8,143 research outputs found

    Experimental Support for a Categorical Compositional Distributional Model of Meaning

    Full text link
    Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.Comment: 11 pages, to be presented at EMNLP 2011, to be published in Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processin

    Multiple factor analysis of distributional data

    Full text link
    In the framework of Symbolic Data Analysis (SDA), distribution-variables are a particular case of multi-valued variables: each unit is represented by a set of distributions (e.g. histograms, density functions or quantile functions), one for each variable. Factor analysis (FA) methods are primary exploratory tools for dimension reduction and visualization. In the present work, we use Multiple Factor Analysis (MFA) approach for the analysis of data described by distributional variables. Each distributional variable induces a set new numeric variable related to the quantiles of each distribution. We call these new variables as \textit{quantile variables} and the set of quantile variables related to a distributional one is a block in the MFA approach. Thus, MFA is performed on juxtaposed tables of quantile variables. \\ We show that the criterion decomposed in the analysis is an approximation of the variability based on a suitable metrics between distributions: the squared L2L_2 Wasserstein distance. \\ Applications on simulated and real distributional data corroborate the method. The interpretation of the results on the factorial planes is performed by new interpretative tools that are related to the several characteristics of the distributions (location, scale and shape).Comment: Accepted from STATSTICA APPLICATA: Italian Journal of Applied Statistics on 12/201

    Mathematical Foundations for a Compositional Distributional Model of Meaning

    Full text link
    We propose a mathematical framework for a unification of the distributional theory of meaning in terms of vector space models, and a compositional theory for grammatical types, for which we rely on the algebra of Pregroups, introduced by Lambek. This mathematical framework enables us to compute the meaning of a well-typed sentence from the meanings of its constituents. Concretely, the type reductions of Pregroups are `lifted' to morphisms in a category, a procedure that transforms meanings of constituents into a meaning of the (well-typed) whole. Importantly, meanings of whole sentences live in a single space, independent of the grammatical structure of the sentence. Hence the inner-product can be used to compare meanings of arbitrary sentences, as it is for comparing the meanings of words in the distributional model. The mathematical structure we employ admits a purely diagrammatic calculus which exposes how the information flows between the words in a sentence in order to make up the meaning of the whole sentence. A variation of our `categorical model' which involves constraining the scalars of the vector spaces to the semiring of Booleans results in a Montague-style Boolean-valued semantics.Comment: to appea

    Incremental dimension reduction of tensors with random index

    Get PDF
    We present an incremental, scalable and efficient dimension reduction technique for tensors that is based on sparse random linear coding. Data is stored in a compactified representation with fixed size, which makes memory requirements low and predictable. Component encoding and decoding are performed on-line without computationally expensive re-analysis of the data set. The range of tensor indices can be extended dynamically without modifying the component representation. This idea originates from a mathematical model of semantic memory and a method known as random indexing in natural language processing. We generalize the random-indexing algorithm to tensors and present signal-to-noise-ratio simulations for representations of vectors and matrices. We present also a mathematical analysis of the approximate orthogonality of high-dimensional ternary vectors, which is a property that underpins this and other similar random-coding approaches to dimension reduction. To further demonstrate the properties of random indexing we present results of a synonym identification task. The method presented here has some similarities with random projection and Tucker decomposition, but it performs well at high dimensionality only (n>10^3). Random indexing is useful for a range of complex practical problems, e.g., in natural language processing, data mining, pattern recognition, event detection, graph searching and search engines. Prototype software is provided. It supports encoding and decoding of tensors of order >= 1 in a unified framework, i.e., vectors, matrices and higher order tensors.Comment: 36 pages, 9 figure

    Analytical Challenges in Modern Tax Administration: A Brief History of Analytics at the IRS

    Get PDF
    corecore