11,620 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Input-output linearization and fractional robust control of a non-linear system

    Get PDF
    This article deals with the association of a linear robust controller and an input-output linearization feedback for the control of a perturbed and non-linear system. This technique is applied to the control of a hydraulic system whose actuator is non-linear and whose load is time-variant. The piston velocity of the actuator needs to be controlled and a pressure-difference inner-loop is used to improve the performance. To remove the effect of the non-linearity, an input-output linearization under diffeomorphism and feedback is achieved. CRONE control, based on complex fractional differentiation, is applied to design a controller for piston-velocity loop even when parametric variations occu

    On least-cost path for realistic simulation of human motion

    Get PDF
    We are interested in "human-like" automatic motion simulation with applications in ergonomics. The apparent redundancy of the humanoid wrt its explicit tasks leads to the problem of choosing a plausible movement in the framework of redundant kinematics. Some results have been obtained in the human motion literature for reach motion that involves the position of the hands. We discuss these results and a motion generation scheme associated. When orientation is also explicitly required, very few works are available and even the methods for analysis are not defined. We discuss the choice for metrics adapted to the orientation, and also the problems encountered in defining a proper metric in both position and orientation. Motion capture and simulations are provided in both cases. The main goals of this paper are: to provide a survey on human motion features at task level for both position and orientation, to propose a kinematic control scheme based on these features, to define properly the error between motion capture and automatic motion simulation

    Study of Nonstationary Random Process Theory

    Get PDF
    Nonstationary random process theor
    • …
    corecore