268 research outputs found

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    An embedded energy monitoring circuit for a 128kbit SRAM with body-biased sense-amplifiers

    Get PDF
    Embedded energy monitoring of critical system components can be used to enable better power management by capturing run time system conditions such as temperature and application load. In this work, an energy sensing circuit that provides digitally represented absolute energy per operation of a 128kbit SRAM is presented. Designed in a 65nm low-power CMOS process, SRAMs can operate down to 370 mV. Energy sensing circuit consumes 16.7ÎĽW during sensing at 1.2V (only 0.28% of SRAM active power at the same voltage). For improved performance, SRAMs utilize body-biased PMOS input strong-arm type sense amplifiers that can achieve 45% tighter input offset distribution for only ~3.5% of total SRAM area overhead.United States. Defense Advanced Research Projects Agency. The Ubiquitous High Performance Computing Progra

    Design of a wideband low-power continuous-time sigma-delta (ΣΔ) analog-to-digital converter (ADC) in 90nm CMOS technology

    Get PDF
    The growing trend in VLSI systems is to shift more signal processing functionality from analog to digital domain to reduce manufacturing cost and improve reliability. It has resulted in the demand for wideband high-resolution analog-to-digital converters (ADCs). There are many different techniques for doing analog-to-digital conversions. Oversampling ADC based on sigma-delta (ΣΔ) modulation is receiving a lot of attention due to its significantly relaxed matching requirements on analog components. Moreover, it does not need a steep roll-off anti-aliasing filter. A ΣΔ ADC can be implemented either as a discrete time system or a continuous time one. Nowadays growing interest is focused on the continuous-time ΣΔ ADC for its use in the wideband and low-power applications, such as medical imaging, portable ultrasound systems, wireless receivers, and test equipments. A continuous-time ΣΔ ADC offers some important advantages over its discrete-time counterpart, including higher sampling frequency, intrinsic anti-alias filtering, much relaxed sampling network requirements, and low-voltage implementation. Especially it has the potential in achieving low power consumption. This dissertation presents a novel fifth-order continuous-time ΣΔ ADC which is implemented in a 90nm CMOS technology with single 1.0-V power supply. To speed up design process, an improved direct design method is proposed and used to design the loop filter transfer function. To maximize the in-band gain provided by the loop filter, thus maximizing in-band noise suppression, the excess loop delay must be kept minimum. In this design, a very low latency 4-bit flash quantizer with digital-to-analog (DAC) trimming is utilized. DAC trimming technique is used to correct the quantizer offset error, which allows minimum-sized transistors to be used for fast and low-power operation. The modulator has sampling clock of 800MHz. It achieves a dynamic range (DR) of 75dB and a signal-to-noise-and-distortion ratio (SNDR) of 70dB over 25MHz input signal bandwidth with 16.4mW power dissipation. Our work is among the most improved published to date. It uses the lowest supply voltage and has the highest input signal bandwidth while dissipating the lowest power among the bandwidths exceeding 15MHz

    Design and Analysis of High Gain Low Power CMOS Comparator

    Get PDF
    The comparator is the most significant component of the analog-to-digital converter, voltage regulator, switching circuits, communication blocks etc. Depending on the various design schemes, comparator performance varied upon target applications. At present, low power, high gain, area efficient and high-speed comparator designed methods are necessary for complementary metal oxide semiconductor (CMOS) industry. In this research, a low power and high gain CMOS comparator are presented which utilized two-stage differential input stages with replication of DC current source to achieve higher gain, higher phase margin, higher bandwidth, and lower power consumption. The simulated results showed that, by using a minimum power supply of 1.2 V, the comparator could generate higher gain 77.45 dB with a phase margin of 60.08°. Moreover, the modified design consumed only 2.84 µW of power with a gain bandwidth of 30.975 MHz. In addition, the chip layout area of the modified comparator is found only 0.0033 mm2

    A Low-Voltage Electronically Tunable MOSFET-C Voltage-Mode First-Order All-Pass Filter Design

    Get PDF
    This paper presents a simple electronically tunable voltage-mode first-order all-pass filter realization with MOSFET-C technique. In comparison to the classical MOSFET-C filter circuits that employ active elements including large number of transistors the proposed circuit is only composed of a single two n-channel MOSFET-based inverting voltage buffer, three passive components, and one NMOS-based voltage-controlled resistor, which is with advantage used to electronically control the pole frequency of the filter in range 103 kHz to 18.3 MHz. The proposed filter is also very suitable for low-voltage operation, since between its supply rails it uses only two MOSFETs. In the paper the effect of load is investigated. In addition, in order to suppress the effect of non-zero output resistance of the inverting voltage buffer, two compensation techniques are also introduced. The theoretical results are verified by SPICE simulations using PTM 90 nm level-7 CMOS process BSIM3v3 parameters, where +/- 0.45 V supply voltages are used. Moreover, the behavior of the proposed filter was also experimentally measured using readily available array transistors CD4007UB by Texas Instruments

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies

    Study of Single-Event Transient Effects on Analog Circuits

    Get PDF
    Radiation in space is potentially hazardous to microelectronic circuits and systems such as spacecraft electronics. Transient effects on circuits and systems from high energetic particles can interrupt electronics operation or crash the systems. This phenomenon is particularly serious in complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) since most of modern ICs are implemented with CMOS technologies. The problem is getting worse with the technology scaling down. Radiation-hardening-by-design (RHBD) is a popular method to build CMOS devices and systems meeting performance criteria in radiation environment. Single-event transient (SET) effects in digital circuits have been studied extensively in the radiation effect community. In recent years analog RHBD has been received increasing attention since analog circuits start showing the vulnerability to the SETs due to the dramatic process scaling. Analog RHBD is still in the research stage. This study is to further study the effects of SET on analog CMOS circuits and introduces cost-effective RHBD approaches to mitigate these effects. The analog circuits concerned in this study include operational amplifiers (op amps), comparators, voltage-controlled oscillators (VCOs), and phase-locked loops (PLLs). Op amp is used to study SET effects on signal amplitude while the comparator, the VCO, and the PLL are used to study SET effects on signal state during transition time. In this work, approaches based on multi-level from transistor, circuit, to system are presented to mitigate the SET effects on the aforementioned circuits. Specifically, RHBD approach based on the circuit level, such as the op amp, adapts the auto-zeroing cancellation technique. The RHBD comparator implemented with dual-well and triple-well is studied and compared at the transistor level. SET effects are mitigated in a LC-tank oscillator by inserting a decoupling resistor. The RHBD PLL is implemented on the system level using triple modular redundancy (TMR) approach. It demonstrates that RHBD at multi-level can be cost-effective to mitigate the SEEs in analog circuits. In addition, SETs detection approaches are provided in this dissertation so that various mitigation approaches can be implemented more effectively. Performances and effectiveness of the proposed RHBD are validated through SPICE simulations on the schematic and pulsed-laser experiments on the fabricated circuits. The proposed and tested RHBD techniques can be applied to other relevant analog circuits in the industry to achieve radiation-tolerance

    Robust Design With Increasing Device Variability In Sub-Micron Cmos And Beyond: A Bottom-Up Framework

    Full text link
    My Ph.D. research develops a tiered systematic framework for designing process-independent and variability-tolerant integrated circuits. This bottom-up approach starts from designing self-compensated circuits as accurate building blocks, and moves up to sub-systems with negative feedback loop and full system-level calibration. a. Design methodology for self-compensated circuits My collaborators and I proposed a novel design methodology that offers designers intuitive insights to create new topologies that are self-compensated and intrinsically process-independent without external reference. It is the first systematic approaches to create "correct-by-design" low variation circuits, and can scale beyond sub-micron CMOS nodes and extend to emerging non-silicon nano-devices. We demonstrated this methodology with an addition-based current source in both 180nm and 90nm CMOS that has 2.5x improved process variation and 6.7x improved temperature sensitivity, and a GHz ring oscillator (RO) in 90nm CMOS with 65% reduction in frequency variation and 85ppm/oC temperature sensitivity. Compared to previous designs, our RO exhibits the lowest temperature sensitivity and process variation, while consuming the least amount of power in the GHz range. Another self-compensated low noise amplifiers (LNA) we designed also exhibits 3.5x improvement in both process and temperature variation and enhanced supply voltage regulation. As part of the efforts to improve the accuracy of the building blocks, I also demonstrated experimentally that due to "diversification effect", the upper bound of circuit accuracy can be better than the minimum tolerance of on-chip devices (MOSFET, R, C, and L), which allows circuit designers to achieve better accuracy with less chip area and power consumption. b. Negative feedback loop based sub-system I explored the feasibility of using high-accuracy DC blocks as low-variation "rulers-on-chip" to regulate high-speed high-variation blocks (e.g. GHz oscillators). In this way, the trade-off between speed (which can be translated to power) and variation can be effectively de-coupled. I demonstrated this proposed structure in an integrated GHz ring oscillators that achieve 2.6% frequency accuracy and 5x improved temperature sensitivity in 90nm CMOS. c. Power-efficient system-level calibration To enable full system-level calibration and further reduce power consumption in active feedback loops, I implemented a successive-approximation-based calibration scheme in a tunable GHz VCO for low power impulse radio in 65nm CMOS. Events such as power-up and temperature drifts are monitored by the circuits and used to trigger the need-based frequency calibration. With my proposed scheme and circuitry, the calibration can be performed under 135pJ and the oscillator can operate between 0.8 and 2GHz at merely 40[MICRO SIGN]W, which is ideal for extremely power-and-cost constraint applications such as implantable biomedical device and wireless sensor networks
    • …
    corecore