphics applications is that 

the process of producing an image via a computer involves two phases. In the first phase, 

modelling, the description of what needs to be displayed is produced. This description is 

called the model of the image or the scene. The constituent parts of the scene are also called 

the objects of that scene. The model will provide information about the shape of the 

component objects in the scene, their relative size and positions, and, very often, their 

colours.

In most applications the shape of the modelled objects is approximated by simple 

geometrical objects such as planar polygons, spheres, boxes etc. The mathematics used for 

shape approximation will be presented in this chapter. Nevertheless, the model of a scene 

may also contain information about processes that need to be used to determine the shape 

of an object. Such processes may include the use of fractals, pseudo-random number 

generators, or other geometrical or physical constraints such as the geometrical loci, gravity 

or elasticity. This kind of modelling is called implicit or, procedural modelling and will be 

studied in subsequent chapters.

In the second phase, visualisation, an imaginary observer is introduced, and its view of the 

modelled scene is reconstructed onto the display device as a picture. To add realism into the 

produced image, a number of light sources that are assumed to illuminate the scene, is also 

introduced. During visualisation, optical phenomena such as light reflection, light refraction, 

radiosity etc. may also need to be simulated. However, what is actually displayed on the 

viewport is not a picture of a real world scene, as a photographic camera would capture, but 

an image of some mathematical model describing that scene.
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A variety of mathematical tools such as topology, metric spaces, matrix algebra, calculus, 

trigonometry and numerical analysis are used in both phases of a computer graphics 

application. Nevertheless, the area of mathematics that is the most fundamental in computer 

graphics is coordinate geometry. This is because both the model and the displayed image 

are expressed via Euclidean spaces.

1.3 The Euclidean space

It is essential, therefore, to illustrate the use of Cartesian coordinate geometry as a means 

of representing the Euclidean space. Since the same principles apply in both the 

representation of the model and the representation of the image on the viewport, it is 

appropriate first to describe the general case of the Cartesian coordinate system of two 

dimensions and then to show how it can be adjusted to represent the model and the resulting 

image.

iiii

P = (x,y)i................... a

x- axis

(0.0,0.0) r ------ x
i
ii
i
i
i
i
i
i
i

Figure 1.1 The two-dimensional Cartesian coordinate system

We may imagine two-dimensional space as the plane of this page, as Figure 1.1 shows, but 

extending to infinity in all directions. In order to specify the position of points uniquely, we 

have to impose a Cartesian coordinate system on the plane. We start by arbitrarily choosing 

a fixed point in this space, which is called the coordinate origin, or origin for short. A line 

that extends to infinity in both directions is drawn through the origin -  this is the x-axis.
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The normal convention, which we follow, is to imagine that we are looking at the page so 

that the x-axis appears from left to right on the page (the horizontal). Another two-way 

infinite axis, the y-axis, is drawn through the origin perpendicular to the x-axis; hence 

conventionally this is placed from the top to the bottom of the page (the vertical). We now 

draw a scale along each axis; unit distances need not be the same on both axes or even 

linearly distributed along the axes, but this is normally the case. We assume that values on 

the x-axis are positive to the right of the origin and negative to the left: values on the y-axis 

are positive above the origin and negative below.

We can now uniquely fix the position of point p  in space with reference to this coordinate 

system by specifying its coordinates. The x coordinate, x say, is that distance along the x- 

axis (positive on the right-hand half-axis, and negative on the left) at which the line 

perpendicular to the x-axis, that passes through p, cuts the axis. The y coordinate, y  say, is 

correspondingly defined by using the y-axis. These two values, called a coordinate pair or 

two-dimensional point vector, are normally written in brackets thus: (x , y), the x coordinate 

coming before the y coordinate. We shall usually refer to the pair as a vector -  the 

dimension (in this case dimension two) will be understood from the context in which we use 

the term. A vector, as well as defining a point (x , y) in two-dimensional space, may also 

be used to specify a direction, namely the direction that is parallel to the line joining the 

origin to the point (x , y).

Having defined the two-dimensional Cartesian coordinate system, it becomes apparent how 

the three-dimensional system can be determined. We can imagine a third two-way infinite 

axis, the z-axis, passing through the origin and being perpendicular to both x-axis and y-axis. 

Following our conventions therefore, the z-axis will be perpendicular to the plane of the 

page, and its positive part will either be coming towards us thus defining the right-handed 

coordinate system, or away from us {left-handed coordinate system). Assuming the unit 

distances have also been defined along the z-axis, a point in space (three-dimensional) will 

be determined as a three-dimensional coordinate vector, normally written as a triple of its 

corresponding x, y and z coordinates: (x , y, z). The left-handed three-dimensional Cartesian 

coordinate system, as defined here, will be used in the remainder of this dissertation to 

describe all our three-dimensional objects of our modelled scenes.
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It must be realized that the coordinate values of a point in space are totally dependent on 

the choice of coordinate system. During our analysis of computer graphics modelling and 

visualisation techniques we will be using a number of different coordinate systems to 

represent the same objects in space, and so a single point in space may have a number of 

different vector coordinate representations. For example, if we have two coordinate systems 

with parallel axes but different origins -  say separated by a distance 1 in the x  direction, and 

2 in the y  direction -  then the point (0 ,0) in one system (its origin) could be (1 , 2) in the 

other: the same point in space but different vector coordinates (Figure 1.2).

?!
• S i  
« i

iii
X-axis (new)

(1,2) = (0,0) (new)

X-axis
(0,0)

Figure 1.2 Using two coordinate systems

The transition from one coordinate system to another is achieved by the use of matrices. In 

coordinate geometry simple affine transformations like the translation, rotation and scaling 

of axes are represented by matrices. Furthermore, combinations of such transformations can 

also be represented by (products of) matrices [Angell & Tsoubelis 1992]. Nevertheless, 

transformations exist, not only for the substitution of coordinate systems of the same 

dimension (as in the above example) but also for systems with different ones. The latter 

case, is usually encountered in the transformation of a (usually) three-dimensional space 

(used to describe the scene) to the two-dimensional space of the viewport. This special type 

of transformation that reduces the dimension of space is called projection.
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Figure 1.3 The viewport’s Cartesian system

In order to use the display device, we will also introduce a very special case of a two- 

dimensional Cartesian coordinate system which is assumed to have points of integer 

coordinates. The reason is that the viewport is assumed to be composed of a rectangular 

array of points called pixels (picture elements). As a result, points on this space will be the 

pixels, and unit distances on the x-axis and y-axis are assumed to equal the horizontal and 

vertical size of the constituent pixels. And therefore, according to this observation, the 

coordinates of any pixel in the viewport may only be integer multiplicands of the 

corresponding unit distances. We can simplify the viewport’s coordinate system by ignoring 

the pixel’s unit sizes and instead, measure pixel coordinates as number of pixels from a 

predetermined origin. And assuming that the origin of the system is the bottom left comer 

of the viewport, as Figure 1.3 shows, the coordinates of any pixel on the viewport will be 

the number of pixels to the left and below it.

1.4 From mathematical models to images

In order to clarify the relationships between different systems we ought to work with one 

fixed coordinate system only. In computer graphics, however, it proves to be very 

convenient to use more than one coordinate systems. Therefore, for our clarification, we will 

use at least four different coordinate systems, namely the ABSOLUTE, the OBSERVER, the

P = (pixel.x,pixel.y)

X-axis
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WINDOW, and the VIEWPORT systems. In particular cases, however, as we will see in the 

next two chapters, other coordinate systems like the LIGHT systems may also be used.

The ABSOLUTE system will be used for describing our model and the OBSERVER system 

for calculating the view of the scene as seen by a particular observer. The LIGHT systems 

will be used to describe the scene ‘as seen’ by each particular light source. The WINDOW 

coordinate system will be used to represent the resulting image onto a model output device 

(realized by the viewport), while the VIEWPORT system will be used to describe the image 

on the screen of a particular display device. The WINDOW system will use real numbers 

for point coordinates where the VIEWPORT will use pixel units for determining pixel 

coordinates (Figure 1.2).

All objects in a scene are therefore described using the ABSOLUTE system and we name 

their position the ACTUAL position. For convenience, however, each individual object may 

be described in a simple way usually around the origin of the ABSOLUTE system. This we 

call the SETUP position for that particular object. Therefore, objects are first individually 

defined with reference to their own SETUP position and then they are moved to their 

ACTUAL position, thus constructing the required scene. It is implied here that both 

positions are described with reference to the ABSOLUTE system and the transformation 

from one position to the other is achieved by the appropriate matrices (Pt) for every object 

i in the scene, as Figure 1.4 shows.

Usually, after the scene is defined, an imaginary observer is introduced and the observer’s 

view of the scene is required to be reconstructed on the viewport. The observer’s position 

is described with reference to the ABSOLUTE system, but since this viewpoint becomes the 

most critical point during visualisation a new coordinate system is introduced. This is the 

OBSERVER system that has its origin where the eye of the observer is, and its orientation 

is determined by the observer’s direction o f view. It is implied here that we use a single-eye 

observer! For a ‘realistic’ two-eye observer two different views (one for each eye) need to 

be calculated and therefore two OBSERVER systems should be determined.
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At this stage, all objects that are currently described in their ACTUAL position with 

reference to the ABSOLUTE system will be transformed (matrix Q) to their OBSERVED 

position with reference to the OBSERVED coordinate system. As a short-cut it is not 

uncommon to avoid using the ACTUAL position of objects and instead use for every object 

i in the scene, the combined transformation (given by the product matrix Rt = Q x  Pt) from 

the SETUP directly to the OBSERVED position.

Another addition to the model may occur at this stage. This is the introduction of light 

sources that illuminate the scene. The light sources are described with reference to the 

ABSOLUTE system and usually a transformation to the OBSERVED system is also needed. 

However, for additional functionality such as the representation of shadows, some computer 

graphics applications define for every light source, a LIGHT coordinate system. Its origin 

is the light source and its orientation is appropriately chosen to ease the calculation of 

shadows produced by that source. Transformations between the ABSOLUTE and each 

LIGHT system are achieved by the matrices St and S j1 uniquely defined for each source.

Having described all the constituents parts of a scene, usually in three dimensions, the next 

stage is the reconstruction of the observer’s view. This implies that we need to calculate the 

image of the scene as this appears on the retina of the observer’s eye. We must reiterate 

here that we use single-eye view. Since this view is built on the two-dimensional retina, we 

need to define and use a new coordinate system of dimension two; the WINDOW system. 

Very often, its origin is determined by the direction of view and its orientation is parallel 

to the X-Y  plane of the OBSERVER system.

The transformation from the OBSERVER to the WINDOW system involves a reduction in 

dimensions, usually from three to two. Such a transformation is called projection. Depending 

on the application, a variety of projections can be used. These include the orthographic, the 

perspective, the stereoscopic etc. [Angell & Tsoubelis 1992]. The most ‘realistic’ type of 

projection is perspective. This produces two-dimensional views in a way similar to those of 

the natural eye or the photographic camera. Projections are also represented by matrices thus 

enabling a homogenous approach for the complete transformation of the scene description 

from the OBSERVER to the WINDOW system.
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Once the required image is described in the WINDOW system, the final step is to depict it 

on the graphics viewport. Therefore, a conversion from vector coordinates (real numbers) 

to pixel coordinates (pixel counts) is necessary. The image description in terms of pixels 

will be determined via the VIEWPORT system. To achieve this conversion, we first isolate 

a finite rectangular area (or window) within the WINDOW system. This rectangular window 

is centred around the origin of the WINDOW system and is to be identified with the 

graphics viewport. Therefore, the mapping functions from the WINDOW to the VIEWPORT 

systems will be determined from the window and the viewport used. We assume that such 

a viewport is composed of a rectangular array of points (the pixels, or picture elements). 

This matrix of points measures nxpix pixels horizontally by nypix pixels vertically, counting 

from the bottom left comer of the viewport (Figure 1.5).

! (nxpix-1 ,nypix-1)

I* P = (X,y)

t
.................*

y
1 ; X-axis

(0.0,0.0) «------ x ------

p = (x,y) => (pixel.x, pixel .y)

Figure 1.5 Relating points to pixels

The mapping from real window coordinates to integer coordinates (multiples of pixel units) 

is achieved by dividing the window into nxpix x nypix equal sized rectangular areas called 

sub-windows, that correspond to the nxpix x nypix pixels of the viewport. Therefore, for a 

given point inside the window, we determine the sub-window to which it belongs, and map 

it to the corresponding pixel on the viewport. As a result, all points that belong to the same 

sub-window will be mapped to the same pixel. For example, as Figure 1.5 shows, for a 

window of horiz x vert size and a viewport of nxpix x nypix pixels, the coordinates of point 

p  = (x ,y )  will be mapped onto the pixel (fx(x) ,fy(y)) = (p ixe lx , p ixely) via the functions:
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m  = 2x+koriz 
. 2 nxpix . My) =

2 y+vert 
. 2 nyp ix .

where [r] denotes the integer part of the expression r.

1.5 The model display device

Consequently, we can draw two-dimensional views of projected scenes on the graphics 

device, by simply relating the real coordinates of points in the window with their 

corresponding pixels in the viewport. For reasons of portability and flexibility, however, the 

graphics device is not assumed to be the particular screen, monitor or plotter that is part of 

the currently used hardware installation. Instead, a model graphics display device is 

introduced. This is assumed to be a virtual viewport of an arbitrary but fixed size with the 

additional capability of discriminating among 16,777,216 different colours.1

The role of such a model graphics device is to hold an as accurate an image description as 

possible, given the constraints of the particular installation (e.g. memory capacity), and the 

demands of the application (e.g. image resolution). This form of the image is usually held 

in secondary storage. This will enable further manipulation of the image, such as archiving, 

post-editing, viewing, plotting on microfilm etc. as Figure 1.6 shows. The main advantage 

of using such a generic form for the produced image is therefore portability; the same image 

can be viewed on a variety of different hardware viewport devices with minimal effort. In 

this way the image is realized on any viewport by utilising fully the underlying hardware.

In terms of image quality, the nearest the specifications (i.e. screen resolution, number of 

available colours) of the real viewport are to the model device, the better. It follows, 

however, that a real viewport with specifications considerably lower than the model device’s 

will result into loss of information and significant degradation of image quality. Before

1 Usually modem viewports, as we shall see in later sections, provide support for an 8-bit description for each 
of the red, green and blue colour components. Consequently the total number of possible colour combinations is (28)3.
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discussing the challenge of transferring an image from such a model display device onto a 

real hardware viewport, it is essential to explain the format that our images are described.

Image description on the viewport may take one of the following two forms; vector or 

raster. A vector image is the one described by a set of line segments (the vectors) of the 

appropriate colours at the appropriate locations inside the viewport. In contrast to vector 

images, a raster image is described in terms of the colour of the viewport’s constituent 

pixels. In most of our applications we will be using raster images since this format of image 

description is inherent to most of the visualisation techniques we will be using (e.g. octree, 

ray tracing).

However, the use of the model graphics device as a means for representing raster images 

imposes a considerable demand in storage requirements. The two main factors determining 

the storage needs are the pixel and colour resolution of the model device. The pixel 

resolution determines the size of the device in terms of pixels. Referring back to Figure 1.5, 

the maximum allowable values for nxpix and nypix will determine the maximum size 

(measured in pixels) of an image that can be represented in the model device. Therefore, for 

a raster image of the maximum size, we need to keep information of the colour of all the 

model device’s nxpix x nypix pixels.

An issue that is often underestimated here is the actual size of the pixel. This relates the 

aspect ratio of the real viewport with that of the model device. The aspect ratio of a 

viewport is the fraction of the physical dimensions of its displayable surface over those of 

its pixel resolution. In other words, the aspect ratio of a viewport is the fraction of the 

horizontal over the vertical physical size of a pixel. It follows that a square pixel (when 

displayed on the viewport) yields an aspect ratio of 1:1. For an accurate reproduction of 

shapes, these ratios must be equal; a circle will be distorted into an ellipse, lines will change 

their slope etc. Fortunately, most hardware viewports use square pixels. Nevertheless, there 

are common purpose machines, like the IBM personal system, that use screen modes of 6:5 

aspect ratio (VGA mode 19). For reasons of convenience, we use a model graphics display 

device of square pixels. This affects the actual choice of values for nxpix and nypix, since 

their ratio has to equal that of the horizontal (horiz) over vertical (vert) dimensions of the
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window used (Figure 1.5). Viewport arrangements that do not match the ratio of the 

dimensions of the window, are addressed by the introduction of appropriate non-uniform 

seeding functions.

The second major characteristic of the model device is that of colour resolution which 

determines how many different colour values a pixel can take. In other words, it determines 

the number of different colours that the model device is capable of depicting. However, 

since the model device is a virtual viewport, this maximum number can be arbitrarily set 

to any value. Research [Wyszecki et al. 1982] has shown that the human eye cannot 

differentiate between intensities that differ by less than 1 % for a black and white image, and 

so perceives them as a continuous tone. Therefore, for a high quality ‘photo-realistic’ image, 

no more than 256 (= 28) shades of any particular colour will be needed2. This observation 

results in technical specifications that fall well within the limits of the dynamic range of the 

most common display devices used. For example, a typical video monitor that uses the 

cathode ray tube technology is capable of depicting between 400 to 530 different intensity 

levels, and a typical photographic film can go up to 700 [Foley et al. 1990].

Furthermore, colorimetry informs us that any visible colour can be expressed, hence 

approximated, by the combination of three primary independent variables. This has resulted 

in a worldwide accepted standard called the Commission Internationale de V Eclairage 

(CIE) chromaticity diagram that maps the complete colour range as a linear combination of 

these three primaries which have been assigned the informative names X, Y  and Z. Although 

the CIE diagram has been accepted as the worldwide standard for colour description, there 

is no exact (i.e. analytical) description that would map any given colour spectrum into the 

corresponding X, Y and Z primaries and vice versa. Nevertheless, data tables, that 

approximate these functions at lnm intervals of visible light frequencies as perceived from 

a 2° and a 10° field of view on the retina, have been constructed vi a laborious measurement 

experiments.

2
The choice of value 256 is convenient since we can exactly use one byte (= 8 bits) of computer memory to

represent the intensity value of any colour. The choice of a smaller value, say 128 (= 27) may yield an image of
similar quality but the manipulation of seven-bit values may become a very troublesome process.
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This inconvenience, however, has led to the construction of a number of alternative colour 

models, all attempting to describe a significant subset of the complete colour space (i.e. set 

of all conceivable colours) as a combination of measurable parameters like hue, saturation, 

brightness, or relative colour intensities. For example, the RGB colour model is based on the 

tri-stimulus theory for colour perception3 and describes colour as the combination of 

intensity values of three primary pure colours; the red, the green and the blue. Other colour 

models include the CMY (cyan, magenta, yellow), the CMYK (cyan, magenta, yellow, black), 

the YIQ (luminance, chromaticity), the HSV (hue, saturation, value), the HLS (hue, lightness, 

saturation) etc. For a complete study of the most frequently used colour models the reader 

is referred to [Hall 1989; Meyer et a l 1980]. In order to retain compatibility with the CIE 

standard, transformation algorithms have been devised that convert the defining parameters 

between the RGB model and the CIE as well as between the RGB and the rest of the colour 

models. In our applications, we will be using the RGB colour model. The rationale for our 

choice is convenience since the RGB model is used in all hardware viewports we will be 

using, including computer monitors, paper printers and film plotters.

However, by using full colour (totalling 24 bits of data) information for an image we cannot 

always ensure its accurate realization on a hardware viewport as the technical characteristics 

of viewports may vary drastically. Such characteristics include the maximum number of 

colours that can be represented simultaneously on the viewport, the dynamic range of the 

viewport, its gamma correction mechanism etc. These difficulties, that stem from the 

differing technical specifications of the various viewport devices, may be clustered into two 

broad categories:

• using a limited amount of colours to represent an image

• using the ‘right’ colours to achieve accurate visual impression of the image

The aim in the first category is to use the viewport’s available colours in order to 

approximate the image. Here techniques like halftoning and random dithering are being used 

mainly for paper printers [Holladay 1980; Knuth 1987], while adaptive algorithms like the

This theory is based on the hypothesis that the retina has three kinds of colour sensors called cones, with peak 
sensitivity to red, green and blue light. Experiments have shown that the peak sensitivities are at 580nm, 545nm and 
440nm of the visible spectrum accordingly.
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popularity, the median-cut [Heckbert 1982] and the agglomerative clustering [Xiang & Joy 

1994] are commonly used for cathode ray tube devices. The former techniques build a wide 

palette of shades by combining together the device’s limited set of colours (e.g. the dot size 

of a black and white laser printer). In this way, the colour gamut of the device is used to 

approximate the required colours. In the latter techniques, however, the emphasis is in 

determining the exact amount of appropriate colours (e.g. 256 in VGA mode 19) that will 

be used to represent the image’s colour gamut. The, effectiveness of these techniques 

therefore depends on knowledge of the required colour gamut before visualisation 

commences.

The aim of the second category of challenges is to achieve accurate image reproduction on 

a variety of different viewports. Depending on the technology used for a particular hardware 

viewport, significant differences in the colours of the reproduced image may be perceived. 

Attempts for device independent colour reproduction include monitor calibrating devices, 

predetermined colour palettes and ANSI-standard calibration targets [McMillan 1992].
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Figure 1.6 Manipulation of image files
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tapes) for further manipulation and subsequent approximation to a viewport, or immediately 

realized on a hardware viewport (Figure 1.6). This model device will use the VIEWPORT 

pixel coordinate system to describe raster images of up to a maximum nxpix x nypix square 

pixel resolution. The colour of each pixel will follow the RGB colour model and will use 

up to 256 different values for each primary colour (i.e. red, green, blue), thus using three 

bytes of colour information per pixel. This results in a huge storage demand even for images 

of a moderate size.

For example, a typical image of 1024 x 768 pixels and 24 bit (3 x 8) colour resolution will 

need 2,359,296 bytes ( = 2.25 Mbytes approximately) of memory space. For the production 

of a 35mm colour slide at ISO 100 however, we will need an image of 4096 x 2730 pixels 

in size and of 24 bit colour resolution that will result into a 14-fold increase in storage 

demands (approximately 32 Mbytes). Furthermore, technical constraints impose the need to 

convert a binary stored image into a character-based one to ensure its safe transmission to 

a variety of communications links and hardware platforms4 thus resulting in doubling the 

size of the image file. It is essential, therefore, that transferring such a model device raster 

image onto the secondary storage should involve an extra phase of processing, namely image 

compression that will be presented in the next section.

1.6 Image compression

Data compression techniques aim at reducing the size of the necessary amount of data used, 

while keeping their information content intact. They establish their effectiveness on the 

amount of redundancy that exist in a particular set of data. The techniques aiming at 

reducing the size of data files that hold images, whatever their particular format may be, fall 

into the broad category of information theory, namely data compression. Especially with 

images, however, it may not even be necessary to preserve all the information of the original

4 Using all 256 possible values of a byte implies that the control characters from the relevant character set 
(ASCII, EBCDIC) are also being used. However, when transmitting such an image file via computer networks some 
of the non-printable characters may be incorrectly interpreted as control characters by the network circuits thus 
permanently distorting the contents of the image. The safest approach to overcome this possibility is to use only 
printable characters (ie. alphanumeric) thus doubling the size of the image file.
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un-compressed image. In many applications image details may get corrupted, or lost, for the 

benefit of achieving a greater reduction on the size of the original image file. The 

effectiveness of such techniques can be measured with the compression ratio they achieve, 

the speed of actually applying the compression and de-compression algorithms and the 

similarity of the de-compressed data file when compared with the original.

The compression ratio is defined by the ratio of the original to the compressed file, while 

the degree of similarity is a subjective measure of how close to the original the de­

compressed image ‘looks’. More objective measures, like the exact number of bytes the 

images differ, cannot be applied since the importance of the image is the information it 

carries and not the exact bytes that describe it. In other words, we are interested in the 

preservation of the important details of an individual image.

Fortunately, raster images offer a great proportion of redundancy. It is not uncommon that 

adjacent pixels may hold exactly the same or, very similar colours. This is true especially 

on the background coloured pixels. Furthermore, very often only a small proportion of the 

complete colour space is needed for any particular image. Therefore, many techniques are 

based on the above observations and depending on the contents of an image file, produce 

astonishing compression rates ranging from one (10:1) up to four orders of magnitude 

(10000:1).

Data compression techniques for raster images may be based on the actual number of 

colours used by a particular image, the frequency distribution of the actual colours used, or 

on the colour information of adjacent pixels (context sensitive data compression). Apart from 

some Image Processing applications, where the frequency distribution of the actual colours 

used for a particular image are known (or, can be calculated at real time) the rest of the 

computer graphics applications use context sensitive data compression techniques. Such 

techniques are based on information (or, rather redundant information) of the colour of 

neighbouring pixels.

Since in our applications image quality is more significant than storage space, we adopted 

an image compression technique that preserves the original image. It is a context sensitive
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technique, called run length encoding, and works as follows: the raster image is scanned in 

a pre-determined direction, say from the top left comer to the bottom right one by moving 

from left to right first. Once two or more consecutive (according to this pre-determined 

direction) pixels are found to be of the same colour, then replication of information is 

avoided by recording the number of consecutive pixels that have same colour.

Therefore, the format of the compressed image file is a series of pairs of pixel counts 

followed by their common colour value. For pixel counts up to 256 pixels, one byte may 

be used, thus in the best case of 256 consecutive pixels all having the same colour only four 

bytes are necessary instead of the 768 (= 256 x 3) on the original raster image. However, 

in the worst case, of consecutive pixels of different colours, one extra byte is added per 

pixel (for the pixel count) thus increasing the size of the image file by 33%. Yet, experience 

has shown that, on average, run length encoding can achieve a compression ratio of 100:1. 

Apart from preserving the original image, run length encoding was chosen because it is also 

being used in the software driving all the hardware graphics viewports of our installation 

(i.e. computer monitor, paper printer, and film plotter drivers).

Nevertheless, not all of them are capable of preserving the original image, when 

decompressed. It is not uncommon that a compromise on the image detail (with reference 

to the original un-compressed image) may take place in order to achieve a considerably 

better compression ratio. One such technique is implemented by the Iterated Function 

Systems (IFS) algorithm [Barnsley et al. 1988; Horn 1989; Barnsley 1989] that achieves 

compression ratios of 1000:1 or higher. It is based on the collage theorem that claims to 

construct an image from a union of sub-images and uses two-dimensional transformations 

that contract space. The aim of the IFS technique is for a given image to derive the 

necessary set of transformation matrices. Depending on the geometric regularity of the image 

(i.e. well defined shapes, not ‘random patterns’) and the required degree of similarity with 

the original, this method may expand the image file (‘random patterns’, exact copy) or 

reduce it up to four orders of magnitude (geometrical regularity, low degree of similarity 

to the original).
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Barnsley also announced that the complete set of the IFS compression - decompression 

algorithms has been embedded into microchips thus enabling a real time response. This 

performance characteristic is essential when transmitting in real time images or animation 

sequences (e.g. videoconferencing) via any communications channel from the local storage 

bus to a Wide Area Network-ed host. Other image compression techniques that are 

frequently used include CCITT huffman, LZH, LZW, PKZIP etc. For a complete account 

of the various image compression schemata the reader is referred to Murray & vanRyper 

[1994].

1.7 The nature of light

In order to understand the foundations of computer graphics, the definition of light is 

necessary. What also needs to be defined is what a light ray consists of and what is meant 

by the word colour. In computer graphics, light is assumed to consist of an infinite number 

of closely packed rays {light rays) that can be represented as vectors in the three- 

dimensional space. Additionally, from physics, it is assumed that a light ray consists of 

‘packets of energy’ called photons. The energy (E) that the photons carry is modelled as 

electromagnetic waves and relates to its frequency (/) as the following equation shows: 

E = f x h ,  where h is the Planck’s constant that is h ~ 6.63 x 10'34 Joules x seconds.

Another way to express the frequency / i s  by the wavelength X. Frequency and wavelength 

are linked together with the following equation / x  X = c, where c is the velocity of light in 

the medium that it passes through. For example, in a vacuum it is c « 3 x 108 meters/second.

What we perceive as colour is the frequency of that electromagnetic wave when the photons 

that carry it hit the receptor cells on the retina of our eyes. When a photon hits our retina 

it gives off its energy. If this energy is approximately of frequency in the range of 360 - 830 

THz (ITHz = 1012 cycles per second), the receptor cells are ‘tuned in’ and stimulated, thus 

passing the appropriate signals (stimuli) to the human brain. In terms of wavelengths, the 

range of visible photons is between 360 and 830 nanometres (lnm = 10'12 meters). Mapping 

this range to the colours we actually perceive, what we see as red is near 360 THz, while 

blue is at the other end of the spectrum (i.e. 830 THz).
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Another parameter that characterizes a light ray is the intensity it carries. Intensity of light 

at a given wavelength is a measure of the amount of photons of that wavelength that are 

travelling along that ray. It is expressed in terms of energy E  and is measured in Joules. A 

plot that depicts the distribution of intensity over all visible wavelengths for a given light 

ray is called frequency spectrum plot or simply spectrum of that light ray. The spectrum of 

many light sources has been studied (e.g. CIE Standard Uluminant D6500 represents an 

approximation of the sun’s spectrum on a cloudy day) since it acts as an indicator of the 

chemical composition of that source or of the media it travels through. Between individuals, 

the range of visible frequencies may vary, therefore, the limits of the visible spectrum we 

mentioned are to be treated as approximations. Moreover, the above theory for explaining 

the nature of light does not answer all the questions in physics, but it is still sufficient for 

most of the computer graphics applications.

1.8 Our installation

The rationale behind our research is to provide a visualisation system to aid. researchers not 

only in the field of computer graphics but also in mathematics, physics, biology, to name 

but a few. Therefore it is essential to prove that all our methods can be implemented on a 

common purpose computer system and not on a very specialized, and therefore very 

expensive, graphics engine.

Our installation consists of one workstation, black & white and colour printers, a microfilm 

plotter and a microfilm recorder. The workstation is a general purpose IBM Personal System 

Model 95 XP with adequate memory (8 Mbytes RAM, 1.5 Gbytes disk) and a tape archiving 

system for long term storage and back up purposes. It is a single processor (Intel 80486DX 

33MHz) system with an accelerated video sub-system (XGA). The XGA adapter is used on 

its high resolution 1024 x 768 mode and is capable of depicting up to 256 different colours 

on the computer screen at any time from a choice of 216 = 65536 different colour shades, 

using the RGB colour model.
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Most of the software used in this dissertation is implemented in the Object Oriented C 

language extensions (C++) and in particular it is developed in the Borland C++ environment 

under the DOS operating system. Although some DOS memory extending facilities and 

other operating systems are available that provide excellent memory management 

functionality, great effort has been put to contain the complete code inside the 640K 

memory limits of the DOS operating system. Again the rationale behind this decision is 

portability along different small sized common purpose computer systems.

For the same reason, the software produces machine independent viewport commands, the 

viewport primitives, that are traced and recorded by implementations of the model display 

device driver. For every real hardware viewport a different model display device driver has 

been implemented in order to exploit fully the particular capabilities of the hardware 

involved. Specifically, there has been developed a device driver for the XGA and the VGA 

modes of the computer’s monitor, one for devices that accept the Adobe Systems PostScript® 

language and one for devices that accept the Hewlett Packard Graphics Language (HP-GL®) 

for pen plotters. All these device drivers are interchangeable and all communicate with the 

main code via the common set of device independent viewport primitives.

Image files follow the raster format and are stored compressed with the run length encoding 

algorithm. Depending on the visualisation method used, and the operating system’s 

limitations (DOS 640Kbytes barrier), some post-processing may be necessary. For example, 

images produced with the oct-tree method need to be temporarily stored in a meta-language 

format. This format is actually an encoding of the device independent graphics primitive 

commands directed to the model display device implementations (i.e. device drivers for 

particular hardware viewports). This meta-language file is subsequently processed in order 

to produce the raster image file necessary for the rest of our manipulations.

The use of paper printers is achieved via the PostScript® device driver which is capable of 

producing Encapsulated PostScript® files (EPS) holding the complete raster image in the 

form of a bitmap. The EPS files are realized either on a IBM 4029 PS black & white 600dpi 

(dots per inch) laser printer, or on a QMS 100 dye sublimination colour printer. Where 

appropriate, the meta-language format is used to transform images from our model display
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device language (i.e. set of device independent primitive commands) into the PostScript® or 

the HP-GL ones for the inclusion of draft sketches (usually wire-frames) into word- 

processed documents for further manipulation.

Furthermore, for higher quality hardcopies of our images, two film-based viewports are used, 

the Dicomed and the Montage. They are both able to handle 35mm film of ISO 100 

resolution which effectively gives an area of 4096 x 2730 addressable pixels. The Montage 

recorder accepts raster images only. Vector graphics image formats are being rasterized at 

a pre-processing stage before they are mapped on to the film area. This facility is local, 

accepts among other formats Encapsulated PostScript files, and is sufficient for most of our 

needs.

The Dicomed D48C, however, offers the additional advantage of vector plotting, thus 

enabling us to explore the ‘additive’ behaviour of the photographic film. This equipment is 

attached to a complex of three CONVEX 220 supercomputers (under a dialect of the UNIX 

operating system) located at ULCC and is accessed via the X.25 network links of JANET. 

Here the appropriate device driver had to be written. It was implemented in the FORTRAN 

programming language in order to link to the DIMFILM library of subroutines. In order to 

avoid possible corruptions of the image files while being transmitted via the network links, 

and in order to achieve a file description independent of the character set differences 

between the computers used (ASCII vs. EBCDIC) it was essential that image files were 

converted in order to use only printable characters (i.e. alphanumeric) instead of their 

original pure binary form.

Another manipulation to the image files was the arbitrary change of their pixel resolution 

in order to match the particulars of a hardware viewport. This involved the use of 

interpolation techniques that enabled the transfer from the (orthogonal) grid of square pixels 

of the model display device to any other orthogonal grid of arbitrary density (pixel 

resolution) and aspect ratio (i.e. rectangular pixels). It is anticipated that such 

transformations may alter details of the original image, since a simplistic linear interpolation 

model is used [Tsoubelis 1985]. Nevertheless, such a facility has proved to be convenient 

while previewing a great number of archived images.
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Chapter 2 Modelling in computer graphics

2.1 Introduction

The first phase in any computer graphics application, as mentioned in the previous chapter, 

is modelling, where the description of what needs to be visualised is constructed. The model 

description is then properly encoded (e.g. in a data file) in order to provide all the necessary 

information for the subsequent phase of visualisation.

In this chapter we will take an overview of the most frequently used approaches to 

modelling that have been implemented in the field of computer graphics. First, we will 

present and discuss the constituent parts of a model in terms of both necessary and optional 

characteristics. Then, we will discuss the two basic categories of model in the computer 

graphics domain. Finally, we will present a number of approaches to modelling that are 

considered representative in terms of their underlying philosophy, main characteristics, 

application areas, strengths and weaknesses.

However, before commencing our presentation of the various issues regarding modelling, 

it is essential that we give some definitions about the terminology that we will be using, in 

order to establish a common understanding with the reader. This will clarify the use of terms 

that, although they have been widely used in the relevant bibliography, often have been 

assigned a variety of different meanings. All these terms relate to the word model and our 

interpretations will be given in the following section.

2.2 Terminology - definitions

Since the aim of modelling in computer graphics is to construct the description of the 

required scene, and the most prominent feature is the shape of the objects in the scene, we 

will start our definitions with that of the geometrical object.

36



• Geometrical object. A primitive entity, such as a point, a line segment, a planar polygon, 

a circle, an ellipsoid, a cone, a cylinder, etc., as defined and used in all common geometry 

textbooks such as Euclid’s Elements [Papanickolaou 1978].

• Object. The constituent parts of a scene. An intuitive term to describe a logical entity in 

the computer graphics scene (e.g. a ball, a table). With a few exceptions that will be 

discussed later in this chapter, we assume that a scene consists of objects, and that any 

object can be decomposed into a combination of geometrical objects that we will also call 

primitives.

• Surface. The locus of points that have a common property. For example, the surface of 

sphere is the set of all points in three-dimensional space that are an equal distance away 

from a fixed centre point. In some cases, a surface is also considered as the boundaries 

between an object and its surrounding space.

• Solid object. The volume of space that is enclosed by a ‘closed’ surface. We assume that 

the surface is also part of the solid object.

• Scene model or, model. The data describing the computer graphics scene. These include 

information about the geometrical properties of the constituent objects such as shape, size, 

and location in the scene. Additionally, they may include information about the colour 

properties of the materials that these objects are assumed to be made of, such as reflection 

and refraction parameters of all object surfaces, and any other supplementary data 

necessary for the visualisation algorithms.

• Colour model. The set of rules that permits the description of colour. The set of all 

perceivable colours define the colour space. There are a few colour models that are 

widely accepted. Depending on the colour model used a different subset of the colour 

space can be described.

• Shading model. The set of rules that permits the analytical description of optical 

phenomena. Optics define colour in a dual nature; electromagnetic wave, and quantum.
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As a wave, colour is determined by a spectrum and as a quantum it is defined by a ray. 

For the purpose of computer graphics we also use the concept of perception from theories 

of psychology. A distillation of all these theories has resulted into a variety of shading 

models that describe the interaction of colour with matter.

• Modelling. The process of determining all the data needed to construct the model of a 

particular scene.

2.3 Characteristics of modelling

Using the above terminology, the purpose of modelling in computer graphics is twofold; 

first, it is the process of describing the necessary primitive geometrical objects and second, 

it is the description of the way these geometrical objects should be combined together in 

order to construct the required scene.

The process of defining the model of an object, however, is not straightforward. There are 

several types of objects that do not have a unique model. There are two important reasons; 

the first is that the model may not be an exact description of the object but an 

approximation to it; and the second reason is that different combinations of primitive 

geometrical objects may be used to construct the same object in a scene. Consequently, 

various degrees of approximation will result into different models of the same object.

Choosing therefore, a particular modelling approach entails considerations regarding the 

required degree of approximation to the object, and the type of primitives that a particular 

visualisation algorithm can handle. This choice of the appropriate degree of approximation 

(if any), the type of primitives and the suitability of their combination can be judged against 

a set of general criteria. Such criteria should not be treated as compulsory features that any 

modelling approach should conform with, but as a set of properties that very often aid the 

designer and improve the speed of visualisation. The following list presents some of the 

most frequently used criteria:
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• Generality. A modelling approach should be generic. As such, similar objects should 

generate similar model descriptions. Similar objects are therefore described once, say in 

their SETUP position, and the scene’s model is then constructed by instantiations of that 

generic forms. For example, all ‘boxes’ in a scene may be described (i.e. modelled) as 

parallepipeds and their description should differ only in the values of the parameters 

describing the boxes’ exact dimensions and surface properties.

• Controllability. A modelling technique should offer as many degrees of freedom as 

possible. Such a property will enable the designer to adjust the modelled shapes both 

globally and locally [Barsky 1981; Forsey et al. 1988]. This property complements the 

property of generality.

• Invariance. By applying a transformation (such as those introduced in the first chapter) 

to specific points (usually possible centres of symmetry or other control points) the whole 

shape should be transformed. Such a property would significantly simplify and enhance 

generality and controllability and can be achieved via appropriate SETUP to ACTUAL 

transformation matrices. There are transformations, however, for which this property is 

not ‘always valid’, and where ‘intuitive’ adjustments are necessary. Take, for example, 

the application of Minkowski operators on polygons detailed in chapter four. The M- 

difference does not always produce a polygon, and a post-processing stage needs to be 

followed after the M-difference operation.

• Continuity. A surface should be (at least) geometrically and/or analytically continuous 

[Barsky 1984]. Although it is not essential, such a property would ease the calculations 

needed for the determination of the vector perpendicular to any point on the surface (i.e. 

the normal vector). Moreover, since most of the visualisation algorithms are based on the 

assumption of surface continuity, discontinuous surfaces should be treated with care.

• Bounding volume information. Information about volumes bounding the modelled object 

should be easy to calculate. The tighter a bounding volume (or extent, or enclosure) fits 

the modelled object, the better such spatial information can be exploited [Whitted 1980]. 

Such an observation aims at improving the efficiency of various visualisation algorithms.

i
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In certain implementations of such bounding volume acceleration techniques, the process 

of visualisation may be improved by an order of magnitude or more. [Weghorst et al. 

1984; Kay et al. 1986; Arvo et a l 1989].

• Ease o f computation. This is an all encompassing title for all the issues regarding the 

difficulties encountered during the implementation of any modelling approach. Relevant 

issues are the exploitation of recursiveness [Meagher 1982] and parallelism [Dippe et al. 

1984; Kobayashi et al. 1987; Nishimura et al. 1983], the re-usability of pre-calculated 

values and the exploitation of bounding volume information [Nemoto et al. 1986].

It can be observed that the above list only covers issues that refer to the geometry of the 

models. However, in most applications, the model also contains information about the colour 

properties of the surfaces of the modelled objects; such information is necessary for the 

rendering algorithm during the visualisation phase.

For a typical computer graphics application, where ‘photorealism’ is a high priority, the 

rendering algorithm should simulate a number of optical phenomena such as specular and 

diffuse reflection, shadows, penumbra, ambient illumination, light refraction, radiosity, etc. 

The set of optical phenomena that a computer graphics application will simulate constructs 

a shading model that the rendering algorithm will have to implement. Depending on the 

complexity of the shading model and the colour model used, a number of different 

parameters will have to be defined for all the surfaces of the modelled objects.

For example, the colour of a surface may be defined by the proportion of the light this 

surface reflects. In order to simplify the rendering algorithm, these proportions are not 

measured in all frequencies of visible light but they are sampled in a few frequencies only, 

usually the primary components of a convenient colour model. For the RGB colour model, 

the proportion of reflected over incident light on a particular surface will be measured for 

the pure red, green and blue light only. These proportions will normally depend on the 

direction of the incident light and the viewing direction. With a few exceptions found
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elsewhere,1 such details are roughly approximated since they put a heavy strain on the 

computational demands of the computer system. Other parameters involved in the 

implementation of a shading model may include the shine, gloss, degree o f transparency, 

index o f refraction, colour and intensity of the ambient light etc.

2.4 The nature of models

So far we have seen that the constituent parts of a model give a static description of the 

geometrical and optical properties of the modelled object. Furthermore, we implicitly made 

the assumption that we know exactly the shapes and colours of the modelled objects. 

However, these observations may not be true in all applications and for all the objects we 

may need to model: there are objects like the sea waves, clouds or fire, that do not have a 

specific form (i.e. geometrical shape) and any instantiation of their appearance may suit our 

purpose. Moreover, there are objects that we cannot describe analytically, but we know a 

way (i.e. the procedures) to construct them. Apart from geometry, the optical properties (e.g. 

colour, reflection, transmission properties, etc.) of the surfaces of the modelled objects may 

also vary, as is the case of the textured surfaces of objects like marble, wood, textiles, etc.

Therefore, a more thorough investigation of the different types of objects and models is 

necessary. As a result, we will call an object deterministic or stochastic depending on the 

nature of its properties that describe its shape and its optical behaviour. With regard to a 

given property, an object will be called deterministic if this property’s value has to be 

uniquely determined (by a formula or process) and stochastic if its exact value is not 

important but an instantiation of it is sufficient for the application. With regard to models, 

we will call a model static if the data describing a particular property of an object are 

known to us, constrained or, constraint-based if the state of that property can be determined 

by a set of given constraints (e.g. gravity, geometrical locus, etc.) or procedural if the state 

of that property is not known but can be calculated via a known procedure.

1 The shading model of luminaire design software that determines the light flux distribution in three-dimensional 
space takes into account the exact physical properties of the light sources and the materials used for the appropriate 
reflectors [FiELD 1992; Ward 1994].
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In order to understand this binary classification of objects and models, we will present in 

this sections a few representative examples for each of the above categories. We will start 

with objects with a deterministic shape and examine the different types of models we can 

have. Then, we will look at stochastically shaped objects and their resulting models.

Deterministic objects

• Static model: a cube of given dimensions can be modelled as parallepiped. The only 

information we must include in the model is the length of its edges. Alternatively, the 

cube may be built by a set of polygonal facets and therefore information about its 

constituent vertices has to be included in the model.

• Constrained model: a sphere can be modelled as the locus of all points in 

three-dimensional space that are equidistant (i.e. the radius) from a given fixed point (i.e. 

the centre). Another more complex example would be the shape of a table-cloth covering 

an uneven surface. Here, the exact location of the table-cloth has to be calculated by the 

physical properties (physically-based modelling) of the cloth (i.e. weight, density, 

elasticity, etc.) and this information will be included in the model for the subsequent 

phase of visualisation. It follows that such information should be determined by applying 

the appropriate laws of physics (e.g. gravity). Physically-based modelling is already a 

recognised research area within computer graphics and the reader is referred to 

Terzopoulos’ [1989] inelastic (plasticine like) objects that get permanently deformed after 

a collision, or Barr’s [1989] chains that are affected by gravity forces.

• Procedural model: a finite cylinder is produced by intersecting an infinite cylinder with 

two half-spaces perpendicular to the cylinder’s axis. Here the emphasis is on the 

construction of the shape of the object by using surface generation procedures like that 

of extrusion, rotation, envelope, etc.

Stochastic objects

• Static model: a ‘close-up’ view of a rough surface (e.g. a wall). If we look from a 

distance, a wall looks like a flat surface which could be modelled by an appropriately 

shaped planar polygon. However, a ‘close-up’ view of a wall will reveal its roughness. 

But ‘anomalies’ on this wall surface are not distinguishable. Consequently, the model of 

such a rough surface need not be, and cannot be, an exact description of all the observed
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‘anomalies’. A random generation of a polygonal mesh that resembles a similar degree 

of roughness would therefore suffice to model this surface.

• Constrained model: a, for example, fractally produced ivy as it grew over a particular 

fence structure. The constraints here come from the interaction of gravity (the flower is 

unable to sustain its weight) and the geometry of the fence. Here the randomness of the 

object(s) will be simulated by pseudo-random number generators, therefore some control 

parameters (e.g. seed, magnitude, random proportion) have to be supplied. As a result, the 

main characteristics of an object will be determined by the constraints, but the details will 

be randomly chosen.

• Procedural model: the object produced by the random displacement of three-dimensional 

points from a given flat polygon. Another example would be the three-dimensional object 

that is produced by the rotation of the Mandelbrot Set with given parameters (i.e. initial 

values, threshold value) around its imaginary axis.

The following table (Table 2.1) summarises the above examples on a 2 by 3 matrix.

Objects
Models

Deterministic Stochastic

Static box -
parallepiped

wall -
random polygonal mesh

Constraint-based sphere -  
geometric locus

ivy -
controlled random growth

Procedural cylinder -
set theoretic operations

random object -  
random displacement

Table 2.1 Examples of the object -  model classification schema

The discrimination between constrained and procedural models of stochastic objects is 

somewhat analogous because procedural models imply the use of pseudo-random number 

generators that have to be controlled (i.e. constrained) by a set of defining parameters (e.g. 

seeds). Another difficulty that emerges from this classification arises from the observation 

that there may be more than one model for describing the same object. Consequently, the 

same deterministic object may have both constrained and static models. In the following 

example we will illustrate how the deterministic object ‘ring* (also called torus or, 

doughnut) may have models in all three categories (i.e. static, constrained, and procedural).
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A ring is defined by the formula (jc2 + y 2 + z 2 -  (a2 + b2))2 -  4 a 2(b2 -  z 2) = O.This 

formula will construct a static model of the ring. However, the locus of three-dimensional 

points that are equidistant from a given circle, will also define a ring. Such a model is 

constrained and is described as: {p eR3 | \\p -  circle || = c }. Furthermore, by revolving a circle 

around a circular trajectory we also define a ring. This model of a ring is procedural and 

consists of an accurate description of the construction process.

Following analogous steps, we can conceive a similar schema by examining shading models 

and the way light interacts with the surfaces of objects. For example, deterministic shading 

may result in static, constrained and procedural shading models.

• Static shading model: the colour of a surface is assumed to have a particular value 

irrespective of any illumination sources in the scene. This assumes a trivial shading model 

using fixed colours and is frequently used in applications where the number of available 

colours on the viewport is extremely small (e.g. VGA mode 18 offers 16 colours only).

• Constrained model: the colour of a surface is determined by its primary colour but is 

adjusted in order to simulate optical phenomena like diffuse and/or specular reflection, 

transparency, etc. Shading models like the Gouraud and Phong shading belong to this 

category and will be presented in detail in the next chapter.

• Procedural model: the colour of a surface is determined by the mapping of another image 

(usually in the form of a bitmap) onto that surface. Another example of a procedural 

model for shading is the introduction of random colour perturbation.

In an analogous way, stochastic shading describes shading models that accept as an input 

parameter a (pseudo-) randomly chosen primary colour. This type of shading does not 

produce ‘intuitive’ results. An example of a stochastic shading model is, in certain 

circumstances, that of false colouring.
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2.5 Approaches to geometrical modelling

In this section, we will take an overview of the existing approaches to modelling, that have 

been implemented in the field of computer graphics. For each one, apart from the 

description of its main characteristics, we will discuss its advantages and disadvantages, and 

we will categorize it following the previously described model classification.

In geometry, there are two basic methods for describing a curve or a surface, namely 

classification and enumeration. With both methods the underlying assumption is that an 

object (curve, surface, etc.) is represented by the set of it constituent points, (the locus of 

which describe the surface). Therefore, the task of defining a shape, is expressed as the task 

of determining the set of points (in the appropriate n-dimensional space) that the particular 

object consists of.

As a result, in the classification method, the object’s constituent points are determined by

an appropriate function (F(p)), that for a given point p  determines whether that particular

point belongs to the desired object or not. According to Hanrahan [1989] the description of

an object is determined by a point-membership classification function (PMCF). This is either

a formula or a procedure that decides whether a certain point (input) is inside, outside or on

the surface of the required object (output) :

{< 0 inside 
= 0 on 
> 0 outside

However, since there are objects where the meaning of ‘inside’ and ‘outside’ is not well 

defined, we would suggest a better definition: in the classification category, there exists a 

mathematical test (T) — which may be either a formula or a procedure — that the locus 

of the points p  that evaluate the defining test function Tip) to zero, define the required 

object (usually a surface if no degeneracies occur). Since a point is not known to belong to 

an object unless the above test has been performed, objects generated with this method are 

also called implicit. If the above test is expressed as a mathematical function, then according 

to the description of the classification function T, objects can be called algebraic if T  is 

expressed by polynomials (of a finite degree) only, and if T  is a differentiable (i.e. smooth) 

function, they are called analytic.
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For example, the perimeter of a circle of radius one unit in two-dimensional space may be 

defined analytically by the classification test: (T(p) =0) = (x2 +y2 -1 = 0 ) , where x  and y  

denote the circle’s coordinates using a two-dimensional Cartesian coordinate system 

imposed on the two-dimensional space. In this example the analytic function x 2 + y 2 -  1 

is used to determine the test (T(p) =0) that will distinguish all points that evaluate it to zero.

The second mathematical method for object description, namely enumeration, assumes that 

all the constituent points of an object can be generated by mapping to them a set of 

parameters. Hence this method is also called explicit, or parametric. Such an assumption 

implies that there exist both a set of input parameters with certain values (or range of 

values) and an appropriate mapping function (or functions) that calculates the coordinates 

of all the points of the required object. In a more precise manner, a three-dimensional 

surface will take the form: (x(u,v),y(u,v),z(u,v)) where jc, y  and z  are independent 

mapping functions of the parameters u and v. Therefore, knowledge of the mapping 

function and of the ranges of the values of the input parameters is sufficient for us to 

determine an object.

For example, the perimeter of a circle of radius one unit, in two-dimensional space, may 

be defined explicitly by one input parameter <p and the following functions:

(jc(q>) , y(q>)) s (cos(q>) , sin(<p)) when <p e  [0,2tt).

From the above example, it becomes obvious that both methods may be used to determine 

the same object. However, as we will see in the next chapters, there are objects that can be 

described by a test function (i.e. classification) but they may be too complex to be described 

by their equivalent enumeration function. The choice of the appropriateness of each method 

may be judged against the set of criteria we presented earlier, and the particular 

requirements of the application.

In the next subsections, we will present the most significant modelling approaches in 

computer graphics. They will be classified according to the category in which they are most 

often used (i.e. enumeration, classification). We will begin with the enumeration category 

and their main representative interpolation. Then, representatives of the classification
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category will follow starting with polygonal mesh. Then, the approaches of analytic 

functions and that of volumetric arrays will be presented. Finally, another pair of 

approaches, namely constructive solid geometry and procedurally defined surfaces, that are 

used to combine object descriptions from any other modelling approach in order to build 

more complex ones, will be discussed.

2.5.1 Interpolation

Interpolation methods have been studied extensively for many purposes. Application areas 

includes image processing, remote sensing, ship building, metallurgy, etc. Depending on the 

requirements and the assumptions of a given problem, a great variety of interpolation 

techniques exist. Apostolatos [1981] discusses the fundamental mathematical theory behind 

Lagrange, Everett and Tschebychev interpolation techniques. One approach to the problem 

of interpolation that is identified with computer graphics is splines. It originated in the ship 

building industry, where one of the main tasks of the builders was to determine the 

curvature of metal arms that would connect together the basic skeleton of a ship.

With regard to splines, a typical interpolation problem in two dimensions is expressed as 

follows: given a sequence of control points (in two-dimensional space), define (a function 

that produces) a curve which passes through or nearby these points. It would be desirable 

for this function to have minimum curvature and be analytically continuous over the interval 

where the points are defined. In three-dimensional space, the equivalent of the control point 

sequence is a lattice arrangement called control grid and the required curve becomes a 

smooth surface that passes through or near that grid.

With regard to modelling in computer graphics, the interpolation problem is expressed in 

a slightly different manner. What is required is a shape (usually a continuous curve or 

surface) that needs to be approximated. Therefore, the user will have to determine the 

desired (enumeration) function that approximates the given shape. As a result, it is the user’s 

responsibility to define the appropriate control points (or grid) that, when interpolated, will 

determine the required function. The guessing of the appropriate control points is aided by 

the following:
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• The ability of creating surfaces by connecting together little patches (patchwork) 

[Coons 1964; Coons 1967; Forrest 1972].

• The extensive control that current interpolation techniques offer. Specifically, there is

o Local control by point displacement, where shape alterations may be achieved in 

small areas of the produced surface by displacing the nearest control point(s). This 

is the case of most spline techniques like B-splines [Barsky 1984], 

[Schoenberg 1946; Carry & Schoenberg 1947; Carry & Schoenberg 1966], Bezier 

splines [Bezier 1972; 1974; 1977], non-rational B-splines [Riesenfeld 1973], etc. 

o Local control by weight adjustment, where shape alterations of small areas of the 

produced surface may be achieved by the weight factor of the nearest control 

point(s). This is the case of rational B-splines [Versprille 1975; Tiller 1983]. 

o Local control by bias and tension, where local alterations of the degree of bias (or 

symmetry) and the amount of symmetric tension applied on a surface may be 

achieved by the adjustment of and 62 (bias, tension) of the Beta-splines [Barsky 

1981; Barsky et al. 1982; Barsky et al. 1983].

• Fast algorithms for evaluating splines like, for example, the Cox-deBoor [Cox 1972; 

deboor 1972] recursive algorithm.

• Customized types of splines that show specific properties. The main family of such splines 

was introduced by Catmull and Rom [1974], where the control points were replaced with 

(control) functions. The type of splines used, and the type of the control functions will 

predicate a set of properties on the resulting surface (or curve). Barry and Goldman [1988] 

showed how Lagrange interpolation polynomials can be used as control functions, and 

presented a recursive algorithm for their evaluation.

• Advanced spline editors that allow real time editing of spline curves and surfaces.

With this approach, a shape is described by a (interpolation) function, or a combination of 

more than one function (i.e. patchwork), together with the necessary parameters (i.e. the 

arrangement of the control points, and/or their weights, bias, tension, etc.). For example, a 

circle may be defined by a B-spline using as control points the comer and midpoints of the 

circle’s circumscribing square. Accordingly, in three dimensions, the corresponding sphere 

may be obtained by a B-spline and a control lattice as defined by the vertices and the 

midpoints of the sphere’s circumscribing cube.
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2.5.2 Polygonal mesh

Apart from functions, surfaces can be described using building blocks to construct them. 

Surfaces are approximated by a ‘patchwork’ of simple planar geometric objects namely, fla t 

polygons, or facets. The reason for classifying this approach under the ‘implicitly defined 

shapes’ category is that it is based on the assumption that a polygon is described implicitly; 

a polygon is assumed to be the locus of co-planar points that fall inside its edges.

This implies the existence of the appropriate point in polygon classification tests. Two such 

tests are the non-zero winding number rule and the even-odd rule and are presented in the 

[Postscript® 1987] reference manual. Both techniques assume that the vertices of the polygon 

have been named in such a way that there exist an order with which all vertices can be 

visited by a given algorithm. Assuming a two-dimensional space, according to the first 

technique, an infinite line that passes from the given point is (conceptually) drawn with any 

direction not parallel to any of the polygon’s edges. Then starting with a counter of zero, 

we add one ( 1 ) if an edge crossed that line from left to right, according to our pre­

determined naming convention, and subtract one for opposite direction (right to left) 

intersections. If the final count is zero the given point is outside the polygon else, inside. 

In we illustrate how this rule is applied for the points p  and q and canonical pentagon and 

a five pointed star shaped polygon with its edges intersecting each other respectively.

*
¥ \

INSIDE INSIDE

Figure 2.1 The non zero winding number rule
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According to the second test, (the odd-even rule), an infinite line is again drawn over the 

point in question. Then we count the number of times that this line intersects with the 

polygon’s edges. If the total is an odd number the point lies inside the polygon else, it is 

outside, illustrates how we apply this rule for the same objects as we did in the previous 

example (). Note here that the simple case of the convex pentagon gives the same results, 

however, the case of the five pointed star polygon does not.

k
10 \/  \

OUTSIDE

Figure 2.2 The even-odd rule

Invoking the above point-in-polygon tests on flat polygons in three-dimensional space, 

however, poses an additional challenge; the transformation into the equivalent two- 

dimensional problem. This entails the determination and use of a coordinate system that has 

(say) its X-Y  plane coincident with that of the polygon, and its origin coincident with that 

of the point in question.

For our convenience, and without affecting the applicability of the polygonal mesh approach, 

we found it effective to make the following two assumptions. The first regards the use of 

convex planar polygons only, since the use of concave ones complicates the implementation 

of the point-in-polygon test. If it is necessary to use concave ones we decompose them into 

a set (patchwork) of smaller convex ones.

The second assumption regards information about the orientation (i.e. the ‘front’ and the 

‘back’ face) of such a facet. Such information is embedded in the model by assuming a 

consistent way of ordering the vertices of all the facets. For example, the ‘front’ (or outside)
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face of a polygon is described by noting its edges counterclockwise. The exact ordering is 

not important as long as it is consistent in all the facets of the model. This ordering will 

enable the visualisation algorithms to decide whether a surface is visible or not and 

consequently ease, or possibly avoid, the determination of the point-in-polygon test.

Polygonal mesh models can be visualised extremely quickly (rates of thousands of polygons 

per second are common) because of the simplicity of the building primitive used (polygons). 

Moreover, many intersection finding and rendering algorithms have been translated into 

microcode and put into the hardware (VLSI chips) thus further increasing visualisation 

speeds.

But polygonal mesh has some drawbacks as well:

• The approximation of shapes with high curvature necessitates the use of large numbers 

of tiny polygons, thus considerably increasing the size of the model description and 

implying the need for large databases to store them.

• Since an object is approximated by a patchwork of planar polygons, the notion of 

curvature is lost. Therefore, it is the responsibility of the visualisation (rendering mainly) 

process to remedy this. Algorithms like intensity interpolation shading [Gouraud 1971] 

and normal vector interpolation shading [Phong 1975] reduce but do not eliminate the 

problem.

• The joints of the patches (polygons) do not produce pleasing images (i.e. smooth 

surfaces). As a result, a jagged polygonal silhouette appears.

Figure 2.3 Various degrees of approximating a sphere
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Despite the above mentioned drawbacks, polygonal mesh is the most common approach used 

for modelling in computer graphics because of its simplicity, its visualisation speeds and its 

capability to approximate (to a certain extent) any conceivable surface.

As Figure 2.3 shows, the closer to the required surface we approximate, the more facets we 

need to patch together. In Figure 2.3 we see three different approximations to a sphere using 

the polygonal mesh approach. Starting from the coarser one, we used 100, 400 and 900 

polygonal facets.

2.5.3 Analytic functions

The use of analytical functions as a modelling approach is the second most significant (after 

the polygonal mesh) representative of the classification category. Recalling our definitions, 

objects are defined with a point-membership classification test which is usually in the form T{p) =0 

for a function 71(p), VpeR". Such a function T  may be an algebraic function such as a 

quadric, quartic, superellipsoid, superhyperboloid etc. In general, an algebraic surface in 

three dimensions is represented by the following function:

TQc,yjz) = E E E am  x 1 y J z k
1=0 j *0 k*0

where i , j , k e Z, V i = 0 y=0,. . . ,m, k= 0f...,n, and its degree is defined to equal to the 

sum l+m+n. For this function T, we can generate a point membership classification test as 

(Eq. 2.1) shows.

T(x,y,z) = 0 (Eq. 2.1)

The following table (Table 2.2) shows some examples of the function tests that describe the 

most common three-dimensional geometrical objects.
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sphere x 2 + y 2 + z2 -  1 = 0

cylinder x 2 + y 2 -  1 = 0

cone x 2 +y2 -  z 2 = 0

paraboloid x 2 + y 2 + z = 0

hyperboloid x 2 + y 2 -  z2 + 1 = 0

torus (x2 + y 2 + z 2 -  (a2 + b2))2 -  4 a 2(b2 -  z 2)

Table 2.2 Analytical function tests for simple geometrical objects

The use of function tests for the definition of an object (surface, curve, etc.) enables us to 

produce families of similar objects according to the following observation. Given a function, 

say / ,  the test that can be generated by the equation flp) =0 will define a set of points 

p  eR3 in (say) the three-dimensional space that will construct an object. However, it is not 

necessary that the second part of this test is always set to zero (0). A more general 

definition would be:

flp )= s, s e R (Eq. 2.2)

Such a test is equivalent to the f lp ) -5  = 0 ,  SEE. Therefore, by ‘off-setting* the initial 

function /  we may generate an infinite number of ‘similar’ tests. Thus for every possible 

value of the real parameter s  a new object (i.e. set of points) is produced. As a result, the 

same function /  will produce a family of similar objects by adjusting the variable s  as 

equation (Eq. 2.2) shows. Following the notation of equation (Eq. 2.2), for the rest of this 

document whenever the parameter s  is not mentioned it will be implied that the defining 

function /  assumes that s=0 and the resulting object is created by the point-membership 

classification test: o.

Algebraic surfaces that intersect each other may also be blended. Take, for example, two 

surfaces defined by the functions / j ,  f 2 and the families that they generate =sx , f 2 =s2 for 

all the possible real values of s t and s2. The blending function g  that blends between the 

surfaces / j  and f 2 is denoted by g(fv f 2) = g(sl t s2) and is expressed as a function of the 

parameters Sj and s2. Hoffman and Hopcroft [1985] suggest that a desirable blending 

function should intersect both surfaces / j  and f2, be a tangent to these surfaces along the
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curve of their intersection and be smooth between these curves. Hanrahan [1989], suggests 

the ellipse as an suitable blending function:

(Sj-fl)2 (s2-b)2 

a 2
g(sv s2) = -----—  +  1

where a ,b  are the values of sv  s2 when f x intersects f 2.

Another way of combining intersecting algebraic surfaces is by using homotopies like:

h(ft , f 2) = z V , + ( z - l f / 2

for all the real values of z e  [0 .1 ] .

Splines may also be seen as analytic surfaces, but since it is the control points that 

determine the functions, we prefer to classify them in the enumeration definition type.

Other analytic surfaces are the superconics and the superquadrics. Blinn [1982], has used 

blobs made of superimposed density distributions like:

Ax,y,z) = E b. exp~d{ -  T  
[=0

where b( is a weight assigned to a nucleus point i , d. is the distance of the general input 

point (x ,y ,z ) from the nucleus i , and T  is an arbitrary threshold value assigned by the 

designer in order to control the extent of the generated blob.

2.5.4 Volumetric arrays

Defining the shape of an object can also be achieved by dividing space in small units and 

then describing what exists in each unit. Specifically, in three dimensions, an object is 

assumed to be surrounded by a cube. This cube is subdivided into n x n x n subcubes of 

equal size called voxels. Each voxel, is then assigned a number that represents the proportion 

of the voxel’s space that is filled with points from the object. That number is named the 

density of the space that a voxel contains or, in short, the voxel’s density.
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Thus the description of an object becomes a three-dimensional array that represents the 

object in terms of density values. In the literature, this modelling approach has been 

misleadingly named by several authors as N-dimensional arrays, because of the software 

programming conventions for declaring arrays (e.g. Array[n][ii][n]).

It follows that the larger the number n (or sampling rate) is, the better the approximation 

to the object’s shape becomes. On the other hand, however, the higher the sampling rate, 

the larger the description of the object becomes. Moreover, the process of volume 

subdivision becomes significantly longer as well. This is particularly important in medical 

imaging applications where a patient, injected with radioactive or other toxic substances, has 

to stand still for a lengthy period of time (usually one to two hours) in order for parts of the 

patient’s body to be scanned. Therefore a trade-off between the sampling rate and the quality 

of the resulted image has to take place and this is usually resolved with the scanned model 

being sampled at 256 x 256 x 256 voxels.

In general, volumetric arrays are treated as density functions and visualisation algorithms 

are used to depict iso-surfaces. But in some cases, certain details may be hidden inside the 

visualised iso-surfaces. For this reason, cross-sections at given angles of intersection should 

also be produced by using interpolation techniques. In general, a set of parallel planes is 

intersected (at a given orientation) with the complete volumetric array, in order to produce 

another volumetric array description of the same object. In this way, different images of the 

same part of the human body may be superimposed to each other in order to highlight their 

differences and enable further analysis of the visualised object.

For the purpose of interpolation we must therefore examine the range of permissible values 

we may use to represent densities. In the most simple case, we use two values only; the 

voxel either intersects with the object, denoted by 1, or it does not and we assume a density 

value of 0. In a typical medical imaging application, however, the density values may take 

any real value in the continuum [ 0 , 1 ] .  This variety of density values is used to identify 

different matters in the human body (e.g. blood, bone, tissues, blood vessels).
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During visualisation the necessary interpolation technique will be adjusted according to the 

range of permissible density values. For example, if we use binary density values (either 1 

or 0) then the density values that after interpolation are above 0.5 ( > 0.5 ) must be changed 

to 1. Similarly, density values found below 0.5 ( < 0.5 ) are changed to 0.

Density values may also be used to effect the shading process (i.e. colour-coding). In this 

way, areas of interest (denoted by a range of density values) may be rendered with a 

different colour in order to enhance the contrast of the resulting image. These ranges of 

similar density values are then called to act as thresholds.

In the simple case of a binary set of permissible density values, various data compression 

schemata may also be used, thus allowing high sampling rates of 1024 x 1024 x 1024 to be 

implemented at reasonable memory demands. The most common method for such data 

compression is the octree encoding [Meagher 1982; Doctor et al. 1981]. According to this 

technique, a region of space is called homogenous when it contains the same material 

characterised by the unique threshold value,2 and heterogenous otherwise.

The starting assumption for this data compression algorithm is that a cubical shaped volume 

of space encompasses the whole object. This cubical space is usually aligned along the axes 

of an orthogonal coordinate system. If this cube is heterogenous, it is subdivided along the 

axes into eight equally sized subcubes called octants. The same division process is 

recursively applied to all heterogenous octants. The subdivision ends when the size of the 

produced octants becomes smaller than a certain limit (i.e. the size of the voxel) or when 

all octants are homogenous.

The results of these subdivisions are encoded into a data structure called octree, which is 

the compressed model of the object. This is a tree where each node may have up to eight 

children. Child expansion implies heterogenous octants (nodes). Therefore, the terminal 

nodes (homogenous voxels) are used to hold the density value of their corresponding area.

2
Density values are coded in relation to the single threshold value (either above or below).
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2.5.5 Constructive solid geometry

This approach is used to construct objects by performing operations from ‘set theory’ on a 

collection of simple geometrical objects that are usually called primitives. The main 

operators used are the union (U), intersection (PI) and complement ( - ) .  The primitive 

objects are treated as sets of points and the aim of this approach is to build the scene, using 

the above operators.

For example, a hollow sphere is created by subtracting a solid sphere (i.e. taking the 

intersection of the complement) from a another concentric solid sphere but with larger 

radius. Another more complex example can be seen in Plate 1, where the rear suspension 

of a car has been modelled using only three primitive geometrical objects; the halfspace, the 

infinite cylinder and the infinite helix.

The combinations of functions required to generate an object can be represented in the form 

of a binary tree since all operators are either binary (i.e. union, intersection) or unary (i.e. 

complement). This building tree, therefore, has all its non terminal nodes holding set 

operators and the terminal ones holding sets of points corresponding to the primitives or 

their complements. This method may be used recursively, therefore primitive objects can 

become objects that have also been generated using this approach, based on other simpler 

primitives. The model description of an object using constructive solid geometry would 

therefore consist of the building tree and the description of the primitives.

2.5.6 Procedurally defined surfaces

Another common approach to defining objects is to determine a skeleton or an outline of 

them, and apply to them a procedure such as extrusion, rotation, sweeping etc. Extrusion 

is the method of assigning an extra dimension to a given object. Usually, a two-dimensional 

object is being used as the outline of the extruded three-dimensional one. For example, 

Figure 2.4 shows the outline and the extruded object that represents the letter C. Observe 

here that the outline of the object (i.e. letter C) is a concave polygon that was broken up 

into 18 convex facets. An extension to extrusion is the translational sweeps where a planar

57



curve is translated along a straight axis to produce a surface. By altering the radius of the 

curve while translating it, or, by using non straight axes for the sweeps a more general 

method is constructed.

Figure 2.4 The outline and the extruded letter C

Another general method is the production of the generalized cylinder. Its surface is defined 

by sweeping a planar curve along a trajectory in three-dimensional space. The location, size 

and orientation of the curve, in relation to the trajectory need to be determined. Moreover, 

by translating three-dimensional objects along a three-dimensional trajectory even more 

complex surfaces are defined [Faux et al 1979].

Figure 2.5 A teapot
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Figure 2.5 shows a teapot that was generated by rotations and translational sweeps. The 

body of the teapot was produced as the body of revolution of given outline, while the neck 

and the handle as translational sweeps along the two-dimensional trajectories as shown in 

Figure 2.6.

Figure 2.6 The major axes of the body, neck and handle of the teapot

Surfaces (bodies) o f revolution are another type of procedurally defined surfaces. Here, a 

shape is defined as the envelope produced by a curve which is rotated around an axis. 

Methods like strip trees [Kajiya 1983] and stacked cones [Bier 1983] are used to manipulate 

these shapes.

Wijk [1985] studied shapes that had been defined by sweeping spheres. The method of 

polyspheres [Pickover 1989] has also been used extensively. According to Pickover a 

polysphere is "n spherical surfaces at given centres with specified radii". Therefore, the 

problem of tracing a sphere that moves along a certain trajectory may be translated into 

determining the union of space defined by spheres centred along that trajectory. The spacing 

of the spheres will determine the accuracy of the representation. We believe that the 

polysphere method may be expanded to model surfaces produced by sweeping other 

geometric objects as well. Plate 2 shows an object produced by the method of polyspheres.
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2.6 Discussion

The classification of each modelling approach as static, constrained or procedural, was 

intentionally avoided since these approaches can be used to produce more than one type of 

model. For example, the approach of polyspheres may be embedded in a visualisation 

algorithm and the model will become the description of a procedure that needs to be used 

to construct an object (procedural model). Alternatively, the polyspheres approach may be 

used as the basis of a triangulation process to generate a polygonal mesh, hence a static 

model.

However, despite the above mentioned difficulty of classification, such a schema provides 

us with a framework for evaluating modelling approaches in computer graphics. This will 

help us understand the underlying principles behind the various modelling techniques.

For example, as we will see later, in chapter four, there exist a number of different 

techniques in literature that all have the same basis, namely the generation of iso-surfaces. 

All these techniques are presented in the literature as implicit, therefore, in our classification, 

they are constrained-based. But there are some details which we should observe with greater 

attention. These relate to the actual form of data that feed the visualisation algorithms, which 

in our definitions is the model of the scene. And in many cases what is provided for 

visualisation is a polygonal mesh that approximates to the required iso-surface, thence a 

static modelling approach.

But also the rest of these techniques, that do not use polygonal meshes as their intermediate 

stage, are still not free from false claims. A large majority of these techniques use splines 

or other similar analytic functions in order to approximate to the required surfaces, thence 

they are static modelling approaches.

The observation we make is very subtle but it clearly changes the perspective for assessing 

and classifying modelling approaches. The most effective argument, counter to our claim, 

that we can construct would be that: ‘a technique that visualises implicit surfaces should 

belong to the constrained category of modelling’. In other words, where do we give
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emphasis: to the type of the surface we intend to visualise or, in the actual form of data that 

are supplied to the visualisation algorithm?

We believe that it is the structures of data for describing an object that determine the nature 

of a modelling approach. This is consistent with the rest of our definitions and also agrees 

with a major segment of the literature. Besides, what we will eventually visualise will be 

a representation of the data structures that are supplied to the visualisation algorithm, which 

would approximate to the required object. As a result, the most accurate way to classify a 

modelling approach is to examine the visualisation approach that it intended to be paired 

with. This will shed light onto the nature of the data that will eventually drive the 

visualisation algorithm.

So, in the next chapter we will present the most commonly used visualisation techniques and 

examine the type of input data each of these techniques operates on. Then, we will present 

our own research which is the construction of new modelling approach that clearly belongs 

to the constrained-based category of both deterministic and stochastic objects.

The approach we propose in this dissertation uses a point-membership classification test to 

define objects. This test, which we will also call the defining test, will be used to determine 

a surface by visualising all points that validate it. We concentrate our efforts to construct 

a general test that will enable the generation of ‘families’ of implicit surfaces. To achieve 

this generality we parameterise this test appropriately.

Moreover, in order to demonstrate the constrained-based nature of this modelling approach, 

we will describe surfaces that are too complex or impossible to describe analytically. The 

modelling approach that we propose is based on the Euclidean distance between points. We 

extend the definition of the Euclidean distance in order to assign a meaning in the distance 

between two geometrical objects including points, line segments, cylinders. In this way, the 

models we will generate (through parameterisation of the defining test) cannot be described 

analytically but, as the following chapters demonstrate, can be visualised. The visualisation 

algorithms also proposed here, do not use convex polygons or similar surface descriptions, 

but directly apply the defining test in order to detect and depict the necessary points.
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This way of defining shapes is not a new one; actually it was one of the first methods ever 

used in mathematics. Let us take a simple two-dimensional object, say, a circle. Its 

definition, taken from a mechanical method of construction, is ‘the locus of points that are 

equidistant from a given point’. Similarly, objects like ellipses, parabolas, and hyperbolas 

were also defined by this distance-based approach. As more complex objects emerged from 

the use of more complicated distance-based constraints, their conceptualisation became 

impossible. This led to the introduction of the analytical object descriptions which is today 

the main method for object definition and analysis.

Computer graphics, however, as we shall illustrate in this dissertation, offers a very powerful 

way for studying geometrical objects in this ancient way. This is achieved by visualising the 

object’s projection onto the plane (or three-dimensional volume) of a viewport. The 

additional dimensions of the object, if any, can be conceptualised by the shades that are 

produced when the object is illuminated, and by the additional animation aids that enable 

the movement (rotation, translation etc.) of the object in any directions required.
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Chapter 3 Current visualisation techniques

3.1 Introduction

In this chapter, we will present the tools that are commonly used for the transformation of 

models into images. Following the notation that we introduced in the first chapter, depicted 

in Figure 1.4, we assume that all the objects in a scene are described at their ACTUAL 

position using the ABSOLUTE Cartesian coordinate system. Since during modelling it may 

be proved more convenient to use the objects’ SETUP positions, we assume that the 

appropriate transformation matrices for the SETUP to ACTUAL position of every object and 

the inverse matrices are also provided. This information, together with all the data necessary 

for the realisation of the chosen shading model, will become the input to the visualisation 

phase of a typical computer graphics application.

In a similar fashion to modelling, there are a number of different visualisation approaches 

currently in use, all of which have some advantages and disadvantages over the rest. Most 

of them have been designed to match a particular modelling approach but ‘cross- 

combinations’ between modelling and visualisation algorithms have also been tried.

Despite the diversity of the visualisation approaches, as the following sections will illustrate, 

their underlying functionality consists of the following five stages (Figure 3.1); clipping the 

scene inside the visible area, projecting it onto the two-dimensional WINDOW system, 

removing the hidden lines and surfaces to determine the surfaces that are visible by the 

current observer, shading the visible surfaces according to the chosen shading model and, 

finally, mapping the image from the WINDOW system to the VIEWPORT system (of a real 

or model viewport device). All five stages are not necessarily explicit in all the visualisation 

approaches we will present. Moreover the order in which they take place in a particular 

visualisation algorithm need not be strictly sequential but some stages may occur 

concurrently.
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In this chapter we will present the three the most frequently used visualisation approaches; 

polygonal mesh, octree and ray tracing. The polygonal mesh, as its name reveals, is 

optimized to handle objects that have been modelled with the polygonal mesh modelling 

approach. The octree visualisation algorithm is mainly used in conjunction with the 

analytical functions, as well as the constructive solid geometry, other procedurally defined 

models, and the volumetric arrays modelling approach.

Ray tracing is mainly used with models using analytical functions but it can be adapted to 

use almost any other modelling approach including the polygonal mesh, the constructive 

solid geometry and the n-dimensional arrays. The distinguishing difference between all three 

visualisation approaches is the manner that the five stages of visualisation (i.e. clipping, 

projection, hidden surface removal, shading and mapping) are implemented. In the following 

sections we will present for every visualisation approach the particular methods used in 

implementing all the above five stages.

3.2 Polygonal mesh

In the polygonal mesh visualisation approach, all five stages can be isolated and studied 

separately. They happen sequentially, although depending on the type of projection used, 

clipping may occur before (in perspective projection) or after (in orthographic projection) 

the projection stage. Therefore, we will first present the stage of projection before that of 

clipping. Unless otherwise stated, we assume that the scene is modelled in the three- 

dimensional space, using the ABSOLUTE coordinate system. Furthermore we assume that 

an observer has been introduced in the scene, and the scene model has been eventually 

transformed into the OBSERVER coordinate system. The eye of the observer is at the origin 

of the OBSERVER system and the direction of view is assumed to be along the negative 

z- axis. Finally we also assume that a number (one or more) of light sources have been 

introduced in the scene and the transformations from their corresponding LIGHT systems 

to the ABSOLUTE have also been determined.
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3.2.1 Projection

What the eye of the observer sees when looking at a three-dimensional scene is a projection 

of the vertices, lines and facets of the objects in the scene onto a view plane, which is 

assumed to be perpendicular to the line of sight. A projection is defined by a set of lines 

which we call the lines o f projection. The projection of a vertex onto a plane is the point 

of intersection of the plane with the unique line of projection which passes through the 

vertex. The projection of a line segment onto a plane is the line segment in the plane which 

joins the projections of its two end-points. The projection of a facet onto a plane is the 

polygon formed by the projection of each of its comer vertices joined in the same order. It 

is important to note that the sequence in which vertices, lines and facets are drawn may be 

critical; on some raster viewport devices such as the monitor of a computer, earlier 

determined vertices, lines and facets can be obscured by later over-drawing.

In the OBSERVER system the view plane is usually defined to be of the form z=  - d  (for 

some d > 0) -  a plane parallel to the x/y plane and perpendicular to the z- axis. Vertices are 

projected onto this plane by a transformation matrix that produces projected points with 

coordinates of the form (xp , yp , -d), where xp and yp depend upon the type of projection 

and on d , the fixed perpendicular distance of the view plane from the eye.

The obvious WINDOW system to choose has the x- and y- axes parallel to the x- and y- 

axes (respectively) of the OBSERVER system, with the origin on the OBSERVER z- axis 

at z = -d . Then any point vector on the view plane with the OBSERVED triplet of 

coordinates (xp , yp , -d )  has WINDOW coordinates (xp , yp). Of course we still have to 

calculate the values of xp and yp for every vertex in the model. As yet we have neither 

defined the position of the view plane (the value d), nor have we described the type of 

projection of three-dimensional space onto the plane. These requirements are closely related. 

In this chapter we will consider two possible projections, first the orthographic, which 

sometimes called the axonometric or orthogonal projection, and then the perspective 

projection.
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The orthographic projection

A parallel projection is characterised by having parallel lines of projection, and is a 

projection under which points in three-dimensional space are projected along a fixed 

direction onto any plane not parallel to those lines. The orthographic projection is a special 

case whereby the lines of projection are perpendicular to the plane (it is sometimes referred 

to simply as the parallel projection). We can choose the view plane to be any plane with 

normal vector along the line of sight (the line of projection). This means that we can take 

any plane parallel to the x/y plane of the OBSERVER system, and for simplicity we choose 

the plane through the origin, given by the equation z = 0. An OBSERVED vertex is thus 

projected onto the view plane by the simple expedient of setting its z coordinate to zero, and 

thus any two different points with OBSERVED coordinates (x , y , z) and (x , y  , z )  say 

(where z *  z ) ,  are projected onto the same point (jc , y , 0) on the view plane, and hence onto 

the point (x  , y) in the WINDOW system.

The perspective projection

The orthographic projection has the property that parallel lines in three-dimensional space 

are projected into parallel lines on the view plane. Although they have their uses in certain 

scientific and architectural applications, such views do look odd! Human comprehension of 

spatial position is based upon perspective. Hence our brains attempt to interpret orthographic 

figures as if they are perspective views. In order to achieve visual realism, it is essential to 

produce a projection which displays perspective phenomena -  that is, parallel lines should 

meet on the horizon, and an object should appear smaller as it moves away from the 

observer. The drawing-board methods devised by artists over the centuries are of some value 

to us, but the three-dimensional coordinate geometry introduced in chapter one furnishes us 

with a relatively straightforward technique for achieving this.

What is perspective vision?

To produce a perspective view we introduce a very simple definition of what we mean by 

vision. We imagine every visible point in space sending out a ray which enters the eye. 

Naturally the eye cannot see all of space, it is limited to a cone of rays which fall on the 

retina, the so-called cone o f vision, which is outlined by the dashed lines of Figure 3.2. 

These rays are the lines of projection. The axis of the cone is called the direction o f vision
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(or the straight-ahead ray). In what follows, we assume that all coordinates relate to the 

OBSERVER right-handed coordinate system, with the eye at the origin and the straight­

ahead ray identified with the negative z- axis.

p '= (x ',y ',-d )

* P=(x ,y , z )  

straight ahead ray

d -----------------------------1

Figure 3.2 The cone of vision

We place the view plane (which we call the perspective plane in this special case) 

perpendicular to the axis of the cone of vision at a distance d  from the eye (that is, the plane 

z = -d ). In order to form the perspective projection we mark the points of intersection of 

each ray with this plane. Since there is an infinity of such rays, this appears to be an 

impossible task. Actually the problem is not that great because we need only consider the 

rays which emanate from the important points in the scene, in particular the corner vertices 

of polygonal facets. Once the projections of the vertices onto the perspective screen have 

been determined, the problem is reduced to that of representing the perspective plane (the 

view plane) on the graphics viewport. The solution to this problem is similar to that of the 

orthographic projection and will be discussed in the mapping stage of visualisation.

The calculation of the projected points using perspective projection is as follows. We let the 

perspective plane be a distance d  from the eye. Consider a point p = ( x , y , z ) (with respect 

to the OBSERVER system) which sends a ray into the eye. We need to calculate the point 

of intersection, p ' = (x ' ,  y  , -d), where this ray cuts the view plane (the z - - d  plane), and 

thus we determine the corresponding WINDOW coordinates (x' , / ) •  First consider the value
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of y' by referring to Figure 3.2. By similar triangles we see that y'Id = y/\z\,  that is y' = -y  

x dlz (remember that points in front of the eye in the OBSERVER system have negative z 

coordinates). Similarly xf = - x  x dlz and hence p f = ( - jc x  dlz , —y  x dlz , -d). Thus the 

WINDOW coordinates corresponding to p  are {-x x dlz , -y  x dlz). The projection makes 

sense only if the point has negative z coordinate (that is, it does not lie behind the eye). In 

the next section we will see how with three-dimensional clipping we can ensure that we will 

be using only the vertices that conform to this condition.

3.2.2 Clipping

Theoretically, objects may be positioned throughout space, even behind the eye. The 

formulae derived to represent the perspective projection deal successfully only with points 

that lie within the so-called pyramid o f vision. Any attempt to apply the formulae to points 

outside this volume, especially those lying behind the eye, gives nonsensical results. The 

scene must, therefore, be clipped so that all vertices of the new, clipped model lie within 

this pyramid before the projection may be applied. The process of clipping will intersect the 

scene with the pyramid of vision. In this way, the clipped model of the scene may be 

different from the original non-clipped model. In this sub-section we will briefly explain 

clipping in spaces of two and three dimensions.

The clipping of vertices, lines and facets in two-dimensional space is simply the task of 

determining which parts lie within a rectangular window with dimensions horiz x vert (i.e. 

the window). This task is interpreted mathematically by calculating the intersection of the 

rectangle defined by the window, with all the objects of the two-dimensional scene. This 

mechanism is also sufficient for dealing with orthographic projections of three-dimensional 

scenes since the whole space can be projected onto the view plane hence, bringing the 

problem in two dimensions — thus projection may occur before two-dimensional clipping.

Dealing with perspective projections is rather more complex. Once again we assume that we 

have a view plane some distance from the eye along the negative z-axis of the right-handed 

OBSERVER system. A rectangular {horiz x vert) window on this plane will be identified 

with the graphics viewport. We may also assume that the eye is positioned in such a way
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that each vertex has a strictly negative OBSERVED z coordinate. This ensures that every 

vertex can be projected onto the view plane by our chosen perspective projection, whence 

two-dimensional clipping ascertains which parts of the image lie totally within the window.

Suppose, however, that we wish to depict a scene as viewed from a position within the 

model, such as a point lying in a landscape with a large ground plane. Clearly, parts of the 

model will lie behind the eye and consequently cannot be projected on the viewplane. Such 

problems cannot be resolved by two-dimensional clipping and so extended methods must 

be developed. Three-dimensional clipping must determine which parts of a line or, facet, can 

be projected, and subsequent hidden surface removal must be executed on the clipped scene.

w indow /view port

straight ahead ray ■;
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Figure 3.3 The pyramid of vision

There are consequently two problems that need to be solved. Firstly, we must determine 

which part, if any, of a facet lies in the volume of space projected onto the window, and 

secondly we must incorporate this information into the data structures representing the scene.

The volume of three-dimensional space which is projected onto the window is a rectangular 

pyramid with axis of infinite length. This pyramid which we call the pyramid o f vision (a 

subset of the cone of vision), has its apex at the eye position (the origin of the OBSERVER 

coordinate system) and four infinite edges, each passing through one corner of the window 

on the view plane (Figure 3.3). It is thus bounded by four planes (the clipping planes), each 

of which contains the OBSERVER origin and one edge of the rectangular window.
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A point vector, (x , y  , z), lying within the pyramid of vision is projected, by perspective 

projection, onto the point ( -d x x h , - d  x y/z) in the window (d is the perpendicular distance 

from the eye to the view plane). Each clipping plane divides space into two halves. The 

half-space containing the pyramid of vision is said to be the visible side of the plane. The 

four clipping planes must be represented in such a way that we may easily determine 

whether a point lies on their visible side or not.

3.2.3 Hidden surface/line removal

Although a high degree of realism is achieved with regard to the geometry of the image 

produced, the perspective projection is not sufficient to produce images that could be 

directly mapped onto the viewport. The problem that arises becomes obvious with the 

following example: consider that a cube has to be displayed. It is modelled as a set of six 

square polygonal facets. When projected, all facets of the cube are visible on the screen. But 

this is not true in reality, unless the cube is perfectly transparent. In reality, one can see at 

most three facets of a cube simultaneously. Its other facets are hidden by the bulk of the 

cube itself. To simulate this situation, a hidden surface removal algorithm has to be applied 

to the projected polygons before they are mapped onto the viewport.

There is a variety of hidden surface removal algorithms in literature [Sutherland et al. 1974; 

Foley et al. 1990]. Some have enormous storage overheads and need powerful computers. 

In this section we will briefly present two of the most frequently used, namely the painter’s 

algorithm and the Z-bujfer.

The painter’s algorithm is based on the assumption that all objects are closed (i.e. solid) and 

there is a way for identifying whether a facet is viewed from inside (iinvisible), or outside 

(visible) the object. After all the facets are projected, they are examined to discover whether 

they overlap or not. This test is restricted to the clipped and visible facets only. If they do 

overlap, there is a second test that determines which facet lies in front and which is behind.
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After all the visible facets have been checked, they are displayed on the viewport by 

drawing the furthest from the observer first, and progressively drawing the nearest in front 

of the observer last. In complex scenes the topological ordering of the visible facets will 

require the use of special data structures such as the directed graph, that will pose great 

memory demands on the computer used.

This algorithm is based on the assumption that the type of viewport we use supports ‘over­

drawing’. Therefore, when facets are displayed, those that are drawn first will be ‘over­

drawn’ by the facets that will be drawn later. This approach resembles that of a painter, 

hence its name.

Another, probably conceptually the simplest, approach, but one which is rather expensive 

on processing power and memory, is the so-called Z-buffer algorithm. This involves a 

rectangular array representing the totality of pixels on the screen. We imagine rays of light 

entering the eye through each of the pixels on the screen.1 We consider these rays as axes 

of a rectangular (orthographic) or pyramidal (perspective) prism leading from the eye to the 

pixel, and off to minus infinity ( -» ) .  These rays naturally pass through objects in our scene 

and we can note the coordinates of these points of intersection. The z value of the 

intersection of the axis of this prism with each object is calculated in turn and compared 

with the buffer value. The array, the Z-buffer, will hold the *z~ coordinate’ (initially minus 

infinity) of the nearest point of intersection. So we build up a picture by adding new objects, 

finding where the rays cut the object, and changing the array values (and the pixel colour 

on the screen) whenever the latest point of intersection is nearer to the eye than the 

corresponding value stored in the array, giving a simple hidden surface algorithm for each 

pixel.

Another approach, the scan line algorithms, considers one scan line of a raster screen at a 

time and uses information about polygonal facets in the scene, much in the same way as the 

Z-buffer, to colour these scan lines correctly, giving a correct hidden surface picture. Yet 

another way is to seed each facet with a single representative point. When the scene is

1 Actually, the rays are assumed to pass through the cross-points of a rectangular grid that is formed on the 
window, and during the stage of mapping this lattice will correspond to the pixel organisation of the viewport.
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transformed into OBSERVED position, the seed points are ordered in increasing distance 

from the observer’s eye (i.e. the origin of the OBSERVED coordinate system). This order 

is then used to ascertain which facet lies in front of which: the so-called depth-sort 

algorithm. This is not a very satisfactory method because it will often give incorrect displays 

of scenes which contain a wide variety of facet sizes and topologies.

3.2.4 Shading

In the combination of clipping - projecting - hidden surface removal, a shading model has 

to be added in order to incorporate colour shades. Its purpose will be to determine the colour 

of every pixel of the screen, by calculating the amount of light that can be seen on any point 

in the scene which is visible to the observer and so would eventually be mapped onto the 

viewport. For pixels that do not represent any points on any facet (i.e. the sampled points 

do not belong to any facet), the background colour should be used. For the rest of the 

pixels, the shading model is applied — to the points represented by pixels — to calculate 

the amount of light that is reflected to the observer from each visible point in the scene.

There exist a number of different shading models that can be incorporated in the polygonal 

mesh visualisation approach. As we will also see in section 3.4.8, depending on the number 

of optical phenomena (i.e. specular reflection, shadows, transparency) that need to be 

simulated, the complexity of the mathematical models that describe them vary. Apart from 

a few very rudimentary shading models, the necessary data for their implementation are:

• the location of the observer (a vector)

• the location of all the light sources (an array of vectors)

• the intensity and colour of the light sources (depends on the colour model used)

• the material properties of all the surfaces of all the objects in the scene (absorption, 

reflection, transmission coefficients depending on the colour model and the shading 

model)

• a mechanism (e.g. function) to calculate the normal vector to any point on the surfaces 

of all objects in the scene.
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In this section we will briefly present some of the most frequently used shading models and 

explain how reflections, transparency and shadows can be simulated. More complex shading 

models are discussed in section 3.4.8. For the rest of this dissertation, we will make the 

assumption that the RGB colour model, introduced in the first chapter, is being used.

Constant colour shading

The simplest and quickest way of displaying a facet using the RGB model is by constant 

colour shading. We assume that the shade is constant across any facet and once the colour 

of light reflected from a point on the facet is found, the facet is displayed on the window 

using a simple area-fill. Although constant colour shading is reasonably sufficient for scenes 

made up entirely of matt, planar surfaces, this method has a number of disadvantages. The 

results obtained on models representing curved or glossy surfaces are unsatisfactory -  the 

polygonal facets that make up the approximation to a curved surface are clearly 

distinguishable, and also the specular highlights are unconvincing since they are constrained 

to be made up only of entire facets. Increasing the density of facets in the mesh helps to 

some extent, but we are able to produce far more convincing images of approximated curved 

surfaces by what is generally referred to as smooth shading. Here a surface is displayed by 

individually shading every pixel on each projected facet of the polygonal mesh in a way that 

smooths out any intensity discontinuities. We give two different interpolation methods for 

smooth shading: Gouraud shading and Phong shading.

Gouraud shading

Gouraud’s method of intensity interpolation shading [Gouraud 1971] goes a long way 

towards solving the problems of constant shading mentioned above. The intensity of light 

reflected at each vertex of a facet is determined, taking into account ambient light, and 

diffuse and specular reflection. The intensity at each internal point of a projected facet may 

then be calculated by interpolation between these intensity values. The trick is in calculating 

the intensity at the vertices. Suppose we have a number of facets approximating to a curved 

surface. Each vertex lies in the real curved surface and is contained in the boundaries of a 

number of the approximating facets. The vertex normal may be found by averaging2 of the

2
Usually we assume that all facets have approximately the same area, but a weighted average according to the 

actual area of every facet may produce more convincing results.
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surface normals of the facets containing the vertex in their boundaries. The apparent colour 

(or vertex intensity) at the vertex may then be calculated. The intensity or colour at each 

point within the facet is then determined, using a scan line approach, by interpolating 

between the vertex intensities as shown in Figure 3.4. The intensity at point A  is found by 

interpolating between those at points 1 and 2, the intensity at B  is found by interpolating 

between 3 and 4, and finally the intensity at C is found by interpolating between A  and B.

4

scan line

2

Figure 3.4 Interpolation of intensities within a facet 

Phong interpolation

Some problems still remain with Gouraud shading, mainly involving facets which face 

almost directly towards the light source. In Figure 3.4, for example, points A  and B  may 

both have the same intensity and so interpolating between them results in a constant 

intensity across the surface, making it appear flat. Problems also occur with the depiction 

of highlights produced by specular reflection.

These problems are partially eliminated by using Phong’s normal vector interpolation 

shading [Phong 1975]. This method involves the calculation of the normal vector at each 

point on a surface by interpolating between the normals at the vertices, and thence 

calculating the shade by applying a shading model at that point. This method produces 

considerably more accurate and pleasing results, however, it is accordingly more time- 

consuming to implement.
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Plates 3, 4 and 5 illustrate the differences of the three shading models. These plates show 

the same model of a teapot as it is visualised by all three shading models; constant (plate 3), 

Gouraud (plate 4) and Phong (plate 5). A more detailed analysis of these shading models 

is found in Angell and Tsoubelis [1992].

Shadows

A facet which obscures all or part of another facet from exposure to a light source is said 

to cast a shadow onto this other facet. A shadow cast by a convex polygonal facet, say j ,  

onto another convex polygonal facet, say i, is also a convex polygon which may be 

considered to lie on the surface of facet i. This polygon is usually called a shadow polygon. 

The criterion for finding shadows is very similar to that for finding hidden surfaces and 

most hidden surface algorithms can be adapted accordingly. Usually the model is calculated 

as if it was observed by an imaginary observer located at each light source. For a variety 

of alternative solutions see [Crow 1977; Angell & Tsoubelis 1992].

Transparent surfaces

Many hidden surface algorithms can be adapted to allow for the inclusion in the scene of 

facets made of transparent materials. This is by no means a trivial exercise and a full 

simulation, taking into account specular reflection, refraction etc., is too complex to be 

implemented with the polygonal mesh visualisation approach. Nevertheless, if we accept 

certain limitations, then we can deal with transparent surfaces in the polygonal mesh model 

using a topological depth-ordering algorithm similar to that of the hidden surface removal 

algorithm. A simplified version of such an algorithm assumes that the index of refraction 

of all the transparent surfaces is always unity, and no more than one transparent surfaces 

may overlap if seen by the observer’s viewpoint.

Reflections

Suppose one facet in a scene is a mirror. We should be able to see the reflection of the 

scene in this mirror. If we calculate the reflection of each vertex of the scene in the mirror 

facet, we have the physical reflection of the scene. Note that here we are creating a new set 

of points with coordinates specified in relation to the same coordinate system -  the 

OBSERVER system.
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How can we relate to this physical reflection with the reflection observed in the mirror? 

Imagine that the mirror facet is a window surrounded by an infinite plane. The reflection 

in the mirror is precisely the part of the physical reflection which can be seen through (and 

beyond) this window. Those parts of the physical reflection which lie in front of the mirror 

cannot be seen in the reflection since in the real scene they lie behind the mirror. The 

problem of reflection thus reduces to projecting the reflected scene onto the view plane, and 

then drawing only those parts which both intersect with the projection of the mirror and lie 

behind the mirror in reflected space.

There is a major drawback to any algorithm for finding reflections of scenes. If you sit in 

front of a mirror with another mirror behind you, what do you see? You see a reflection of 

yourself in the mirror in front of you, but you also see a reflection of the mirror behind you, 

in which you see a reflection of your back and of the mirror in front of you, in which you 

see a reflection of the mirror behind you, and so on! The process is infinite and there is no 

way round this. We must either insist that a scene contains no mirrors that reflect each 

other, or else we simply ignore infinite reflections of mirrors, allowing for only a limited 

number of levels o f reflection. Usually, a limit of one level of reflection is imposed, so when 

reflected in another mirror, a mirror facet is considered as an ordinary, non-reflecting facet.

3.2.5 Mapping

Once we know the coordinates and the colour of all the points on the window, we are ready 

to map them onto the viewport. As Figure 1.5 of chapter one shows, for a window of horiz 

x vert size and a viewport of nxpix x nypix pixels, the coordinates of point p  = ( x , y ) will 

be mapped onto the pixel with coordinates (fx(x) , fy(y)) = (pixeLx , p ixe ly ) via the 

following mapping functions:

nypix (2y+vert)
2 vert

where [r] denotes the integer part of the expression r.

nxpix (2x+horiz) 
2 horiz

My) =
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From the above formulae we can observe that if two points on the window have a horizontal 

distance less than horiz / nxpix, and a vertical distance less than vert / nypix, it is quite 

possible3 that they will be mapped onto the same pixel, hence one will ‘over-draw* the 

other. This means that we use computer resources to calculate the colour of points that we 

will eventually not use. To avoid this waste of resources, before attempting any calculations 

regarding points belonging to the same facet, we first determine whether they will be 

mapped onto different pixels on the viewport. This observation optimizes the visualisation 

algorithm to match the resolution of the screen, thus improving its efficiency.

3.3 Octree

In the octree algorithm, the four out of the five stages of visualisation are implicit. 

Specifically, projection, clipping, hidden surface removal and mapping are embedded in the 

process or in the form of initial conditions in the octree algorithm. Therefore, before 

presenting how each stage is affected by the algorithm, it is vital to present firstly the 

algorithm itself.

The octree visualisation algorithm was originally used to match the volumetric arrays 

modelling approach and the octree data compression technique as we presented them in 

chapter two. It assumes that the scene is enclosed by an appropriately positioned supercube 

that is properly aligned with the viewplane (i.e. the plane of the window). The shape of this 

supercube is frequently assumed to be a geometric cube. However, as we will see in the 

next section, there are cases where the shape of the supercube is a trapezoid (truncated 

pyramid).

Given a list of objects in the scene, this supercube is called homogenous if it does not 

intersect with any of the objects, and heterogenous if it does. When calculating intersections, 

we use the solid supercube (i.e. the volume of space enclosed by the supercube) and not its 

facets. Paradoxically, however, we intersect the solid supercube with the surfaces of the

2
Depending on the absolute values of their co-ordinates and the exact mapping functions (i.e. truncation, 

rounding, etc...) these points will be mapped onto the same or adjacent pixels.
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objects in the scene. As a result, the supercube that is totally contained inside an object is 

assumed homogenous. The reason is that only the surfaces of the objects can contribute to 

the colour of the pixels on the viewport.

If the initial supercube is characterized heterogenous, it is subdivided by eight equal-sized 

subcubes. We then recursively try to characterize each of the subcubes as homogenous or 

heterogenous. Whenever a heterogenous subcube is found, we further subdivide it into eight 

equal-sized subcubes. This process of recursive subdivision is terminated when the size of 

the subcube becomes such that it can be mapped onto exactly one pixel on the viewport. We 

name this minimal-sized subcube as cubelet.

3.3.1 Projection

The type of projection used is dictated by the shape of the supercube and subsequently, the 

subdivided subcubes. Specifically, if the supercube and the subcubes have a cubic shape, 

then the orthographic projection is implied. However, if the initial supercube has the shape 

of a pyramid, similar to the pyramid of vision (i.e. the same apex and parallel facets) then 

the perspective projection is implied.

Figure 3.5 Perspective projection with the octree approach

To ease the process of subdivision, this pyramid-shaped supercube is truncated by the 

viewplane, resulting in a supercube with the shape of a trapezoid (a truncated pyramid). 

Subdivision would therefore produce trapezoid-shaped subcubes that are not similar to each 

other, as Figure 3.5 shows. This figure shows the first level of subdivision of a supercube
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into trapezoid-shaped subcubes, as it is determined by using the midpoints of the supercube 

as the vertices of the newly generated subcubes.

Clearly, the perspective projection adds a considerable overhead of calculations, during 

subcube subdivision and tests of subcube - object(s) intersection, thence for the rest of this 

chapter we will assume the use of the orthographic projection and cubic-shaped supercubes 

for the octree visualisation approach.

Even with the orthographic projection and the use of cubical subcubes, the characterisation 

of a subcube as heterogenous or homogenous is a major overhead. Consider for example the 

intersection test of a subcube with an infinitely long helix. Usually, in such cases, a more 

relaxed test is implemented that replaces the subcube with a sphere that circumscribes it. 

Therefore, the orientation of the subcube with regard to each surface in the model is no 

longer critical. But the volume that the sphere covers is larger than that of the subcube it 

replaces, and the intersection test may provide incorrect results thus falsely subdivide the 

subcube and waste computer resources. However, the speed gains achieved by the use of 

spheres in the intersection tests more than compensates for the misleading results. 

Furthermore, errors incurred at one level of subdivision will be amended at the next level 

down. Additionally, errors at the cubelet level are insignificant since they will affect at most 

one pixel. At the section of shading, we will see how we can further subdivide the cubelet, 

thus achieving a more accurate implementation of the octree approach.

3.3.2 Clipping

With the octree visualisation algorithm, clipping is not an issue since whatever lies outside 

the initial supercube will never be processed. Therefore, the appropriate position of the 

supercube will ensure clipping. Usually, the initial supercube is located in such a way that 

the direction of view passes through it centre and is perpendicular to one of its sides.

Another important factor that affects clipping is the size of the supercube. If it is too small, 

many pixels on the viewport will not be painted at all. On the other hand, if the size of the 

supercube is too large, then we will be calculating the colour of pixels that will eventually
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fall beyond the boundaries of the viewport. Moreover, the supercube needs to be equally 

subdivided in all three dimensions thus producing a lattice of 2N x 2N x 2N cubelets. Such an 

organisation maps directly onto a square viewport, but will not necessarily match the pixel 

arrangement of the viewports we use.

Usually, the number of subdivision levels N  is an integer between log2(nxpix) and 

log2(nypix). These limits on the number of subdivision levels constrain the size of the initial 

supercube to be between nxpix3 and nypix3 cubelets. Smaller values for N  will generate 

cubelets that correspond to more than one pixel, and larger values will produce cubelets that 

may map to the same pixel.

To add to the complexity of this problem, we need to cater for the aspect ratio of the 

viewport that will result into rectangular-shaped pixels, thence needing rectangular shaped 

subcubes. The non unity aspect ratio can be adjusted by a transformation matrix that 

appropriately transforms the axes of the ABSOLUTE coordinate system according to the 

scaling constraints of the pixels’ shape.

3.3.3 Hidden surface removal

This stage of visualisation is also implicit in the octree algorithm. Consider a supercube of 

size N=  10. This will result in a viewport of 210 x 210 = 1024 x 1024 pixels and a lattice of 

210 x 210 x 210 = 230 cubelets. It would be too time consuming, even for a powerful computer, 

to characterise all these cubelets as homogenous or heterogenous for a given scene. Besides, 

only a very small proportion of them will be eventually found as heterogenous, and out of 

these very much fewer will be visible by the observer and hence will have to be painted on 

the viewport. Therefore, the process of subdivision becomes critical to the effectiveness and 

efficiency of the algorithm.

With regard to hidden surface elimination, the octree algorithm is adjusted so that the 

subcubes nearest to the observer, along the line of projection, are processed before those 

furthest away. As a result, a heterogenous cubelet is detected, (i.e. a surface is found), the 

corresponding pixel on the viewport can be painted. Therefore there is no need —  unless
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transparency is to be simulated — to process any cubelets that lie behind the heterogenous 

ones that we have already processed because they would eventually correspond to previously 

painted pixels. This observation is also true for a subcube of any size provided that the 

corresponding area onto the viewport is totally painted.

Therefore the octree algorithm approximates the surfaces of objects within the supercube by 

identifying and painting those cubelets that intersect with the surfaces: note that this 

algorithm does not actually consider solid objects, only surfaces. Nevertheless, in order to 

use the functionality of Constructive Solid Geometry (chapter two), we have developed 

techniques that identify whether a subcube lies totally outside, totally inside, or intersects 

with an object. In cases where the classification of inside / outside is nonsensical (i.e. open 

surfaces) we only distinguish wether a subcube intersects with a surface, or not.

Determining whether a pixel has already been painted implies that there is a bi-directional 

communications link between the computer and the viewport. But such a link may not 

always be efficient. For example, there are installations where the viewport is connected via 

uni-directional parallel links, or other proprietary setups. Moreover, when using a model 

viewport device, this link may be impossible. In such a case, a copy of the viewport’s 

image, that we will call memory screendump, must be stored at the immediate memory 

(RAM) of the computer. For a 24 bit colour, 4096 x 3072 pixels viewport the screendump 

is approximately 36 Mbytes; a major constraint for most computer installations. Fortunately, 

the size of the screendump may be considerably reduced since we do not need information 

about the colour but only a flag whether a pixel is painted or not. Consequently, the memory 

demands for the above example will be 24 times less since we only need one bit instead of 

24 bits per pixel.

3.3.4 Shading

With regard to shading, any shading model that calculates ambient light, as well as diffuse 

and specular reflection may be used, provided the appropriate information is available. One 

difficulty we may encounter at this stage is the choice of the point on which the shading 

model will be applied. This difficulty relates to the fact that we have to sample the cubelet’s
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continuous space and choose a representative point for the discretised viewport. But the size 

of the cubelet, however small it may be, is sufficient to enclose an infinity of such candidate 

points, all belonging to the modelled surface. Moreover, in some cases, points from more 

than one surface may intersect with the same (heterogenous) cubelet. Therefore, it is 

essential that our sampling method, as to which point is used for the application of the 

shading model, must be accurate. It is very difficult to provide a universal solution, but the 

following rules of thumb provide the general strategy that can be followed in order to select 

such a candidate point.

If the cubelet contains points from one surface only, then the centre of the cubelet may be 

used. However, that point may not belong to the surface at all, hence making the 

determination of the normal to that surface problematic. In such a case, approximation 

techniques may be used either to estimate the normal, or determine the point on the surface 

nearest to the centre. In both cases, the error introduced depends highly on the curvature of 

the surface at that location.

If the cubelet intersects with more than one surface, a choice of which is the visible surface 

(i.e. the nearest to the observer) has also to be made. One method is to draw the projection 

line that passes through the centre of the cubelet and then determine the nearest — to the 

observer — intersection with all the surfaces that pass through that cubelet. Such a technique 

will demand extra coding, but a number of alternatives that simply re-use code already 

developed for the octree algorithm also exist. These alternatives use subcubelets, that are 

subcubes of a size smaller than the cubelet. One such alternative extends the subdivision 

process a certain number of levels (usually one or two). Then the shading model is applied 

for all the visible points found, and the colour of the corresponding pixel is determined by 

averaging the colours of these points. This method will not guarantee a unique intersection 

of subcubelet — surface, but the process of averaging for the final colour will ensure that 

the errors have been ‘smoothed’ (<anti-aliased).

Another method uses subcubelets centred around the projection line, which in turn passes 

through the centre of the initial cubelet. If the nearest heterogenous subcubelet intersects 

with more than one surface, the process is repeated with subcubelets of a smaller size up
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to a certain level. This method ensures that the correct visible surface will be determined 

eventually. Moreover, it is based on intersection algorithms between subcube and surfaces, 

that should have already been coded in the octree algorithm.

Once the appropriate point coordinates for a heterogenous cubelet have been determined, the 

shading algorithm has to be invoked. A straightforward shading model would assume that 

the point is visible by the light sources and would calculate the ambient light, diffuse and 

specular reflection components that this point would reflect back to the observer. However, 

such a model would fail to simulate optical phenomena like transparency, shadows and 

reflections.

Shadows may be simulated by the addition of a visibility test that establishes whether the 

point is visible by a light source, and adjusting the diffuse and specular reflection 

components accordingly. However, such a visibility test would imply the implementation 

of code to achieve a line to surface intersection.

Transparency is another phenomenon that with some extra coding can be simulated. With 

the restricting assumption that all the materials have a unit index of refraction, pseudo- 

transparency is embedded in the hidden surface removal stage. Specifically, instead of 

terminating the subcube subdivision as soon as the corresponding area on the viewport is 

found painted, we now continue the subdivision until we ensure that the subcube does not 

intersect with any semi-transparent surface [Doctor et al. 1981]. This extension to the basic 

octree algorithm would imply that the memory screendump should be large enough to keep 

the full colour of every pixel, thence transparency is simulated by the proper (proportional 

to the degree of transparency) averaging of colours.

3.3.5 Mapping

The octree approach to visualisation of a three-dimensional scene assumes that drawing will 

take place on a superscreen which is a 2N x 2N discrete grid of pixels that for the purposes 

of our presentation we may assume N =  10. For the time being we will ignore any aspect 

ratio problems and assume that each pixel is square — therefore the superscreen is defined
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as 1024 x 1024 pixels square; our original viewport of nxpix x nypix pixels is centred in this 

superscreen. Usually, we ensure that the size of the superscreen, thence the choice of N, is 

such that it will fully contain all the pixels of the viewport or, we approximate N  with the 

formula given in the previous subsection on clipping.

We now consider each square pixel to be the front face of a small cube, or voxel (volume 

pixel). By extending the superscreen back into the third dimension, denoted by the z-axis, 

we can thereby create a superblock composed of 2N x 2N x 2N voxels. An individual voxel 

is located within the superblock by its voxel coordinates, counting the number of voxels say, 

to the right (jc) ,  above (y) and into the screen (z) starting from the left, bottom, front voxel 

of the superblock. This apparently peculiar choice, is made so that each voxel that maps to 

a particular pixel in the viewport has exactly the same jc-  and y- pixel coordinates in the 

VIEWPORT system. We now re-consider each pixel on the superscreen to be the front face 

of just one of the 2N voxels from the column that stretches out perpendicularly behind the 

superscreen. Actually, these columns are aligned with the lines of projection and the 

superscreen is assumed to correspond to the pixel organisation of the viewport.

We map the superblock onto a cube in three-dimensional space, that we have already called 

the supercube. The front face of the supercube is centred at the ACTUAL origin, and scaled 

appropriately. The same scaling factor will map individual voxels into the small cubelets in 

space, thereby mapping the superblock onto a total of 2Nx2Nx 2N cubelets. By this mapping 

we can now consider the front face of the supercube as the WINDOW onto three- 

dimensional space. Each column of 2N cubelets that is perpendicular to, and behind, this 

WINDOW, corresponds to a column of voxels behind the superscreen.

With regard to the aspect ratio, the rectangular shaped pixels will predicate non-cubical 

voxels (i.e. parallepipeds). Such difficulties as we already discussed in the subsection on 

clipping, are overridden by the use of transformation matrices which alter the scaling of the 

coordinate systems used.
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3.4 Ray tracing

The last approach to visualisation that we will present in this chapter is ray tracing. It is 

based on the principles of the pinhole camera model and it was primarily developed as a 

global illumination model [Whitted 1980]. Compared to the rest of the visualisation 

approaches, it is the most capable of simulating optical phenomena. The simplicity of the 

ray tracing principles, its potential for achieving ‘realistic images’, and its adaptability to 

virtually all modelling approaches, make it the most promising computer graphics 

visualisation approach. However, ray tracing has not been adopted by many computer 

graphics users because its implementation demands computers with enormous power and it 

is best suited on parallel architectures.

In this section we will first present the pinhole camera model, followed by the two distinctly 

different ray tracing approaches, the forward and the backward ray tracing. Then we will 

continue to present the five stages of ray tracing that, in a manner similar to octree, are 

embedded in the algorithm.

3.4.1 The pinhole camera model

To conceptualise the pinhole camera model, we imagine a box, like the one in Figure 3.6, 

where in the centre of one of its facets there is a small hole (pinhole) and at the inner side 

of the opposite facet there is a light sensitive surface (e.g. photographic film). This system, 

in the history of photography is one of the oldest camera models, however, painters have 

used the underlying principles since at least the time of Canaletto. In the pinhole camera, 

light coming from outside the box (the environment) passes through the pinhole and hits the 

film. If the size of the pinhole is very small, then any small region on the film can only be 

affected by light coming along the direction that connects that area with the pinhole 

(Figure 3.6a).
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In computer graphics,4 the pinhole camera model is partially altered. The pinhole, is 

replaced by the observer’s eye , and therefore the image plane, which plays the role of the 

film, has to be placed in front of the pinhole, as Figure 3.6b shows. In this way, the image 

that will be recorded on the image plane, which is the viewport, will not be inverted as is 

the case on the pinhole camera.

Viewport

Pixels

Observer Image plane
Viewing

Film Pinhole

frustrum

(a) (b)

Figure 3.6 The pinhole camera model and the ray tracing equivalent

In this model, the observer is restricted to ‘see’ only through the image plane. Therefore, 

the visible space is defined by the infinite pyramid which has its apex at the observer’s eye 

and each infinite edge passes through one vertex of the image plane. This volume of visible 

space (i.e. infinite pyramid) is called the pyramid o f vision. The above restriction is arbitrary 

and in some computer graphics applications the visible volume is further reduced to a 

frustum  by excluding from the pyramid of vision the space between the observer’s eye and 

the image plane. Therefore the pyramid of vision will be confined only in the volume which 

is in front of the image plane along the direction of view. This three-dimensional volume 

that can be projected on the image plane is also called the viewing frustum  [Glassner 1989].

4 With ray tracing other more complex camera models have been simulated but references to them will be given 
at later sections.
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3.4.2 Forward ray tracing

In computer graphics, an image is determined by the colour of every pixel on the viewport. 

Consider such a pixel on the viewport; this will correspond to a small rectangular area on 

the image plane which we will call subwindow. What is visible through that subwindow has 

to be represented by a single shade (the colour of the corresponding pixel) and is a problem 

that "much of the work of 3D computer graphics is devoted to ..." [Glassner 1989 page 4].

With the ray tracing approach, the colour of each pixel will be determined by the averaging 

of the colours of all the light rays (their photons) that hit inside the corresponding 

subwindow on the image plane. Consider a computer graphics scene involving an observer, 

an image plane and inside the corresponding viewing frustum, some objects illuminated by 

say, a single light source. The light source will generate an infinite number of photons with 

different (depending on the source) colours, travelling to all possible directions. Take, for 

example, a photon coming out of the source and heading directly towards the observer’s eye 

through the image plane. The observer will see light coming out of the source.

Consider now another photon coming out of the same source but heading towards an object 

in the scene. This photon hits the surface of that object and after interacting (exchanging 

energy) with the matter of that object’s surface is reflected back towards, say, the image 

plane and the observer’s eye. This is actually the reason that the observer sees the object: 

light (from a source) hits the surface of an object and is reflected towards the observer 

(passing through the image plane). Another photon may follow a totally different route, 

starting off from the same source, reflecting on several surfaces in the scene and then is 

either too weak to be noticeable, or never meets the image plane and the observer.

The mathematics describing the interaction of a light ray (stream of photons) with a surface 

may become very complex. A model simulating that interaction should be capable of 

describing the direction of a reflected and possibly a refracted ray (if the surface is 

transparent) and the colour (and intensity) of the light they carry. In simulating optical 

phenomena such as diffuse reflection, however, we need to know the complete distribution 

of reflected rays, hence considerably complicating the shading model algorithms.
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The problem of determining the correct colour of a pixel on the viewport is transformed into 

averaging the colours of the light rays that hit the corresponding window on the image 

plane. One way of calculating these rays would be to start from a light source (since it is 

the only place that photons are generated) and follow the route of every ray that would 

eventually (after possible interactions with surfaces of objects in the scene) reach the 

observer. This process of following (tracing) light rays from the point they are generated 

until they hit the observer is called forward ray tracing.

Although in theory forward ray tracing produces the anticipated results, in practice it is too 

inefficient to use. Consider a light source; light rays emanating from that source will go to 

all possible directions. From all these rays, some will go off the scene directly, others will 

miss the observer after striking onto one or more surfaces, and only a very small percentage 

of initial rays will eventually reach (directly or not) the observer through the image plane. 

The identity (in terms of point of origin and direction) of these latter rays is known only 

after their complete route (through reflections and refractions) has been calculated. 

Therefore, simulating this approach in a computer proves inefficient since most of the CPU 

time will be spent in calculating the route of light rays that do not contribute anything to 

the final image on the viewport since they will never reach the observer. As a result, another 

approach (which resembles almost the inverse one) has been widely adopted as the correct 

implementation of ray tracing.

3.4.3 Backward ray tracing

This approach to ray tracing considers only the rays that would eventually contribute to the 

colouring of the pixels on the viewport. Given a pixel (on the viewport), any ray that comes 

from the scene and passes through the image plane and hits the observer’s eye can be 

characterised as a vector that passes through the observer’s eye and through the centre of 

a subwindow that would be mapped exactly to that pixel. In fact, any point inside the 

subwindow could be used, but for simplicity the subwindow’s centre is chosen. In some 

sophisticated applications, where more than one point inside the subwindow are required, 

a deterministic and sometimes a stochastic method is employed to select them.
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Therefore the only ray that determines the colour of that pixel, and which from now on will 

be called the eye ray, is assumed to pass through two known points: the subwindow’s centre 

and the observer’s eye. What remains to be determined is the light source from which this 

ray conveys light. If that ray comes directly from a light source in the scene, then we 

proceed to calculate the colour and intensity of this light contribution. If, instead, that eye 

ray comes from the surface of an object (i.e. intersects with that surface) then it could be 

the reflection or refraction (or a combination of both) of some other ray(s) that convey light. 

Consequently, these new child rays must be traced.5

For each of the child rays, therefore, the sources of the light they convey must also be 

determined. This is achieved by following every child ray along its path until we identify 

its origin, in a fashion similar to that of the original eye ray. In this way we construct a 

recursive path-finding process.

This recursive process usually terminates when a child ray does not intersect either with a 

light source or with any object in the scene and therefore is said to ‘miss’ the scene. In this 

case the source of that ray is assumed to be the background of the scene where we assume 

that uniformly scattered light (emanating from the background) illuminates all the surfaces 

of all objects equally (<ambient light).

However, this recursive path-finding process is not guaranteed to terminate under all 

circumstances. For example, a ray that reflects between two appropriately positioned mirrors 

will spawn infinite generations of child rays. In such a case therefore, we have to apply 

some other termination criteria. The various criteria used and their advantages will be 

discussed with greater detail in the next subsection.

The process of backward tracing light rays from the observer, through the image plane, until 

they reach a light source or disappear in the background, is called backward ray tracing, and 

because of its improved efficiency, over the forward ray tracing, it is the one adopted by the 

overwhelming majority of computer graphics users. We have also adopted this approach, and 

for the rest of this dissertation ray tracing will be synonymous to backward ray tracing.

5 Optics have modelled reflection and refraction and therefore these rays can be calculated.
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3.4.4 Definitions

From the recursive process of tracing rays, a tree data structure that depicts the complete 

route of the initial eye ray may be defined. This tree is called the ray tree. The root of the 

ray tree describes the vector of the eye ray and its nodes hold information about the child 

rays. Moreover, the child rays may be classified into three different categories according to 

the way they were generated [Glassner 1989]. Specifically, rays that carry light directly from 

a light source to the surface of an object are called illumination or shadow rays.6 Similarly, 

reflection rays are the ones that carry light reflected off by a surface, and transparency rays 

are the ones that carry light that has been transmitted through a surface.

Figure 3.7 Definition of rays

Consider, in Figure 3.7, an eye ray which, in the backward ray tracing philosophy, emanates 

from the observer towards the viewing frustum. Assume that it strikes at the point P  on the 

surface of an object in the scene. The light of the eye ray (that the observer perceives) will 

be determined by the light that illuminates (directly or not) point P  and is either reflected 

off or, emitted through the surface at P  towards the observer.

6 Their name depends on the individual case: consider a point on the surface of an object and a light source. 
If there is a clear, visible, path connecting them directly, this defines an illumination ray. If this path is obstructed 
by another object, then that point is in shadow and therefore we are talking about a shadow ray.

Light Source

E ye ray

Light Source

Illumination
ray

Transparency
ray
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Light that comes directly at point P  from the light sources specifies whether P  is in shadow 

cast by other objects in the scene. This is determined with a ray called shadow feeler. It is 

a ray connecting P  with the light sources. If the shadow feeler does not intersect with any 

object before reaching the source, it is assumed to be an illumination ray illuminating point 

P. Alternatively, it is a shadow ray since another object is in between P  and the particular 

light source.

Light striking at P  can be radiated in a given direction, not necessarily unique, with four 

main different mechanisms or light transport modes, two of which are the perfect specular 

reflection and the perfect specular transmission. These two modes describe the effects of 

reflection and transparency on a perfectly flat shiny and transparent surface. The other two 

mechanisms, namely the diffuse reflection and the diffuse transmission, describe the same 

phenomena but on rough, imperfect surfaces. The mathematics that model these (not 

necessarily all) phenomena will compose our shading or illumination model which is also 

called the rendering equation.

Therefore, in the above example, light that is reflected at P  towards the eye ray direction 

is also important. Similarly, light transmitted through the object’s surface at P  going to the 

same eye ray direction is also taken into account. As a result, the appropriate reflection (R) 

and transparency (T) rays are calculated. But in order to determine the light of the eye ray 

(expressed in terms of colour and intensity) the rendering equation needs information about 

the light that the R  and T  rays carry. This means that the rendering equation should have 

been applied for these reflection and transparency rays beforehand. This observation justifies 

the recursive nature of the backward ray tracing algorithm. Moreover, tracing backwards, 

if these rays (i.e. reflection and transparency) intersect with other surfaces, more rays are 

involved in the rendering equation thus expanding the ray tree.

Although the expansion of the ray tree should only stop when no more rays are generated 

(due to lack of intersections with surfaces in the scene), there are cases where the relative 

location of the objects is such that infinite expansion is demanded by the rendering equation. 

Whitted [1980] suggested that a fixed tree depth (i.e. a maximum level of tree expansion, 

or maximum computer storage allocated for holding the ray tree) should be used to prune
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the tree. This method is a trade-off between wrongly coloured images if the depth limit is 

very small and wasted CPU time if the size of the ray tree is too large. The choice of the 

‘correct’ depth is not clear. It greatly depends on the relative position of the objects in a 

scene and sometimes there are areas in the image that demand great tree depths (e.g. direct 

involvement of the light sources) and others that need very small tree depths (e.g. surfaces 

in shadows). One way to overcome this is by using a different limit for every ray tree. Such 

a technique is called adaptive tree depth control; for a given ray tree, expansion will 

terminate when a child ray does not contribute a significant amount of colour to the 

corresponding pixel. This threshold o f significance is arbitrarily chosen and in most 

applications is taken equal to the colour resolution of the viewport.

For example, in a 24 bit frame buffer, where 8 bits are used for each primary colour of the 

RGB model, the corresponding colour resolution is 2"8 of the maximum intensity used. 

Consequently, intensity variations of less than 2'8 cannot be coded, thence do not contribute 

to the final image. Furthermore, from psychophysics, we can deduce similar values for the 

threshold of significance that have been obtained from experiments measuring the ability of 

the human eye to discriminate between two contiguous colour intensities.

Although this technique produces acceptable images, in theory it can be proved that it may 

be an arbitrarily incorrect approach since we do not know the intensity of the light sources 

we might encounter during the ray tree expansion. In order to avoid such unexpected errors, 

we have to assume that the maximum allowed intensity of any light source in a computer 

graphics scene is set to an arbitrary value, which for convenience it represents the unit 

intensity = 1.

Despite this assumption, when there are more than one sources in the scene, it is still 

possible for certain surfaces to be illuminated by more than one source thus resulting in 

intensity levels that are larger than the preset limit of 7 ^ .  Furthermore, there are also certain 

combinations of reflective and refractive surfaces that may converge light from a source to 

a particular location in the scene, thus illuminating it with intensity larger than the preset 

limit. Examples of such surfaces are appropriately positioned convex lenses and paraboloid 

mirrors. In such cases, we either increase the maximum allowed intensity /^  and scale all
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intensity values in our calculations accordingly, or we introduce attenuation of light intensity 

in order to diminish the possibility of such errors, or finally we may truncate all undesired 

intensity values to the maximum allowed and therefore introduce a small error in the image.

Backward ray tracing, which from now on will be simply called ray tracing, was introduced 

by [Kay 1979a; 1979b; Whitted 1980] as an extension to the ray casting method for hidden 

surface removal [Appel 1968; Goldstein 1971]. Ray casting is used as a method for 

determining the visible parts of objects in a scene and is similar to ray tracing. Their 

difference is that in ray casting the ray tree is not generated but only the initial eye ray is 

used. Information about the colour of a pixel is gained from the corresponding eye ray 

regardless of any possible reflection and transparency rays. The shading models used in ray 

casting were therefore considered local, as opposed to the global ones introduced by ray 

tracing [Whitted 1980].

3.4.5 Projection

Since the ray tracing approach is based on the pinhole camera model, the perspective 

projection is implied by the algorithm; all initial eye rays emanate from the observer and 

are spread inside the pyramid of vision. Actually, the eye rays may be considered as the 

lines of the perspective projection.

To implement ray tracing with the orthographic projection, we would simply need to change 

the definition of the lines of projection (i.e. the eye rays). Specifically, in orthographic 

projection, all eye rays should be parallel with each other. Moreover, we may assume that 

they all hit the image plane perpendicularly. Although orthographic projection is simple to 

implement, it defeats the essence of the ray tracing approach and so is rarely used.

3.4.6 Clipping

Clipping is implicit in ray tracing since we will only encounter the eye rays that belong to 

the inside of the pyramid of vision. Consequently, all objects that fall outside this pyramid 

of vision will not intersect with the eye rays. However, since these implicitly clipped objects
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are part of the scene, they should not be ignored because they may contribute to the 

rendering equation because of their reflection, refraction, or shadows cast onto the surfaces 

of other objects that have not been clipped.

3.4.7 Hidden surface removal

In ray tracing, the problem of eliminating hidden, invisible by the observer, surfaces is 

addressed by the eye rays. Obviously when an eye ray is fired, the first surface it will hit 

will be one that is visible by the observer. Therefore, determining whether a ray intersects 

with any objects in the scene is very critical and the correct expansion of the ray tree 

depends exclusively on it. From early experiments by Whitted [1980], the CPU time spent 

for intersection related calculations was in the range of 75% - 95% of the total CPU time 

needed for a ray traced image to be generated. Although these numbers depend very much 

on the complexity of the scene, the actual hardware platform and the possible acceleration 

techniques used, the task of ray -  surface intersection still poses a major calculations 

overhead.

Figure 3.8 The ray - surface intersection

Consider Figure 3.8 that shows a ray passing through a scene. In geometry, this ray is 

defined as a vector V by its point of origin Vp and its direction Vd. Parametrically, it is 

defined as V = Vp+X x Vd, X>0. The constraint for A, denotes that the ray extends infinitely
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to the Vd direction only. In a typical ray tracing implementation, all the objects in the scene 

will have to be checked whether they intersect with that ray V. All the points Pt of 

intersection (Pt = Vp+A, x Vd) will then have to be collected and sorted and the one (say Pj) 

that the ray hits first (i.e. the nearest to Vp, P f Xj = minfXj)  will become the origin for the 

new child rays. If the original ray V was a shadow feeler, then its direction Vd would be 

defined by Vd = L -V p, where L  is the position of a light source, and we would be interested 

in finding points Pk that cut the path from Vp to L  (i.e. Pk = Vp+Xk X v 0  0 <X* <1).

The mathematics involved in a ray - surface intersection calculation may vary considerably 

in complexity and depend mainly on the modelling approach used. Since the major 

geometric task of ray tracing is the intersection of objects with rays, any model may be 

used. In practice we can differentiate between three different approaches to the ray - surface 

intersection problem which are the algebraic, the geometric and the divide and conquer.

The algebraic approach.

The algebraic approach to intersection problem is appropriate to analytic models. The 

problem of intersection of a ray vector (V = Vp+X x Vd, as Figure 3.8 shows) with an object 

(an analytic function) is transformed to an equation (usually a polynomial), the roots of 

which need to be calculated. This equation is usually expressed parametrically with the 

vector’s parameter A, and its real roots (if any) will determine the points on the ray vector 

that intersect with the surface of the object.

For example, a sphere of unit radius, centred at the point ( 2 , 3 ,  -4 ) of the OBSERVED 

system and a ray V with Vp = (0 , 0 , 0) (eye ray) and direction Vd = (2 , 3 , -4 ) would 

produce the following equation:

Vector ray: V= (0  , 0 , 0)+A x (2 , 3 , -4) =» Vx = 2A, Vy = 3A, Vz = -4A 

Sphere: (x-2)2 + (y-3)2 + (z+4)2 = 1

Points on the vector V = {Vx , Vy , Vz), that also belong to the sphere should validate both 

equations (Vx-2)2 + (V^-3)2 + (Vz+4)2 = 1 => (2A-2)2 + (3A-3)2 + (-4A+4)2 = 1 

This is a second degree equation with roots: A = 1 ± ——
V®

96



For geometrical objects such as the plane, or quadrics (e.g. sphere, ellipsoid, cylinder, etc.) 

the intersection with a ray vector will result in first or second degree equations, which can 

be solved analytically. However, if the produced equation is of degree greater than two, the 

complexity of the problem is significant and approximation techniques are used. Geometrical 

objects that belong in this category include the torus and the (infinite) helix.

Numerical analysis techniques for solving equations produce approximations to their roots 

by iteratively guessing a solution and improving on it. This iterative process terminates when 

a suggested approximation is not far away from the actual root (i.e. their distance is less 

than a distance epsilon e). The speed of convergence to a solution depends on the type of 

the technique used (e.g. Newton Raphson, Regula Falsi, Bernoulli etc.) and of the initial 

guess of the root.

Moreover, for such a process to converge, a set of preconditions that are not always 

convenient to prove, has to be met, thus adding more to the calculation overhead. For a 

complete survey of numerical methods see Apostolatos [1981]. Algebraic methods are 

generic since the solutions they produce can be parameterized, thus enabling a category of 

problems to be solved by assigning the appropriate values to these parameters. For example, 

once the algorithm for calculating the roots of a fourth degree polynomial is determined, the 

problem of intersecting a ray with any quartic is solved. But such a solution is difficult to 

determine and it involves a considerable amount of calculations, thence more CPU time.

The geometrical approach

The second approach to solving the ray - surface intersection is the geometric one. With this 

approach the exact conditions of each problem are exploited and the solutions (points of 

intersection with a given ray) are calculated only when necessary. For any given situation, 

certain conditions like space coherence and bounding volume information are the first to be 

exploited. With the first condition, space coherence, the relative position of objects in a 

scene is examined. For example, if a ray starts from a point Vp that lies inside the volume 

defined by a sphere, then an intersection point (with that sphere) will exist irrespective of 

the direction Vd of that ray. With the second condition, information about simple geometrical 

objects can be used to infer results regarding more complex ones. Take, for example a torus

97



and a sphere that completely covers it. If a given ray does not intersect with that sphere it 

would not intersect with the torus either. Apart from the above general conditions, others 

specific to individual intersection problems can be used to avoid unnecessary calculations 

if knowledge concerning lack of intersection can be gained.

To give an example, consider the problem of intersecting a ray with a sphere where Vp (the 

ray’s origin) is outside the sphere. If the ray’s direction points away from the sphere then 

there is no intersection. With the geometric approach, therefore, only the necessary steps 

towards a possible solution are actually occurring, thus reducing the amount of CPU time 

needed. But, on the other hand, geometric solutions are not as generic as their algebraic 

equivalent. This means that for every type of object a separate algorithm for solving the 

intersection problem has to be determined thus increasing the amount of code needed.

The ‘divide and conquer* approach

This is a combination of the algebraic and geometric approaches so that the advantages of 

both may be exploited. Bounding volume information is used to determine whether a given 

ray intersects with the bounding volume of an object. If such an intersection occurs, the 

object is subdivided into smaller pieces, if possible, and for every piece a new bounding 

volume (smaller in size) is defined. Then, the same ray is checked for intersection with all 

the new bounding volumes. For every such intersection, the corresponding piece of the 

object is again subdivided into smaller pieces and intersection checks are performed again.

This recursive process ends when that ray does not intersect with any of the bounding 

volumes of the pieces of the object or, when the size of the intersecting bounding volume 

is smaller than an arbitrarily chosen limit. In that latter case, the intersection point is 

assumed to be in the centre of the bounding volume. This approach, is convenient to use 

with surfaces that are modelled by a recursive function (e.g. different types of splines). A 

typical example of this approach can be found in [Whitted 1980], where ray tracing is 

applied on bicubic patches using a recursive evaluation algorithm proposed by Catmull and 

Clark [1978].

98



3.4.8 Shading

When a ray hits the surface of an object, its direction as well as its colour will change. From 

optics, the geometry of reflection and refraction have been modelled, while from quantum 

mechanics explanations about the colour changes are given. In this section, the geometrical 

issues will be presented first. Next an attempt to explain some of the spectral changes will 

be given. Finally, an advanced shading model capable of simulating all four colour transport 

modes will be briefly presented.

p-d

normal vector
reflected ray

incident ray

point of intersectionP+d-(n*d)n^ plane of surface tangent

plane of surface tangent p-d+(rfd)n
refracted ray

medium |ij

medium fi

Figure 3.9 The ray - surface interaction

Consider Figure 3.9. Suppose that an incident ray with unit direction vector d hits a surface 

at point p, where the normal pointing out of the surface is unit vector n. From elementary 

physics we know that the angle o f incidence, 0,, the angle made by the ray with the normal, 

equals the angle o f reflection. Assuming that the surface is acting as a plane mirror at point 

p (labelled O in the figure) and that the directions have the senses given in Figure 3.9, we 

can see that point p -d  is reflected into point p - d  + 2(d • n)n, from which we can ascertain 

the direction vector of the reflected ray to be d -  2(d • n)n . The function denoted by d • n 

is the inner product between vectors d, n.
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Now we emulate refraction by considering the same incident ray as it passes through the 

surface. Suppose the ray passes from the incident medium with refractive index f t  into the 

refracting medium with refractive index ft: we call the relative refractive index from the 

second to the first medium p = f t  / ft. If the refracted ray makes an angle of refraction 0r 

with the normal (in the opposite sense) -n , then by Snell’s Law:

sinBj pr 

sin0r pf ^

Since the normal, and the incident and refracted rays all lie in the same plane, referring to 

Figure 3.9, we can treat refraction as though the straight-through ray is pushed up towards 

the tangent plane if ju< 1, or down away from it if ft>\. In the figure, point p+d (labelled 

A), lying on the straight-through ray, is pushed up towards a typical point p+d-X(d • n)n 

(labelled B ) that is dependent on the value of X (= \AB\/\AC\), which in turn depends on 

ju. Setting X to unity fixes a point labelled C that lies on the plane tangential to the surface 

at the point of incidence. Since d  (and n for that matter) are unit vectors, then:

| OA | = 1 , | OC | = sin0j = p sin0r and thus | OB | = p

Remembering that n and d  are unit vectors, we can then calculate:

| AC | = |cos0j = |(rf* ii) | and

\BC\ = pcos0r = p ^ ( l - s i i f 0 r)

= ^ (|i2-  ji2sm20r)

= \j (ji2 -  sm20()

= ^ ( ^ - ( l - c o s 2^ ) )

= i/(n2 + (rf-n)2-  1)

Hence A = l-*C H * C |  = 1 -  '* C '
M C| \AC\

=  J _  V(n2+ (tf-n)2 - 1)
!(<#•«) I
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We are of course assuming that both 0, and 0r are acute angles, (d*n)& 0, and the values 

under the square root symbol are non-negative. We can now find the value of X, and hence 

the refracted ray. If the values under the square root are negative then we assume total 

reflection.

Apart from the above, other solutions to the light transmission problem can be found in 

[Heckbert 1989]. Heckbert compares three solutions with regard to the number of primitive 

calculations (i.e. additions, multiplications, divisions and square roots) needed to implement 

thus providing a framework for choosing the quickest technique.

The above solutions model the geometric aspects of the optical phenomena only (i.e. 

reflection and transmission). What is still needed to compose the complete rendering 

equation is to simulate the reaction of light in terms of its spectral composition (i.e. intensity 

on every visible wavelength). These models, should be able to explain phenomena like the 

colour shift that occurs in perfect specular reflection, or the colour absorption and the reason 

that we actually see objects.

When a ray strikes on the surface of an object what actually happens is that photons 

interfere with the atoms of that object. From quantum mechanics, it is known that atoms 

vibrate and can be characterised by the amount of energy they carry. Their energy may only 

take a few specific values called energy levels or energy states. According to this theory, 

an atom can take or give specific amounts of energy thus moving upwards (or downwards) 

in the permissible energy states. When a photon approaches an atom, due to the 

phenomenon of sympathetic resonance, some energy will be exchanged: atoms with resonant 

frequency close to the photon’s frequency will be more easily excited, and absorb almost 

all the photon’s energy. Accordingly, big differences in the frequencies will result in small 

amounts of exchanged energy.

When a photon arrives with energy insufficient to boost an atom to the next energy level, 

its energy is absorbed (by the atom) and converted into heat. But if the energy of the photon 

(transferred sympathetically) is just enough to enable the atom to move to a higher energy 

state then the photon will disappear (since it gave all its energy) and the atom will oscillate
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at a higher level. The atom cannot stay at its new excited level indefinitely and after a while 

returns back to its previous energy state thus emitting a new photon with energy equal to 

the difference of the two energy states and with frequency similar to absorbed one.

This phenomenon if seen from a macroscopic view appears to be the reflection of light from 

a surface. This is actually the reason for seeing coloured objects like, for example, a blue 

ball; blue photons are reflected back while all the other colours are absorbed at the ball’s 

surface and transformed into other forms of energy (mainly heat). On the other hand, from 

a microscopic point of view, the following assumption is also made: the surface of an object 

is composed of many tiny flat reflectors also called microfacets. The distribution of their 

orientation will determine how glossy and shiny a surface is.

In a shiny flat surface, almost all the microfacets have the same orientation, while in a less 

smooth surface, microfacets with any orientation have the same probability to appear. If 

light comes from a direction almost tangential to the surface, it will be either blocked by 

the microfacets, or reflected by the appropriately orientated microfacet following the laws 

of reflection. If a light ray hits the surface with a small angle of incidence, then it will be 

reflected for a while amongst the microfacets before it leaves off the surface towards the 

appropriate (by the reflection laws) direction. In the latter case, the absorption of photons 

of certain frequencies will become apparent since many ‘microreflections’ will have 

occurred. This colour shift, that occurs in specular reflection, is expressed by the Fresnel 

function F(k , 0) where X is a given wavelength of visible light and 0 is the angle of 

incidence at the appropriately orientated microfacet [Foley et al. 1990].

By modelling both the geometrical and the optical reactions of light when it hits a surface, 

a complete shading model emerges. In computer graphics, there exist many different shading 

models that simulate the above interactions. The simple ones cater only for perfect specular 

reflection, while the more sophisticated can simulate all four light transport modes (section 

3.4.4). What all these models have in common is that they differentiate between light 

coming directly from a light source and light coming indirectly from other surfaces through 

reflections and/or transmission.

102



A typical global illumination model was first introduced by Whitted [1980]. This 

illumination model for a given point of a ray - surface intersection calculates the 

a m b i e n t l i g h t  from the scene and the diffuse (Idmise>i) and specular (Iapuularj )  

reflections of the i ^ point light source. The global illumination model is then given by the 

recursive equation:

~ ^ambient + ^  ^diffuse,i + ^specular, + ^s^refl,X +  ^t^tran,X 
1 iiitn

Where i denotes the one of the m point light sources and ks, kt are the specular reflection 

and transmission coefficients of the materials involved. The wavelength A, denotes that we 

can sample this equation in the red, green and blue primaries of the RGB colour model. Hall 

[1983] suggested, a more accurate equation that also accounts for Fresnel’s law.

3.4.9 Mapping

The final stage in visualisation is what we called mapping of points into pixels. This stage 

is also implicit in the ray tracing algorithm. It takes place in the definition of the eye rays. 

There, we assumed that a subwindow on the image plane will correspond to exactly one 

pixel on the viewport. Therefore, by firing one eye ray towards the centre of each 

subwindow, we can determine the coordinates of the pixel we will eventually paint.

3.5 Problems with visualisation

Apart from all the merits and disadvantages we presented for each particular visualisation 

approach, they all suffer from the problem of aliasing. It is inherited by the definition of 

computer graphics which represents an analogue (continuous) world with digital (discretised) 

means. This problem appears as four different phenomena, namely, precision, spatial 

aliasing, colour aliasing and temporal aliasing, all of which distort the resulting image. In 

this section we will present all four phenomena and suggest remedies. For our convenience, 

we will assume the ray tracing visualisation approach, unless we state otherwise.
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Precision

Each computer can handle numbers (integers or reals) up to a certain degree of exactness. 

With regard to integers there exist a range of permissible values beyond which we need to 

use special processor commands and extended precision arithmetic. With regard to real 

number representation, computers are using interval arithmetic where a range of real 

numbers is represented by one number only, the representative, which is usually the centre 

of the interval. The rest of the numbers in this interval cannot be represented precisely, but 

are approximated with that unique representative of the interval, thus introducing precision 

or rounding errors. The IEEE has produced standards for number representation and 

arithmetic and the rounding error (i.e. half the length of the interval) for single precision real 

number representation is in approximately 10'7. Using extended precision representation, this 

error may even fall below 1011 but with considerable needs in memory space and CPU time.

When calculating the intersection of a ray with an object, it is not uncommon that tens of 

multiplications, divisions or even square roots are involved, especially when iterative 

approximations are used. As a result, the tiny representation errors accumulate and increase 

in the intermediate stages of the calculations, thus producing (at the end) a solution of 

debatable accuracy (i.e. errors in the order of 10'2 or larger). In such cases, that are very 

often encountered, a point that theoretically is assumed to be on the surface of an object, 

can be found far away from it (either inside or outside).

Furthermore, the use of such a misplaced point as the origin for new child rays adds to the 

problem of accuracy since errors will amplify when propagated through the lower levels of 

the ray tree, and an incorrect ray tree will eventually be produced. The most common 

problem in ray tracing applications is that such a point is misplaced at the inside of the 

surface of an object and the new rays that originate from it hit the same surface again and 

again, thus deceiving the rendering equation and producing a peculiar and incorrect texture.

For the problem of precision many solutions have been suggested. Some treat the numbers 

as intervals since this is the actual representation of numbers in computers. With such a 

method, numbers that differ less than 8 (an arbitrarily small distance called epsilon) are 

treated as being equal. This epsilon is chosen to match the computer’s precision of number

104



representation (i.e. approximately 10'5) and in many applications is assumed to be constant. 

But this only partially solves the problem of precision since if application distances in the 

order of 10*3 are common, a value of e = 10‘5 is relatively significant and it will still produce 

problems. Adjusting e according to the order of magnitude of the numbers (i.e. scaling) used 

seems to solve most of the problems but there is still no guarantee that such an epsilon will 

always exist to be accurately represented by the computer (i.e. if £ = 10'10 is needed, then 

a common 16 bit system cannot represent it so that 1.0 + e *  1.0).

Another approach that is partially based on the existence of e (constant or not) is the 

following. After a solution (i.e. an intersection point) has been found, an iterative 

approximation technique (of accuracy e or smaller) is employed to improve on that solution. 

In such cases, the CPU time needed for eventually determining an intersection point 

increases considerably.

Finally, another totally different approach can also be used for the precision problem. It is 

based on the logical implications of what an algorithm is meant to do (e.g. to determine a 

point on a surface that will be used as an origin for new rays). With this method, if an 

intersection point is going to be used as the origin of a ray that travels outside the 

(intersected) surface, then it is moved an arbitrary small distance outside that surface so that 

the problem of hitting the same surface twice (or more) is certainly avoided. Accordingly, 

points used for rays that travel inside an object are moved to the interior of that object. This 

arbitrary dislocation of points, although succeeding to avoid the primary problem of wrong 

intersections, produces inaccurate images. This flaw becomes obvious in cases where objects 

are very near to each other, or where surfaces with high curvature are involved.

Concluding the discussion on the precision problem, we can remark that there is no unique 

preferred method for avoiding precision problems. The rule of thumb is to use a mixture of 

them all. The criteria for which particular to use more extensively should include the type 

of objects used, the order of magnitude of the numbers involved, and the relative importance 

of producing accurate images (e.g. medical/scientific versus advertisement).
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Spatial aliasing

The use of a discrete medium such as the viewport (an array of a finite number of pixels) 

to depict a continuous analogue image of a scene will result in jagged  edges (looking like 

staircases) or even lost objects. It is a typical problem of sampling which is called spatial 

aliasing.

a b c

Figure 3.10 Spatial aliasing

To better understand spatial aliasing, let us consider Figure 3.10. In this figure, the image 

of a ray traced sphere is shown on viewports of different resolutions. Assume that the 

sphere’s centre is projected on the centre point of the image plane and the complete image 

(the projected circle) falls inside it, as Figure 3.10a, shows. If the resolution of the viewport 

is only 2 x 2  pixels, a simple ray tracer would miss the sphere if its radius was smaller than 

a certain distance (Figure 3.10b). This problem is inherent in the nature of ray tracing, since 

by definition7 all four (corresponding to the pixels) eye rays miss that sphere. Therefore, 

in the general case, an arbitrarily large object can disappear from the viewport if it falls 

inside the infinite pyramid produced by the thus produced four eye rays (Figure 3.11).

Whitted [1980], in order to avoid missing objects, suggested that for every object in the 

scene at least one ray should hit it unless it is hidden by other objects. With this suggestion, 

the image of Figure 3.10c, may emerge. By increasing the resolution of the viewport,

7 In the standard ray tracing, as it has already been mentioned, an eye ray is defined by the vector that emanates 
from the observer and passes through the centre of the corresponding to the pixel subwindow on the image plane.
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Figure 3.10d (4 x 4), e (10 x 10) and f (20 x 20) are produced. What is common to all these 

images is the quality of the perimeter of the re-produced circle which is not smooth but 

follows an approximated path determined by the regular grid of pixels of the viewport. This 

appearance of unwanted jagged edges is one of the most annoying phenomena characterizing 

not only ray tracing but the whole spectrum of computer graphics applications.

3.11 Losing objects from the scene

To avoid this problem of spatial aliasing (jagged silhouettes) many suggestions have been 

made. But what they all have in common is that they increase the number of eye rays that 

correspond to every pixel, a technique called oversampling. As a result, the colour of a pixel 

is calculated by a weighted average of the colour of all the rays that correspond to that 

pixel. With the simplest method, namely supersampling, between three to nine (usually 5) 

eye rays are fired for every pixel. They all originate from the observer, but pass through 

different points of the subwindow on the image plane. The pattern of these points is the 

same for every pixel, thus producing a regular grid of density higher than the viewport’s 

(Figure 3.12a).

•  •

•  •

•  •

•  •
•  •

•  •

•  •

•  •

a b

Figure 3.12 Regular and adaptive supersampling
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However, there are two main disadvantages with this method. First, it does not eliminate the 

aliasing problem but only reduces it, since the eye rays still form a regular grid on the 

image plane and therefore jagged shapes may be noticeable. The second drawback is the 

waste of CPU time that occurs from the firing of five or nine eye rays into areas of little 

or no change in the resulting colours.

As a result, another method, namely adaptive supersampling, emerged. With this method 

a minimum number of eye rays, usually five, is fired for every pixel, at fixed, relative to the 

subwindow, locations (Figure 3.12b). If these rays return colours with significant differences, 

the regions of the subwindow that produce these colour changes are treated as subwindows 

on their own and five more eye rays are fired for each of these. As Figure 3.12b shows, the 

results of two of the five rays have already been calculated at the immediately higher level 

of subdivision and there is no need for them to be re-calculated.

This recursive subwindow subdivision and subsequent ray firing process stops after a 

maximum level of subdivision is reached, or when the returning colours are not different.8 

This method produces better results than the constant supersampling and, depending on the 

scene, may also be faster since CPU time is only spent in areas of interest (i.e. where colour 

changes are significant). The drawback of this method is that although being adaptive, still 

aliasing effects exist since all eye rays pass through a regular grid but of a higher resolution.

Another approach, that avoids firing rays at regular grid locations, is the one called 

stochastic supersampling and it is based on the Monte Carlo method [Halton 1970]. With 

this method, for a given pixel, several rays (usually nine) are fired passing through randomly 

selected points within the corresponding subwindow. As a result, jagged edges are not 

characterized by the patterns of a regular grid but by random patterns also known as noise.9

g
The criterion of colour difference seems better compared to maximum number of subdivisions, in terms of 

quality, since whenever there is significant colour difference it is implied that the rays hit near the edge of a surface, 
or a highlight, and therefore a denser sampling rate is necessary. But in order to achieve faster results either the 
threshold colour difference is enlarged or a combination of both criteria is used.

Q

This method conforms to the observation that although the human eye consists of a finite number of 
photoreceptors [Williams 1983], they do not form a regular grid but follow a Poisson disk distribution as Yellott 
[1983] suggested.
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With the help of digital filters, stored in look-up tables or calculated in real time, the colour 

of every pixel is determined [Amanatides 1987a; Cook 1989].

By extending the concept of stochastic supersampling into all types of rays (i.e. shadow, 

illumination, reflection and transparency) a new category of ray tracing algorithms called 

stochastic, or distributed, or probabilistic ray tracing (as opposed to the standard 

deterministic one) can be defined. With distributed ray tracing, apart from eliminating the 

spatial aliasing problem, a "whole range of fuzzy phenomena" [Cook 89], can be simulated: 

blurry reflection, blurry transparency, penumbras, and depth o f field  can be modelled by the 

distribution of reflection, transparency, shadow/illumination and eye rays over a lens 

configuration.

Temporal aliasing

With the distribution of eye rays over time, motion blur may also be modelled. However, 

the production of frames at discrete time intervals for the creation of an animation sequence 

will result in objects moving stepwise and not continuously.10 This is especially noticeable 

when visualizing fast moving objects where in cinema films their silhouettes appear blurred 

(;motion blur). For example, we can have the illusion that the wagon’s wheels are revolving 

in the opposite direction of the wagon.

Colour aliasing

The third problem of sampling continuous events in discrete media is that of colour aliasing. 

In a similar fashion to spatial and temporal aliasing, sampling also occurs when the 

rendering equation must determine the colour information at a particular location. However, 

such information should be in the form of intensity distribution along the range of visible 

frequencies (i.e. visible spectrum). But this requirement would complicate the 

implementation of a shading model immensely since it would necessitate operations on 

spectra responses. Consequently, using a colour model such as the RGB, the rendering 

equation approximates the interaction of colour intensity spectra by determining equivalent 

colour intensities on the primary red, green and blue frequencies only. An obvious effect of

10 This phenomenon was first noticed at the early cinema films. Since then, experiments have shown that the 
human brain cannot differentiate between images changing more often than 16 times a second (approx.).
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colour aliasing is therefore that in computer graphics transparent surfaces do not exhibit the 

‘rainbow effect’ of light spectral analysis due to the variation of the refractive index on 

different light frequencies.

3 .6  A c c e l e r a t i o n  t e c h n iq u e s

Another problem with visualisation algorithms in general but particularly with ray tracing, 

is the amount of computing time needed. Ray tracing of scenes is a considerably longer 

process compared with the rest of the visualisation approaches. Moreover, extensions like 

stochastic ray tracing would become significantly (e.g. more than 100 times) more time 

consuming than the standard deterministic ray tracing. Detailed results of timing ray tracers 

have shown that the time spent in intersection-related calculations amounts for most (over 

60% approximately) of the total computing time needed to render an image. As a result, 

most of the research in accelerating ray tracing has been directed towards the ray - surface 

intersection.

In a broad classification of ray tracing acceleration techniques we can differentiate between 

two main categories that we will call intersection-related and general (or, intersection- 

unrelated). Moreover, another classification schema that will divide all acceleration 

techniques into hardware oriented and software oriented, may also be imposed. The 

boundaries of this categorisation may not always be clear. In general, a software oriented 

technique will be considered an algorithm that can be implemented on a general purpose 

computer and is transportable to any other common purpose language implementation. A 

hardware oriented technique will be the one that exploits the particular architecture of a 

special purpose computer system. In this document, we will use the first classification and, 

for each category, references concerning the second classification will be given.

Intersection-related acceleration techniques can be further divided into two sub-categories, 

namely, faster and fewer intersections. Achieving faster intersections by software can occur 

by fully exploiting spatial information so that only the necessary steps towards the solution 

of the intersection problem are calculated. Other techniques involve the transformation of
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either the ray or the surface (or sometimes both) to a new coordinate system so that 

intersection calculations are more convenient to perform. Avoidance of expensive 

calculations like divisions11 or square roots and the extensive use of look-up tables also fall 

into this sub-category.

Hardware techniques for faster intersections involve the utilisation of CPU registers (for 

holding variables that are constantly needed) and Programmable Array Logic (PAL) chips. 

The algorithm of ray - surface intersections is written in microcode and incorporated into 

a PAL chip, thus considerably reducing the execution time needed. Ullner [1983] was one 

of the first people who examined theoretical hardware configurations including massive use 

of custom-made VLSI circuits.

In the second sub-category, fewer intersections can be realized by both software and 

hardware. One technique is the use of bounding volume hierarchies; objects that are simple 

to intersect are introduced to bound the more complex actual objects of a scene. Single 

objects, aggregations of objects, or even bounding volumes can be again bounded, thus 

resulting into bounding hierarchies. If a ray does not intersect the bounding volume at a 

certain level in the hierarchy, objects bounded by that volume need not be examined at all 

for that particular ray.

Another technique aiming at fewer intersections is spatial subdivision. Here, the space of 

the viewing frustum that encloses objects of the scene is subdivided to produce ‘sub-scenes’ 

of reduced complexity. Uniform and adaptive {non uniform) space subdivision techniques 

exist. For the uniform, the scene is bounded by a rectangular parallepiped (usually a cube), 

or a trapezoid with one of their facets being parallel to the image plane. This bounding 

volume is then subdivided into n x n x n = n3 smaller similar volumes (parallepipeds or 

trapezoids respectively) thus producing a three-dimensional grid of such subvolumes.

11 In the majority of processors, division of real numbers takes more CPU cycles than multiplication. Therefore, 
if the division of many numbers by the same denominator is required, it is faster to calculate the inverse of the 
denominator and multiply this to all the numbers needed.
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At a preprocessing stage, for every subvolume, a list of all the objects (namely the object 

list) that intersect or are completely enclosed by it, is generated. While ray tracing, the path 

of subvolumes that a ray travels through is calculated [Amanatides 1987b; Fujimoto 1985; 

Fujimoto 1986]. Given a ray, we first find its path along the subvolumes. Then, for every 

subvolume in the path — starting from the nearest to the origin of the ray — we intersect 

the ray with all the objects in the subvolume’s object list. When we detect an intersection 

we no longer trace this ray along the path of subvolumes.

With this technique we considerably reduce the total number of intersections needed per ray. 

The speed gains depend on the complexity of the scene and the size of the subvolumes. 

Although this technique reduces the total execution time, some time delays are added at the 

preprocessing stage, and the subvolume traversal (while following a given ray). Moreover, 

time is wasted while visiting subvolumes with empty object lists.

As an improvement to the problem of visiting empty subvolumes, non uniform space 

subdivision techniques have been introduced. Here, the initial bounding volume is always 

a cube. At the preprocessing stage this bounding volume is initially12 subdivided into eight 

equal subcubes. If for a given subcube the corresponding object list is not empty, this 

subcube is recursively subdivided into eight equal sized subcubes thus producing a structure 

similar to the octree modelling approach. This recursive subcube subdivision ends when a 

subcube produces an empty object list, or its corresponding object list contains less than a 

threshold number of objects, or when the subcubes reach a minimal size. With this 

technique, time spent in visiting empty subcubes is reduced. Nonetheless, the algorithms 

used to determine the path of a given ray through the variable size subcubes are more 

complex and time consuming than in the uniform case.

With spatial subdivision, there are three problems that have to be resolved or avoided. The 

first problem is concerned with precision. Although Amanatides [1987b] suggests a fast and 

effective voxel traversal algorithm for the uniform spatial subdivision, he did not explain 

what will happen if a ray passes through an edge or even a vertex of one of the subcubes.

12 The only time that there is no need to subdivide the initial cube is when ray tracing the empty scene (i.e. there 
is no object in the scene).
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We have adopted an amendment to Amanatides’ algorithm which comprises an extra check 

to ensure that our results are always consistent with our notation (i.e. which subcube owns 

the points that belong on its facets).

The second problem refers to the case of finding an intersection point that belongs to 

another, neighbouring subcube. Here, the extra check that an intersection point belongs to 

the subcube currently being processed, is adopted. The third problem relates to the fact that 

while visiting neighbouring voxels there is danger of checking the same object with the 

same ray more than once. Amaldi [1987] introduced the concept of the mailbox where 

information concerning intersection results between rays (all rays are identifiable) and 

objects, is kept for further use.13

Spatial subdivision has also been exploited from a hardware point of view. Specifically for 

ray tracing, Kobayashi, Nakamura and Shigei [1987] suggested a parallel configuration of 

intersection processors. Each such intersection processor is responsible for the ray - scene 

intersections that occur within a particular volume of space which we will call subcube. 

Specifically, each intersection processor is assigned one (or more) subcubes which are 

determined at a preprocessing stage by an adaptive space subdivision algorithm taking into 

account the spatial coherence of the scene. Then, when a ray passes through a particular 

subcube, the intersection processor responsible for this subcube will test for possible 

intersections. Information about which subcubes a ray passes through, is essential in order 

to assign the intersection task to appropriate processors and is facilitated by the use of face- 

neighbour quadtree data structures. In this way face-adjacent subcubes of identical size 

could be identified quickly. This method was named adaptive division graph and the 

resulting hardware configuration had the form of a six-dimensional hypercube. Dippe and 

Swenson [1984] used a uniform subdivision process to allocate one subcube to each of the 

n x n x n three-dimensional processor organisation. Then according to the load of each 

processor, the size of the subcubes changed so that no processor was idle. Other approaches 

may be found in [Nemoto 1986; Cleary 1985].

13 He introduced it in the context of Constructive Solid Geometry, but it can be used for this problem as well.
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Additional techniques used for achieving fewer intersections are the directional techniques 

like the light buffer, the ray coherence and the ray classification. These techniques use the 

concept of the direction cube in order to determine a subset of all the objects that a given 

ray is likely to hit. A direction cube is a cube in which the normals to all its facets coincide 

with the axes of an orthogonal three-dimensional coordinate system (i.e. the OBSERVED 

system). For a more detailed presentation see Arvo [1989].

The second category (intersection-unrelated) of ray tracing acceleration techniques, can be 

subdivided into three sub-categories, namely, these aiming at firing fewer rays, these using 

generalised rays and these exploiting parallelism (or concurrency). Here the differentiation 

between hardware and software oriented issues is more clear. Apart from using standard 

computer science tricks (e.g. assembly language) to write faster code, the first and second 

sub-categories are software oriented. The third relates mainly to the hardware, although 

parallel architectures are first simulated and tested in software on general purpose machines.

First we will examine techniques that aim at firing fewer rays. The use of adaptive tree 

depth control for the expansion of the ray tree, falls into this sub-category. Another 

technique is the statistical supersampling which is related to the aliasing problem. Here, for 

a given pixel, a minimum number (usually three) of eye rays are initially fired at random 

directions inside the corresponding subwindow as in stochastic supersampling. Then, a 

statistical test is applied to determine whether more rays are needed. By adjusting the test, 

fewer rays per pixel are fired without significantly reducing the quality of the image.

Another technique in this sub-category is the generic ray [Bowyer et al. 1987; 1989]. With 

this technique, the ray tracing approach considers only one ray, the generic. This is a ray 

with its origin and direction treated symbolically, as parameters to a generic vector 

definition. The intersection problem is then solved symbolically only once for the whole 

scene, using a symbolic manipulation mathematical library such as NAG. In this way, the 

mathematical description of the projection of the scene on the viewplane is determined and 

described analytically. Then, by assigning the appropriate values to this parameterized 

symbolic solution, the complete image emerges.
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The time needed to render an image is significantly smaller compared to the time needed 

to solve the generic intersection problem. However, such a generic solution is extremely 

complex to determine. Apart from this demand for enormous symbolic calculation power, 

the approach of the generic ray is based on the intersection of the scene with eye rays only. 

Consequently, it is a ray casting approach that is unable to implement a global illumination 

model.

The second sub-category of (intersection-unrelated) ray tracing acceleration techniques is 

concerned with the generalized rays. Also here the definition of a ray is changed. It is no 

longer considered to be a vector, but a set of vectors. The underlying assumption is that eye 

rays that are close to each other (both in origin and directions) are likely to hit the same 

objects with the same sequence, thus producing ‘similar’ ray trees. As a result, information 

gained from previous intersections may be exploited.

Amanatides [1984], introduced a new approach to ray tracing, called cone tracing, where 

a ray is assumed to be a packet of vector rays forming a cone with its apex at their common 

origin and with a circular cross section. Heckbert and Hanrahan [1984], in their beam 

tracing, assume that a ray is a packet of vector rays forming a cone but, unlike cone tracing, 

they assume an arbitrary polygonal cross section. Shinya, Takahashi and Naito [1987] 

introduce pencil tracing, where a ray is assumed to be a set of vector rays all being in the 

vicinity of a main vector ray called the axial ray. The geometrical models used with the 

pencil tracing method are simple object like planes, polygonal facets and spheres.

The multicomputer LINKS-1 [Nishimura 1983], is one example of hardware architecture in 

which ray tracing is exploited. It is a set of 64 node computers that are controlled by a 

single root computer. The root can dynamically re-configure the connections of all the nodes 

thus producing many different organisations. Goldsmith and Salmon [1985] examined 

different potential implementations of ray tracing onto a hypercube configuration. Atkin, 

Ghee and Packer [1987] examined the implementation of ray tracing onto different 

configurations of transputers. They noticed that in configurations between 1 and 80
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transputers the performance gain was strongly linear14 (100% - 95.5%). They also 

introduced a set of procedures that could make their system fault tolerant. In this way, if a 

transputer fails, the adjacent transputers will detect the fault, report it, and compensate for 

the (possibly) lost data. Another example is the ray casting engine which is optimized to 

visualize models that describe objects as sets of line segments, as we explain in chapter four.

In this chapter we first proposed a framework, consisting of five stages, as Figure 3.1 

presents, for examining visualisation approaches in computer graphics. Then we presented 

the three most popular approaches, namely the polygonal mesh, the octree and the ray 

tracing. For each of these approaches we described their principles and examined their 

advantages and disadvantages. Additionally for every stage of our discussion framework we 

analysed different alternatives we may apply and discussed their suitability to specific 

problems.

We believe that the first three chapters of this presentation have provided the reader with 

the essential context within which the rest of this dissertation will evolve. In particular the 

first chapter gave us the necessary background knowledge and established a ground of 

understanding with the reader. Then in chapter two we presented the main issues of 

modelling, while in this chapter we addressed the issue of visualisation.

Continuing this dissertation, in the next chapter we will discuss the major research trends 

in the literature that address similar modelling and visualisation challenges that we intend 

to tackle in our own research. In chapter five we proceed with our suggested modelling 

approach, starting first by presenting the underlying theory and then by providing a wealth 

of examples. Then in chapter six we discuss the visualisation approach that we believe is 

suitable to match the models that we generated in chapter five. In the final chapter (chapter 

seven), we discuss two different but complementary issues, criticisms and further directions.

14 The concept of linearity in the context of parallel computer architectures relates to the percentage of 
performance gain when increasing the number of processing units used. A 100% linear system would double its 
performance when the number of processing units is also doubled.
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Chapter 4 Current trends in implicit modelling

4.1 Origins of our research

In this chapter we will present the research trends that have appeared in the literature and 

follow tracks, similar in principle, to the one we are pursuing. In most cases the techniques 

that we will present here are application-driven solutions to specific modelling challenges 

and cannot be seen to represent ‘generic’ approaches for modelling in computer graphics.

These modelling techniques are presented here and not in the general review of the 

modelling approaches of chapter two, for two reasons. First because they are conceptually 

closer to the modelling approach developed in this dissertation, and second because they will 

help us to establish — through a discussion of their inefficiencies and inadequacies —  the 

need for our research. For this reason, we have selected an assortment of nine different 

modelling techniques that partially address the modelling problems we are also concerned 

with. Where appropriate, we will compare and contrast these techniques with the modelling 

approach we propose later in this dissertation.

The techniques reviewed in this chapter represent three main research trends. The first is 

directly related to the use of distance as a field generator. Consequently the issue of 

combining fields together, an operation called interference, or confluence, will also be 

presented. This trend characterises the techniques of soft objects, skeletons, blends by 

displacement, distance fields and colour superposition. The second trend refers to the 

exploitation of mainly algebraic functions that modulate a simple geometrical object or set 

of objects. In this category fall the techniques of sphere plots and convolution. The third 

research track is concerned with the issue of constraint-based tessellations and is represented 

by the technique of Voronoi tessellation and Delaunay triangulation. Finally we will also 

present the technique of ray-representations. This modelling technique does not fall in any 

of the three research trends but it provides us with a useful perspective for manipulating 

objects as sets of line segments.
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4.2 Soft Objects

In computer graphics, a still image of a scene is not always sufficient to depict the exact 

nature and consistency of the materials of the objects. However, in computer animation, 

moving objects will interact with their environment and, depending on the material of their 

construction, their shape, or that of the matter they interact with, may need to be modified 

according to the laws of physics (e.g. gravity, elastic collision, etc.).

The definition of soft objects came as a response to the need of modelling objects that 

change their shape in order to follow the constraints of their environment, thus modelling 

a more natural behaviour of matter. The term soft objects was coined by G. Wyvill, C. 

McPheeters and B. Wyvill [1986a; 1986b; 1986c].

Their technique is based on the production of iso-surfaces1 determined by a set of analytical 

functions. Specifically, they assume that there exist a set of independent control points. Each 

such point is responsible for generating a field according to a function C(r) such as: 

C(r) e  [0.0,1.0], C(0.0) = 1.0, C(R) =0.0, where r denotes the distance from a control point, 

and R is the maximum distance beyond which the contribution of that particular control 

point to the field is null. The function C(r) is also assumed to be continuous in the interval 

[o .o ,/q , and its first derivative at either side of the interval is zero. Another arbitrary 

restriction to the function is that C(R/2) = 0.5.

As an example, in one of their papers [G. Wyvill et al. 1986b], they suggest the function:

C(r) = -0.444—  +1.889—  -2.444—  +1 
Rf R 4 R2

This function is similar to those used by Blinn [1982] to model fields of electron density 

as produced by atoms and propagated through molecular structures. It is also the same 

function that Bloomenthal and Wyvill [1990] use to generate surfaces for the modelling of 

skeletons, as we shall present in the next section.

1 This term describes the locus of points that evaluate to the same value for a given property.
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We can observe three major limitations to this modelling approach: global control of the 

model is compromised by the need to use a cut-off distance R, the generation of fields is 

restricted by the need to use points to define them, and there is a need to polygonise the 

generated surfaces before they can be visualised which results in loss of smoothness. 

Therefore, despite the authors’ claims this approach to modelling has the characteristics of 

a static modelling approach and not an implicit one.

More specifically, the type of restrictions imposed for the determination of the function C(r) 

imply that the modeller needs to know how effective each control point may be (i.e. the 

value of R). Such a condition aims at speeding up the calculations during the visualisation 

stage since the shape of the resulting soft object can only be affected locally by the fields 

of the neighbouring control points. This balance between global and local control, totally 

depends on the choice of the value of the cut-off distance R. If this is too large (i.e. 

comparable to the dimensions of the structure composed by all the control points) then every 

point on the surface of the resulting soft object will be affected by virtually all the control 

points, thus considerably reducing the efficiency of the visualisation algorithm. If the value 

of the cut-off distance R is too small, the continuity of the iso-surfaces will break, so the 

resulting soft object will become fragmented and will consist of several surface pieces.

Consequently, we must pay great importance to the choice of the value of R which must be 

large enough to ensure iso-surface continuity, but also small enough to make the 

visualisation stage efficient. We would recommend that every control point should be 

assigned a different cut-off distance value of R. This assignment could take place 

automatically, at a pre-processing stage, once all the control points have been determined. 

This pre-processing stage may also help in the determination of an interval of suitable iso­

surface values that would guarantee a continuous surface of the resulting soft object.

Our research addresses the three limitations of this approach by abolishing the use of cut-off 

distance R , by allowing fields to be generated through the use of any geometrical object, and 

by avoiding polygonisation as a prerequisite for visualisation through the use of implicit 

modelling.
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4.3 Skeletons

This section is concerned with the introduction of the skeletons as another tool for the 

modelling of computer graphics scenes. According to Bloomenthal and Wyvill [1990] and 

Burtnyk [1976] a skeleton consists of points, splines and polygons. The points are 

degenerate skeletons that serve as centres for simple quadrics such as spheres and ellipsoids, 

or superquadrics. The splines are sets of central axes for the purpose of modelling 

generalized cylinders with possibly varying radii or cross-sections. Moreover, the polygons 

are regarded as a mesh of flat facets and/or splines that are used to make an offset surface 

of the thus defined models.

The emphasis in this approach is in the interactiveness of such a modelling tool. The 

skeletons are shapes that the designer specifies using points, splines and polygons. In this 

way, we achieve an initial definition and manipulation of the skeletons. In addition to that 

specification the modeller has also to define a number of parameters that control how the 

skeletons will become a polygonized surface to feed the appropriate visualisation algorithms. 

In this aspect of skeleton modelling (i.e. parameter adjustment) implicit functions are 

determined for every skeletal part and both global and local control is exerted on the model.

The final aspect of skeleton modelling is that of blending. In this stage the skeletal elements 

are weighted together in order to determine how the resulting polygonized surface should 

behave when more than one skeletal elements are in proximity. A survey of blending 

techniques is reported by [Woodwark 1986] but further developments in computer aided 

design have extended the range of these techniques considerably.

To achieve a higher degree of interactiveness, Bloomenthal imposes cut-off points for all

skeletal elements. In this way, the weight of any skeletal element that is further than R units

of distance from any other is diminished to zero. A weight function for blending is also

allowed to become negative thus permitting the subtraction as well as the addition of

skeletal elements. A simple example used by Bloomenthal and Wyvill [1990] is defined

below: * . „
fir) = 1 -  (4/9)r®+(17/9)r4 -  (22/9)r2 , Os r<R

where r  is the distance of a three-dimensional point from a skeletal element.
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Figure 4.1 A blending function

This weighting function for blending skeletal elements is graphically shown in Figure 4.1. 

Its effect is demonstrated on Figure 4.2 where two skeletal splines (effectively two line 

segments that will become the axes of two finite cylinders of fixed circular cross-section) 

intersect and their resulting surface has been calculated using two-dimensional geometry.

Figure 4.2 Blending contours Figure 4.3 Anomalies of the contour map

This method extends the soft objects method (section 4.2) by allowing the generation of 

fields not only by points, but also by splines, and polygons which are the geometrical 

entities that the developers have chosen. In spite of these extensions, this method has also 

some limitations. The most important is that although the fields can be generated by several 

geometrical objects, the measure of distance from these objects is used in an arbitrary 

manner.
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Moreover, our experiments depict that their proposed blending function does not generate 

a family of contours of ‘similar shape’ but, as we approach an intersection of two skeletal 

elements the contours become disconnected and they no longer outline this skeleton 

(Figure 4.3). Another limitation is that before visualisation it is essential that several 

approximations of the defining fields must be performed, and the result is a polygonised 

surface description, hence a static modelling approach.

The arbitrary manner in which the measure of distance is utilised in this approach is 

manifest in the conflicting treatments of this measure. In most cases, the distance of a point 

from a skeletal element is assumed to be the minimum Euclidean distance of the skeleton 

from that particular point. The use of this minimum distance definition from skeletal 

elements is considered by Bloomenthal as a simple metrics arithmetic. In other cases, 

however, distances are calculated from additional control points imposed by the designer; 

in these cases Bloomenthal considers the measure of distance to fall into the category of a 

compound metrics arithmetic.

Although Bloomenthal recognizes that most skeletal surfaces thus defined can be described 

by analytical functions, he prefers to treat them as procedural i.e. "defined by procedures 

that return a scalar value given a three-dimensional point" [Bloomenthal & Wyvill 1990]. 

The reason of his choice is to allow flexibility for the modelling process. Moreover, by 

using implicitly defined objects, a generic approach in visualisation would be more 

appropriate since is would enable visualisation of a much wider variety of possible shapes.

With respect to the visualisation of skeletal models Bloomenthal concludes in his survey that 

a trade-off needs to be made between geometrical accuracy which results into image quality, 

and speed of calculation which results into improved and speedier interactiveness. In his 

survey Bloomenthal [1990] considered several techniques which included: space subdivision 

of the skeletal elements (points, polygon, splines) using the octree display method, surface 

polygonization using simple but quicker (compared to the octree) linear interpolation, and 

more accurate but slower techniques such as successive binary subdivision approximation, 

or regula-falsi. He also looked into adaptive visualisation processes where a more detailed 

polygonal mesh was produced in the high curvature portions of the surface, or where the
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surface was proved to be visible by the observer. The visualisation approaches that 

Bloomenthal has considered result in approximations rather than an accurate representation 

of the modelled surfaces.

In the implicit modelling approach that we propose, we elaborate on the measure of distance 

by applying set-theory. Such a study permits us to define an extended measure of the 

Euclidean distance, which in turn gives us a superior approach for defining families of 

surfaces. We also utilize the octree visualisation approach directly on the generated iso­

surfaces rather than simply on the skeletal elements which provides a more accurate image 

of the modelled surfaces, as the following chapters demonstrate.

4.4 Implicit blending using displacement

This method is introduced as an "intuitive" approach to the implicit blending of surfaces 

[Rockwood 1989], Fortunately the mathematical background and relevant theories for this 

method are also presented in the same paper. This method is not of immediate relevance to 

our research, however, we share several of the underlying principles.

One such common principle is the definition of implicit surfaces. The notion of the ‘inside’ 

and ‘outside’ of an implicitly defined object is well established. Furthermore, the use of 

constructive solid geometry and the Boolean operators as modelling tools are given formal 

mathematical definitions in the context of implicit models.

Another equally important issue that Rockwood discusses was the definition of the algebraic 

distance and the inefficiency of blending functions to provide continuity of the distance 

function. These discontinuities observed in such "pseudo-Euclidean blends" are counteracted 

with the displacement of the blending functions used. The roots of the blending functions 

are used to displace the blended surface in order to make the definition of the algebraic 

distance continuous over the complete space of the blend.

123



In the approach we propose the same principles are also utilised. For example, the concept 

of ‘inside’ is fundamental to most of the surfaces that are being generated with our proposed 

implicit modelling approach. Furthermore, the use of constructive solid geometry as a 

mechanism for building complex models out of simpler ones is also tightly related to our 

approach. Our method differs from this on the issue of blending and the need for 

polygonising the modelled surfaces before visualisation.

4.5 Distance fields in Medicine

This method is concerned with the visualisation of models of parts of the human body and 

especially models of the brain, that are initially described as meshes of triangles. To smooth 

out such defined models an alternative to smooth shading techniques was applied. This was 

based in the generation and visualisation of iso-surfaces that were produced by distancing 

away from the mesh a given distance [Payne & Toga 1992].

This distancing out procedure allowed for further manipulation of the surface produced 

which covered both global and local aspects of spatial control. The main processes that 

could take place in a such defined distance field surface were: averaging that entails 

interpolation between surfaces or surface patches, offsets which results in a global (or local) 

shifting of the complete surface (or surface patch), blending that amounts to connecting 

together surface patches in a new surface of arbitrarily chosen smoothness, and blurring 

which is intended for the reduction of surface details while keeping the overall shape of the 

surface almost unchanged.

Specifically for blurring, out of all four functionalities (e.g. averaging, offsetting, blending 

and blurring), the benefits of such a modelling approach are twofold. First is of course the 

minimisation of computer storage requirements. As a consequence, such a model would 

demand less computing time during visualisation. This would provide medical professionals 

with a real-time workbench for viewing such surfaces. The second stream of benefits comes 

from the actual minimisation of surface details which in many cases obstruct the observer’s 

attention and depending on the actual viewpoint may cast shadows on more important 

features of the observed surface.
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The primitive geometrical objects of this approach are, as we have already mentioned, 

triangles. These have been collected and put together by an automated data acquisition 

system. The offset zero surface is therefore the mesh itself. Nevertheless, any other 

manipulation (i.e. non zero offsets, blending, etc.) will demand the calculation of the 

distance between the mesh and any arbitrarily chosen point in three-dimensional space. The 

problem of finding the distance of a point from a mesh of triangles is split into calculating 

the minimum distance of that point from all the meshes’ constituent triangles. Consequently 

the problem is shifted into determining the distance of a point from a triangle in three- 

dimensional space. This three-dimensional problem is then simplified into a two-dimensional 

one by transforming the triangle and the point so that the triangle is parallel to the X  - Y 

plane of the scene’s coordinate system at the Z = 0 level.

In this way, the accordingly transformed coordinates of the point can be used to determine 

its distance from the triangle. Seven cases have been identified depending on the orientation 

of the point’s projection onto the triangle’s plane. This analysis is claimed to provide an 

efficient method for determining the distance of any point from the mesh, however, a 

number of other acceleration techniques have also been proposed. These acceleration 

techniques include the use of spatial coherence information that can be inferred with cubes 

that surround portions of the model’s surface. Furthermore, it was suggested that the 

necessary transformation matrices for moving every triangle of the mesh onto the X  - Y plane 

should be computed once, at the beginning of the visualisation, and stored for further use. 

Additionally, evaluation of computationally expensive functions such as square roots had to 

take place only when they were absolutely necessary.

This method, although it could demonstrate its potential in the application domain of 

medicine, is not appropriate as a general tool because it has been fine-tuned to process 

triangles only. Nevertheless, it has a place in the broad field of computer graphics since 

nowadays there are many three-dimensional scanners in use that produce models in the form 

of meshes of triangles (e.g. Cyberware, post-processed CT scans, etc.).
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The off-setting of polygonal meshes in order to produce a smoother surface is also used in 

our approach where meshes of any convex planar polygons may be used rather than 

triangles. Furthermore, our approach is capable of producing the same effect on any other 

geometrical entity that we wish to model. Moreover, the polygonal mesh that approximates 

to the modelled surface is not necessary for its visualisation, unlike the method of distance 

fields presented here.

4.6 Colour superposition

Another lead to our research is provided in the work of Firby and Stone [1987] who 

describe and explore the effects of superposition of families of curves. In this section we 

present the method of superposition, we discuss its limitations and the way we have 

overcome them in our research.

Firby and Stone examine the creation of interference patterns in optics and more specifically 

in the areas of textile manufacturing, paper-printing of patterns and computer graphics. In 

optics, the effects of interference are colourful patterns created when light passes through 

an assembly of optical lenses. As the index of refraction of the lenses is slightly different 

at different wavelengths of visible light, at the perimeter of such an optical assembly 

analysis of light occurs (rainbow colours). In an assembly, each lens will produce its own 

colour patterns. Furthermore, patterns produced on the first lens will also pass through the 

next thus eventually producing a superposition of interference patterns.

In the textile industry, the interference patterns are produced by the optical illusion which 

is created when several patterns of (usually multicoloured) yam are interweaved (i.e. 

superpositioned) in order to construct the fabric. In a similar way, in computer graphics the 

interference patterns become apparent as Moire patterns due to the spatial and colour 

approximations imposed by the orderly arrangement of the viewport’s pixels. A simulator 

of the interference colour using ray tracing and the Fresnel’s generalized formulae for its 

shading model has been recently proposed by M. Dias [1994],
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Figure 4.4 Interference due to concentric circles

In order to study these interference patterns, Firby and Stone used contour maps that were 

imposed on top of each other. The primary contours they used were concentric circles which 

produce the effect shown in Figure 4.4. In some of their experiments they have also used 

radial lines (Figure 4.5). In order to demonstrate the effect of superposition, Firby and Stone 

colour-coded the contours: for each set of contours, a colour was assigned and on a few 

occasions its intensity was diminishing on a linear scale as individual contours were 

progressing away from the centre point of the set of the concentric circles.

The results of these experiments were plotted directly on colour film. In this way, instead 

of processing mathematically the effects of superposition (addition), Firby and Stone 

exploited the properties of the photographic film. Photographic film demonstrates distinct 

properties that differentiate it from other display media. They are described by their effects 

and the additive nature of colour. In particular, if an area of the film has already been 

plotted, it cannot be erased, or replaced by any succeeding plot over the same area. Any 

such plot will result in the addition of colours. Take, for example, the RGB colour model. 

Using the notation of the first chapter, the colours red (1 , 0 , 0 )  and blue ( 0 , 0 ,  1) when 

added together will produce purple (1 ,0  , 1). However, the addition of blue ( 0 , 0 ,  1) with 

blue ( 0 , 0 ,  1) will ‘burn’ (i.e. over-expose) the film and produce saturated blue of a degree 

proportional to the exposure time and the speed of the film.
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figure 4.5 Interference due to overlapping radial lines

These properties of colour, as it is plotted on a photographic film, may be used to 

demonstrate not only the effects but also the contributors (individual map centres) of the 

confluencing contour map thus generated. It is therefore important to select appropriate 

colours in order to illustrate confluence of colour-coded maps without burning the film as 

we illustrate in Figure 4.5.

The method of superposition and its effects on colour-coded maps is based on the same 

theory as the modelling approach that we propose. The main difference between 

superposition and our implicit modelling approach is that while the superposition method 

views the effects of confluence (fields defined with the measure of distance) as patterns of 

curves, our implicit modelling approach treats the results of confluence as surfaces (iso­

surfaces). Consequently, superposition restricts the visualisation of the effects of confluence 

in spaces of two dimensions because of the utilisation of the photographic film, whereas our 

implicit modelling approach permits a more intuitive representation of the results of 

confluence to spaces of higher dimensions as well.

The limitations of the superposition method stem from the way effects of confluence are 

illustrated: using differently coloured patterns imposes a number of important restrictions. 

First, it is based solely on two-dimensional geometry, second it relies not on analytical
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descriptions but on optical illusions, and thirdly its success depends on the choice of the 

appropriate colour-coding schema and the particulars of the photographic film used.

The implicit modelling approach that we propose clearly provides an improved way for 

examining confluence since the results are not presented as patterns with a two-dimensional 

geometry but as surfaces which are being illuminated and shaded in order to provide a 

comprehensive base for studying them.

To exhibit the similarities and differences between superposition and the implicit modelling 

approach that we propose, let us consider the following example of interference. Let us 

assume that there are two points in two-dimensional space that constitute the centres of their 

respective contour maps (A, B ) of concentric circles. Both maps, have been assigned shades 

of the same primary colour, blue ( 0 , 0 ,  1), which at their centres has minimal intensity (0 

, 0 , 0 )  and the colour’s intensity is increased as we progress further from the centres up to 

a maximum value of pure blue ( 0 , 0 ,  1). This colour change is achieved by using a linear 

function of the distance d  from the map’s centre, say Col(d) = ( 0 , 0 ,  0.0001 x d). The 

contours of confluence of the two contributing maps will then emerge in this example as 

patterns coloured with the same shade of blue. These patterns of the same shade, the iso­

shade patterns, form ellipses that have their two foci at the centres of the two contributing 

contour maps. The results of this superposition (Figure 4.6) are similar to those of Figure 4.7 

that were produced with our implicit modelling approach (also depicted on plates 6 - 9).

Figure 4.6 The field of A+B Figure 4.7 Contour map of A+B
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To prove the argument, let us name these circular contour maps as A  and B  and let us also 

assume that the distances of the map centres from a randomly chosen fixed point p , are dA, 

and dB accordingly. From the map A , this point should be coloured as Col(dA). Similarly 

from the map B  the contributing colour would be Col(dB). The addition of the maps A + B ,  

namely the confluencing map, will then evaluate at this point p  as Col(dA) + Col(dB) as 

Figure 4.8 illustrates. This result, for a particular type of functions Col(), is also equal to 

Col(dA+dB) which is the application of the function Col() using one contour map with two 

sets of concentric circles (coincidental to the maps A  and B  respectively).

Any function that satisfies the relationship: Col(a+b) = Col(a) + Col(b) may be used. One 

such function for example, is the Col(d) = ( 0 , 0 ,  0.0001 x d) that assigns a more intense 

scale of blue as we progress further away from the centre of the map. Colour values that 

will result in a blue colour component greater than ( 0 , 0 ,  1) will be truncated to (0 ,0  , 1), 

in order to avoid overexposing the film. Therefore, in the above example, the locus of points 

that have the same iso-colour value c will be characterised by points that the sum of the 

distance from the centres of the two maps (A and B) is fixed and validates the equation:2 

Col(dA+dB) = c. Such a locus of points also defines an ellipse with foci at the centres of the 

confluencing maps A  and B.

/o l ( d B )Col/(dA)  +

dB]

Figure 4.8 Determining the map addition

2 To be more specific, our claim is true for all points p  in the two-dimensional space that their distance from 
the map centres satisfy the inequality: dA +  d B < 10000.
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Figure 4.9 Field of three points Figure 4.10 Contour map of 3 points

Using three confluencing maps and the same linear function for assigning colours, Col(d), 

we get Figure 4.9 and Figure 4.10. The illusion of the same shape can also be obtained from 

Figure 4.4. However, if we extend this method in the three-dimensional space, the 

inadequacies of the superposition method are obvious, but can be overcome with the implicit 

modelling approach that we propose, as plate 11 illustrates.

4.7 Sphere plots

Sphere plots represent a modelling approach that creates surfaces which are defined on the 

surface of a sphere. There are two difficulties with this approach: the choice of the initial 

approximation to the spherical surface upon which the modelled surface will be built, and 

the scaling of the modelled surface so that it will not cause degeneracies.

This method is the result of a NATO and US Energy department grant,3 aiming at analysing 

the effects of the global warming phenomenon [Foley et al. 1990]. As such, the principal 

object this method was the earth which was modelled as a sphere. One of the main tasks of 

this project was to depict, in a colour-coded schema as well as geometrically, functions that 

had been defined over a sphere. Ozone density, barometric pressure, temperature, and other 

atmospheric parameters provided the functions to be plotted. Such bivariate functions were 

defined along the longitude and latitude of the earth and were either described analytically, 

or needed to be interpolated out of a small number of observation points.

3 NATO RG 0097/88, DE-FG02-87ER45041
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Their plots had to be mapped around the surface of a sphere. In certain circumstances the 

points to plot had to be extruded from the sphere’s surface. In general, the sphere’s surface 

was replaced by a mesh of structural points and the sphere plots were based on the 

elevation adjustments of certain structural points from the sphere’s centre. These structural 

points were the vertices of the triangles that had been provided by the triangulation mesh 

of a unit radius sphere. In order to depict the value of the sampled function, the elevation 

adjustments had to be proprotional to the distance of the structural points from the sphere’s 

centre.

The problems they faced stemmed from both the method of triangulation and the degree of 

height adjustment. For the first problem, they abolished the longitude-latitude rectangular 

grid approach and experimented with the subdivision of regular canonical solids such as the 

tetrahedron and the icosahedron. In this way an adaptive solid subdivision method was 

developed in order to provide enough accuracy for mapping their data but also getting a 

smooth shaded image.

With regard to their second problem, a unit radius sphere although convenient for 

triangulation, placed a limit on the values they could plot. It is apparent that height 

adjustment of values in the range of (1,0] would ‘squeeze’ the sphere, within (0,-1] would 

expose its centre, and in the range [-1,-°°) would pierce the sphere and produce nonsensical 

results. The obvious remedy, of scaling down and shifting their measurements to fall within 

the range of [1,2] was adopted.

Although, as we will see in the following chapters, in our method there is also the need to 

scale appropriately such density measurements, we extend this modelling approach by 

providing a method for plotting any such scaled function on any arbitrarily defined shape, 

and not just the unit sphere. Moreover, we will show how the generated images produced 

with the approach we propose, are smooth without the need for choosing the appropriate 

triangulation density. This is because we do not use any such mesh, but instead we directly 

map the density functions onto the pre-defined surfaces.
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4.8 Convolution

Following research on simulations of electric fields by Blinn [1982], the soft objects of 

Wyvill [et al. 1986] and the rounding of comers in solid models by Colbum [1990], 

convolution comes as another technique for producing and visualising implicitly defined 

surfaces [Bloomenthal & Shoemake 1991]. This technique is very similar to Blinn’s and 

Wyvill’s. The only difference is the mathematical perspective under which it is discussed 

and studied. Blinn and Wyvill described surface models with their geometrical properties; 

iso-surfaces that had to be approximated by means of a polygonal mesh. With the technique 

presented here, Bloomenthal and Shoemake describe their surfaces as convolutions of simple 

functions (of distance) along skeletons of points.

The distinctive feature of this technique is the transfer of a classical digital signal processing 

tool, namely convolution, in the modelling process of computer graphics. Initially 

convolution was only used in computer graphics as a signal processing tool for aliasing 

problems during rendering [Blinn et al. 1976; Feibush et al. 1980; Greene et al. 1986; Foley 

et al. 1990; Wolberg 1994]. In the context of modelling, this tool is introduced in the 

context of skeletons [Wyvill et al. 1986] and the surfaces around them that are generated 

as contours of fields produced with using the measure of distance.

The skeleton is assumed to be a set of discrete points that generate a surface around 

themselves. This is a uniform spherical surface at a given distance from each skeleton 

member point. If the skeleton consists of more than one point then a decision has to be 

made regarding the handling of the resulting surface pieces. We can either assume these 

surface pieces as a union of individual patches, in which case we will use the maximum as 

the operator for combining them together in a set-theoretic definition, or we can assume they 

are a smoothly connected surface blend, where the constituent pieces have been added 

together with the addition operator.

The first choice produces quick results that may not be analytically continuous over the 

resulting surface. This is the result of the set-theoretic union of the constituent surface 

patches which is implied by the use of the function of maximum. The second choice, which
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is also the one that Bloomenthal preferred, demonstrates how individually produced surface 

patches are blended together to construct a smooth surface. For this method the choice of 

the appropriate blend function is important since it will affect the smoothness of the 

generated surface but also the complexity of the calculations used for its determination and 

therefore would affect the efficiency of the visualisation algorithms.

Bloomenthal and Shoemake [1991] define a skeleton S(p) as a function that evaluates to one 

for all points p  that constitute the skeleton and evaluates to zero elsewhere. Around each 

point s of the skeleton, a surface patch (described below) is assumed to be constructed:

f(P) = expC'-*-^ 1 )

A surface is defined as the union of these surface patches ‘around’ each skeletal point. 

Depending on the nature of the skeleton we can distinguish two cases of surface union, the 

discrete union where the skeleton consists of a finite set of points, and the continuous union 

where there is an infinity of points that constitute the skeleton.

The discrete case of surface union would then be denoted by the sum of all surface patches.

/ K p) = E  expC | s ' p l *) (Eq. 4.1)
seS  2

The case of a continuous skeleton piece such as a line segment or a polygon is treated as 

an infinite sum of patches which is achieved by integration

= /  e x p ( d fc e f ) d k  (Eq. 4.2)
i  2

Using this notation, Bloomenthal and Shoemake [1991] view the exponential function in 

(Eq. 4.1, Eq. 4.2) as the generator of a surface which is the "convolution of a spatially 

extended skeleton". This view is based on the observation that equations (Eq. 4.1) and (Eq. 

4.2) can be perceived as the convolution (denoted by the symbol ★) of a skeleton S(p) and 

the Gaussian function h(p) (Eq. 4.3). In other words,/ =  h ★ S (Eq. 4.4).
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h(p)=exp ( J | £ )  (Eq. 4.3)

flp )  = (A*S)(P) = / ex p (- | s ~p |2 )<fe (Eq. 4.4)
5

To make this observation useful for the development of an algorithm out of this modelling 

approach, a number of approximations as well as complementary assumptions had to be 

made [Bloomenthal & Shoemake 1991]. The most significant approximation is the 

replacement of the Gaussian h function with a cubic spline. An additional assumption is the 

imposition of limits to the extent of the skeleton’s contributions. With regard to the 

assumptions made, only simple sets of skeletons can be computed efficiently. For the more 

complex ones, Gaussian filters can also used but in this case the properties of these filters 

need to be analyzed further.

Bloomenthal identifies two such properties, the superposition, and the component separation 

which stem from the study of fast Fourier transformations. The first is best described by the 

equation h'k{Sl +Sy = (h+ SJ+ ih+ SJ  which effectively allows the construction of complex 

structures out of simpler ones. The second allows the separation of the h function into 

coordinate components. This means that one can separate a three-dimensional convolution 

into a two-dimensional one and then multiply that with the third dimension component. 

Furthermore, the two-dimensional convolution can be further decomposed into two one­

dimensional components. This process of decomposition reduces complexity thus making 

this modelling approach useful for a variety of computer graphics applications.

A variation, or rather extension, to this technique is the use of weight functions that are 

attached to every skeleton member. The weight function will add a considerable degree of 

flexibility to the modelling of such convoluted surfaces since it would allow local control 

of the individual surface patches before they are blended together. Another extension to the 

convolution modelling approach is the application of deformations which we should note, 

produce different results if they are applied to the skeleton than if they are applied to the 

final surface blend.
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The benefits of this approach have not been explored fully, due to the mathematical 

complexity of the calculations involved and the lack of a consistent approach for the 

appropriate visualisation of the generated surfaces. Moreover, a thorough study of the effects 

that h functions produce when convoluted with skeleton definitions, has not been carried out 

yet. Such analysis would allow modellers to select and use convolutions depending on their 

properties. In our understanding, the approach of convolution differs from ours in the way 

we manipulate and subsequently visualise the modelled surfaces. The analytical nature of 

the convolution function h may become too complex for integrals to be evaluated and 

therefore, approximation techniques may be required for the visualisation of convolution­

generated surfaces. In our approach, however, surfaces are modelled as sets of points, thence 

there is minimal use of analytical tools and surface approximations are not necessary.

4.9 Delaunay triangulations and Voronoi tessellations

This section is concerned with the determination of a Voronoi tessellation [Voronoi 1908; 

1909]. Delaunay triangulations [Delaunay 1933] are also presented here for reasons of 

completeness since they represent the dual face of Voronoi tessellations. Our approach 

addresses the problem of Voronoi tessellations and as we show in chapter five it is capable 

of solving a more generalised form.

The problem of Voronoi tessellations has appeared with different names such as Dirichlet 

triangulations [1850], Thiessen’s problem [1911] and has been studied by a number of 

researchers from a variety of application fields such as mathematics [Angell & Moore 1986; 

Green & Sibson 1978; Bowyer 1981], geophysics [Watson 1981], and aerodynamics 

[Jameson et al. 1986; Vassberg and Dailey 1990; Baker 1989].

A Voronoi tessellation starts by considering a set of points in the n-dimensional space 

which are usually named nuclei. Using Watson’s [1981] ‘biological’ description, the 

n-dimensional case of Voronoi tessellation partitions the (n-dimensional) space into convex 

polytopes that may be thought of as expanding hyperspheres centred at the nuclei. Their 

surface expansion will cease when they meet with each other, thus producing the desired set
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of convex polytopes. By assuming a common rate of hypersphere expansion, we can ensure 

that the meeting points between two hyperspheres (i.e. the faces of the polytopes) are 

equidistant from their respective centres (i.e. nuclei). In this way, the hyper-volume of space 

which is surrounded by any convex polytope is guaranteed to be closer to the only nucleus 

that lies inside this polytope, than to any other nucleus in space.

The above definition of a Voronoi tessellation is based on the fact that all hyperspheres 

grow with a common rate. This restriction ensures that the meeting points between 

hyperspheres (i.e. the polytopes’ faces) are equidistant between their respective centres. An 

interesting extension to this tessellation stems by disregarding the above restriction; each 

hypersphere is allowed to have its own growth rate. In this way, growing hyperspheres will 

meet in points where the distance from their respective nuclei is proportional to their growth 

rate. Consequently, the faces of the generated polytopes are no longer portions of 

hyperplanes only, but portions of hyperspheres. The tessellations thus generated may not 

even be connected since areas of influence by a particular nucleus may be separated by 

areas of influence of other (more influential) neighbouring nuclei. These observations result 

from the application of the Appolonius theorem in the n-dimensional space [Angell & 

Moore 1986] and the corresponding tessellation is named weighted Voronoi tessellation.

Determining the tessellation out of a set of nuclei is not a trivial task. Angell and Moore 

[1986] suggest the use of quadtrees in producing two-dimensional cross-sections of 

tessellations. They first determine such a cross-section plane. Then, they define a unit sized 

square window upon which the real coordinates of the hyperspace will be mapped. Then the 

quadtree algorithm examines whether this appropriately sized square intersects with any 

points of the tessellation’s polytopes. Usually, the initial cross-section window is positioned 

in a way to ensure that there exist such an initial intersection. Once polytope’s intersection 

is suspected, the square window is subdivided into four equally sized square subwindows. 

For each of these subwindows the same tessellation interrogation process is applied. For 

subwindows with no common points with the tessellation, the subdivision process can be 

safely interrupted. However, for the intersecting subwindows, the subdivision process does 

not continue endlessly, but is interrupted once the size of a subwindow may be accurately 

represented by one pixel on the attached viewport.
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This quadtree algorithm can be used for unweighted and weighted Voronoi tessellations. The 

speed of the algorithm depends on the complexity of the tessellation interrogation process, 

and the resolution of the viewport which dictates the total depth of the recursive 

subdivisions. If a subwindow is found to belong inside the volume of a tessellation polytope, 

there is no need for further subdivision. However, if a subwindow is found to intersect 

partially with the tessellation, then although further subdivision is required it is not 

necessarily implied that there exist tessellation points, since there may be other nuclei in the 

neighbourhood. Such cases are catered for by the recursive nature of the quadtree approach.

Other researchers such as Watson [1981], approach the subject of unweighted Voronoi 

tessellations from its geometrically dual angle. This is the case of the Delaunay triangulation 

where the aim is to determine a set of space filling polytopes that have their vertices on a 

given aggregate of nuclei (i.e. points in n-dimensional space). The requirement for the 

polytopes thus defined is that the circumscribing hypersphere for any polytope does not 

contain (i.e. intersect with) any other nucleus. Mathematically this problem is Voronoi’s dual 

since the centres of the poly topes’ circumscribing hyperspheres may become the vertices of 

the unweighted Voronoi tessellation for the same nuclei. With this observation, the required 

Delaunay polytopes can be constructed from the unweighted Voronoi tessellation since any 

point of the nuclei set cannot lie inside any such determined circumscribing hypersphere 

because this would contradict with the definition of the Voronoi tessellation.

These techniques are representative solutions to the Voronoi tessellation and Delaunay 

triangulation problems. They are all optimized to solve particular cases of the tessellation 

and triangulation problems. For example, most of them provide a solution to the unweighted 

problem(s) in the space of two dimensions. Furthermore, they all share a common 

assumption about the nature of the nuclei; the nuclei are assumed to be points.

In the implicit modelling approach that we propose in the following chapters, we 

demonstrate a more powerful technique for determining the Voronoi tessellation. Its power 

is illustrated by the expansion of the definition of the Voronoi tessellation in order to make 

it applicable to nuclei that are not necessarily points but also line segments, planar polygons 

or even three-dimensional geometrical objects such as spheres or convex polygonal meshes.
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4.10 Ray representations

Ray representations, or ray-reps, is a new approach to modelling [Menon et al. 1994]. The 

principal idea behind this method is the visualisation process of ray casting. According to 

this method, an object can be observed by all the eye rays (emanating from an observer) that 

intersect with it. Following this principle, ray representations is an attempt to model 

geometrical objects with sets of lines, called rays.

The modelling process starts with a set of parallel rays that are equally spaced in the three- 

dimensional space in order to form a ray grid. This ray grid is assumed to cover all the 

volume of three-dimensional space that surrounds the scene. This assumption will ensure 

that the ‘front’ as well as the ‘back’ of the scene would intersect with the ray grid 

irrespective of the position of the observer. The resulting model will consist of all the ray 

segments of the ray grid that intersect with the geometrical objects of the scene. 

Consequently, in order to ensure that all the objects in the scene will intersect with at least 

one ray of the ray grid, the spacing between the individual rays in the ray grid is critical. 

Furthermore, another issue that needs appropriate consideration is the choice of the direction 

of the rays. A bad choice would result into rays tangential to some objects, thus resulting 

in null or single point intersections.

The ray representations method caters for geometrical objects that can be expressed with 

quadrics or similar analytical functions. In this way, the process of finding the ray segments 

that intersect with the objects is a straightforward task. Nevertheless, once the ray 

representations of the scene’s objects have been computed a number of transformations may 

take place. The most simple transformations are those of space coordinates which Menon 

[1994] called "rigid motions". Sweeps along arbitrary trajectories can then be expressed by 

step-wise rigid motions that follow the trajectory given.

The importance of this modelling approach and its relevance to our research is that models 

are treated as sets of line segments. Therefore, a number of set-theoretic operations can also 

be applied. By allowing the intersection (fi), union (U) and complement (-) of sets of line 

segments the functionality of constructive solid geometry can also be utilized. With this
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rationale, the step-wise rigid motions approach to sweeps can be seen as a set-theoretic 

union (U) of all the resulting steps of rigid motions.

This modelling approach also lends itself for the use of the boundary representations 

modelling method. Once a geometrical object is described by its boundaries, the intersection 

of the boundaries with an appropriately defined ray grid will produce the ray representation 

model of the geometrical object. Although this translation seems a straightforward one, the 

way object boundaries have been described would impose difficulties during the ray - 

boundary intersections. For example, for boundaries that are represented by planar polygons 

or non uniform B-spline patches (NURBS) of a small degree (usually less than four) the ray 

-boundary intersection problem can be computed quickly and accurately. However, for 

boundaries described by higher degree spline patches or inferred by other processes, the 

intersection problem is too complex to compute (i.e. no exact analytic answer is available).

Apart from these classical set-theoretic functions, the morphology operators of Minkowski 

may also be used. These operators, the M-addition, denoted by ®, and the M-difference 

which is denoted by © have been interpreted intuitively [Menon et a l 1994] in order to be 

used with the ray representations and produce ‘reasonable’ images. The M-addition of sets 

A©Z? is defined as the union of all the translations of set B by all members of set A.

A(BB = ia+b\aEAt b e B )  = U B+a = U A+ b
aeA beB

where a+b is defined as the vector addition (translation) between vectors a and b. It should 

be noted here that vectors may also be seen as point coordinates, thus their addition would 

result in a new point. In a similar manner, the M-difference is defined as

A Q B  = P | A+b  = - ( -A ® B )
beB

where -A  denotes the complement of the set A and A + b  denotes the translation of the set 

A by the vector b, i.e. A  + b = (J  {a+b)
aeA

Menon interprets the Minkowski operators by applying them only to the end-points of the 

sets of line segments and not to all points that the line segments consist of. In this way the 

calculations are accelerated. However, the M-difference is not free from problems. There are
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cases where the result of M-difference between two sets of ray segments will produce ray 

segments with coincidental end-points. This stems from the fact that this operator is not 

closed within the sets of line segments. This observation has led Menon to introduce some 

modifications to the M-difference operator which he has named regularised M-difference 

and is denoted by e reg. The improved regularised operator is applied as a post-processing 

stage to ‘clean up’ the set of line segments from all the degeneracies that may have occurred 

after the application of the original ‘non-regularised’ M-difference operation.

In Figure 4.11 we illustrate how the operator M-addition works. There are two polygons; 

a square, denoted by A  and a triangle denoted by B. On the right side of the figure we see 

the M-addition A  0  B  which is denoted by the dashed-line polygon. For the purpose of 

understanding, we have also included in this figure the intermediate stage of the M-addition 

operation where the triangle B  has been added (©) to every vertex of the square A.

A ©BB

Figure 4.11 The M-addition of a square with a triangle

This modelling approach can be seen as a two stage process. The first stage, that of 

determining ray representations out of geometrical object descriptions, involves heavy and 

complex calculations. The next stage is concerned with the manipulation of the sets of line
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segments using set-theoretical operators. Although this is beneficial to modelling since the 

application of transformations permits the building of complex geometrical representations 

out of very simple ones, it also puts enormous demands onto the hardware.

This approach is characterised by enormous computational costs. However, the simplicity 

of using line segments as the only means of describing a model will be appreciated in the 

visualisation stage where parallelism and spacial coherence may be exploited. To make this 

approach usable there has also been built a piece of hardware that implements all the set- 

theoretic operations algorithms, as well as the constructive solid geometry manipulations in 

firmware. This system is named the Ray Casting Engine [Ellis et al. 1991] and extensively 

exploits parallelism.

In contrast to implicit modelling approaches ray-reps do not assume a set of constraints to 

be the surface’s defining test (chapter two). Therefore, this method seemingly belongs to the 

family of static modelling approaches as it assumes that the objects to be modelled have an 

analytical description. However, a conversion to an implicit definition, that describes all 

objects as sets of line segments (the ray-reps), is applied before visualisation, making ray- 

reps an implicit modelling approach.

Similarities of this method with the modelling approach that we propose stem from the 

treatment of surfaces as sets of points. In this way, we share the application of set-theoretic 

operators. Moreover, the building of surfaces of revolution and those of general sweeps 

along a given trajectory are also treated in an analogous way since these operations act upon 

the sets of points that describe the objects and are not determined analytically.

The difference between ray-reps and our approach is that ray-reps are line segment 

representations of objects that are visualised in a specialised computer system (the Ray 

Casting Engine). Our approach applies set-theoretic principles not only to line segments but 

to sets of points thus allowing the manipulation of a greater variety of objects.
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4.11 Discussion: the need for further research in modelling

In the previous sections we have reviewed a number of methods that use, either implicitly 

or explicitly, the measure of distance as the means for generating a surface. Distance is a 

key concept in the geometry of metric spaces; it is used for descriptions and measurements 

in these spaces. The study of objects in these spaces has been carried out through the use 

of their analytical descriptions. It must be noted, however, that not all objects have an 

analytical description. Computer graphics also make use of analytical (i.e. explicit) models 

to visualise objects. The use of analytical techniques in graphics has currently reached its 

full potential and has began to expose the limitations of these techniques. Computer graphics 

offer the potential to manipulate and visualise implicitly defined objects also, thus creating 

opportunities to study objects without the prerequisite of their analytical description. 

Furthermore, implicit object definitions rely heavily on the measure of distance.

4.11.1 Criticisms of current research

The techniques reviewed in this chapter represent efforts to generate implicitly defined 

objects. In all the above cases, however, implicitly defined models are then approximated 

through analytical functions for visualisation purposes. Therefore, the ‘implicitness’ of the 

approach is compromised in every case. In the chapters that follow, we propose an approach 

which is free from any use of explicit (analytical) techniques in both modelling and 

visualisation.

The utilisation of the measure of distance varies greatly in the methods we have reviewed 

in this chapter. For example, in colour superposition, the measure of distance is implicit as 

the perceived distance between the confluencing maps, whereas in soft objects and skeletons, 

the measure of distance explicitly determines the shape of the modelled surfaces. 

Furthermore, in convolutions, where there exist a mathematically neat way to extend 

skeletons spatially, the measure of distance and the manner with which it is included in 

mathematical expressions make it the vital ingredient for the description, generation and 

visualisation of surfaces.
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The techniques presented so far contain concepts that will also be used in defining our own 

implicit modelling approach. Our approach combines concepts such as the use of the 

measure of distance for the generation of fields of ‘potential’, the description of objects as 

iso-surfaces, the visualisation of iso-surfaces as they are defined on a given ‘potential’ field, 

the treatment of objects as sets of points (the locus of which describe the surface) and the 

manipulation of objects using set-theory. We will conclude this chapter by briefly 

introducing our use of the these concepts which aims to overcome the limitations of the 

modelling techniques discussed so far.

4.11.2 Requirements for an implicit modelling approach

In the approach that we propose, the measure of distance is used to create a surface by 

assuming that a field is propagated among the points participating in that surface. The 

potential of every point in the field will be calculated as a function of the distance of this 

point from a given set of objects. Such sets of objects were the kernels for the soft object 

method, or the skeletons for the skeleton-based method. The locus of points that exhibit the 

same potential in this field, called in our method iso-surfaces, defines the surfaces that we 

develop and visualise.

The assumption that a point may generate a field in its surrounding space (a ‘potential’ 

field), is greatly enhanced in the fifth chapter. In particular, we provide there an analysis of 

fields that originate from a variety of simple geometrical objects such as lines, planar 

polygons, spheres, cylinders etc. In this way, we are able to construct several families of 

new surfaces that currently are too complex or, impossible to describe otherwise. Therefore, 

our modelling approach re-uses old (pre- Pythagorean) surface construction methods which 

have been abandoned because of the complexity involved in their implementation. We 

demonstrate extentions to one such constrution method in plates 25 -31 .

Moreover, by perceiving surfaces as the iocus of points with a certain property’ we allow 

several manipulations to be performed on these surfaces. These surface manipulations can 

be achieved by applying set-theory (on the sets of points describing the surfaces). For 

example, the generation of a body of revolution or, the envelope of a surface along a given
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trajectory, can be implemented as the union of sets. This approach offers significant benefits 

by providing a generic way to manipulate surfaces and a means for describing them without 

the need of analytical methods.

With regard to visualisation, we require that the surfaces generated with our method convey 

as much information as possible to the viewport. Therefore, approximations to the functions 

that define the surface and approximations to the surface with a polygonal mesh are not 

desirable except for the cases where the error they introduce is insignificant when compared 

to the error that the mapping of the ABSOLUTE space to the VIEWPORT space imposes. 

The visualisation approach we use in this research (chapter six) strives for maximum detail 

of the created images which will allow a thorough study of the models we have developed. 

The following chapters provide details of the modelling approach that we have developed 

to meet the requirements outlined in this section. We illustrate its potential through a series 

of examples of especially interesting cases.
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Chapter 5 Distance as a tool for surface definition

5.1 Introduction

As we have seen in chapter two, one of the major modelling approaches is that of implicit 

modelling. According to this approach, a surface is implicitly defined as the locus of points 

in space that satisfy a point membership classification test. In this way, the description of 

a surface is not analytical, but it has the form of a set of constraints which collectively we 

have called the point membership classification test. Usually, these constraints are 

mathematical relationships involving point coordinates. For example, using the measure of 

Euclidean distance, denoted by d , points with three-dimensional coordinates ( x , y  , z) that 

belong to the set { (x ,y j)  | x 2+y2+z2 = 1, x,yg  e  R } define a sphere with centre the 

origin of the coordinate system (i.e. ( 0 , 0 ,  0)) and radius of one unit.

In this chapter we will use the theory of implicit modelling to develop a modelling approach 

that we will then use to describe a new family of geometrical objects. These objects will be 

surfaces in general, usually in the three-dimensional space, unless some degeneracies occur. 

In order to create such objects, we will use an extended definition of the Euclidean distance.

We first have to justify our preference for using the implicit modelling approach. There are 

two reasons for our choice. Firstly, for analytically defined surfaces there already exist a 

number of sophisticated mathematical tools that enable their study (e.g. integration, partial 

differentiation). However, there are not many tools for adequately studying implicitly 

defined surfaces. Secondly, we believe that the implicit modelling approach is more 

powerful than the analytic. This observation stems from the fact that although any 

analytically defined surfaces may also be described implicitly, the reverse is not always true.

Take for example the surface that is determined by the three functions f x, f y, f z of the two 

independent variables u, v: (xty,z) = (fx(u,v) , f y(u,v), / z(w,v)) ,  u ,v  E R.
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With the implicit modelling approach, the same surface would be described by the following 

constraints: { (x,yrf | 3 u,v e  R : x =fx(u,v) A y  =fy(u,v) A z  =fz(u,v) }.

Such a conversion from analytical to the equivalent implicit definition may apply for any 

analytical expression, thence for all object definitions that use an analytical approach. But 

the conversion from an implicit surface definition to the equivalent analytical one is not 

always straightforward or feasible. The process of determining the analytical function that 

results from a given set of constraints may prove to be insurmountably complex. As a result, 

there are surfaces that can be implicitly defined but, due to the lack of an equivalent 

analytical description, they are impossible to study in a precise way. In the sections that 

follow we will see many examples of such surfaces.

Effectively, what we propose is the use of computer graphics techniques as a means of 

studying implicitly defined surfaces. We demonstrate the power of this approach by building 

a family of implicitly defined surfaces that are too complex to be described analytically, as 

is the case with the surfaces in plates 46, and 48. Then we will show how computer 

graphics methods may be used to visualize these surfaces. The appropriate position of the 

observer, the types of projection used and the shading models utilised will aid the 

conceptualisation of such surfaces. Moreover, metrics such as the area, the volume or the 

curvature of these surfaces may also be approximated.

Specifically, the method we propose is based on geometrical constraints that relate point 

coordinates with the function of the Euclidean distance. In this way, a generic definition of 

implicit surfaces will be formulated and analysed. In the next section we will give a precise 

mathematical definition for describing a mechanistic method for constructing geometrical 

objects. We will use this object generation method as a starting point for the construction 

of our modelling approach and for this reason we will call this method the initial problem 

definition.

Then, we will proceed to show how we can extend this initial definition and transform it 

into a significant modelling approach. This transformation will take place in two phases and 

is documented in sections 5.3 (phase A) and 5.4 (phase B). In the first phase (phase A), we
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introduce a more ‘intuitive’ definition of the measure of distance; one that has been 

extended appropriately to be applicable in geometrical objects (as opposed to the classic 

Euclidean distance which is applicable to points only). In the second phase, we will then 

apply this new measure of distance on the initial problem, thus constructing a new definition 

for creating (describing) geometrical objects. The behaviour of this new modelling approach 

and its potential in describing new classes of geometrical objects will then be analysed. This 

exploration is achieved by assigning different interpretations to the constituent parts of our 

modelling approach. The concluding sections of this chapter will then be devoted to the 

application of our proposed modelling approach and the illustration of its potential using a 

variety of examples.

5.2 The initial problem

The modelling approach we propose is based on a simple mechanistic way of constructing 

geometrical objects. This is the method of ‘pencil and string’ and is one of the first 

techniques used in geometry to construct objects. The classical example of this method is 

the definition of a circle where we tie one end of a piece of string to a fixed point on a 

given plane (two-dimensional space) and the other end around a pencil. Then we move the 

pencil so that its tip is always on the plane and the string is always taut. This method for 

defining a circle is mathematically expressed as:

{ p  I p ,q e E2, d(p4)=5 }

Where d(p,q) is the Euclidean distance between the points p  and q, q is the fixed point 

(centre of the circle), 6 is the length of the string (the radius of the circle) and R2 denotes 

the plane on which the circle lies.

If we fix the two ends of the string to the plane, and allow the pencil to move so that its tip 

stays always on the plane and the string is always taut, then we construct an ellipse. The 

mathematical description of this construction is denoted:

( P | p ,p teR2, d(ppt) +d(pp7)=6  >
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where p } and p2 denote the fixed end-points of the string, the foci of the ellipse thus 

generated, d(p,pt) is the Euclidean distance between points p  and p t, 6 is the length of the 

string and R2 denotes the plane on which the ellipse lies.

The object definition method, that we use as the starting point for our modelling approach, 

is the general form of the ‘pencil and string’ method. In fact our initial problem definition 

is to calculate and subsequently visualize the ‘locus of a point with the property that the sum 

of its distances from k given points is constant’. In other words, we study the geometrical 

objects (usually surfaces) that will result from the following implicit definition:
k

{ P I P.PjGB", 8 } (Eq. 5.1)
i= l

Where d(p,Pi) is the Euclidean distance between the points p  and /?,, k is the number of 

constituent points pi and 6 is a non negative real number that we will call the defining 

parameter. Moreover, R" denotes the n-dimensional space used for the construction of the 

objects thus defined.

For this surface definition (denoted by Eq. 5.1), analytical solutions for the simple cases of 

k -1  and k -2  exist and the resulting surfaces have been extensively studied for both the two- 

dimensional and the three-dimensional space. Apart from these two cases, the majority of 

the geometrical objects (i.e. k> 3) generated by this object definition (Eq. 5.1) have not been 

studied. The reason is that the equivalent analytical definitions are very often too complex 

to calculate.

This initial problem definition — as expressed by equation (Eq. 5.1) — will form the basis 

for our implicit modelling approach. We will call the function used as the point membership 

classification test as the defining constraint and we will treat it as a density function. As 

such, we will assume that every point in space can be characterised with a density weight 

resulting from the application of the density function at this point. Then, for a given value 

of the defining parameter 6 , which we will also call density value, we detect all points in 

space that evaluate to the same density weight (equal to 6). The locus of points with the 

same density value, which we call iso-density contour (or, surface) will then be treated as 

the geometrical object that we will visualise.
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In two dimensions, the curvature of the produced shapes (i.e. contours) becomes apparent 

by the visualisation of various contours of incremental density values. In three dimensions, 

however, the curvature of the (iso-)surfaces may be sensed from the illumination effects (e.g. 

shading, highlights, etc.) that artificial light sources of a computer graphics visualisation 

algorithm produce. The choice of the observation point and the direction of view will be 

significant since in certain circumstances the front — in relation to an observer — parts of 

an object will obstruct the view. Additional information about the geometrical objects thus 

defined, could be gained if the researcher has the ability to alter his viewpoint freely with 

regard to the surface, preferably in real time.

The observation we need to make here for the object definition of the equation (Eq. 5.1) is 

that the defining constraint is expressed with the measure of the Euclidean distance. In three 

dimensions it is described by the formula:

d(p,q) = <](px-qx)2 + (py- q ) 2 + (pz- q f  , M e ®! (Eq. 5.2)

where p  = (px , p  , pz), q = {qx , q , qz) are two points in the three-dimensional space.

The reason for concentrating our attention to this initial object definition described in the 

equation (Eq. 5.1) is twofold. First it demonstrates the potential of computer graphics; 

surfaces that are too complex to calculate and study can be (defined and) examined visually. 

Second, we will use this initial problem definition to explore a simple but powerful surface 

construction mechanism in order to provide ‘extensions’ to the definition of primitive 

geometric objects such as the sphere or the cylinder.

For these reasons, the object definition given in equation (Eq. 5.1) will be expanded so that 

we can describe numerous families of generalisations of known geometrical objects that in 

three dimensions will usually result into surfaces, provided that no degeneracies occur.

The generalization of the definition (Eq. 5.1) will evolve in two phases. First, we will 

expand the definition of the Euclidean distance so that we can use the distance of a point 

from a set of points. Then, in the second phase, we will extend the nature of the defining 

constraint so that it relates not only points but other more complex geometric objects as 

well.

150



5.3 Model development

5.3.1 Phase A. The extended definition of distance

Mathematically, the Euclidean distance is defined between two points (Eq. 5.2). As the 

definition of the equation (Eq. 5.2) shows, it maps a pair of points (p , q) onto a non 

negative real number which we shall denote as d(p,q). In this first phase of extending the 

definition of the Euclidean distance we will explore how the measure of distance can be 

defined between a point and a set of points.

Let us consider A to be a set of points. We decompose the process of calculating the 

distance of a point p  from the set A in two stages. In the first stage we will calculate the 

Euclidean distance of p  from every point in the set A. The resulting values will be called 

intermediate distance values, or intermediate values for short. Then, in the second stage, we 

will use a function or a procedure that will combine the previously calculated intermediate 

values and will (possibly uniquely) determine the distance of p  from A. Such functions and 

procedures could include the minimum, maximum, average, the k?h member o f a given 

ordering schema etc. Let us assume, for reasons of clarity, the function of minimum. In this 

way, the extended distance de(p,A) of a point p  from a set of points A will be defined as 

the minimum Euclidean distance of that point p  from all the points of set A. Specifically,

d fp A )  = min { dippt) ) (Eq. 5.3)
xeA

where d(ppc) is the Euclidean distance between points p  and x , and x  is a member of set A.

The reason for using the function of minimum for the second stage of the calculation of the 

distance of a point from a set of points was purely for our convenience since it is 

straightforward to calculate and compared to the rest of the alternative functions, it is 

simpler to conceptualize. This choice is by no means compulsory and as we shall see in later 

sections it can be replaced by any other function or procedure. A selection of some 

alternative definitions of the extended measure of distance and their analytical and 

geometrical implications will be presented in sections 5.5.1 and 5.5.2.
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5.3.2 Phase B. The generalized problem

In the previous section we briefly discussed a general technique to extend the definition of 

the Euclidean distance de(p,A) in order to calculate the distance of a point p  from a set of 

points A. Now, going back to our initial problem definition, as it was expressed by the 

equation (Eq. 5.1), we will use the extended distance definition (de) in order to achieve a 

more comprehensive surface generation method. This will become the objective of the 

second phase (phase B) of the construction of our modelling method, which will start by 

substituting in equation (Eq. 5.1) the Euclidean distance (d) with the extended distance (de). 

This will result into the following implicit surface description:
k

{ p  } (Eq. 5.4)
i-1

Observe that the points p{ of equation (Eq. 5.1) must now be replaced by the k  sets of points 

Af, where i = 1 , . . . ,  k.

This new surface definition (described in equation Eq. 5.4), is sufficient to describe the 

families of surfaces we are interested in. However, we will continue one step further in the 

refinement of this definition (Eq. 5.4) in order to make it easier to manipulate in our 

computer graphics visualisation algorithms. Specifically, instead of using sets of points (At) 

we intend to use collections of primitive geometrical objects in a fashion that a computer 

graphics designer is acquainted with. From the first sections of chapter 2 we have already 

agreed that the term primitive geometrical object is any geometrical object that the computer 

graphics designer uses as a building block to construct the required scene (e.g. a line, a line 

segment, a point, a plane, a torus). Combinations of such primitives from now on will be 

called collections, and will be used as building blocks for the construction of computer 

graphics scenes.

The utilisation of such defined collections will form the basic building blocks for a new 

computer graphics shape modelling approach. This approach will enable the user to produce 

a great variety of implicitly defined surfaces, hence expanding the applicability of computer 

graphics. The reason for using collections instead of primitives as primary building blocks 

is that in this way we can work with an arbitrary level of abstraction with regard to
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modelling. This means that we have the freedom, as the next section illustrates, to customise 

the primary building blocks of this modelling approach according to the application needs. 

As a result, what seems to be a compound object in one application, may be used as a 

primary building block for another.

What follows in this section is the transformation of definition (Eq. 5.4) in order to 

accommodate collections of primitives. From (Eq. 5.4) we can calculate the distance of a 

point from a set. Consider now that this set is countable and finite. Such a set can then be 

equivalent, at least for our purposes, to the union of its members. Specifically, we assume 

that set A consists of m members:
m

A ={xltx29...xm} ~  A = U {*.}

In this way we can now replace the single-membered point sets ({xj}), with primitive 

geometrical objects such as lines, planes, etc. (denoted as Bj). As a result the set A, of 

definition (Eq. 5.4) will become a collection (Cf) of primitive objects (2?y).

4  -  C, = U By 
/" I

Bringing all these ideas together, the families of implicit surfaces that we will investigate

and visualize will be the ones formed by the definition:
k

<p  | p e R \  $>(?,<:,.)=5 } (Eq. 5.5)

. ,"1Where, Ci = U Bu  , and B'j represents a primitive geometric object.
l

Moreover, d(p,Cj) is the extended distance (as outlined in the previous section), and 6 is 

a variable that we have already named as the defining parameter, and may be assigned a 

(usually non negative) real number which we called the density value.

The definition described in equation (Eq. 5.5) forms the basis for our modelling approach. 

It is a point membership classification test which we will use to define a variety of families 

of surfaces. In the following sections we will show how we can interpret the object 

definition of (Eq. 5.5) in order to generate families of ‘intuitive’ extensions to simple 

geometric objects, thus demonstrating the potential of the modelling approach that we 

propose.
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We will examine the role of the defining parameter 6 . Specifically, we will study the 

behaviour of the proposed object definition when the defining parameter 6 is a constant 

number, a function, and a process.

5.4 Model exploration

5.4.1 The defining parameter being a constant

This is the typical case of the definition of iso-surfaces. The problem of defining iso­

surfaces has been addressed by many researchers in various fields of study, like for example 

image processing, medical imaging, engineering and has been presented in the previous 

chapter. All these research streams share a heavy use of various linear or non-linear 

interpolation techniques. This is necessary because their problem starts off with a grid for 

values of the defining density function that is sampled at various locations within the space 

of their interest. From this grid then, they produce information about the whole of the 

sampled space.

Our modelling approach is also concerned with the definition of iso-surfaces, but, unlike the 

approaches used in other fields of study, we do not need to approximate the modelled 

surfaces. This benefit flows from knowing the defining function, hence we avoid any 

approximation in creating the modelled surfaces. Therefore, our approach resorts to 

approximation only when it is technically unavoidable, i.e. in visualising these surfaces 

where we need to convert the continuous space used in modelling into the discrete space of 

the pixel arrangement of the viewport (for a detailed discussion of sampling issues see 

section 3.5).

Consider our model as defined in definition (Eq. 5.5). First, we will examine the range of 

permissible values the defining parameter can have. Then, for some interesting cases we will 

discuss the geometrical implications of the produced surfaces. An example of such a study 

is depicted in plates 13 - 16).
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Because we are using the Euclidean distance between points, by definition this is always a 

non negative real number. Therefore, the use of the extended distance definition from sets 

of points should also be a non negative number. As a result, the sum of non negative 

numbers will also be a non negative one. It follows that the first part of the defining 

constraint in (Eq. 5.5) will always be assigned a non negative value. Consequently, the use 

of a negative value in the defining parameter 8 , will not make equation Eq. 5.5 true for any 

candidate point in space. Therefore, the resulting surface will degenerate to the empty set. 

But even when the defining parameter has a non negative value there are still cases where 

the resulting surface is empty.

For example, let us consider a model with a single collection of primitives where we use 

the definition of the minimum distance. In this example each non negative value of the 

defining parameter 8 will produce a shape. In the extreme case of 8 = 0 , the resulting shape 

is the (exact image of) the defining collection. This is expected because the points that are 

zero-distant1 from a collection are only the constituent points of that collection. For any 

positive value of 8 , the resulting surface will produce an approximated image of the 

defining collection. This approximation may be both from the outside and the inside of the 

collection, depending on the topology of the collection and the exact value of 8 . Further 

details and examples of such surfaces will be presented in subsection 5.6.1.

5.4.2 The defining parameter being a function

The main characteristic of our surface definition (Eq. 5.5), is the use of a variable defining 

parameter 8 that is determined by a function which we will call the defining function; for 

every point in space, or at least in the volume of space we are interested in, the value of 8 

will therefore be determined by a (defining) function which will usually accept as input (i.e. 

input parameters) the point’s coordinates.

1 We assume that we use the function of minimum for the measure of distance. Other functions such as the 
maximum will obviously behave differently.



Before presenting some illustrative examples, it is essential to understand how the defining 

function works. According to the category of implicit modelling (chapter two), a point in 

space is known to belong to the defined surface, only after it has been tested against a set 

of defining constraints which form the point membership classification test. Therefore, in 

the following discussion we will always assume that we are given a point p, which we will 

have to test against a given set of constraints shown in the definition of (Eq. 5.5).

In order to calculate the value of the defining function, however, its input parameters will 

first need to be determined. In most cases, these parameters are not the point’s coordinates 

themselves, but a combination of them. This means that there exists a mapping function that 

relates these coordinates to the defining parameters. Therefore, with different mapping 

functions, the same defining function will produce different surfaces from the same model. 

Consequently, apart from the defining function, one will also have to determine the mapping 

function in order to give an accurate surface description.

It is very important to highlight the significance of the number of dimensions of the space 

we use, compared to the number of input parameters of the defining and mapping functions. 

This observation becomes useful during the analysis of the examples we present.

Consider a shape as defined by (Eq. 5.5). For reasons of clarity we reproduce Eq. 5.5 here.
k

{ p  | p e Rn, J^d(ptCt)=& } (Eq. 5.5)
<-i

In this description, the defining test will produce a curve for every permissible value of the 

parameter 6 . The complete set of these contours will produce a contour map as we shall 

see in Figure 5.6. We will call this the model’s contour map.

Let us now assume that the defining function for 6 is also defined in the same space and 

is calculated by using all n space coordinates as equation Eq. 5.6 shows.

8 = / ( x , , * , , ( E q .  5.6)

Furthermore, let us generate the contour map that is produced by all possible outcomes of 

the function 6 We call this set of contours the function’s contour map.
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Specifically, this map is constructed by first fixing the value of 5 = f ( x 1,x2,...,xn) and 

then depicting all the points in space that evaluate the defining function to that pre-set value.

It should now become obvious that the resulting surface will be the intersection of these two 

contour maps (the model’s and the function’s). Such an intersection is defined by all the 

points in space that are characterized by the same density value at both (the model’s and the 

function’s) contour maps.

Another way of perceiving the same surface is by re-arranging the point membership 

classification test as definition (Eq. 5.7) shows. In this way, we calculate the confluencing 

iso-surface of the combined function for the defining contour value of zero (0). Specifically,
k k

{ p  | p e R" , £ d(p,C) =fi.xlyx2,...,xlt) ) - ( / > |  peK" , £ d(p,Ci)- fix 1jc2,...,xl)=Q }

W M (Eq- 5.7)

This arrangement can be achieved because function / (  ) is assumed to use all n coordinates 

for its input parameters as the constraint function also does.

An interesting aspect of this case is that we can obtain quite complex ‘objects’ by applying 

very simple functions. See, for example, plate 20 which is generated using one rectangle as 

the only primitive of a model with only one collection. For this model, the defining function 

is the trigonometric function of sin( ). Further details about this model and other especially 

interesting cases will be presented in section 5.6.2. In that section we will also study models 

where the defining function does not use all n coordinates as input parameters.

5.4.3 The defining param eter being a process

So far we have investigated the case of the defining parameter 6 being a constant and the 

general case of it being a function. By generalizing the nature of 6 one step further, we can 

assume that its value could also be determined by a process. By process we mean any 

algorithm that, given a set of input values, will produce (determine) the value of the defining 

parameter 6 (i.e. output). As input values, again an obvious choice would be to use (a 

mixture of) the coordinates of the point that we need to test against the model’s constraints.
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For this reason, such an algorithm should be consistent so that for the same input values it 

will always produce the same output value. With this restriction, several aspects of our 

visualisation approach will become easier.

When we do not use all the space coordinates of a point as input parameters for the 

determination of the defining process, we have some degree of freedom as to which 

coordinates to use. As we will explain in section 5.6.2, this issue is resolved with the use 

of a mapping function. In such a case, bodies of revolution as well as other types of surface 

modulation of the defining process can be achieved.

We have chosen to present two processes. The first process, explained in section 5.6.3, uses 

a pseudo-random number generator similar to the ones used for texture mapping, or 

sometimes to ‘landscape modelling’ [Angell & Tsoubelis 1992]. We use this number 

generator as a defining process that assigns a undulating surface around small collections 

of simple geometrical objects. Plate 23 illustrates our claims with a model of one collection 

of one primitive only.

The second process, also presented in section 5.6.3, illustrates how the definition of the 

Mandelbrot set [Peitgen & Richter 1986; Gleick 1988] may be adapted for our modelling 

approach. In particular, we perceive the definition of the Mandelbrot set as a bivariate 

process in order to rotate it around a particular axis as we demonstrate in plate 24.

Another type of process that we are going to use extensively for determining the defining 

parameter 6 is another implicitly defined iso-surface. Such defined surfaces include a 

variety of simple known geometric objects like the parabola, where we determine the locus 

of points that are equidistant from both a given point and a given infinite line, as well as 

other more complex structures like the Voronoi tessellation. For this reason, the necessary 

definitions and some further analysis of our generic surface definition (Eq. 5.5) will be 

presented separately in the next subsection.
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5.4.4 The defining parameter being another implicit definition

In this section we will make use of the definitions of the nearest and second nearest 

primitives. Therefore, before presenting this model, we will first discuss the formation of 

these definitions (i.e. nearest). From definition (Eq. 5.3) we saw that the distance from a 

point to a set of points can be associated with the concept of the minimum distance. In other 

words, with the distance of that point from the nearest point of the set. Furthermore, we also 

saw in this chapter that for the calculation of the distance of a point from a collection of 

primitives we may use the minimum distance from that collection. In such a case 

specifically, we first calculate the minimum distance from each primitive, and then choose 

the minimum of these.

This implies that an ordering amongst the primitives of each collection can occur according 

to their distance from any given point. Actually, this ordering is feasible because each 

collection consists of a countable, finite and therefore individually identifiable set of 

primitives. Therefore the definitions of the nearest and the second nearest primitives are 

attainable. The reason for utilising such an ordering schema will become obvious in the next 

paragraphs, where we will need to identify points that are equidistant between two different 

primitives of the same collection.

. In this section we investigate the case where the defining parameter 6 is determined by 

another implicit definition (Eq. 5.5). In this way, the model for our objects becomes:
k i

{ p  | p e R» , £  d(p£A )= Y , d<P>CB?  } (Eq- 5-8)
i=l y-i

The surfaces that result from definition (Eq. 5.8) will consist of all the points that are 

equidistant from the nearest primitives of collections CA, and CBj. In other words, the 

definition of equation (Eq. 5.8) describes the intersection of iso-surfaces that are produced 

by the CA and CB sets of collections. In fact this was expected, since the defining parameter 

in (Eq. 5.8) is actually a process.
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This model definition can be applied to generate known mathematical surfaces such as the 

three-dimensional paraboloid (plate 25), as described in section 5.6.4. The power of our 

modelling approach lies, however, in its ability to produce with no further effort 

generalisations of known surface definitions thus creating families of such surfaces. 

Examples of this case are the paraboloid-like shapes in plates 27, 29 and 31, also described 

in section 5.6.4. There, we will also present the models that we used to build these surfaces.

Another interesting family of surfaces comes from the same definition of equation (Eq. 5.8) 

with the following assumption; consider that CA consists of only one collection and that CB 

consists of the same collection as CA (i.e. CA = CB). For such a definition, the resulting 

surface would always be the whole space because both members of the constraint are 

identical. For this reason our generic surface definition (Eq. 5.8) is adjusted to the following

{ p  | p e Rn , dfo,C)=d£ptC) ) (Eq. 5.9)

where dj denotes the distance from the nearest primitive in collection C and d2 the distance 

from the second nearest primitive of the same collection C. If C consists of points only, the 

resulting surface(s) is a Voronoi tessellation, or diagram. To recall from chapter four, the 

Voronoi diagram defines for each point, or nucleus, its corresponding neighbourhood so that 

any point in space is nearest to the owner of the neighbourhood it belongs to, than to any 

other (Figure 5.1).

Figure 5.1 Voronoi diagram using 7 points and 5 line segments
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But with the surface description expressed in equation (Eq. 5.9), the concept of the Voronoi 

diagrams can be extended greatly. In particular, we suggest that instead of using only points 

for the definition of the Voronoi nuclei, other simple geometric objects such as lines, or 

polygonal facets should be used. In this way, we extend the definition of the Voronoi 

tessellation making it applicable to virtually any geometrical object our modelling approach 

can describe. Plate 33 demonstrates a tessellation where line segments are used as nuclei. 

Moreover, using our modelling approach we can also assign weights to the nuclei of the 

Voronoi tessellation, and visualise the resulting surfaces (tessellations) as plates 47 and 48 

demonstrate. Thus, we can study the effects that changes to these weights produce for a 

given nuclei arrangement. An example of this, is the sequence of plates 34 - 44, explained 

in section 5.6.4.

5.5 Discussion: mathematical and geometrical implications

5.5.1 Mathematical implications

In this subsection we shall analyse and evaluate the options that are available to us during 

the two stages of extending the definition of the measure of distance. This is useful because 

it will help us understand the consequences of using a particular function to extend the 

definition of the measure of distance. What is assumed to be known is a set of points A, and 

a point p  that may or may not belong to set A. What we intend to determine, is a way for 

measuring the distance of point p  from this set.

We can distinguish between two cases, regarding the nature of this set; the finite, where the 

set A consists of a finite number of points, and the infinite, where the set A consists of an 

infinity of points that is usually determined by the locus of a point that describes a 

geometrical object such as a line segment, or a torus. Therefore, we shall present two 

examples to cover both the finite and the infinite category of sets. For each such example, 

we will present and evaluate the alternatives for defining the measure of distance, and we 

shall justify our preferences. We start with the finite category of sets.
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Finite category

Consider the finite set A of the following five points in two-dimensional space as Figure 5.2 

shows: A = = { (1.1 , 1.3), (2.5 , 1.9), (3.4 , 1.1), (5.1 , 0 .1 ), (1.9 , 0.3) }.

Let us now assume that for a given point, say p = (3.6 , 0.6), we need to calculate its 

extended distance de(p,A) for the set A. At the first stage of our calculations we will have 

to determine the intermediate values v„ v2, v5. These values represent the Euclidean

distance of p from every point of the set A (i.e. Xj, x2, ..., xs). Then, in the second stage, we 

will have to determine the minimum of these intermediate values and use that as the 

extended distance de(p A ).

X2

\

XI

X5

X3

\  /  
\  /
 _ •.

P

X4

Figure 5.2 Calculating the distance of a point from a finite set

STAGE 1 
Intermediate values

STAGE 2 
Distance of p  from A according to 
formula:

Vj = d(p,Xj) = 2.6 Minimum del = 0.58 (v3)

v2 = d(p,X2) = 1.7 Maximum de2 = 2.6 (v7)

v3 = d(p,x3) = 0.54 Average de3 = 1.636

v4 = d(p,x4) = 1.58 2nd in incremental order de4 = 1.58 (v4)

v5 = d(p,xs) = 1.73 Weighted average de5 = Any (depends 
on weight vector)

Table 5.1 The two stages for the calculation of the extended distance from p  to A
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The results of this example are summarised in Table 5.1, where we have calculated the 

extended distance d jp ^4) using the minimum (deI), maximum (de2), average (de3), 2nd in 

incremental order (de4) and weighted average (de5) functions. All but the last of these 

alternatives can be calculated. The evaluation of the weighted average depends on the values 

of the weights that must be assigned to all the members of the set A.

Infinity category

Let us now consider another set of points, say B , that unlike set A  consists of an infinite 

number of points that are determined by the locus of a point which describe an infinite line 

(Figure 5.3). We shall try to calculate the extended distance d ip fi) by applying the same 

alternatives that we used in the previous example. However, unlike the previous example, 

the outcome of the first stage of calculations (i.e. that of the intermediate values) does not 

produce a finite set of intermediate values (v). Instead, there is an infinity of intermediate 

values and their minimum is realized for the point x 0 which is defined as the intersection 

point between the perpendicular line that passes through the point p  and the line represented 

by the set B  (Figure 5.3). Consequently, all intermediate values belong to the continuous 

interval of real numbers [ d(pjc^), «>), where x 0 is the nearest point of B  fromp  (Table 5.2).

Set B

p

Figure 5.3 The distance of a point from an infinite set

We can observe here, in the second stage of this example, that most of the extended distance 

definitions d(pJS) are unsuitable for further calculations. Specifically, d,4 cannot be 

calculated since the set of intermediate values is infinite and uncountable. Definitions de3 and 

des can also be inappropriate because they may become too time consuming to determine,
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since they involve the calculation2 of integrals. Consequently, from the extended distance 

definitions that use the functions of minimum (deI) and maximum (de2), we have the choice 

to use either.

STAGE 1 STAGE 2

v g  { d(p,x) |xeZ? } =
= [d(p,X0) , o o )

where x 0 is the nearest 
point in B  from p.

Minimum del =  d(pfx (,)

Maximum de2 = (depends on B)

Average de3 = (depends on B)

2nd in incremental order de4 -  Not applicable

Weighted average de3 = Any (depends on weight vector)

Table 5.2 The two stages for the calculation of the extended distance from p  to B

In most of our examples we used definition del (minimum) for the following three reasons. 

Firstly, the notion of infinite distance, as the use of maximum (de2) implies, is more difficult 

to conceptualize when compared with the concept of the minimum (nearest) distance. 

Secondly, the measure of the infinite (°°) distance is relatively more difficult to incorporate 

in calculations. Thirdly, by using the minimum function, the range of the permissible 

intermediate values, in most cases can be neither negative nor infinite. This observation 

stems from the mathematical definition of any ‘distance’ function that must

• produce non-negative results

• give the same outcome if its arguments are transposed

• verify the triangular inequality

Consequently, a definition for extending the measure of the Euclidean distance may be that 

of del which calculates the minimum of all the intermediate values v. This conforms with 

the general mathematical definition of distance and is relatively easy to conceptualize, 

calculate and implement algorithmically.

2 In specific cases, there exists a formula for calculating an (infinite) integral, but in general we will need to 
approximate it using numerical analysis methods.

164



We have to stress here that there are other alternatives that we may use for extending the 

definition of the measure of the Euclidean distance. Such alternatives may simply be 

introduced in the appropriate visualisation algorithms. For example, in chapter seven we 

show the contour maps produced from the use of the weighted inverse square distance 

function.

However, if one needs to use another (other than the minimum) function to extend the 

definition of distance, one needs to be aware of the specific restrictions this function 

imposes on its operands. For example, the distance formula d,4 (i.e. the 2nd in incremental 

order) is limited to countable sets of points where an ordering schema may be imposed. This 

is the only way where one can determine the kth member of that order and hence, calculate 

the required distance. Furthermore, if two or more members evaluate to equal intermediate 

values, the Kh member in this ordering schema may be impossible to identify uniquely. Such 

inconveniences do not become unsurmountable problems, but may produce disconnected iso­

surfaces. It is clear that a continuous range of intermediate values will not be suitable to 

such a definition of distance.

5.5.2 Geometrical considerations

In the previous sections we were concerned with the determination of a new modelling 

approach for computer graphics. These efforts started with a general concept of a problem 

(Eq. 5.1) and concluded with a mathematically well defined problem description as 

expressed in (Eq. 5.5). During this process, we defined and used a number of concepts that 

include the extended distance, the nearest object, the primitive geometrical objects, and the 

collection, which we believe are important and will prove useful to the rest of our 

investigation. Here, in this subsection, we will explore the geometrical implications of the 

treatment of the measure of distance, as we have defined in the previous sections. We 

illustrate its significance through a series of examples. Moreover, where appropriate, we will 

relate our findings to other research concerned with implicit modelling, thus producing a 

more comprehensive analysis.
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The first example considers the line segment AB  in two-dimensional space, as Figure 5.4 

shows. The distance of point P  from A B  will be the length of the line segment PO. The 

length of a line segment will be determined as the Euclidean distance between its two 

defining vertices (A , B ).

Case i

B

I
■ J.
R

O

! O

Case ii

B

Case iii

Figure 5.4 The calculation of distance d(P , AB)

Consider now another point Q. Its distance from AB  could be defined in three different 

ways. The first is found in all geometry textbooks and involves the virtual extension of the 

line segment AB  until it intersects with the line that passes through Q and is perpendicular 

to AB. For the second, we propose to prohibit the arbitrary use of virtual extensions to the
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line segment AB, thence leaving the value of the required distance from Q to AB  as 

undefined. Finally, the third approach applies the extended definition of the measure of 

distance, as we proposed it in equation (Eq. 5.3). Table 5.3, summarises the above 

alternatives, and Figure 5.4 illustrates their geometrical implications.

Case Value

i The length of the segment QR, since this is the distance of Q from the 
infinite line which extends the segment AB.

ii Undefined, since when we draw the line from Q, perpendicular to A B , 
it does not intersect with the segment AB.

iii The length of the segment QA, which is the minimum distance of Q from 
the set of points that form the line segment AB  (definition Eq. 5.3).

Table 5.3 Different cases for evaluating the distance of a point from a line segment

According to the three different cases of evaluating the distance of a point from a line 

segment, three different contours would emerge (Figure 5.4) for any given value of the 

defining parameter 6 (Eq. 5.5). It becomes apparent that the first case (i) produces a 

disconnected contour of two parallel infinite lines. Similarly, in case (ii), we also get a 

disconnected contour that consists of two parallel line segments. From the definition of case 

(iii), however, a continuous contour emerges. This consists of two parallel line segments — 

similar to the second case (ii) — but now their end-points are connected with two semi­

circles. Therefore, case (iii) is the one consistent with our extended distance definition as 

given in equation (Eq. 5.3).

The significance of case (iii) becomes apparent when using polygonal lines in the form of 

collections. For example, consider Figure 5.5. Here, the model consists of six line segments 

properly placed to form the skeleton of the capital letter ‘M’. These line segments can also 

be seen as a collection (C) thus enabling the modelling and the effortless manipulation of 

a complete letterset. Following the notation established in the previous sections, the shape 

of Figure 5.5 will be given by the following definition:

{p| peK 2, d(p,C) = 6)
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With the use of different values for the defining parameter 6 , a family of shapes, all 

approximating to the letter *M\ can be produced. For small positive values of 6 , the 

resulting shape resembles very closely the defining polyline (i.e. the collection). This method 

has already been used by Bloomenthal [1990] and others under the name of ‘skeleton filling’ 

as we discussed in chapter four.

Figure 5.5 The skeleton of capital letter ‘M ’

Figure 5.6 Contour maps of the capital letter ‘M ’

In contrast, the use of very large values of 6 will produce distorted images of the defining 

skeleton. As a rule of thumb, in most cases, the larger the value of 6 is the more the 

resulting contour resembles a circle. In Figure 5.6, for example, the same model of the 

capital letter ‘M ’ that was used in Figure 5.5 is visualized for values of 6 in the range of 

several orders of magnitude larger compared to the size of the defining line segments, thus 

producing a number of contour maps.
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5.5.3 Summary

In presenting the implicit modelling approach we have developed, we begun by analyzing 

the measure of the Euclidean distance, and we arrived at a number of alternatives for 

extending it. Further analysis guided us to choose definition (Eq. 5.3) as the extended 

definition for the measure of distance between a point and a set of points. In this way we 

finally defined the distance between a point and a geometric object.

Our modelling approach initially considered a simple model for surface description which 

is expressed with equation (Eq. 5.1). Through a series of definitions and assumptions we 

derived an enhanced and significantly more ‘intuitive* mathematical description for 

generating implicitly defined surfaces as equation (Eq. 5.5) expresses. This final model for 

surface generation will now be evaluated through the analysis of several interesting cases. 

We anticipate that with this analysis the capabilities of our modelling approach (as 

determined by the model of Eq. 5.5) will be demonstrated, thus giving to the reader a more 

comprehensive view of its significance. The conceptual schema of the final model we 

adopted is also depicted in Figure 5.7. There, we illustrate the decisions we take in order 

to construct our models and we also indicate some of the choices we preferred to follow.

CHOSE MEASURE 
OF DISTANCE

DETERMINE TYPE OF 
DEFINING PARAMETER

CONSTRUCT
CLUSTERS

SELECT
PRIMITIVES

point minimum sum of distances constant
line segment maximum sum of inverse distances function
cyclical disk 2nd in incremental order sum of inverse square distances process

facet average weighted sum of distances another constrained definition
weighted average polynomial

Figure 5.7 The conceptual schema for implicit model construction.

This final model is now capable of describing many simple and already known geometrical 

objects. This model’s power lies in the ability to describe new objects and forms by 

perceiving them as generalizations of other more simple ones. We can envisage further 

enhancements for our modelling approach such as various types of surface generalisations 

and other more complex constraints.
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The types of extensions that we applied to the initial model were necessary because they 

enabled us to explore a wider variety of surfaces compared to those covered by the initial 

model. An important issue in this research is that throughout the process of model expansion 

we have avoided the use of analytical means in order to demonstrate the potential of 

combining old but very intuitive object description techniques with the capabilities of 

modem computing methods in computer graphics. Such methods have been abandoned in 

the pre-computer era due to the complexity involved in studying them. The first ‘wave of 

efforts’ in computer graphics was focused on analytical object descriptions that definitely 

present several limitations when compared to the modelling approach proposed in this 

dissertation. It is only very recently that research in computer graphics has re-discovered the 

power of implicit modelling (chapter four). We hope that this research contributes to this 

effort, and the examples that follow will show its power.

5.6 Applying the modelling approach

The presentation of the modelling approach that we propose would not be complete unless 

we provide an extensive analysis of its potential. This will be achieved with the presentation 

of several examples that demonstrate how to construct a variety of different families of 

geometric objects. In some examples, we will also demonstrate the power of this modelling 

approach by showing its consistency in utilisation and similarity in results when compared 

with other modelling approaches. We form this presentation according to the nature of the 

defining parameter 6 as we also did during the initial analysis.

5.6.1 The defining parameter being a constant

Objects that are described with a single collection model are sufficient to produce a number 

of known and well studied geometrical objects. Repeating a previously discussed example, 

a collection that consists of one point will produce a circle in two dimensions, or a sphere 

in three dimensions with centre the defining point, and radius the non negative value of the 

defining parameter 6.
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When the collection represents a circle of radius r, however, the resulting surface will then 

become a set of two concentric circles in two dimensions. These circles will have a distance 

of 6 from the circular collection and would reside at either side of the collection. Their 

radii would be (r + 6) and (r -  6). If (r -  6) < 0 then the inner circle is degenerate. In three 

dimensions, the resulting surface is a toms with a defining radius equal to r (the radius of 

the collection), and its shape will develop around that circular collection with radius 6 .

Another family of objects that can be produced with such a model, of a sole collection, is 

that of generalized cylinders. Generalized cylinders were first introduced by Agin and 

Binford [1976]. Since then, many researchers have used them in various applications such 

as object recognition, scene recognition, volume representation etc. For an overview of such 

work the reader is referred to Shani and Ballard [1984]. According to them, "a generalized 

cylinder is a representation of an elongated object viewed as having a main axis (spine) and 

a smoothly varying cross section".

Figure 5.8 Iso-surface calculated along a polyline

In this section, our model is capable of defining generalized cylinders with spines of 

arbitrary shapes, but with circular cross section of constant radius 6 only, because we 

assume models with one collection and a constant defining parameter. This poses some 

restrictions about the smoothness (analytical continuity) of the produced surfaces. It becomes 

apparent when the spine is a polygonal line and the cross section is circular of constant
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radius (Figure 5.8). In such a case, the produced surface will be analytically continuous (i.e. 

differentiable) in all places except for the joints of the polygonal line of the spine where it 

is only geometrically continuous (i.e. the surface is not segmented but it is not differentiable 

either). In the next sections, we will see how arbitrary cross sections can also be modelled 

in order to produce a complete family of generalized cylinders.

Figure 5.9 The sum of the distance from three points

By using object descriptions, such as those defined by equation (Eq. 5.5), with more than 

one (non empty) collection, the choice for the value of the defining parameter is more 

restricted. Consider, for example, an ellipsoid. This is defined by two collections each 

containing one of its foci. When 6 is non negative but less than the distance between the 

two collections (i.e. its two foci), the resulting surface is the empty set. In this case 

therefore, 6 has to be greater or equal to that distance. In the extreme case of 6 being 

equal to the distance between the two foci, the resulting surface is the line segment that 

connects the two collections.

In plates 6 - 9 we depict the contour maps of models with one, two, three and four 

collections, of one point each, respectively. In all four plates we used the function of the 

minimum distance. However, we can use any other distance definition, like for example, the 

function of the inverse distance as plate 10 demonstrates.

In Figure 5.9 we also illustrate the contour maps defined by a much simpler model. It is 

model with three collections each of which contains one point as its only primitive. In three- 

dimensional space the surface generated by the same model is depicted in plates 11 and 12.
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We can imagine in plate 11 the location of the three primitives; they are the vertices of the 

resulted triangular shape. One of these vertices, we may observe, is also responsible to the 

lack of surface smoothness near the lower left side of the plate. This effect is attributed to 

the choice of the defining parameter 6 which, for this surface, was taken to be 

approximately equal to the sum of the distance of this vertex from the other two. In this way 

we can assure that the thus generated surface will pass nearby this vertex. In plate 12 we 

see the same surface from a different viewpoint. We positioned the observer so that he lies 

in the plane defined by these three primitives, so that we can see details of the curvature of 

surface that were not visible in the previous plate (plate 11).

When the collections are more complex than single points, or more collections are involved, 

the minimum permissible value for 6 is more difficult to determine as the sequence of 

plates 1 3 -16  illustrate. In this sequence, we used a model of polylines that constructed the 

skeleton of the capital letters ‘EIIY’ and varied the value of the defining parameter 6 

considerably. In this way the outline of the letters (plate 13) disappears by the ‘inflated’ 

surface that a high value of 6 generated (plate 16).

5.6.2 The defining param eter being a function

In the following example we will demonstrate how we can generate the ‘graphical 

representation of a univariate function that is defined along a line’. Although this may seem 

to be a very trivial task, the way we model the graphical representations is very important 

and powerful because it enables us to generate very complex, three-dimensional graphical 

representations that are defined not only on a Cartesian coordinate system, but along any 

geometrical curve or surface as well. It is only for reasons of clarity that this example is 

described in the two-dimensional space.

Suppose that the defining function for 6 uses only one input parameter (say, u). For every 

point p  = (x,y) in the two-dimensional space, in order to evaluate the defining function 

( 6(h)), the value of u will have to be calculated first. This is achieved by somehow 

combining the point’s coordinates. A simple choice is to use the x- coordinate (i.e. u =x )  

and ignore the y- coordinate. Therefore our defining function will become 8(x). Suppose

173



also that (Eq. 5.5) consists of one collection of an infinite line that coincides with the 

horizontal (say x- axis) of the space’s assumed Cartesian coordinate system. In this way, the 

resulting surface definition becomes:

{ p  | p s ( x , y )  , d(p,C) = 6(u) } - { p  | p * ( .x ,y )  , d(pX<al)  = b(x) }

Geometrically, this means that the resulting shape will be the graphical representation of the 

univariate defining function 6(«). Moreover, the choice of the line in the only collection of 

the model should not necessarily coincide with the x- axis of the assumed Cartesian 

coordinate system. It can be a line of any orientation, as long as the appropriate mapping 

to the parameter u is correct. Here, however, there are two issues that need attention: first, 

is the case where the defining function takes ‘prohibited’ values (e.g. becomes negative), and 

second is the fact that the resulting graphical representation will be also mirrored along the 

x- axis.

With regard to the first issue, there are two methods. The first and simpler method is to shift 

(i.e. translate) the defining function away from the x- axis. If the function is bounded, as for 

example the sine (sin()) function, an appropriate translation is sufficient. If, in contrast, the 

defining function cannot be bounded (e.g. 8 ( jc)  =x) we either try to establish some local 

boundaries and shift accordingly, or use its absolute value that is always non negative. The 

alternative (second) method we may employ is to truncate and ignore all the parts of the 

surface that are produced by negative values of the function 8(w).

With regard to the second issue, a symmetrical (i.e. mirrored) image along the x  -axis will 

always appear since the measure of distance does not exhibit a sense of orientation (i.e. it 

is irrelevant from what half-plane we approach the x  -axis). If the symmetrical image is not 

desirable, one should modify the defining function 6(«), so that it would enable a check to 

determine the half-plane from which the distance is calculated:

P s (x>y)
5W  i f y z O  

0 elsewhere

We can now illustrate the effects of object definitions in the space of three dimensions. 

Here, there is a wider range of possibilities with regard to the number of parameters that this
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function may have. Nevertheless, what seems to be important is the difference between the 

degrees of freedom of the defining function with respect to the dimensionality of the space 

in which it is defined. Therefore, in a way analogous to the two-dimensional case, when the 

defining function depends on all three coordinates ( x , y  , z), the resulting surfaces emerge 

from the intersection of the model’s and defining function’s contour maps.

However, when the defining function depends on two parameters only, say the u, v we will 

need a mapping function: ( x , y , z )  = >(« ,v) .  Let us assume that the object definition 

consists of one collection, which is a plane, say the X  - Y  plane that passes from the origin 

of the coordinate system. The shape of the resulting surface depends on the selection of the 

mapping function. Suppose for example that (u, v) = (x, y) .  In this way, the z coordinate 

of any point will be the equal to the (Euclidean) distance of that point from the defining 

collection (i.e. the X  - Y plane). As a result, the produced surface will be the graphical 

representation of the defining function, which now is defined along the X - Y plane. Again 

here, as in the previous example, the same two issues (i.e. ‘prohibitive’ function values, and 

‘mirrored’ images) have to be taken into account.

Let us now take another model that consists of one collection which is defined by one 

infinite line in the three-dimensional space. Here, a mapping that provides surfaces useful 

in terms of computer graphics modelling applications stems from the following procedure: 

suppose that somewhere along the defining line there is fixed point that we will call the 

origin. Assume also that we can impose a direction along that line. Consequently, any given 

point on that line, apart from the origin,3 will define a vector starting from the origin and 

ending at that point and its direction would be either the same or the opposite to the 

predefined one.

In this way, one of the parameters of the defining function (say v) may be the Euclidean 

distance of a point from that line. And the other, (h), may be analogous to the length of the 

line segment that is defined by the origin and the projection of the given point onto the line. 

By using this mapping to determine the parameters u, v the resulting surfaces will become

3 If the end point of a vector coincides with its starting point, which in our example is the origin, then it has zero 
length and its direction is undefined.
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the body o f revolution around the defining line, as plate 17 shows. The model in this plate 

consists of one collection only which defines a line segment as the only primitive. Observe 

in this plate how the end-points of the line segment are rounded off by semi-spheres of a 

radius that is determined by the evaluation of the defining function at these end-points 

respectively.

In this sense, when the defining collection is a line, this being an infinite line or a line 

segment, the resulting surfaces for 6 being a function, or even a constant, are bodies of 

revolution as plate 18 shows. In this plate we show how the trigonometric function of sin( ) 

is rotated along a line segment (the primitive of a model with one collection).

Moreover, interesting shapes will also emerge when the defining collection is a polyline 

which is also called a broken axis o f revolution. In this case, surfaces will be produced from 

rotation along different line segments. Here, attention should be given to the choice of the 

mapping function if the resulting shape is to become geometrically continuous. In plate 19 

we see a model of a polyline (of one collection of one primitive) which has as defining 

function the sin( ). The segments of the polyline are connected to form a ‘broken axis’ and 

the defining function sin( ) is defined along the polyline. We can observe the way the 

surface behaves around the joint of the constituent line segments. Surface continuity 

(geometrical) is assured by the way we calculate the defining function along the polyline.

Another interesting case is that depicted in plate 20, where, the same sin( ) function is 

defined along the longer dimension of a rectangle. The surface of this model has been 

modulated along the rectangle’s longer dimension with the sin() function which has been 

extruded along the rectangle’s smaller dimension.

In a similar way we can also create a model of a surface when the defining collection 

consists of one primitive of one point only. Here, this (defining) point can be used as the 

origin of an alternative coordinate system, like that of mercator coordinates where any point 

on the surface of a sphere is determined by its orientation along the equator, namely the 

longitude, and its distance from the assumed north pole which is called the latitude. Hence, 

for any given point, its mercator coordinates could be used for the parameters (h , v ) of the
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defining function b(u , v). In this way, the defining function is ‘mapped’ onto the surface 

of a sphere (i.e. the one used for the corresponding calculations of the mercator coordinates). 

In other words, the surface produced is the result of the ‘modulation’ of a spherical surface 

by the defining function. This means that the surface that could have been produced by 

using a constant value for 6 (i.e. a sphere), is now modulated in accordance with the 

defining function that replaces 6 .

Consequently, research directed towards texture mapping [Heckbert 86], inverse mapping 

[Haines 89], or wrapping can now be used in order to exploit surface modulations further 

by using models similar to these presented here in the above examples. Another classical 

application here is the mapping of environmental variables (e.g. atmospheric temperature, 

ozone density) that are measured using the mercator coordinate system of the spherical-like 

earth. For more details on this issue the reader is referred to the spherical plots modelling 

approach presented in chapter four.

5.6.3 The defining param eter being a process

When using random numbers for the determination of 6 , two issues arise. The first has to 

do with the consistency of the random numbers used, and the second with the continuity (i.e. 

smoothness) of the produced surface. With regard to consistency, algorithms that produce 

pseudo-random numbers [Kemighan & Ritchie 1988] can be used as long as their initial 

seeds remain unchanged during the visualisation process. With regard to surface smoothness 

however, some additional techniques have to be used. In order to control the continuity of 

the produced surface, randomly produced values are permitted to oscillate only between 

specific limits depending on the values of their neighbouring points. One way to achieve this 

is by first calculating the ‘smooth’ value through interpolation of neighbouring ones, and 

then by adding to that an amount of noise. Dietmar Saupe [1989] covers this subject with 

more detail by presenting the midpoint displacement method as well as spectral synthesis 

and functional based approaches. Additionally, methods using stochastic noise synthesis can 

also be used. Other references include [Mandelbrot 1982] and [Voss 1985].
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By utilizing such a technique, a controlled but also (pseudo) random process can be defined. 

Plates 21 and 22 show the effects of such processes for two different values of the control 

parameters. In plate 21 the variation (smoothness) of the pseudo-random numbers is globally 

controlled, where, in plate 22 the smoothness is less apparent and more locally confined. 

The pseudo-random numbers produced by these processes are colour-coded, therefore 

continuity is expressed by colour adjacency with respect to the spectrum of visible light (i.e. 

the rainbow spectrum).

We can use this process in order to create a pseudo-random surface around a line segment. 

Plate 23 shows a model of one collection of one point only that has such a pseudo-random 

process as the defining constraint. It is important to observe that the produced surface is 

fragmented and consists of at least two separate pieces. This type of observation can only 

be made after the visualisation of such a model, since analytically is too difficult to 

determine. Once such ‘discontinuities’ are located, further studies on the model are possible. 

This pseudo-random process uses all three coordinates as input. Therefore, the surfaces 

produced, as explained in the previous section, are the intersection of the model’s and the 

process’s contour maps.

Benoit B. Mandelbrot in the late 1970s was the first to attempt a description of the subject 

of fractals [Mandelbrot 1977]. Since then the subject of fractals together with that of Chaotic 

Dynamical Systems [Devaney 1989] have evolved into an individual domain of research. 

The definition of the Mandelbrot set is given in relation to a process for generating 

sequences of numbers [Peitgen & Richter 1986].

In our example we are going to use the following process: Assume a point p  in two- 

dimensional space. The nth member of the sequence (Snp) that stems from p  will be:

K r slu p +P . $,,=  o
This sequence either converges to zero or approaches to infinity (<»). It has been proved, 

however, that this sequence does not converge to zero if the norm of at least one of its 

members is larger than 2. Specifically:

i f  lSn, l > 2  -
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and the norm of a two-dimensional point is the length of the vector it defines:

iPl=^Px+Py . />eR2

The density value used for the produced contour maps is the integer number n that denotes 

the order of a specific number S^p for which the above defined ‘divergence’ criterion is 

satisfied. If after a number of iterations (for the calculation of S^p) the sequence has not 

proved to diverge, the process for calculating members of that sequence terminates, and the 

density value for the corresponding point p  is assigned to be the maximum number of 

iterations. This maximum number will be called the resolution of the set.

X-axis

Figure 5.10 X -  axis symmetry of the Mandelbrot set

In Figure 5.10 we can see the borders of the Mandelbrot set at resolution 12. We can 

observe the variations of thickness of the borders of the set which verify its fractal nature. 

A simple rule to observe here is that the larger the resolution is, the more complex the 

border appears. For this reason any attempt to approximate these borders with polygonal 

lines will be incorrect since for a different resolution this can be arbitrarily wrong. Because 

of the simplicity of its generation rules and the complexity of its resulting contour maps this 

set has become popular.Let us assume now such a process to be the defining process for a 

model consisting of one collection of one infinite line. The mapping function has to be 

adjusted so that the resulting surface would be the rotated Mandelbrot set along the x- axis. 

For this reason, the x- axis is mapped with the appropriate scaling onto the defining line thus 

determining the first input parameter (m). The second input parameter (v) for this fractal 

process will be determined by the distance from that line segment.
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Let us also assume that the Mandelbrot process has a given resolution (say 12). In plate 24 

we see the rotated surface thus generated. At the right top comer of the same plate we also 

see the contour of the borders of this Mandelbrot set. As the previous paragraph stressed, 

the fractal nature of the Mandelbrot contours amplifies the potential of our generic model 

(Eq. 5.5) to define and manipulate such complex object descriptions.

The choice of the x- axis as the axis of rotation is used because of the symmetry of the 

Mandelbrot set (as it was defined here) along the x- axis as Figure 5.10 shows. As a result, 

any other mapping from the coordinates to the input parameters of that fractal process would 

result into a distorted view.

5.6.4 The defining parameter being another implicit definition

This is a special case of the defining function being a process, but as we discussed in

section 5.4.3 it must be presented separately. This particular treatment has also allowed us

to adjust the model definition of Eq. 5.5 to that of Eq. 5.8 and the particular case of Voronoi

diagrams (Eq. 5.9), that for reasons of clarity we also present here:
k i

{ p  | peRn , £  d(p,CA)=Y, d<P>CB?  } (Eq- 5.8)
*-i /-i

{ p  | peRn , } (Eq. 5.9)

Consider, for example, the case where CA is one only collection consisting of one primitive 

which is one point ip), and CB is one collection that contains one primitive which is an 

infinite line denoted by I. Let us also assume for this example that these collections do not 

intersect. The definition of (Eq. 5.8), in two dimensions, will produce a parabola 

(Figure 5.11). This figure, shows the line / as a dotted line for reasons of clarity.

We must note here the problem of accuracy that dominates the visualisation techniques used 

for this category of models and which we intuitively call the thickness o f the surface. The 

contours in Figure 5.11 are getting thicker as we trace the curves away from the defining 

collections (I and p ). The reason is that for a given surface thickness t, more points satisfy
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the inequality d(q,l) - d(q,p) < t for all points q, as we move away from both I and p. If we 

reduce the level t, we will loose trace of the contour in the area near the defining primitives.

Figure 5.11 A parabola defined by an infinite line

If in the example above the CB collection was a line segment instead of an infinite line, then 

following case (ii) of Figure 5.4, the resulting shape would have been truncated accordingly. 

When we use the minimum distance (case iii of Figure 5.4), beyond the truncation points, 

the parabola shape degenerates into infinite lines (Figure 5.12). Again for reasons of clarity, 

the line segment I is denoted as a dotted line.

Figure 5.12 A parabola as defined by a line segment
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To illustrate the capabilities of our modelling approach, we will explain how we can extend 

effortlessly the definition of the paraboloid in order to define a family of paraboloid-like 

objects, as plates 2 5 -3 1  show. A paraboloid is defined as the locus of points that are 

equidistant from a given point and a given plane that does not pass through that given point. 

In plate 25 we can see a paraboloid such defined. Because the paraboloid extends to infinity 

for reasons of image clarity we had to tmncate its surface when the distance of its 

constituent points from the given plane (and/or given point) exceeded a predefined threshold. 

As a result, we could replace the given plane with a planar disk of a large enough radius 

so that it would not affect the shape of the truncated paraboloid. In this plate (plate 25) we 

can see a turquoise-coloured disk and the resulting paraboloid above it. In plate 26, which 

is the same (plate 25) paraboloid model but, observed from a different viewpoint, we can 

see the ‘inside* (other side) of the paraboloid where the defining point (turquoise-coloured 

sphere) is also visible.

Our first experiment was to generate a paraboloid-like surface by applying the two- 

dimensional definition of the parabola and visualise it in the three-dimensional space. In this 

way, the defining primitives, denoted with the turquoise colour, were a line segment and a 

point (plate 27). The thus generated surface is also depicted in plate 28 where we can also 

see that it is an extruded parabola along the direction perpendicular to the plane that passes 

through the defining primitives.

The next experiment on the definition of the paraboloid was to replace the defining point 

with a line segment. In this way we visualised, in plate 29, the locus of points that are 

equidistant from a given plane (denoted by the turquoise planar disk) and a given line 

segment (denoted as a turquoise line segment). Another view of the same object is also 

shown in plate 30. Following that line of experimentation we then replaced the paraboloid’s 

defining primitives with two given line segments non-intersecting and perpendicular to each 

other. The thus generated surface is depicted in plate 31. For reasons of clarity the sides 

(faces) of the generated surfaces have been assigned different colours and three light sources 

have been used to provide the shading and highlights.
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Another series of experiments was also conducted on the surface definition of Eq. 5.9. This 

definition expresses the problem of the Voronoi tessellation, but also allow us to enhance 

it considerably. One such example of the Voronoi tessellation is shown in plate 32 where 

we used nine points (denoted with turquoise spheres) as nuclei. Our first enhancement was 

to use as nuclei line segments instead of points. In plate 33 we show the tessellation defined 

by using three line segments as nuclei. Taken in pairs, all segments are perpendicular to 

each other but they do not intersect. Since some of the resulting surfaces may extend 

infinitely we had to impose an upper limit threshold in a fashion similar to that of the 

paraboloid examples. Moreover, in order to make the nuclei visible, at least partially, we had 

to impose a lower limit threshold below which no surfaces were visualised. This lower limit 

stops visualisation of all points on the visualised surface that are closer to the nearest 

primitive a distance smaller than the lower limit threshold.

The second of our enhancements to the definition of the Voronoi tessellation was the 

assignment of weights to all participating nuclei, these being points, lines, or any other 

geometric object. To better understand the effect that weights had on the thus generated 

tessellations, we constructed a series of tessellation images (plates 34 - 44) for the same 

arrangement of nuclei, but with varying weights. Specifically, we used a model of four 

points as nuclei which are denoted as turquoise-coloured spheres. The weights of the three 

nuclei (the ones on the right, below, and left) were set to the same value 1.0, while the 

weight of the top nucleus was let to vary between 0.75 (plate 34) and 1.25 (plate 44) in 

steps of 0.05. As a result, eleven plates were produced.

To conclude our experiments of this category of model descriptions, we also generated 

plates 45 - 48 with models of several points (4 in plate 45, 9 in plate 46) and line segments 

(plates 47, 48) as nuclei, all being assigned different weight values. In these plates we used 

a colour coding schema which assigns the same material properties, including colour, to all 

the surfaces that face the same nucleus they are nearest to. However, because of the 

definition of the Voronoi surfaces, where two nuclei are equidistant, we paint each visible 

surface according to the nearest or second nearest nucleus, depending on the orientation of 

the surface in relation to the observer.
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5.6.5 Discussion on the applications of the modelling approach

In this section we have seen some examples of the models generated by the approach we 

have developed and described in this dissertation. We have concentrated on interesting cases 

of models for different categories of the defining parameter 8 .

In the first category, where the defining parameter is constant, we saw how the generated 

shapes are affected by the exact value of 6. In the second category, we demonstrated the 

use of functions as a means to modulate surfaces. In other words, we saw how we can 

visualise a particular function that is defined on the surface of another object. We also 

illustrated there how we can generate bodies of revolution and envelopes of shapes that are 

defined along a trajectory. Then, in the third category, where the defining parameter is a 

process, we showed how pseudo-random or fractal processes may also be used in order to 

modulate the surface of geometrical objects.

Finally, in the last category, where the defining parameter is another implicit definition, we 

demonstrated the potential of the modelling approach that we developed through two 

especially interesting cases; that of surfaces that are equidistant from two implicitly defined 

objects, and that of the extensions that we attached to the definition of the Voronoi 

tessellation problem.

We believe that the examples we used are indicative of both the simplicity and the power 

of the modelling approach that we have presented in this dissertation. In the next chapter 

(six) we will turn our attention to the issue of visualisation. There, we will describe the 

visualisation approach that we have adopted, which matches the requirements of our 

proposed modelling approach, thus producing a complete tool for manipulating implicitly 

defined surfaces. This visualisation approach, which we also used for the production of all 

the plates in this dissertation, further enhances our modelling approach as it allows us to 

demonstrate how we can exploit its principal capabilities: its intuitive nature in form 

description, its power for generalising object definitions, and its support in refining our 

conceptualisation of new geometrical objects and shapes.
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Chapter 6 Visualisation of implicit surfaces

6.1 Introduction

In the previous chapter we saw how the measure of distance can be used to create many 

families of surfaces, some of which have never been modelled before, while others are 

radical generalizations of well known sets of surfaces. Specifically, starting from the 

definition of the initial model described in (Eq. 5.1), we reached surface descriptions such 

as the ones represented by equations (Eq. 5.5), (Eq. 5.8) and (Eq. 5.9). After defining a 

surface using the above equations, the next task will be, as it has already been stated, the 

use of computer graphics techniques in order to visualise it. This visualisation process we 

believe should have two different but complementary targets. The first should aim at the 

exploration of such models and therefore should offer the user ‘real time’ manipulation. This 

means that the user should be able to vary the degree of approximation to the model’s 

surface in exchange for quicker visualisation time. The second target should aim at the 

production of a ‘realistic surface representation’ thus broadening the range of building 

blocks (i.e. shapes) that are available to the current computer graphics user. As a result, a 

visualisation method is needed that would avoid, as much as possible, the use of arbitrary 

assumptions1 about the model.

Although the above targets are complementary, there are cases where both cannot be reached 

at the same time. This is especially true where the highest quality picture is needed for the 

study of the model’s details, thus delaying visualisation speed due to the enormous 

calculation demands. There are also cases where some coarse approximations to the surface 

are welcomed when visualisation speed is a necessity. In this chapter we will present the 

visualisation approach that offers the highest image quality. This is based on the octree 

model definition and representation method [Clark 1976; Meagher 1980; 1982; Doctor & 

Torborg 1981]. Following this approach we will illustrate how we can get a very accurate 

representation of the modelled surfaces. Then we will criticise our visualisation approach 

and discuss the issues involved in improving its speed and accuracy.

1 In various stages of the visualisation process some assumptions about the geometry of the surface could simplify 
the necessary algorithms and significantly speed up the whole process.
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Specifically, in this chapter we will present the visualisation approach adopted, and justify 

the selection. Furthermore, we will explain the adjustments we felt necessary in order to 

enable the effective visualisation of implicitly defined surfaces. Finally, we will elaborate 

on the problem of choosing the suitable point on the implicitly defined objects that will be 

of use as the representative for the corresponding pixel in the resulting image.

The visualisation approach used is primarily based on the octree algorithm. This algorithm 

was presented on the initial chapters on modelling (chapter two) and visualisation (chapter 

three) and we will extensively use the terminology defined there. However, in this chapter, 

we will examine the octree approach from the perspective of the programmer. As such, a 

number of new issues like programming environment, data structures, number precision and 

error tolerances will need consideration.

6.2 Design considerations

The programming environment we chose is that of the Object Oriented Programming 

[Henderson 1993] and its specific implementation is the C++ programming language 

[Borland 1992; Stroustrup 1987]. The C++ programming language was chosen because of 

its adaptability as both a high but also a very low level programming tool. The C++ 

extensions were also preferred for the same reason since they enable programming at an 

even higher level of abstraction. To be more precise, the C++ programming environment 

allows the control (and direct manipulation) of individual lines of hardware ports and the 

linkage of assembly language instructions, as well as the handling of complex abstract 

entities (i.e. classes or objects) like the palette, the scene and the window. This environment 

has proved very convenient to use, not only during the initial prototyping stages, but also 

in the development of the final software application. Moreover, implementations of the C++ 

programming environment exist on all the common hardware and operating system 

platforms. For example, there exist the shareware GNU compiler for all the major UNIX 

implementations, and the Borland C++ environment for the DOS, Windows, and OS/2 

platforms of Intel x86 compatible hardware. Many other manufacturers provide 

implementations of the C++ programming language such as the Microsoft C/C++, the IBM
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XLC++, the Watcom C/C++, the ZortexC++, etc., all offering the ANSI standard 

implementations alongside their own proprietary libraries that are targeted at specific 

application domains (i.e. mouse manager, numerical approximation algorithms, etc.). 

Therefore, portability of C++ programs is not an obstacle provided only the standard 

function libraries are used.

Once the choice of the programming environment was made, the next important issue was 

the utilisation of the Object Oriented mechanisms. The initial design for the complete 

software implementation was very critical since it would affect not only the efficiency but 

also the capabilities of the resulting application. In an Object Oriented environment, the 

most fundamental building block is the object. This is an instantiation of an abstract data 

structure which is user-definable and is called class. A class describes data of a particular 

form and a number of methods that are processes designed to manipulate on this data. One 

of the most important features of a class is the inheritance. This property allows the 

hierarchical definition of subclasses that stem from a parent class. As such, subclasses share 

the data forms and methods of their parent class and consequently determine the data and 

methods that their own subclasses will inherit.

The advantages of using the Object Oriented approach to computer programming have been 

listed in many books, and can be summarized in the following key areas: modularity, ease 

of testing, maintainability, reusability. However, the main disadvantage of the object 

Oriented approach is rarely mentioned and refers to the choice of the appropriate class 

hierarchies that would reflect accurately, and enable the effective implementation of, a 

particular application domain. Fortunately (!) applications of computer graphics are the most 

favourable example for Object Oriented textbooks and one can anticipate a variety of 

alternative designs to appear. But the majority of the references prefer to treat points in 

space as the most important class, from which the rest of the representations of simple 

geometrical objects (e.g. line, circle, etc.) must inherit. The potential of this pixel-based 

design approach proved to be neither appropriate to our implementation requirements, nor 

powerful enough to accommodate the variety of viewports needed in a real environment.
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However, apart from the pixel-based design approach, another three candidates were 

examined. The first is based on the geometrical object which is the primitive building block 

of the model and the second is the subcube or the cubelet which forms the primitive cubical 

space on which the octree algorithm is based. The third alternative, and which is the one we 

adopted, treats the complete modelled scene as the primitive class for our design.

6.3 The current implementation

The octree method as described in the previous chapters constructs what we will call the 

traditional octree approach. This approach will also form the basis for our implementation. 

Nevertheless, in order to make our implementation capable of visualising the surface 

descriptions given in the previous chapter in a more effective way, we have introduced some 

amendments to the traditional octree. For this reason, in this section we will present the 

most important differences of our approach compared to the traditional octree. First, with 

regard to modelling, we will show how our model definitions are used with the octree 

method. This to a great extent is aided by the introduction of two basic assumptions. Some 

criticisms about them and a presentation of other alternatives will follow. Finally, we will 

present how during visualisation all the information necessary for the rendering of the 

appropriate pixels (i.e. intersection point, direction of the normal, etc.) can be established.

6.3.1 The implicit to octree model conversion

The implicit surfaces defined in the previous chapter have not been described with octree 

data structures. Therefore, in order to use an octree based visualisation algorithm, we will 

have to somehow convert the implicit description of a surface into the equivalent octree 

based one. Specifically we will need to extract information regarding the homogeneity of 

cubes of space (i.e. whether a cubelet contains any points of the modelled surface). This 

process of model conversion, however, exhibits some complicated elements that are 

addressed and resolved through the introduction of two assumptions that we will present in 

this section. The first assumption regards the shape of the octant we will use, and the second 

regards the mapping of octants in three-dimensional space with pixels on the viewport. Our
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rationale behind these assumptions, as we will see in the next paragraphs, emerges from the 

lack of knowledge about the behaviour of the constraint (and the defining) function inside 

a particular volume of space.

For the process of model conversion we will follow the method described in the octree 

modelling subsection of chapter three; the surface is surrounded by a supercube, the 

intersection test (i.e. whether a particular subcube intersects the surface) is applied and the 

subcube subdivision proceeds accordingly. Each subcube corresponds to an octant and the 

minimal sized subcube is called cubelet and corresponds to a voxel. Information about the 

homogeneity of the cubelet will be used to determine the colour of the voxel and 

subsequently the colour of the corresponding pixel onto the viewport. But the answer to the 

intersection test may sometimes become a prohibitively time consuming process, especially 

when we do not exploit or we do not have basic knowledge about the geometry of the 

modelled surface (e.g. bounding volume information).

Because the models that we will visualise greatly involve the function of distance, 

knowledge about the existence of one point on the modelled surface may help us to make 

similar inferences about neighbouring points with regard to the same surface. The 

exploitation of this observation will become obvious if we rephrase the intersection test 

along the lines of the following argument.

As we have already mentioned, the defining constraint of an implicit definition can also be 

seen as a function, namely the constraint function. This constraint function may take any 

real value depending on the value of the input coordinates, thus assigning every point in 

space one real number. In this way, if we allow the input coordinates to take any value 

inside the volume of a subcube, the constraint function will take a variety of values. If, 

additionally, the constraint function is continuous the resulting range of values will also be 

continuous and form an interval, the constraint interval. Since the surface consists of all the 

points that fulfil the defining constraint (i.e. make the constraint function equal to the value 

of the defining parameter) the intersection test can be transformed into: whether the 

constraint interval that is defined inside the volume of a particular subcube includes 

the value of the defining parameter.
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In order to illustrate the calculations involved for the determination of the constraint interval 

let us assume an implicit surface definition that consists of one primitive geometrical object 

only, which is a line (/) in the three-dimensional space, as equation (Eq. 6.1) specifies.

{p |peR 3, d{p ,I)  = 8} (Eq. 6.1)

This primitive is denoted with I and is represented in Figure 6.1. From this definition we 

can infer that the generated surface will be a cylinder of a circular cross-section with radius 

equal to 6 . Let us also consider a subcube with its centre denoted by C at a particular 

location so that is intersects with /. For that point C, we evaluate the constraint function. 

This value, which belongs to the constraint interval, will be by definition the distance of C 

from /. Let us also denote with A the point on / that this distance is calculated from.

The homogeneity of the subcube will be decided from the intersection test. The re-phrased 

intersection test, as it was presented earlier in this section, examines whether the value of 

the defining parameter 6 is included in the constraint interval or not. Therefore, the limits 

of the constraint interval will have to be determined. In order to determine the minimum and 

maximum extremes of the constraint interval we use the triangulation inequality property 

of the distance function. For this reason we draw the line that connects A  with C. The 

nearest to A intersection point of this line with the subcube will be the one that minimizes 

the constraint function. Similarly, the furthest from A intersection point with the subcube 

will maximize the constraint function.

The complexity of the calculations for the nearest and furthest intersection points of the line 

with the subcube depend on the orientation of the subcube in relation to that line as 

Figure 6.1 shows. A simplification to this calculation overhead comes from the first of our 

assumptions where instead of the cubical space that the subcube defines we use the volume 

defined by the subcube’s circumscribing sphere. In this way, once the distance of C from 

the surface is calculated, the minimum and the maximum extremes of the constraint interval 

are calculated if we respectively add or subtract the radius of that sphere from that distance. 

Therefore, we do not need to draw the AC line, nor do we need to find the intersections of 

that line with the particular subcube.
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Although this assumption simplifies the calculations involved, it is not very accurate since 

sometimes it misclassifies some homogenous subcubes as heterogenous, thus resulting into 

wasteful calculations. A thorough investigation about the advantages and disadvantages of 

this assumption will follow in the next subsection.

• c

Figure 6.1 The inconvenience of using cubical subcubes

To analyse the effectiveness of this assumption concerning the utilisation of spherical 

subcubes, let us assume that this particular subcube of Figure 6.1 has an edge length equal 

to s. The constraint function for point C will be expressed as d(CJ) =d(C^i) =v and the 

resulting constraint interval for the cubical space defined by the subcube will be:

[d (A ,B ), d(A,D )]

while for the spherical one will be [(v -r), (v+r)], where r denotes the radius of the

\/3subcube’s circumscribing sphere and r = ŝ L—

So far, we used surfaces that are defined by a single primitive only. In a more general case, 

where there is only one collection of primitives, the primitive that is nearest to the subcube’s 

centre C is first identified. Then we apply the calculations we have just presented for that 

primitive. Eventually, in the case where more than one collection of primitives are
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combined, we decompose our calculations as follows. For every collection we determine the 

corresponding constraint interval. Then these intervals are combined appropriately, i.e. 

according to the constraint definition. Then the combined constraint interval is used for the 

application of the intersection test, as we saw in the previous example.

But not all constraint functions are as simple as that in the above example. Moreover, there 

are also cases where the constraint function is not continuous and therefore there is more 

than one constraint interval.2 In such cases, we use the following systematic way for tracing 

the surface: at every intersection test between a subcube and the surface we assume that the 

test is true and therefore the corresponding octant needs to be subdivided. Eventually, when 

we reach at the level of the voxel a realistic answer to the intersection test must be given.

This comes from the second of our assumptions where: we assume that a voxel corresponds 

to a cubelet of space that is small enough (for the resolution of our viewport) to be treated 

as a single point. This point is assumed to coincide with the cubelet’s centre. The rationale 

behind this assumption is that the voxel corresponds to a single pixel on the viewport and 

therefore all points inside the cubelet (that correspond to that voxel) will contribute to the 

colouring of a single pixel on the viewport. It is evident that this exhaustive technique for 

the generation of the octree structure demands enormous3 time to implement, therefore, is 

has to be used only as the last resort.

Once the constraint interval has been determined, we need to apply the intersection test. 

Actually, we have to answer whether the value of the model’s defining parameter belongs 

to the constraint interval or not. But as we saw in the previous chapter, the model 

descriptions of the surfaces we aim to visualise are categorised — according to the nature 

of their defining parameter — in three different classes. The classes 7, 77, and 777 refer to 

models where the defining parameter is constant, function, or process. From this last 

category (777) we will make a discrimination to differentiate between the defining parameter

2 In the later case, all intervals are calculated and their union for the rest of our discussion will also be called 
constraint interval.

For the production of a model of reasonable resolution (ie. 512 x 512 x 512) the point membership test of the 
constraint of the implicit definition should be calculated a maximum of 134,217,728 times (=5123). For a high quality 
model, at 2048 x 2048 x 2048 resolution, the above test needs to be applied a maximum of 8,589,934,592 times.
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being another implicit definition, which will form a new class of models (class IV), from 

it being any other process. Therefore, in the rest of this subsection we will concentrate on 

how the intersection test is evaluated for each of the four model classes. We will start with 

models of class I, because they are usually the simplest. Then for every other class, we will 

present a way for transforming the corresponding intersection test into a class I  equivalent, 

thus giving a unified solution to the intersection test.

In class I  models the defining parameter is described by a constant number. Therefore, the 

intersection test is transformed into a point membership classification test. In other words 

whether the value of the defining parameter belongs to the constraint interval. However, in 

order to establish the basis of a unified approach to answering the intersection test (and cater 

for the solution of the class II, III and IV  models) we will assume that the value of the 

defining parameter (say 6) is represented by an interval, the defining interval, which for the 

sake of consistency is defined as the next equation shows : 6 = [6 ,6 ] .

Therefore, the intersection test is now considered to be a test of whether the constraint 

interval intersects with the defining interval. For the rest of our discussion, this will be 

the operational definition of the intersection test. This definition aids at the unification of 

our approach since as the next paragraphs show, for the rest of the model classes all we 

need to do is change the extremes of the defining interval appropriately.

In the second model class (II), for example, where the defining parameter is a function, the 

extremes of the defining interval will be the minimum and maximum values the defining 

parameter may take inside a particular subcube. This presupposes that we know the 

behaviour of the defining function. For example, the function f fx ,y )  =sin(x+y) of the two 

coordinates x , y is a periodic function that can take any value between 

- 1.0 £  fi(x,y) z + 1.0 .

With regard to the third model class (III), we again estimate the minimum and maximum 

values of the defining parameter 6 . An interesting case emerges here when 6 is a fractal 

process. The estimation of the defining interval’s extremes may be a very complex and time 

consuming process. For example, if we use the Mandelbrot set, as illustrated (plate 24) in
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the previous chapter, a rough estimation about the defining interval would be [0,max], 

where max  denotes the maximum number of iterations needed before terminating the 

calculation of the fractal process. But the use of such a wide defining interval will result 

into more frequent intersections with the constraint interval, and therefore, more wasteful 

octant subdivisions. Since the Mandelbrot fractal set is time consuming to calculate this 

rough estimation of the defining interval is not recommended.

Figure 6.2 Speeding up the visualisation of the Mandelbrot set

As a solution, we recommend the use of bounding volume information. There are many 

choices available to us in this stage. For example, to surround the fractal set with other 

simpler to calculate geometric objects. However, in our implementation we achieve a better 

visualisation speed by excluding from the octree all points that lie in the ‘inside’ of our 

model. In this way, we avoid costly calculations of the defining process. Specifically, we 

define a set of two spheres and a torus that: if a subcube is found inside any of these three 

objects, then the corresponding defining interval is empty (i.e. it concerns points far away 

from the set’s border) and therefore the intersection test is negative. In Figure 6.2 we see 

a cross-section of the model we have just described, on a plane that passes through the 

model’s axis of symmetry (denoted by /). Here, the intersection of the torus with this plane 

is two circles (denoted by dotted perimeter) since its defining axis is made to coincide with 

axis I.
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Eventually, in the fourth model class (TV), where the defining parameter is another implicit 

definition, we treat the constraint functions as follows. The constraint that defines the 

surface is an equation, with both parts being implicit definitions. The left hand part of the 

equation is treated as the constraint function and used for the determination of the constraint 

interval. The right hand part of the equation is again treated as a constraint function but now 

its corresponding constraint interval will become the model’s defining interval. Once both 

intervals are determined, the intersection test can be answered in a way analogous to that 

of the other model classes; we have to determine whether the constraint interval intersects 

with the defining interval.

So far, we saw how a surface described by an implicit definition, as this was determined in 

the previous chapter, can be converted into an octree encoded form for its subsequent 

visualisation. By rephrasing the question of the intersection test we saw how we can exploit 

the implicit definition and achieve a model conversion effectively and efficiently. 

Additionally despite the differences in the descriptions of the implicit surfaces we aim to 

visualise, we showed how this model conversion can be achieved with a unified approach. 

The usefulness of such a unified approach is appreciated during the implementation of the 

techniques described, and relates to issues of simpler coding, code re-usability, increased 

expandability, and code maintainability. Furthermore, with the adoption of two assumptions, 

we made this model conversion process attainable even for complex definitions and more 

rapid in its implementation. Because the choice of the assumptions is critical to the rest of 

the implementation, in the next subsection we will present some alternatives to the above 

assumptions, compare them, and finally draw some conclusions about their usefulness.

6.3.2 Criticisms about the assumptions

In the first assumption, we use the subcube’s circumscribing sphere instead of the subcube 

(cubical shaped) itself for the calculation of the constraint interval and therefore for the 

evaluation of the intersection test. This, compared to original approach of using cubical 

shaped subcubes has some advantages and disadvantages. The main advantage of using 

spherical subcubes is the simplification of the calculations involved. This, consequently, 

results in simpler algorithms and quicker implementations. Specifically, with spherical
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subcubes we do not need to determine the extremes of the constraint interval geometrically 

by drawing the A C  line, computing the intersection points, and evaluating the constraint 

function, but we do it analytically by simply adding and subtracting the radius of the 

circumscribing sphere. In this way, the orientation of the subcube relative to the surfaces of 

the model is not important, but only its location and size.

The disadvantages of this assumption however, are not insignificant. They stem from the 

fact that the volume covered by the cubical subcube is considerably less than the one 

covered by its circumscribing sphere. Specifically, for a cube of size s its volume is s 3, the 

radius r  of its circumscribing sphere is

r=s—
2

and its corresponding volume,

—n r 3 = —n s 3(— ) «2.72s3

spherical 
subcubeN

surface

subcube

Figure 6.3 Cubical and spherical subcubes

Consequently, the intersection test that is answered for a large spherical volume, is used for 

the octant subdivision of less bulky subcubes. Therefore, it is likely that a subcube that does 

not intersect a surface of the model, may be incorrectly characterised as heterogenous if that 

surface is close enough to the subcube so that it intersects its circumscribing sphere 

(Figure 6.3).
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Shape of octant Cubical Spherical

Constraint interval [ d (A ,B )9 d(A , D) ] [< /(C ,A )-r , d (C ,A )+ r]

Size of interval Variable, 
generally smaller

Fixed, maximum of 
equivalent cubical

Ease of calculation Complex, geometrical, 
dependent on orientation

Straightforward, analytical, 
independent of orientation

Speed of calculation Variable, dependent on 
subcube orientation

Fixed, very high, 
independent of orientation

Accuracy Exact Approximate, variable error

Table 6.1 Comparison between cubical and spherical octants

Analytically, this means that the width of the constraint interval, although fixed (since it is 

equal to the diameter of the circumscribing sphere), is always larger than the variable-sized 

interval (depending on subcube’s orientation), that results from the cubical subcube. This 

erroneous classification of octants results into wasteful processing. Nevertheless, the error 

introduced at one level of the octant subdivision is eliminated at a next level where the size 

of the octants becomes smaller. By using the notation of the previous example, Table 6.1 

summarises the differences between the cubical and spherical subcubes.

In the second assumption, we equated the cubelet (that corresponds to a voxel) with a point 

in space. Effectively, this allows us to determine the ‘size of a point’ according to the size 

of the surface and the size of our viewing window, i.e. image plane. The choice of the 

coordinates of the voxel’s equivalent point, namely the representative point, may not always 

correspond to the voxel’s centre. This mainly depends on the implementation of the 

visualisation algorithm used, and the possibly additional needs for anti-aliasing.

Let us consider the following example. Assume that we have to visualise a model that 

results in a very ‘large’ but also ‘thin’ surface. In such a case, it is very likely (depending 

on the relative size of the image plane) that the size of the voxel (and therefore the cubelet) 

is too large to be equated with a point and the choice of the coordinates of the representative 

point is critical for the accurate visualisation of that surface. In plates 47 and 48 we can see 

the effects of this observation. There (plates 47, 48, on the blue-coloured surface, the
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highlights reveal Moire patterns due to the ‘thickness’ of the surface. In such a case, we 

adjust the surface’s thickness by introducing a degree of accuracy £. This is achieved by 

checking whether the representative point is less than £ units far away from the surface. A
S r~ Sgood estimate about £ is — £y3—, where s  is the size of the cubelet. With this method
2 2

we have achieved a very ‘thin’ surface on the model of plate 45.

Another way to trace accurately a ‘thin’ surface is to use more than one representative point 

for the intersection test. For example, one could use all eight vertices of the cubelet and if 

they are all found to be on one side of the surface, ignore the corresponding voxel, else 

proceed with rendering the corresponding pixel. The use of more than one point 

representative is a very time-consuming process. Furthermore, the determination of what side 

of the surface a point is in, is not always simple to implement. For these reasons, this 

second alternative is not recommended.

However, the use of more than one point representative may prove useful when the 

visualisation algorithm incorporates constructive solid geometry or anti-aliasing techniques. 

In such cases, the problem becomes obvious when the cubelet intersects the surface at its 

border therefore, some portion of the cubelet intersects with the model’s surface and the rest 

either with the surrounding background or with another surface.

Although some of this discussion has been presented in the third chapter, we believe it 

important to outline here three of the most popular alternatives. The first is to use several 

points that are inside the cubelet but are randomly chosen. After calculating for each of them 

the colour that results from their intersection test, we can statistically combine them (e.g. 

average) in order to determine the colour of the corresponding pixel. The second alternative 

uses points that are chosen with a specific order. The most significant points that are 

selected first; these are the ones nearer to the observer. In this way the colour of the 

corresponding pixel depicts the material properties of the surface nearest to the observer. 

This alternative is therefore, more accurate compared to techniques that use a single 

representative point. The reason is that what we see is the surface that is nearest to us (i.e. 

observer). In this way we also avoid the problem of surfaces that overlap each other. The 

third alternative again uses representative points that are chosen with a certain order; with



regard to their distance from the observer, the nearest is considered first. The difference of 

this last alternative to the second alternative is that now the voxel is treated as an octant. 

Therefore sub-voxels are generated through voxel subdivisions, up to a predetermined level.

We found the third approach simpler to apply because it makes use of the octree algorithm 

that we have already implemented. When all possible intersections have been calculated, the 

colour of the pixel corresponding to the voxel is determined through a statistical 

combination of the sub-voxel colours.

The determination of the best alternative is not a simple task since it depends on the needs 

of the application. There are also cases where more than one alternative is used 

simultaneously for the same voxel or for different voxels of the same image. However, it 

has to be stated here that it is not the high degree of accuracy than makes an image look 

more realistic, but the way noise is blended into it [Williams & Collier 1983; Yellot 1983; 

Cook 1989].

6.3.3 Visualisation issues

Once the description of a surface is encoded into the octree structure, the visualisation of 

the surface is the final process we need to discuss. Again here the basis of our approach is 

the traditional octree visualisation as described in previous chapters. Nonetheless, there are 

two issues that need to be discussed. They originate from the implicit nature of the surfaces 

we visualise, and relate to the issue of rendering the pixels of the viewport (i.e. shading). 

During visualisation, in order to be able to apply a shading model, we need to know for a 

given point on a surface, the direction of the normal to that surface, as chapter three 

discusses. This normal is going to be a vector, denoted by a triplet in the three dimensional 

space, starting from that given point, and by convention pointing to the ‘outside’ of the 

surface.

Specifically, because there is no analytical definition of the surfaces involved, the 

determination of the normal vector of such a surface at any point on that surface, both in 

terms of measure and direction, cannot be computed by any precalculated formula and
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therefore it has to be approximated. The problems of determining the normal vector and 

resolving the ambiguities of the ‘inside’ and ‘outside’ of a surface are discussed in the next 

paragraphs.

The implicit surface as it has been defined in the previous chapter, is described by a 

constraint. This constraint is an equation where the left hand part is called the constraint 

function and will be denoted by c/, and the right hand part is called the defining parameter 

and is denoted by df. Their difference, we assume that will form the model's density 

function and will be denoted by MDF = c f-d f.  In this way, a point p  belongs to the surface 

if and only if the model’s density function evaluates to zero: MDF(p) = 0. Additionally, 

the normal to that surface at any given point (on the surface) will be defined as the direction 

that the MDF function shows the largest change, i.e. is perpendicular to the surface. 

Therefore, for any given point, the normal N  to the surface will be determined by the partial 

derivatives of the MDF function along the y- and z- axes.

. r .dMDF dMDF dMDF xN = i~ar'~dT'~dr)
In our implementation, the partial derivatives will be approximated by assuming that 

d x = d y= d z= 2 t , where e is a small number, approximately equal to half the size of a 

cubelet. Consequently, once a voxel has been identified as a candidate pixel, information 

about the location of its corresponding cubelet is passed into the shading algorithm. The 

centre of this cubelet is assumed to be a point on the surface we aim to render.4 If we 

denote this point with C, and its displacements of e units along the positive and negative 

direction of each coordinate axis (x , y , z) as Cx+, Cx~, Cy+, Cy-, Cz + andCz- 

respectively, the approximation to the normal N  at that point C will be:

N  « ( (MDF(CX.) -MDF(CX-)) , (MDF(CY+) -MDF(CY-)) , (MDF(Cr ) -MDF(CZ-)) )

The choice of the magnitude of the displacement £ will have an effect on the smoothness 

of the image. If, for example, e is larger than the cubelet’s size, the evaluation of the 

model’s density function MDF for a given point will be affected considerably by the normal 

to the surface at neighbouring points. This observation is exploited when we need to

4 If this is not true, we can use an interpolation technique like the successive binary approximation, in order to 
improve the accuracy of the coordinates of that particular point, thus ensuring that it belongs to the surface.
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visualise models that their defining parameter is not continuous. One such example is the 

stepwise results that emerge from the process of the Mandelbrot set (model class III). There, 

we take £ to be equal to half the size of the cubelet, and a smooth image will be achieved.

If our e proves to be too small, thus resulting in a zero-length normal vector, then we 

increase the size of e and try to estimate the normal again. This rule for temporarily 

increasing the value of £ will definitely terminate after a small finite number of iterations 

because of the implicit assumption that the ‘potential field’ that the model generates should 

change density values within space. If the field does not change its density values then the 

modelled iso-surface is either the complete space or the empty set.

Once the vector of the normal has been estimated, we need to know whether its direction 

is towards the ‘inside’ or the ‘outside’ of the surface. But as we have already mentioned, 

not all the implicit surfaces are closed. Therefore, we need to discriminate our approach 

accordingly. We have observed that most of the surfaces that belong to model class IV  are 

non-closed surfaces, unlike the rest of the classes. This observation is only indicative and 

from the way we treat the sense of ‘inside’, one can see that it does not incur any errors on 

the resulting images.

For the closed surfaces, once the normal vector is approximated, we displace the 

representative point C, by a distance of e' units5 along the direction of the normal. Then, 

for that displaced point, we evaluate the model’s density6 function and depending on its 

sign we may invert the normal. It should also be re-iterated here that this is a convention 

we impose and as long as we are consistent with our conventions we get correct results.

For the non-closed surfaces, there is no meaning of ‘inside’ or ‘outside’. In such a case, 

once the vector of the normal is approximated, we adjust its direction, so that it will always 

point towards the image plane. Specifically, in our implementation, where the scene is on 

the positive z- axis and the observer on the negative, we invert the vector of the normal if

5 We usually assume that e' corresponds to the size of a cubelet, and the normal vector is normalized.

5 Recall th
defining Junction.

6 Recall that the density function is defined (section 6.3.3) as the difference constraintJunction-
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its z- coordinate is positive. In this way we make sure that the parts of the surface that are 

visible by the observer are properly rendered by the shading algorithm, thus producing all 

the shadows that are necessary for conveying information about the surface’s curvature as 

plates 2 5 - 3 1  show. In the special case of the Voronoi tessellations, the colour of each 

visible surface is painted according to the identity of the nucleus that is responsible for its 

creation (i.e. the nearest). We can observe this all the Voronoi plates (34 - 48).

6.3.4 A comparison with the traditional octree

Although the stages of model conversion and surface visualisation are presented in different 

subsections of this chapter, in our implementation they are combined together. In this way, 

once a voxel is determined during the model conversion process, information about the 

location of its corresponding cubelet is passed over to the visualisation algorithm, its normal 

to the surface is approximated, and finally corresponding pixel is rendered. Then the model 

conversion process resumes searching for other eligible voxels.

Another deviation from the traditional octree method is that the visibility of a voxel by a 

particular observer is now tested during the model conversion process. Moreover, this 

visibility test does not examine voxels only, but octants of any size.

The reason for imposing these changes is twofold. First we reduce the necessary memory 

requirements since we do not need to store the complete octree structure in the computer’s 

main memory. Second, we accelerate the visualisation of a model since we do not waste 

time for tracing invisible octants in relation to the current observer.

6 .4  P r e d i c t i n g  t h e  v a lu e s  o f  t h e  d e f in in g  p a r a m e t e r

This section is concerned with the exploitation of knowledge that we can infer about the 

behaviour of the defining parameter for the purpose of accelerating the visualisation process. 

We will mainly use the findings of this study in visualising objects of the class II  category 

of models (i.e. implicit models where their defining parameter is a function). What we aim
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to gain is knowledge about the boundaries of the defining interval, as it is defined within 

a given volume of space. In this way we anticipate to achieve accurate representations of 

the models at a reduced calculation overhead, hence rapid response times.

During the octree visualisation, subcubes of different sizes and shapes (according to our first 

assumption) are used to determine the defining interval for a given model. Additionally, In 

models of class II, the defining parameter is assumed to be a function. Therefore, in order 

to estimate the defining interval we will need to know the behaviour of this function within 

the volume of space that specifies the given subcube. One recommendation we made during 

the relevant sections, was to prefer continuous functions. But continuity is not always 

sufficient to ensure the accurate computation of the defining interval.

What we propose here, is the estimation of the limits of the defining interval as they can 

be calculated from the Lipschitz Condition. This is a mathematical theorem that can be 

found in all textbooks of calculus. In the context of computer graphics, this condition has 

been used by Kay and Kajiya [1986] and Henzen and Barr [1987] for the purposes of speed 

and accuracy of particular visualisation algorithms. For reasons of clarity we will present 

the Lipschitz Condition for a simple case of a univariate function f[x) defined along the 

interval [0 , 1], and we will extrapolate its effect for bivariate functions.

For a continuous function j\x) over the interval [0 ,1], the Lipschitz Condition assumes that 

there exist two real numbers jc7 and x2 in the interval [0 ,1], and a real non negative number 

k, which is called the Lipschitz constant that make the following condition true

The inequality (Eq. 6.2) uses the Lipschitz constant k to bound the derivative (if it exists)

l/(*i) s k  |x , - x 2 1 , *,,*2 e[0, l] (Eq. 6.2)

of the function,
(Eq. 6.3)

By choosing x1 = 0, x2 = 1, and x0 = [0, 1] we can write the inequality (Eq. 6.2) for the pairs



l / (* o ) - / (* i= ° ) l  * * l * o - ° l

|/ (* 2 = 1 ) - / ( * 0) |  z k \ l - x 0 \

(Eq. 6.4) 

(Eq. 6.5)

The addition of (Eq. 6.4) to (Eq. 6.5) produces

| / ( * b )  - / ( * ! = ° ) |  + l /(* 2  = 1 ) ~f(Xo) I S kx0 + * ( 1 - * 0) = k (E q - 6 -6)

by substituting a = |/(jc0) - f ( x 1 =0) | and b = |/( jt2 = l )  - f ( x Q) | we can bound the 

value of the function /w ithin  the perimeter of an ellipse that has its focal points at/(0) and 

/ ( l )  as the revised (Eq. 6.6) shows:

a+b z  k  = constant

Assuming that we can map the interval [0,1] to any interval of real numbers, say [xmin, j c J  , 

in order to exploit the Lipschitz Condition we need to calculate the constant k. This is 

determined from inequality (Eq. 6.3) by calculating the global maximum of the derivative 

of the function /.

For the bivariate function g(u , v), the Lipschitz constant will be calculated from the partial

derivatives of g
k > max d g (u ,v ) + 0g(w,v)

0*K,V£l du dv

If we cannot determine the value of the bound k, we may estimate it by sampling the slope 

of the defining function and using the maximum of the sampled derivatives.

To demonstrate the potential of this method and illustrate its use on the visualisation 

approach we proposed, we will present the following example. Assume that we have a 

model of class II in three-dimensional space where, the defining parameter is a function. We 

assume also that this function is univariate and uses as input parameter the x- coordinate7 

of the point we use to assess the point membership classification test that this model defines. 

Such a function may be the:

6(x) = x 2 - 7 x  + 6  (Eq. 6.7)

It does not damage the generalisation of this technique to assume the use of the point’s co-ordinate instead 
of any other intermediate mapping as the input parameter for the defining function.
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During visualisation of this model, we have to test whether an octant intersects with any 

parts of the model’s surface. As we have already explained, this test is possible by 

intersecting the relevant constraint and defining intervals. For the calculation of the 

constraint interval we resorted to spherical octants. However, the calculation of the defining 

interval depends on the exact function that makes the defining parameter 6 (Eq. 6.7).

Let us assume that the centre of the spherical voxel is p -  (xp , yp , zp) = (4 , 5 , 8) and its 

radius is r = 2.  The limits of the defining interval will be determined by the use of the 

Lipschitz Condition. In this way we will calculate the boundaries of the defining function 6 

when its input parameter is allowed to take any value in the interval [jc/f xr] . The interval 

of allowable values for the input parameter of the defining function depends on the shape 

of the octant and in the case of spherical octants is assumed to be [x• -  r , xp+ r]. 

Therefore in our example the input parameter for the defining function takes values in 

[*„*,] S [2 ,6 ] .

To use the Lipschitz Condition, however, we must use the input interval [0 , 1]. Therefore, 

the first step we have to make, is to transform the defining function of equation (Eq. 6.7) 

to map the interval [2 ,6 ]  to the required interval [0 , 1]. This mapping will be computed 

by using the new variable x' of the transformed defining function 57 as:

, = * - ( y r )  = * -2
(xp+r)-{xp-r) 6 -2

Consequently, x  = 4 x ' + 2

and the defining function will be transformed accordingly:

6'(x')= 16xa - 1 2 x '- 4

In this way when for the defining function 6(x) the variable x  E [2 ,4 ] ,  the transformed 

defining function S^jc7) will imply x f e [0 ,1 ] . Similarly, the middle-point xp will be 

mapped to the middle-point 0.5 of the [0 ,1 ] interval (linear transformation).

We can therefore apply the Lipschitz Condition, provided that we can estimate the constant 

k which is the maximum absolute value of the derivative of the transformed defining
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function: ,*/
I—  U k
d x '

The derivative of 67 is 3 2 x '-  12 and it belongs to [-12 , +20] when x' e [0 ,1 ]. Therefore 

we can assign k = 20.

The Lipschitz Condition therefore will suggest that:

1 8 % 0 -6 'C O l s  k \ x j - x ' \ ,  x ' e [0,1] s i* / ,* , !

By replacing the appropriate values, taking into account the mapping of the defining 

function,

1 8 '0 0 - 8 'M I  = l#C*p-«(*)l s  k \ x j - x ' \  = Jfc|0.5 — jc7| = 2 0 x 0 .5  = 10, x 'e f l U ;

We can safely assume therefore that the defining interval for this example situation is 

[8 (4 )- 10, 8(4)+10] s  [ - 6 - 1 0 ,  -6+10] s  [-16 ,+6]

A better refinement to this method is achieved if we split the interval [xl , xr] in two 

intervals; the [xl , xp] and the [xp , xr]. For each of them, we should transform the defining 

function to map the [0,1] and determine its boundaries. The required defining interval will 

then be the union of these two boundaries.

6.5 Conclusion

In this chapter we discussed how we can amend the octree method in order to create a 

visualisation approach that is suitable for the models we have constructed. Developing 

therefore an appropriate visualisation approach was necessary to ensure that the modelling 

approach we proposed in the previous chapter (five) can be used to its full potential. 

Moreover, because of the implicit nature of the models we use, we found it very important 

to introduce some techniques that were necessary for the acceleration of this visualisation 

approach. Of them, some were aiming at altering the specifics of the original octree 

approach, while others were aiming at studying the behaviour of the model, thus exploiting 

the spatial coherence of the scene.
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Our intention in the next chapter will be to provide some criticisms regarding both the 

modelling and the visualisation approach that we proposed. We discuss two complementary 

issues. The first is concerned with the actual application of the modelling and visualisation 

approaches developed in the research described in this dissertation. The second is concerned 

with further research directions aiming at enhancing the methods we developed.

In this way, our objective is to avoid confining our modelling approach to the particular 

visualisation approach presented here. For this reason, in the next chapter we also outline 

the necessary algorithms for using our proposed models with a number of other visualisation 

techniques that are currently being used extensively in the literature. Such effort will allow 

us to direct to further research in order to exploit the capabilities of the modelling approach 

we have developed.
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Chapter 7 Research considerations and directions

7.1 Introduction

In this chapter we will adopt a critical perspective from which we will assess the usefulness 

of the modelling approach that we propose in this dissertation. Issues that have arisen while 

using this approach will be discussed in section 7.2 where we will be concerned with the 

ease of modelling particular scenes, the accuracy of the visualised surfaces, speed of our 

visualisation approach, and precision problems encountered.

Our criticisms will then be constructive and we will focus our interest in presenting several 

methods for improving the usability of the modelling approach we propose. These methods 

reflect our considerations regarding the future of this research. We wish to continue our 

research in three different directions: towards further enhancements to the modelling 

approach we propose, towards alternative means for describing our models and finally 

towards alternative visualisation approaches. Every method we consider in this chapter is 

outlined, and where applicable references are given to particular techniques of significant 

relevance. Moreover, when appropriate we demonstrate the principles of the outlined method 

with some simple examples.

Specifically, we begin our presentation with criticisms regarding the utilisation of the 

modelling and visualisation approaches that we propose (section 7.2). Then we review the 

issue of enhancing the modelling approach that we proposed by assessing the challenges 

involved in two aspects: the visualisation of implicit models in the space of four dimensions 

(section 7.3) and the introduction of non-linear combinations of the measure of distance 

(section 7.4). Next, in section 7.5, we focus on alternative model descriptions where we 

outline two methods for determining a polygonal mesh that approximates to the surfaces we 

constructed. We present both a method for calculating a triangulation as well as a mesh of 

tetrahedra that approximate to the modelled surface.
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Finally, we present two distinctly different visualisation approaches; ray tracing (section 7.6) 

and what we call stochastic visualisation (section 7.7). With regard to ray tracing we discuss 

a global illumination model as well as the ‘Heidelberg model’. The concluding paragraphs 

(section 7.8) are concerned with the provision of a brief evaluation and summary of the 

whole of this dissertation with the anticipation of having fulfilled the role we set out in the 

beginning.

7.2 Criticisms

There are several issues against which a modelling approach may be contrasted. In the 

second chapter we presented the most significant ones. We have already commented on 

some of these issues in chapters five and six, when discussing our modelling approach. 

However, we believe that a few outstanding issues still need special treatment, as they seem 

to be the most frequently discussed in the literature. These are ease o f modelling, accuracy 

and numerical precision of the necessary calculations, and speed o f visualisation.

7.2.1 Ease of modelling

Ease of modelling is concerned with the usability of the modelling approach in question. 

Regarding our approach, it is understood that it is not possible to have feedback from users 

(designers). Therefore, our criticisms have been gathered solely from our own experience 

in using this approach.

Apart from our particular approach, however, we have also used several other modelling 

approaches thus enabling us to provide an accurate and comparative judgement. In 

particular, in our installation we also manipulate models based on the polygonal mesh and 

the analytical approach. We also visualise models that are based on a variety of splines (B, 

6, NURBS) and some procedural methods such as extrusion, revolution, and other pseudo­

random and fractal processes. Table 7.1 summarises the most important differences of the 

major modelling approaches.
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Polygonal mesh Analytical Our modelling

Number of primitives 1 (polygon) Few (formuli) Any object

Basic building mechanism Patchwork Set union Model dependent

Other construction 
mechanisms

None inherent, 
need a pre­
processing stage

If not in a 
formula,
use blends, CSG

Inherent in the 
model (rotation, 
extrusion...), CSG

File sizes of model 
descriptions

Huge, depending 
on required 
precision

Small, depending 
on formuli 
parameters

Small, depending 
on participating 
primitives

Ease of model creation If not hardware 
assisted, very 
tedious

Presupposes 
knowledge of the 
primitives

Simple,
intuitive,
generic

Alternative coding forms None Symbolic Symbolic

Table 7.1 Evaluating ease of modelling

Each of the approaches has its own merits and is particularly good for a limited variety of 

objects that it can describe with minimal effort. But in spite of this, our approach has proved 

capable of describing a vast variety of objects, as we have already shown in chapter five. 

Moreover, it provides a direct and explicit way for specifying a model, and it allows a high 

degree of uniformity for the necessary model descriptions. Take, for example, the modelling 

of a body of revolution. With the polygonal mesh, we would first need to specify the 

contour which will have to be rotated and the axis of rotation. Then we will have to apply 

an intermediate process for the generation of the appropriate model description. With our 

approach, however, we simply describe the axis of rotation as a primitive member of one 

collection, and the contour that needs to be rotated as the defining function. In this respect 

therefore, we would attribute merit to our own approach.

Another aspect for comparing modelling approaches (regarding ease of applying them) is 

the size of the files that contain the model descriptions. Here again we believe that the 

modelling approach we propose ranks very high. Consider the same example of the model 

description of a body of revolution. With our approach, the resulting file consists of a few 

bytes (depending on the description of the defining function contour). With the polygonal 

mesh, the model description would initially be the same as ours (the axis and the contour),
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but this description will become the input of the intermediate algorithm which would 

generate a large file of several kilobytes (1Kb = 1024 bytes), depending on the number of 

angular slices, of the final model description.

This difference in the model’s file size, of at least two orders of magnitude, proves critical 

on models of computer graphics scenes with several such defined objects. Using the 

analytical approach, model descriptions may have necessitated a much smaller file size, but 

the functions that describe bodies of revolution are usually too complex to determine and 

depend on the specifics of the required contour and axis of rotation of the particular object.

One challenge that our modelling approach poses is the description of analytic functions in 

the model description. In class II models, for example, where the defining parameter is a 

function, we need to describe it in a computer readable manner. This is actually a difficulty 

that is shared with the analytic modelling approach. We can see two general methods to 

tackling this issue. The first allows the designer to use a pre-determined set of functions by 

simply denoting them with their appropriate identifier. The second method, which provides 

an ‘intelligent’ alternative to mapping pre-specified functions, is the use of a symbol-parser, 

that would allow the designer to describe any function using a pre-determined set of 

symbols and a syntax. One such example is the parsing facility of the Mathematica 

[Wolfram 1991] software, where the user denotes virtually any function using a pre­

determined language (symbols and syntax).

The first method, which is the one that we adopted, is limited to the type of functions that 

have already been incorporated in the visualisation algorithm. In this respect, it does not 

allow for any flexibility but optimizations for manipulating the pre-defined functions may 

speed up the whole process of visualisation considerably. The second method is very 

flexible, so in most implementations it does not provide any optimizations because of the 

variety of functions it allows. Despite the enormous flexibility that the second method 

provides, it is very rarely implemented because of the programming effort it necessitates.
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An approach that provides some flexibility but also permits certain optimizations, is a 

combination of the above two methods, where generic parameterized categories of functions 

are only permitted in the model description. Such an approach would allow for, say, 

polynomials of up to the sixth degree, and the model description should only specify the 

values of all seven parameters which are the coefficients of the polynomial’s variable.

For piece-wise defined functions, the task of model description is very complex and we are 

inclined to impose certain restrictions on the total number of pieces that a particular function 

may consist of. Nevertheless, these limits are chosen arbitrarily and serve the purpose of 

coding simplicity. Additional tests regarding the geometrical continuity of the piece-wise 

functions are also imposed in order to enable the application of bounding volume 

information by the Lipschitz Condition [Herzen & Barr 1987].

7.2.2 Precision and accuracy

The next issue for criticisms is the accuracy and numerical precision of the calculations. 

This is mainly an issue of the visualisation approach, but certain aspects of it are inherited 

from the nature of the models we use. For example, in models of the IV  class certain surface 

areas may be totally ignored by the visualisation algorithm, because the representative points 

of the relevant cubelets (or even subcubes) may fail the intersection test.

Specifically, precision errors are introduced when visualising models of any class. These 

errors are introduced in the calculation of both the constraint and the defining interval. But 

models of class I  have a constant defining interval, and for models of class II and III the 

defining interval is usually straightforward and simple to compute, thence, a small scale of 

accuracy problems are encountered in the intersection test. However, models of the IV  class 

predicate the computation of a defining interval which has to be determined with an amount 

of calculation that is comparable to those of the constraint interval. In this way, precision 

errors are introduced in both the constraint and the defining interval, thus making the 

intersection test inaccurate.
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To eliminate these accuracy problems of the intersection test, we distinguish between the 

application of this test on subcubes and its application on cubelets. The first case (subcubes) 

is solved by the extension of the constraint and defining interval. Usually both ends of the 

intervals (minimum and maximum) are extended a small proportion, say 1% of the total 

length of the interval. Therefore the likelihood of missing out areas of the surface due to 

incorrect intersection tests is minimized. It follows, however, that we may have to 

characterise incorrectly some subcubes as heterogenous, thus wasting computer resources.

The second case, where the intersection test is applied on cubelets, is more difficult to solve 

since we have reached the final level of subcube subdivision. We can see two different 

techniques here for eliminating accuracy errors. The first extends the constraint and the 

defining interval and permits one more level of subdivision, thus providing a unified 

approach to eliminating the accuracy problem. The second technique is more strict and 

through additional verification tests, where applicable, assumes that the resulting intervals 

are accurate. These supplementary verification tests include geometrical confirmations, as 

implied from the computed intervals, as well as approximation methods for adjusting the 

detected discrepancies.

7.2.3 Speed of visualisation

The last issue that we will criticise in this section, is the speed of visualisation of the 

proposed modelling approach. From results in the literature regarding other modelling and 

visualisation approaches, and those we have collected from our own experiments, we can 

observe that the visualisation speed of our models is not very promising. Although it is not 

desirable, such poor visualisation speeds should have been expected mainly because of the 

high priority that we have placed on the accuracy of the represented objects.

An additional factor for obtaining such results is the use of code that has not been optimized 

to any great extent. This is a serious and time-consuming task, demanding the use of 

supplementary software tools such as profilers, which we feel is not within the scope of our 

experiments. Furthermore, we use common purpose computer hardware which places us in 

a disadvantage when compared with customised, special purpose, expensive installations.
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The main reason for our choice is to achieve portable code that can be executed on virtually 

any hardware platform, as the first chapter clarifies.

Despite these criticisms, as we shall see in the next sections, we also suggest a number of 

alternative approaches for visualisation. The most interesting simulates a global illumination 

model and enables the generation of ‘photo-realistic’ images (section 7.6). At the same 

section we also outline a simple version of ray tracing, called ray casting, as it is 

implemented with the ‘Heidelberg model’. Moreover, we also present (section 7.7) a very 

simple visualisation approach that is based on the nature of the point membership 

classification test. Nonetheless, we also suggest a way (section 7.5) for constructing a 

polygonal mesh out of the models we propose, thus indirectly enabling the use of the simple 

but extremely efficient polygonal mesh visualisation approach.

7.3 Four-dimensional space

In this section we will discuss the means for visualising surfaces that have been defined in 

four-dimensional space. This is not a new issue in computer graphics since such approaches 

have already appeared in the relevant literature [Banchoff 1990; Hanson & Heng 1992]. The 

challenge in the fourth, or higher, dimensions is the difficulty in conceptualising these 

spaces. An excellent aid to this challenge is Banchoff s [1990] book that uses artistic as well 

as computer graphics images to examine cross-sections (projections) of objects of the four­

dimensional space. He also provides image sequences of the same four-dimensional object, 

in order to explore the choice of the viewpoint and the projection used for its visualisation.

In order to understand better the issue of projection, let us consider the following scene 

where a hyper-cube has edge size of two units and the coordinates of its vertices are 

determined by the permutations of the (±1 , ±1 , ±1 , ±1), along a four-dimensional 

orthogonal Cartesian coordinate system. Our aim is to establish a projection function that 

would map this hyper-cube onto the window of the two-dimensional viewplane.
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In order to achieve this mapping we have a number of different choices. The first and 

simplest one is to ignore two out of the four coordinates of every four-dimensional vertex. 

In this way we achieve an orthographic projection which in the case of the hyper-cube 

would generate a square of size two, since it is determined by the vertices (±1 , ±1). For 

more complex four-dimensional objects, the choice of which of the two coordinates we 

ignore is crucial, because it will expose or hide several details of the object’s hyper-surface.

Another projection we may also use is perspective, which, as we discussed in the third 

chapter, generates ‘intuitive’ results. From the four-dimensional space to the three- 

dimensional, assuming applicability of the Pythagorean theorem, the perspective function 

is a simple extension to the one used in chapter three. For a four-dimensional vertex p  with 

coordinates p  = (jt,y,z,co), its projection on the perspective cube which is at a distance —d  

away from the observer along the fourth dimension cu = -d , will become the vertex p = (x 

x  d/(d , y  x dlCO , z x d!co ,-d). This vertex is the three-dimensional point (jc x  d/co , y  x d/co , 

z x d/co) in the perspective cube and represents the projection of the four-dimensional vertex 

p  onto this perspective cube.

The perspective projection presented here does not solve our mapping problem completely 

because we eventually need to reach the two-dimensional space of the viewplane, and not 

the three-dimensional perspective cube. Moreover, we are not familiar with the 

conceptualization of the four dimensions, therefore we can experiment with different 

projection sequences. For example, we may use the perspective to get from four dimensions 

to three (of the perspective cube) and then use any depth sorting method such as the z-buffer 

to (orthographically) project the surfaces in the perspective cube on the two-dimensional 

window on the viewplane.

Another issue that we have to address is the shading model that we may use. This, as 

Hanson and Heng [1992] suggest, may be derived by extending the three-dimensional 

shading models. Our modelling approach gives us another way to achieve rendering because 

we manipulate objects as iso-hyper-surfaces. This is the approximation of the normal to the 

hyper-surfaces with the partial derivatives of the constraint and defining functions. In this 

way the fourth dimension is introduced with an amazingly straightforward way. Another
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alternative would be to project the surfaces in three dimensions first, and then illuminate 

their projection using available rendering technology.

Work in visualizing the fourth dimension has been restricted because of our inability to 

conceptualize the four-dimensional space. Therefore, we would recommend that initially 

such four-dimensional visualisation approaches are implemented to visualize simple 

geometrical objects in order to familiarize the user with the effects of projections and the 

four-dimensional shading. An object very simple to conceptualise and well discussed in the 

literature is the hyper-cube. It is produced by the extrusion of a cube (the envelope produced 

by shifting) along a direction that is perpendicular to all the cube’s edges. This direction will 

form the fourth dimension. The hyper-cube has therefore 16 vertices and 32 edges.

7.4 Non-linear propagation

So far we have assumed a linear propagation of the defining functions for all the surfaces 

we have modelled. In this section we will discuss the challenges of using functions of the 

measure of distance that propagate on a non-linear relationship. For example, we will use 

the inverse of the measure of distance, any exponential power of it, or even trigonometric 

functions of appropriately transformed distance measures.

In this section we will identify the assumptions that we have made in chapter six that are 

no longer true, or need additional adjustments. Then, we will distinguish the segments of 

the octree visualisation algorithm that need to be altered, as a consequence of the change 

in our basic assumptions. Finally, we will provide some general directions towards achieving 

these changes.

The most significant change is on the first of the two assumptions of chapter six. We 

calculated the maximum and minimum values of the constraint and the defining interval by 

adding or subtracting the radius of the subcube’s circumscribing sphere to the value of the 

constraint and defining function evaluated at the sphere’s centre.
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In this way we used an implicitly made assumption that both the constraint and the defining 

functions are linear combinations of the measure of distance. For the defining function, we 

then made this assumption explicit and we used different combinations of the distance 

function as well as other pseudo-random processes.

By admitting that the measure of distance is included in non-linear relationships for the 

calculation of the constraint function, we have to use the same precautions that we identified 

in chapter five for the effective manipulation of the defining function. Consequently, we can 

no longer use our first assumption, but we have to approach the constraint function 

according to the particular combinations (of the measure of distance).

For example, when we use the sin() function for determining the measure of distance, in 

the models shown in plates 18-20,  we can conclude that we will only get values between 

[-1,1]. By shifting this interval one unit to the positive direction of real numbers, in order 

to avoid negative values, we can eventually have distance values between [0, 2]. As a result, 

we can use this observation to bound our constraint interval between [0,2].

Unfortunately, although such examples may prove very effective, we cannot generalise their 

applicability. There is no generic technique that would enable the accurate estimation of the 

constraint interval within the bounds of a subcube or its circumscribing sphere. The most 

suitable technique we can suggest is the exploitation of the Lipschitz Condition out of which 

we can derive the means to bound any specific constraint function. The Lipschitz Condition 

has already been presented in chapter six, where we discussed its proof but also the 

difficulties of its exploitation.

A more interesting case that has great applicability in physics is the propagation of fields 

that are described with the function of the inverse square of the measure of distance. The 

law of Newton about attraction forces between any two real objects, and a similar law 

between any two electrostatic loads that explain several phenomena in nature, are described 

with the function of the inverse square.
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Figure 7.1 Using non-linear distance measures

In Figure 7.1 we see iso-density contours of the field generated by the following model

{p | peR2 , } 
where C is a collection of three points and d (p yC) denotes the weighted inverse square 

Euclidean distance from point p ,  to the collection C of three points, for a given weight 

vector w( ):

d(p,C) =——̂ d ' ( p , C )  = min( | | p - |  , i (e C )
(p. Q )

The next figure (Figure 7.2), shows the Voronoi tessellation when we treat these three 

points, x l f x2, x 3, as nuclei. This image was produced by the following model:

{ p  | peR2 , dl(pfC)=d2(pfC) }

where C is a collection of three points and dv  denote the weighted inverse square 

Euclidean distance from the nearest and second nearest point in C from p  for a given 

weight vector w( ):
w .  ,
d j (p ,Q  =—    , ^(p.C) = min( | | p - X j l . ^ e C )

(d[(p,C)f  «-!.»
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Figure 7.2 A Voronoi tessellation using non-linear distances

Observe here, that since we are inverting the measure of distance, the regions of minimal 

distance are the ones far away from the corresponding nuclei. Therefore, the classical 

definition of the Voronoi tessellation, as we presented it in chapter four, is no longer directly 

applicable. Consequently, we have to resort to our definition of (Eq. 5.9).

7.5 Polygonisation of surfaces

In general, we are against the approximation of surfaces. However, one utility they offer, 

which we would advocate, is the real time manipulation of models, that can only be 

achieved on polygonal meshes in conjunction with special purpose hardware.

The subject of polygonisation, and the special case of triangulation, has appeared in the 

literature on numerous occasions in various computer graphics applications. This subject is 

very popular since it provides methods that generate a polygonal mesh to approximate to 

any given surface. More specifically, these methods convert a model description of almost 

any modelling approach in a polygonal mesh model. Under this perspective, polygonisation 

methods can be seen as an intermediate stage between modelling and visualisation.
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Following the classification schema of modelling approaches, as we presented in chapter 

two, we have to consider all these methods as part of the modelling process and not as part 

of the visualisation. We will be concerned with two polygonisation methods here. The first, 

produces a mesh of triangles and the second a mesh of tetrahedra out of which we may also 

build a triangulation.

7.5.1 Surface triangulation

Triangles are the simplest form of polygons that can be used to approximate to any surface. 

They are by definition planar since they are determined by three vertices only, they demand 

data structures of minimal size for storing them in computer memory, and there exist several 

hardware implementations of shading models especially developed to handle triangles 

(Gouraud, Phong shading).

The triangulation process we prefer to present is outlined in Wallin [1991] and is especially 

developed for the manipulation of volumetric data in medical computer graphics 

applications. The method is divided in two stages. The first stage identifies and gathers 

surface points that would become vertices, and the second stage assembles these vertices 

into polygons that construct the required mesh.

In the first stage, we assume a lattice of cubes to enclose the whole scene. The faces of all 

these cubes are tested for intersection with the required iso-surface. The aim is to determine 

points on the cubes’ faces that belong to the iso-surface. In order to detect possible 

intersections, we apply the following test. For all the faces of every cube, in the three- 

dimensional lattice, we evaluate the constraint function at the comers and the centre point. 

If the results of this evaluation include values larger as well as smaller than the values of 

the defining function at the same points, then we can assume that the iso-surface intersects 

with this particular facet. This conclusion is a consequence of the application of a theorem 

from Calculus, the Bolzano theorem, which we applied on the iso-surface.

The Bolzano theorem assumes a real-valued function/(x) which is continuous on the interval 

[a , b] and states that if fia) x fib) < 0 then there exists a point c e [a , b] that flc) = 0.
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To ensure applicability of this theorem, we must assume that the iso-surface is continuous, 

which is not always correct. When such discontinuities exist, we apply the theorem on the 

constituent surface patches, and we apply additional intersection tests at the borders of these 

patches. Once intersection has been detected, we then determine the intersection points with 

an interpolation method such as the Regula-Falsi, or the successive binary approximation.

The second stage then connects ‘intelligently’ all the vertices together, in order to produce 

the required mesh of polygons. The polygons produced with this method may have from 3 

to 12 vertices according to Wallin’s [1991] study. All these polygons have their vertices 

(and edges) on the faces of the cubes, therefore the resulting polygons may not be planar. 

Consequently, a subsequent triangulation stage is necessary to ensure planarity of the 

generated facets.

Triangulation occurs by decomposing the polygons into triangles, and there are several 

techniques to achieve such a decomposition. Wallin chose to connect each pair of 

consecutive vertices with the centre of gravity of the initial polygon. In this way he ensures 

that the resulting polygons do not coincide with the faces of the cubical lattice thus avoiding 

degeneracies.

Although this method generates accurate mesh representations of iso-surfaces, we must stress 

that it lacks a unified mathematical background and is best suited in the domain of medical 

imaging. For this reason we will present a second polygonisation approach, that is based on 

the Delaunay triangulation.

7.5.2 Solid tetrahedra-isation

This method has been outlined by Baker [1989] and is especially suitable for polygonising 

closed solid objects. The generated model is a mesh of tetrahedra that determine the volume 

of space occupied by a closed surface. With certain assumptions, we can modify this method 

to generate meshes of not necessarily closed surfaces.
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This method is based on the problem of the Delaunay triangulation. This problem is best 

expressed in the two-dimensional space where it is concerned with the determination of a 

mesh of triangles out of a set of given points, the nuclei. The required triangles must be 

formed in such a way that they have their vertices on the nuclei, and when we draw their 

circumscribing circles they do not contain any other nuclei but only the ones used to 

determine these circles.

Bowyer [1981] describes an algorithm to determine these triangulations in the two- 

dimensional space. Moreover, Baker [1989], and Vassberg and Dailey [1990] describe an 

extension to the Delaunay triangulation problem in three dimensions. The re-defined 

Delaunay triangulation problem states that for a given set of points (nuclei) we must 

determine a set of tetrahedra that have their vertices on the nuclei, and their circumscribing 

spheres do not contain any other nuclei but the ones used to determine these spheres.

For our three-dimensional surfaces, we may use this re-defined Delaunay ‘tetrahedra-isation’, 

the algorithm of which is outlined here. We start with six appropriately positioned tetrahedra 

that are assumed to cover completely the volume of space that surrounds the surfaces we 

wish to polygonise. Then, we start generating points using the octree visualisation approach, 

as defined in chapter six. Every point that we determine is used as a nucleus. In this way, 

the previously determined ‘tetrahedra-isation’ no longer complies with Delaunay’s constraint 

(that circumscribing spheres do not cover any nuclei) and therefore we solve again the 

Delaunay problem by re-arranging the vertices of neighbouring tetrahedra.

The process is repeated for every point that we find to belong to the modelled surface. We 

are always certain that the introduction of a new nucleus would destroy the previously 

determined ‘tetrahedra-isation’ imposed by the Delaunay constraint, because every new 

nucleus is enclosed by the initial set of six tetrahedra which were assumed completely to 

surround the required surfaces. Therefore it must belong to one of the circumscribing 

spheres.
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The process ends when we no longer wish to introduce new nuclei. Better defined 

termination criteria are what Baker calls quality criteria on tetrahedral elements. These 

introduce a metric based on the size and shape of the tetrahedra used. If some tetrahedra do 

not conform with the pre-defined measures, the process of ‘tetrahedra-isation’ must continue.

The generated mesh of tetrahedra, from the process we have outlined here, covers the 

volume of space that is enclosed by the surface of a closed object. Moreover, the mesh 

consists of tetrahedra the vertices of which, may nor belong to the same ‘side’ of an object. 

This problem was identified by Baker and he suggested the classification of the generated 

tetrahedra in three categories depending whether: a tetrahedron has one or more points inside 

the object, belongs totally to one piece of the object, or belonging to the interface between 

two discontinued surface patches covering the object. In this way, we attain better control 

over the generated mesh.

The ‘tetrahedra-isation’ algorithm presented here generates meshes that describe closed 

surfaces only. However, we can adjust this process slightly in order to describe any surface. 

What we have to do is to assign a certain ‘thickness’ on the surfaces that we want to 

polygonise. In this way, the algorithm would generate a mesh of tetrahedra that would 

construct a ‘thick’ structure between the ‘sides’ of the surface. The sides of the tetrahedra 

that do not belong to the ‘inside’ of the thick surface may then be identified and collected 

in order to provide a polygonised description of the surface.

The main negative concern for this algorithm is that it is extremely time consuming. 

Vassberg and Dailey [1990] used information from Baker [1986] to benchmark different 

versions of this algorithm which originally demanded 8 hours of CPU time on a CRAY X- 

MP supercomputer. The best optimised implementation of this algorithm was presented in 

their paper [1990] where they used 24 minutes on the same supercomputer. The model they 

used for their benchmarks was the description of a BOEING 747-200 with 12,038 nuclei and 

generated almost 58,000 tetrahedra. This amazing improvement in performance was achieved 

by appropriately sorting the generated tetrahedra. The sorting was based on information 

about the relative location of the tetrahedra and was implemented with an octree data 

structure, similar to the one we use in our visualisation approach of chapter six.
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With regard to polygonising surfaces we must reiterate that there exist many techniques. We 

presented only two, Wallin’s and Baker’s, because we believe they are suitable for the 

modelling but they also exploit the particulars of the visualisation approach we adopted.

Another approach to visualising our implicit models would stem from the introduction of 

a global illumination model and the principles of ray tracing. Therefore, in the next section 

we will consider the problem of intersecting a ray with an implicit surface in the context of 

ray tracing. The determination of appropriate intersection points will become the main 

concern of the next section.

7.6 Ray tracing implicit models

In this section we will explain how we may use the ray tracing visualisation approach on 

the models we propose. We can see two distinctly different approaches here that are of 

interest. The first uses the ‘Heidelberg’ ray tracing model [Meinzer et al. 1991], and the 

second uses the classical ray tracing approach as presented in chapter three.

7.6.1 The ‘Heidelberg’ ray tracing model

The visualisation approach is an example of faking ray tracing but is straight-forward to 

implement and produces noteworthy results. The method uses a shading model that defines 

light absorption as a measure that is proportional to the density of the visualised field. In 

this way, the value of the light intensity is diminished proportionally to the density of the 

field it passes through. Similarly, light reflection is modelled as intensity value which is 

inversely proportional to the density of the model’s field. In other words, light reflection is 

more likely to occur when crossing space that exhibits a high gradient of density values. 

Light transmission is also modelled as a reduction in the light intensity which is proportional 

to the value of the density of field that the transmitted light passes through. Another optical 

phenomenon, scattering, which is the amount of incident light scattered towards the observer 

is also simulated.
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For the purposes of this shading model the effects of the optical phenomena (transmission, 

reflection, scatter) are not treated as inter-related but as totally independent. In this way, 

light transmission will only calculate light that passes directly towards the observer and will 

not take into account any other light that has been possibly reflected off any other surface. 

The reason is to ensure quick visualisation of required model.

This shading model also assumes that there exist only two light sources, the intensity and 

location of which cannot be altered by the user. One source is assumed to coincide with the 

observer, and the other is located at exactly 45° to the left of the observer at the same 

horizontal plane as the observer. For each light source, a subset of the optical phenomena 

is implemented. In particular, for the first light source only diffuse reflection is used, 

whereas for the second, scatter, specular and diffuse reflection are all simulated. These 

simplifications have been introduced in order to speed up the visualisation process. 

Nonetheless, the image is well illuminated, since the 45° positioned source introduces 

highlights and shadows, and the source coincidental to the observer illuminates the dark 

areas that the first missed out.

Because of this separation of the effects of the two light sources, the image of a model is 

generated by the weighted sum (superposition) of the images produced by the independent 

application of the shading model as it is determined by each of the light sources. By 

adjusting the weights during the image addition, the quality (e.g. contrast) of the final image 

may be controlled by the user.

The complete visualisation algorithm starts off with the assumption that we can impose a 

canonical, orthogonal, three-dimensional grid of cubes that covers the required surfaces. 

Each such cube may be the equivalent of the cubelets we used in the octree visualisation 

approach of chapter six.

For each such cubelet, we have to determine the value of the field’s density function, which 

is a combination of the values of the constraint and defining functions, evaluated at the 

centre of the cubelet. This mapping from the constraint and defining functions, to the density 

function, will be used to effect the shading model in two complementary ways. Firstly, it
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will be used to determine the attenuation of the light as it passes through the cubelets. 

Secondly, it will be used to detect the boundaries and the normal of the required surface. 

Therefore, the combination of the defining and the constraint functions into a density 

function need some consideration. Usually, the difference between the constraint and the 

defining functions will make the density function on the required surface to evaluate as zero. 

This was actually our initial definition of the surface:

constraintJunction = defining Junction

Knowing where the surface is, in terms of values of the density function, enables us to 

define the vicinity of the surface as an interval of density values around zero1. In this way, 

density values away from this interval are of no interest to the algorithm and may be safely 

considered as noise and completely ignored from the calculations of the shading model. The 

density value on the centre of every cubelet is then used as a representative density value 

for the shading model.

Rays emanate from the observer towards the scene. Both the orthographic and the 

perspective type of projection may be used. The orthographic projection is easier to 

implement since it presupposes rays that are aligned with the orientation of the cubelets. 

With either type of projection, a ray is assumed to penetrate the cubelets and the intensity 

of light that it carries through is diminished according to the density of the cubelets. When 

this ray encounters the surface (density value zero) reflection is simulated. In a similar way, 

the light that illuminates the sources is also attenuated as it passes through the cubelets.

This visualisation approach is simple to implement but it does not simulate reflections of 

surfaces onto other surfaces. The difficulty one may encounter is the appropriate calculations 

of the density function and the subsequent calculations of the shading model. The authors 

of this approach [Meinzer et al. 1991] suggest the use of linear transformations because of 

their simplicity.

1 Recall (section 6.3.3) that the density function is the difference constraintJunction-defining Junction.
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Another issue is the resolution of the grid of cubelets. We suggest that we use a high 

resolution and evaluate their density function as needed. An alternative will be to use the 

octree visualisation approach to characterise all cubelets that belong to the vicinity of the 

surface and totally ignore the rest of the cubelets since they will have a density value 

beyond the limits we imposed in the previous paragraphs.

Compared to the octree visualisation approach, this approach is equally time consuming. 

However when several views of the same surface are required, it may prove to be faster 

since we only need to characterise the cubelets once, and then we simply traverse the 

cubelets according to the direction of a ray.

The Heidelberg ray tracing model does not offer the optical effects of a global illumination 

model, but gives us a quick visualisation approach of a quality similar to the octree. The 

next approach that we propose, however, will be addressing the issue of global illumination 

disregarding, to a reasonable extent, the speed of the visualisation.

7.6.2 A global illumination model

This approach introduces ray tracing of implicit surfaces but unlike the Heidelberg approach, 

uses a global illumination model. As we have already presented in chapter three, the 

classical ray tracing assumes the eye ray which emanates from the observer and is directed 

towards the scene. When this eye ray intersects with a surface of the scene, we apply the 

chosen shading model and then follow the generated child rays, accounting for reflection and 

refraction. Additionally, for the determination of the intensity of the incident light, we also 

try to establish, with the shadow feelers, whether this intersection point is in the shadow of 

some other surfaces, or it can be directly ‘seen’ by the light sources of the scene. Once the 

colour contribution of this intersection point is determined we follow all the generated child 

rays. Then, when these new rays intersect with surfaces in the scene, we apply the same 

shading model and follow the newly generated rays recursively until we reach some 

termination criteria.
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This process, that describes the fundamental concept of ray tracing, is based on our ability 

to determine the intersection between a ray2 and surfaces of objects in the scene. Using 

analytical models, the intersection problem may be well defined and its solution is either 

exact or approximated depending on the nature of the equations involved. The reader is 

referred to chapter three for a more detailed discussion. However, with the models that we 

propose, the intersection problem cannot be described analytically. Consequently we will 

have to establish another method for approximating to it.

Approximation techniques like the Newton Raphson and the Regula-Falsi cannot be used. 

The main reason is that we do not know the behaviour of the constraint and the defining 

functions. This lack of knowledge makes us unaware of the local maxima and minima that 

the constraint and defining functions may exhibit as they are evaluated along the locus of 

a point that defines a line (i.e. the ray). Therefore, in the case of a ray intersecting several 

times with the implicit surface, any such approximation algorithm may converge to an 

unwanted intersection point, or oscillate between two intersection points without converging 

to any of them. The term ‘unwanted intersections’ means that the intersection point found 

is not the nearest to the origin of the ray toward the positive direction of the ray, but any 

other intersection point. Therefore we can never be certain about the solutions offered by 

such approximation algorithms.

The method of volume ray tracing by Kaufman, Cohen and Yagel [1993] is not suitable for 

our purposes because it explicitly imposes a three-dimensional canonical orthogonal lattice 

of cubes to cover the whole scene. Therefore, for a high resolution image of say, 3000 x 

3000 pixels, they demand enormous computer storage capacity that would store information 

about the contents of 30003 = 27 x 109 cubes. The method of volume ray tracing that we 

propose, is distinctly different because it is based on sampling the values of the constraint 

and defining functions at regularly spaced specific points along the ray that we want to 

intersect. Firstly, for reasons of clarity, we re-introduce (from section 6.3.3) the concept of 

the density function which is also used in the Heidelberg ray tracing approach. In this way, 

the value of the density function at any given point is defined to be the difference of the

2
Such rays, as we have discussed in chapter three, include the eye ray, its children, and any shadow feeler.
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value of the constraint function minus the value of the defining function at this particular 

point. Consequently, the surface we have modelled will have a density value of zero.

density_value = constraint_yalue -  defining_value

In order to determine the nearest intersection of a ray with an implicit surface, along the 

positive direction of the ray, we start sampling the density function at regular intervals and 

observe the sign of the sampled density value. When we encounter a difference in the sign 

(say, from positive to negative) we can assume that an intersection point exists within the 

last sampling interval. Our assumption is correct in the case of analytically continuous 

surfaces (Bolzano theorem), but may not be correct for the rest of the cases. Let us assume 

for the moment that we have analytically continuous surfaces and we will see how to 

include discontinuous surfaces later.

Once we have encountered a change in the sign of the density value, we stop the sampling 

process and try to find a better approximation to the suspected intersection point. Here we 

can use the successive binary approximation method. Assuming analytical continuity of the 

sampled surfaces, we may encounter two different cases with regard to the number of 

intersection points. There may be exactly one such point, or more than one.

If there is only one point, the approximation method we use will converge to it. If there are 

more than one, however, our method may converge to any of them, not necessarily the 

nearest. In this latter case, we must consider the magnitude of the error that we may 

introduce by incorrectly choosing any other intersection point but the nearest. The results 

may be disastrous and greatly depend on the length of the sampling interval.

If, for example, the length of this interval is comparable with the dimensions of the window 

on the viewplane, then it is very likely that portions of the surface may be missed out, 

resulting to a highly inaccurate image on the viewport. If, however, the length of the interval 

is smaller than the dimensions of the viewplane’s sub-windows, then the introduced error 

is insignificant and may not even become apparent on the generated image because it would 

affect the colour of at most one pixel on the viewport. Let us recall from chapter three, that
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the sub-window is the rectangular area on the viewplane’s window that maps exactly to one 

pixel on the viewport.

These observations, will be used to define the length of the sampling interval to be small 

enough when compared with the dimensions of the viewplane’s sub-window. We estimate 

that a value of half the smaller of the sub-window’s dimensions is sufficient for the purposes 

of our visualisation approach.

Coming back to the non-continuous case, we will introduce some ‘intuitive’ amendments 

to the intersection finding algorithm in order to enable the detection and correct 

determination of intersection points. We can observe that the binary successive 

approximation method may never converge to any specific value since there may not exist 

any intersection point but instead there may be a discontinuity in the surface.

In such cases the approximation method is likely to converge to one end-point of the 

discontinued surface or other sort of degeneracies may occur while evaluating the density 

function. These signs of non-convergence should be used for the proper identification of 

such problems. Once such a case has been detected, we can abandon the binary successive 

approximation method, reset our sampling algorithm, and continue sampling along the ray 

until another change of sign of the density value is detected.

When we find an intersection point, we apply a shading model that simulates global 

illumination, as we have already discussed in chapter three. With regard to the normal to 

the surface at this intersection point, we can use the same technique that we used during the 

octree visualisation approach.

Although we do not impose an orthogonal lattice of cubelets on the scene, the regular 

sampling that we propose implicitly introduces such a lattice. However, every time we use 

this lattice we have ensured that it is aligned with the direction of the ray we want to 

intersect. Furthermore, the length of the sampling interval is small enough to ensure that 

whatever the orientation of the ray the sampling interval will not cause trouble in areas that 

are covered with more than one sub-window.
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This visualisation approach is unavoidably time consuming. The intersection of a ray with 

the scene may take several samples until an intersection point is found. There are also rays 

that they never hit any surface, thus wasting considerable time during sampling. It is 

therefore essential that we bound the scene with a simple geometrical object beyond which 

we never sample the density function but assume that no intersection points can be found.

Another adjustment we can make is in the number of iterations that we allow during the 

binary successive approximation method. During the octree visualisation approach we 

stopped the refining of the location of a surface point when the level of tolerance was 

smaller than the size of the cubelet. Recalling that the size of a cubelet is such that it is 

exactly mapped onto one sub-window on the viewplane, and that the sampling interval is 

also smaller than the dimensions of a sub-window, we can assume that a few iterations of 

the successive binary approximation method are enough to ensure an accurate definition of 

the intersection point.

Finally, another issue that we must consider in order to gain significant acceleration of this 

ray tracing approach is space coherence information regarding the distribution of the objects 

in the scene. Consider, for example, that we know that at particular volume of space the 

scene is empty from objects. Accordingly, whenever a ray passes through this region of 

space, we do not need to sample the density function at all. This space coherence 

information can be extracted effortlessly from the octree visualisation approach presented 

in the previous chapter.

7.7 A stochastic visualisation process

This section is concerned with the use of a pseudo-random number generator for suggesting 

point coordinates in order to evaluate the point membership classification test of the 

definition of the implicit models that we proposed.

This approach starts with a randomly chosen point. This point is specified by randomly 

choosing its coordinates. The coordinates of this point are used to evaluate the constraint and
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the defining function. If these two function evaluate to similar values then we can assume 

that this point is in the vicinity of the surface we try to visualise. If this point evaluates the 

constraint and the defining function in distinctly different values, then we can safely ignore 

this point as it does not belong to the surface.

This is actually the concept of the point membership classification test upon which we based 

the construction of the models we proposed. Therefore, what we actually do is to test 

whether a randomly chosen point validates the point membership classification test of the 

model we intend to visualise.

Once we identify a candidate point as a member of the model’s surface, we need to 

calculate its colour, map it on the viewplane, and paint the corresponding pixel accordingly. 

At this point we can distinguish between two different cases depending whether the 

corresponding pixel has already been painted or not. If it has not been painted, then we 

proceed by applying the chosen shading model, determine the colour of the corresponding 

pixel, and paint it. However, if it has already been painted, it means that we have already 

found a point that maps to this pixel.

Therefore, we have to check whether the newly found point is behind or in front of the 

previously found point, in relation to the observer. If the new point is in front, we over-paint 

the pixel else, we ignore it. This process implements a hidden surface removal mechanism, 

but it implies that we need to know the depth of every point that has been already painted.

After painting the corresponding pixel, or deciding to ignore the newly found point, we 

restart the algorithm by choosing randomly another point (by randomly assigning its 

coordinates) and proceed likewise. In this way this visualisation algorithm would continue 

to examine points and would never terminate. What we should do is to devise some 

termination criteria that would ensure an acceptable image on the viewport. One criterion 

may be to terminate the algorithm after a predefined number of points (say, 1600) has been 

found to belong to the scene. Another termination criterion would be to allow the user to 

stop the algorithm whenever the user finds it appropriate.
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From this visualisation approach there is an issue that we wish to discuss. This is the trade­

off between the accuracy of the generated images against the speed of the visualisation 

algorithm. We suggested that a candidate point belongs to the scene when the constraint and 

defining functions evaluate to similar values. Instead, for generating accurate representations, 

our attitude should have been to accept only the points that make the values between the 

constraint and defining functions equal. However, such an attitude would be very 

inappropriate to adopt because we would reject the vast majority of candidate points and 

waste CPU time. For this reason, we introduce the concept of similarity. A precise 

description of similarity would be that two numbers are similar if the absolute value of their 

difference is less than e , for an arbitrary real positive value of e.

In this way, points that are near to the surfaces of the scene will be treated as if they belong 

to the scene. But with this compromise we introduce an error to the image. This is a trade­

off between speed of visualisation and accuracy of image and it depends on the value of e. 

The smaller the value of e, the more accurate the generated image but the slower the speed 

of visualisation, and vice versa.

What we propose is to avoid having a predefined universal value for e but to change it 

according to the success rate of the visualisation algorithm. We define success rate to be the 

proportion of the number of points we used to paint pixels on the viewport over the total 

number of candidate points that we have examined so far. In order to increase the efficiency 

of the algorithm, indicated by the success rate, we will have to increase the value of e. 

Similarly, if the success rate is higher than a desired level, we may have to decrease the 

value of e and make the visualisation algorithm more accurate. This adaptive technique for 

assigning the value of e again relies on the actual values e takes, but in this way the range 

of permissible values is adjusted to the specifics of the scene. The desired level of the 

measure of the algorithms’s success rate may be determined from a series of trial-and-error 

experiments.

Another technique that we may introduce to generate acceptable images at quicker speeds 

of visualisation, is to replace, during the stages of shading and mapping (Figure 3.1), the 

successful candidate points with small and simple geometric objects such as spheres or
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cubes. Ranjan and Fournier [1994] suggested the use of spheres as a means to cover the 

skeleton of implicit models. But they converted the description of their implicit models into 

sets of spheres at a stage prior to visualisation. What we propose instead, is to make this 

conversion during visualisation. In this way we do not need a pre-processing stage, but we 

treat the successful candidate points as centre points of small spheres or cubes.

In this way we can use the exact point membership classification test, abandon the utilisation 

of e and use spheres to replace the successful candidates. The radius of the spheres may be 

chosen such that, when mapped to the viewport, they would paint more than one pixel.

A problem arising with this technique is how we can establish whether a sphere is in front 

of another (which has been already painted), in relation to a given observer. We recommend 

to avoid determining the intersection between two spheres with analytical means, but simply 

record, for every pixel that we paint, the depth (distance form the observer) of its 

corresponding point. In this way we use the same process as for the ‘un-accelerated’ 

algorithm, as presented in the beginning of this section.

Spatial coherence may also be exploited by detecting volumes of space that the scene is 

empty. Using the octree visualisation approach, we can determine cubical regions of space 

where we are certain that the point membership classification test fails. However, directing 

the random generator to avoid these regions of space counteracts the savings offered by this 

information.

This visualisation approach offers a number of benefits. It is simple to conceptualise, and 

straightforward to implement. If we are not interested in the quality of the generated images, 

we can produce a rough approximation to the scene very quickly, compared to other 

visualisation alternatives (i.e. octree, ray tracing, polygonisation). This feature is very useful 

for the designer during the phase of modelling, since the model can be previewed and 

adjusted before we commit greater computer resources for a more accurately generated 

image.
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Finally, the way we have structured the algorithm, makes this approach easily implemented 

for the exploitation the specialized hardware architecture of the Z-buffer: for every pixel that 

we paint, we also update the Z-buffer with the depth of the coordinates of the point we used 

for this colouring.

7.8 Concluding remarks

The aim of this dissertation was to explore the potential of computer graphics in its ability 

to visualise and manipulate geometric surfaces that cannot be handled with analytical tools. 

To achieve our aim, we felt it essential to study the domain of computer graphics both in 

terms of modelling and visualisation. In this way we identified computer graphics research 

that was relevant for our purpose. Additionally, we also recognized gaps in the relevant 

literature that we had to bridge in order to attain our aim.

Once we established the context within which we had to relate our research, we proceeded 

with describing formally (mathematically) the problem we aimed to resolve. We called this 

the initial problem definition and it formed the basis for the development of a new 

modelling approach. To achieve this development we went through two phases of extending 

the initial problem definition. The first, aimed at determining a more ‘radical’ 

(unconventional) definition for the measure of distance, while the second phase aimed at 

introducing a more ‘intuitive’ perspective for calculating the distance between objects.

After deriving this enhanced definition for surface description, we devoted our efforts in the 

understanding of its potential. We achieved this by dividing our surface definition in four 

different categories depending on the nature of a parameter that participates in the surface 

definition which we named the defining parameter.

For each category of this classification we conducted an elaborate analysis through a 

selection of examples. Plates 11 - 16 are associated with the Class I  category. Plates 17 -2 0  

demonstrate the ability of our modelling approach to encompass several surface construction 

mechanisms such as bodies of revolution and extrusions (Class II models). Using Class III
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models we built surfaces (plates 23, 24) that have been modulated with random and fractal 

processes. This class of models (III) reveals yet another aspect of the modelling approach 

that we have constructed; its ability to cope with implicitly defined data that cannot be 

approximated otherwise. With models of Class IV  we demonstrated two more extremely 

significant capabilities of our modelling approach; its intuitive nature and its ability to 

generalize surface construction procedures. For this class we performed two series of 

experiments. The first, was to define intuitively paraboloid-like surfaces as plates 2 5 - 3 1  

demonstrate. The second series of experiments extended the definition of the Voronoi 

tessellation in order to accommodate several geometrical objects as nuclei which were also 

assigned a weight factor. Plates 34 - 44 illustrate the effect of weights in a weighted 

Voronoi tessellation. Additionally, plates 32, 33 and 45 - 48 demonstrate some examples of 

weighted tessellations using points and lines as nuclei.

However, in order to complete our research and yield a useful modelling approach we also 

had to provide a visualisation approach. We chose to generate accurate representations of 

the surfaces we could describe and therefore we had to avoid approximations (to the 

modelled surfaces) as much as possible. The visualisation approach we proposed was 

adopted from the literature but was significantly adjusted in order to fulfil our specifications. 

However, because of our quest for accuracy of the surface representations, the visualisation 

approach we adopted was not particularly efficient. For this reason, we investigated (e.g. 

bounding volume information, spherical subcubes etc.) and proposed (e.g. polygonisation, 

stochastic sampling etc.) a number of different techniques that we may use to achieve 

significantly better visualisation speeds.

Finally, we have provided constructive criticisms over the complete combination of 

modelling and visualisation approaches that we used. These criticisms aimed at placing our 

research within the wider framework of computer graphics. This was attained by discussing 

our experience using the proposed modelling - visualisation combination, but also by briefly 

establishing a set of new directions for further enhancing our research.
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In the research described in this dissertation we demonstrated the significance of implicit 

modelling. Moreover, the modelling approach that we developed illustrates how we can 

employ modem technology in order to conceptualise and understand the principles of 

implicit modelling. This was achieved through a computer graphics visualisation approach 

that we assembled - an adaptation of the octree visualisation - which enabled us to visualise 

the implicit definition of several families of geometrical objects. This piece of research, 

embodied in the construction of a modelling as well as a visualisation approach, has 

contributed to the conceptualisation, definition, manipulation and visualisation of implicitly 

defined geometrical objects (i.e. surfaces). We believe that the colour plates demonstrate the 

principal capabilities of the our (modelling/visualisation) approach, namely, its intuitive 

nature, the ability to generalise, and the refining of conceptualisation of implicitly defined 

objects.
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Appendix A

Colour Plates

Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Plates 6 - 10
Plates 11, 12
Plates 13 - 16
Plate 17
Plates 18 - 20
Plates 21, 22
Plate 23
Plate 24
Plates 25, 26
Plates 27, 28
Plates 29, 30
Plate 31
Plate 32
Plate 33
Plate 34 - 44
Plates 45, 46
Plate 47
Plate 48

Mechanical parts using Constructive Solid Geometry
The method of polyspheres
Constant shading
Gouraud shading
Phong shading
Contour maps using the sum of distance
The sum of distance from three points being constant
Varying the value of the defining parameter
The value of the defining parameter being a line
The defining parameter being the s in( ) function
Using pseudo-random number generators
Surface modulation using a pseudo-random number generator
The Mandelbrot set (inset) being rotated
A paraboloid defined by a point and a planar disk
An extruded parabola defined by a point and a line segment
A paraboloid defined by a line segment and a planar disk
A paraboloid defined by two line segments
Simple three dimensional Voronoi tessellation
Extended Voronoi tessellation determined by three line segments
Varying the weight of a nucleus
Weighted tessellations using points
Weighted tessellation using line segments
Weighted Voronoi tessellation determined by line segments and points
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Appendix B

The purpose of this appendix is to highlight some important features of the software that we 
generated using our modelling and visualisation approach. First we present a list of the most 
important C++ classes that we constructed. Then, we discuss the constituent modules of the 
software produced and finally, we discuss the main stages of the software execution. Some 
examples of time used for achieving some of the colour plates will conclude this appendix.

C++ Objects

Analytic_object:

Cluster.

CSGlists:

CSGtree:

Fractal_Texture:

Material'.
Matrix:
Palette:

pixelvector:

ranges:
Screen_map:

Sigma_object:
Stack:
Stackinfo: 
vector3: 
Viewport:

The description of a scene and methods for transforming it for different 
coordinate systems.
Particular subclass of the Analytic_object holding information about 
polygonal meshes.
The implementation of the Constructive Solid Geometry approach, 
using lists.
The implementation of the Constructive Solid Geometry approach, 
using trees.
The implementation of a process that generates smooth but random 
texture or surface variations using a pseudo random number generator 
The materials data base.
A generic 4x4 matrix.
information about the colour capabilities of a particular computer 
graphics viewport.
A generic two-dimensional vector for the VIEWPORT coordinate 
system.
Information about limiting the growth of surfaces 
A memory based map of the complete viewport to test for visibility of 
subcubes of the octree visualisation approach.
A subclass for the implicit models proposed in this dissertation.
A generic stack structure for the octree.
Information about the octants of the octree visualisation approach.
A generic three-dimensional vector
information about the specification of the geometry of a particular 
computer graphics viewport (e.g. VGA, XGA, HPGLplotter, ...).
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Virtual_Buffer\ A memory based immediate buffer for interfacing with the virtual
viewport implementation.

Window: Controls the mapping from the continuous space of the computer
graphics scene to the discrete space of a viewport and its associated 
palette.

Modules of the software used

The software implemented consists of eight modules namely, octree, model, display, sigmadis, 
sigmacls, window, smap, and vrtbuf. The first two (i.e. octree and model) import or, construct 
a scene and locate it according to the observer’s viewing parameters. The next module 
(display) implements the octree visualisation algorithm, as well as the constructive solid 
geometry mechanism for a variety of geometrical objects. Then, the next two modules 
(sigmadis and sigmacls) attach to the octree visualisation algorithm in order to provide the 
necessary C++ classes for the manipulation of the implicitly defined surfaces that we study. 
Finally, the last three modules (display, smap and vrtbuf) are used to provide us with a real 
or virtual (or both) implementations of the viewport.

These modules are compiled separately but linked together in order to make an executable 
file under the DOS operating system. Information between the modules is achieved via 
common header files (.h) which include C++ standard libraries as well as the simple generic 
C++ objects and methods that we used. For example, methods that permit the multiplication 
of a matrix with a vector as well as the scaling and normalisation of a vector are available 
via the header files to all modules.

Procedural decomposition of the software

Upon invocation of the executable file, the following processes take place in order.

1. Verify existence of viewport and negotiate parameters (Window - Palette - Viewport)
2. Construct scene (Octree - Model)
3. Project scene according to viewing parameters (Model)
4. Use the octree algorithm until all pixels are painted (Display - Screen_Map)
5. Save results and exit (Display - Window)
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Timing examples

The following table illustrates the amount of real time needed to visualise some of the high 
resolution (2048 x 1536), full colour (24bit) plates.

Plate Time

Plate 11 13 mins

Plate 18 16 mins

Plate 19 20 mins

Plate 23 98 mins

Plate 24 134 mins

Plate 25 21 mins

Plate 28 17 mins

Plate 31 19 mins

Plate 44 230 mins

Plate 46 89 mins

Plate 47 160 mins

Plate 48 269 mins

Table B .l Example execution times
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