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Abstract

This article deals with the association of a linear robust
controller and an input-output linearization feedback for the
control of a perturbed and non-linear system. This technique
is applied to the control of a hydraulic system whose actuator
is non-linear and whose load is time-variant. The piston
velocity of the actuator needs to be controlled and a pressure-
difference inner-loop is used to improve the performance. To
remove the effect of the non-linearity, an input-output
linearization under diffeomorphism and feedback is achieved.
CRONE control, based on complex fractional differentiation,
is applied to design a controller for piston-velocity loop even
when parametric variations occur.

1 - INTRODUCTION

The work presented in this paper will be used for the control
of the velocity of a hydraulic actuator that is part of a high-
speed testing bench for mechanical structures. The difficulty
of this control problem comes from the non-linearity of the
actuator model and from the uncertainty on the model of the
mechanical structure to be tested. So, the control strategy is
based on three feedbacks: one to linearize the input-output
behavior of the system, one to control the pressure-difference
of the actuator, and one to control its velocity. Assuming that
the hydraulic behavior is well modeled, it is linearized using
diffeomorphism and feedback. CRONE control, which is a
frequency-domain based methodology to design robust linear
controller using complex-order differentiation, is finally
applied. Considering the robustness/performance-quality
trade-off, the plant perturbations are taken into account by
using fully-structured frequency uncertainty domains to
obtain the least-conservative controllers.
The article is organized as following. Section 2 gives a
description and a model of the electrohydraulic system used
to validate the control technique. Section 3 presents the
control system and describes the input-output linearization. In
section 4, CRONE control is introduced and applied.

2 - ELECTROHYDRAULIC SYSTEM

2.1. Description

The electrohydraulic system is part of a high-speed testing
bench for mechanical structures (see Fig.1). These structures
must be deformed by the electrohydraulic actuator with a
velocity given in Fig.2. The actuator is a double-acting 200
mm stroke cylinder. A servo-valve fed with a hydraulic pump
supplies a constant pressure. The piston rod is connected to a
mechanical structure modeled by a mass-damper-spring set.
The values of the structure parameters vary during the test
since the structure is deformed. The cylinder chambers are
each fitted with a pressure sensor. Position is provided by a
LVDT sensor on the piston rod and velocity is obtained by
integration of the measured acceleration.

Ps: supply pressure (280 Pa)

Pr: tank pressure (1 Pa)

P1, P2: cylinder chamber pressures (Pa)

Q1, Q2: flow rate from the servo-valve to the cylinder chambers (m3/s)

V1 , V2: cylinder chamber volumes (m3)

Vo: cylinder half-volume (5*10-4 m3)

Mo: piston mass (50 Kg)

So: piston effective area (1.53*10-3 m²)

M: mechanical structure mass (20 Kg ±50%)

c: mechanical structure spring (100000 N/m ±50%)

b: mechanical structure viscous coefficient (200 N/m.s ±50%)

y: piston position (m)

v: piston velocity (m/s)

k : servovalve gain (5,1.10-5)

ωn : servovalve natural frequency (500 rad/s)

ζn : servovalve isodamping factor (0,4)
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Fig.1 -Electrohydraulic system and mechanical structure to
be tested
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Fig.2 – Piston rod velocity and trajectory

2.2. Plant modeling

The electrohydraulic servo-valve modulates the flow rates to
the cylinder chambers. The main part of the flow stage is a
spool sliding in a sleeve. The spool is actuated by an
electromechanical interface controlled by the input current u.
The dynamic behavior of this interface is modeled by a two-
order state space model where yu is the image of the spool
position and vu is uy& :
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The flow stage model is obtained from:
- the thermodynamic equation giving the pressure

behavior:
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where B is the bulk isotherm modulus, and where V, P and Q
are respectively: volume, pressure and flow rate in a cylinder
chamber;
- the flow rates Q1 and Q2 obtained from the Bernoulli

equation:
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Static and Coulomb friction forces being neglected, the
motion equation is:
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where M, c and b are the mass, stiffness and damping
parameters used to model the time-variant mechanical
structure.

As volumes are: ySVV o+= o1 and ySVV o−= o2 , the

state-space model of the complete electrohydraulic system is
obtained from equations (1), (2), (3) and (4):
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with

( )T
21uu yvPPyvX = . (6)

This is a one input/two outputs and six-order nonlinear model
where f1, f2, g and h are defined by:
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3 - CONTROL STRATEGY

3.1. Scheme of the control system

The scheme of the control system (Fig.3) includes three
feedbacks:
- � is a feedback for the input-output linearization. The

aim of this linearization is to cancel the non-linear
behavior of the actuator.

- ó is a force feedback computed to quickly attenuate
disturbance and perturbation on the linearized plant.

- ì is a velocity feedback since velocity is the output to
be controlled.
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Fig.3 –Scheme of the control system



3.2. Input-output linearization under diffeomorphism and
static feedback of the electrohydraulic system

The linearization is presented for positive yu but it is similar
for the negative case. e will be the linearized system input.
The input-output linearization [1,2,3,4,5,6,17] uses the Lie
derivatives and, 

1f
L , the Lie derivative along f1 is given by:
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ρ the relative degree associated with  the output is defined by:
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derivative of output Y that makes u appear explicitly and
verifies:
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As shown by Fig.3, the output Y to be considered for the
linearization is the pressure-difference.
As position y is measured, and as velocity v is obtained from
the measured acceleration, the non-linear model used to
computed the linearization law is a sub-part of the six-order
non-linear model.

Here ( )T
21uu PPyvX = (12)

and f1, f2, g and h are defined by:
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The advantage of achieving the linearization considering the
pressure-difference as output is that the non-linear system is
non-perturbed. Thus, the behavior of the new system to be
controlled is independent of the operating points.
Computation leads to ρ = 3. So, the decoupling term ∆(X) is
given by:
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2
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and the compensation term ∆o(X) is given by:
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Then the state feedback defined by:
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with ku =3.82 1014, α0 = 2.5 107, α1 = 2.9 10  and α2 = 500,
transforms the non-linear system into the linearized system:
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Usually, the input-output linearized behavior is defined by
the transfer function of a ρ-order integrator. Here, the state
feedback is more than a simple input-output linearizing
feedback since it also contains a part of the tracking
feedback. Parameter αi, i∈[1,3], are also used to avoid that
the nominal ρ-order integrator system becomes a system with
right half-plane poles if the actual non-linear plant is
perturbed. Parameter α i, i∈[1,3], are computed so that the
frequency response of H(s) is comparable to the first order
linear model of the nominal nonlinear plant.

4 - ROBUST CONTROLLER DESIGN

4.1. CRONE control design method

CRONE (the French acronym of "Command Robuste d’Ordre
Non Entier") control system design [7,10,11,13,14] is a
frequency-domain based methodolgy, using complex
fractional differentiation [8,9,15,16]. It permits the robust
control of perturbed plants using the common unity feedback
configuration. It consists on determining the nominal and
optimal open-loop transfer function that guaranties the
required specifications. While taking into account the plant
right half-plane zeros and poles, the controller is then
obtained from the ratio of the open-loop frequency response
to the nominal plant frequency response. Three Crone control
generations have been developed, successively extending the
application fields. Crone control design has already been
applied to unstable or non-minimum-phase plants, plants with
bending modes [OUS 95b], and digital control problems. In
this paper, only the principle of the third generation is given.
The interests of Crone control system design are multiple.
The use of complex fractional differentiation permits to
define the open-loop transfer function with few high-level
parameters. The optimization problem that leads to the
optimal transfer function to meet the specifications is thus
easier to solve. Moreover, Crone control design takes into
account the genuine plant perturbation without over-
estimation, then better performance can be obtained.

The third generation Crone method is based on a particular
Nichols locus called a generalized template and defined by an
any-direction straight line segment around open-loop gain
crossover frequency ωcg (Fig.4). This generalized template is
based on the real part (with respect to imaginary unit i) of
complex fractional integration:
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with ji j and i "" ∈+=∈+= ωσsban . In the Nichols

chart at frequency ωcg, the real order a determines the phase



placement of the template, and then the imaginary order b
determines its angle to the vertical.
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Fig.4 - Representation in the Nichols chart of the generalized
template by an any-direction straight line segment

In the version of third generation Crone control design used
in this article, the open-loop transfer function defined for the
nominal state of the plant, βo(s), takes into account the
control specifications at low and high frequencies and a set of
band-limited generalized templates around resonant
frequency ω r. Thus βo(s) is defined by:
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where
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K ensures a gain of 0 dB at ωcg, the order nl fixes the steady
state behavior of the closed-loop system at low frequencies,
and the value of nh has to be chosen as equal to or greater
than the high-frequency order of the plant.

Crone control design guaranties the robustness of both
stability margins and performance, and particularly the
robustness of the maximum M of the complementary
sensitivity function magnitude. Let Mr be the required
magnitude peak of the complementary sensitivity function for
the nominal parametric state of the plant. An indefinite
number of open-loop Nichols locus can tangent the Nichols
magnitude contour of graduation Mr. Also, for uncertain
plants, parametric variations lead to variations of M. Thus, an
open-loop Nichols locus is defined as optimal if the
generalized template around ωr tangents the Mr Nichols
magnitude contour for the nominal state and if it minimizes
the variations of M for the other parametric states. By

minimizing the cost function ( )2
max rMMJ −=  where Mmax

is the maximal value of magnitude peaks M, the optimal
open-loop Nichols locus positions the uncertainty domains
correctly, so that they overlap the low stability margin areas
as little as possible. The minimization of J is carried out
under a set of shaping constraints on the four usual sensitivity
functions. Once the optimal open-loop Nichols locus is
obtained, the controller Cf(s) deduced from the ratio of βo(s)
to the nominal plant function transfer is a fractional transfer
function with fractional order. The design of the achievable
controller consists in replacing Cf(s) by a rational controller
Cr(s) which has the same frequency response.

4.2. Electrohydraulic-system control

Two controllers need to be designed. As the linearized plant
(P1-P2)(s)/E(s) = H(s) is assumed to be non-perturbed, a
common PID controller is designed for the pressure-
difference inner-loop. As the control system will be digital,
and as Crone design, used for the robust outer-loop, is a
continuous frequency-domain approach, the digital control
design problem is transformed into a pseudo-continuous
problem using the bilinear w-transformation defined by:
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where Ts is the 0.2 ms sampling period.

Then, the PID transfer function used in the inner-loop is:
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Pseudo-frequencies vi and vf are related to integral and low-
pass effect. Gain C0, pseudo-frequencies v1 and v2, and
integer order N are computed to ensure a 50° phase-margin
and a 0.3 open-loop gain crossover pseudo-frequency. Then
the PID parameters are:
vi = 0.06; v1 = 0.09; v2 = 1 vf = 1.5; N = 3; C0 = 1.73 10-6.

The robust controller of the velocity outer-loop is designed
now. The Crone open-loop transfer function to be optimized
is:
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where f(w) is a function that takes into account the two plant
right half-plane zeros closed to v = +1 which appeared when
the bilinear w-transformation has been applied.

Here, optimization uses 1== −+ NN , so a set of three
band-limited generalized templates is used. The behavior of
the open-loop transfer function at low and high frequencies is
fixed with: nl = 2 and nh = 4. The required magnitude peak Mr



chosen for the nominal plant is 1dB and the constraints on the
sensitivity functions are given by:
- the maximum plant input (100mA),
-  the Fourier transform of the required trajectory,
- the maximum magnitude Tmax of the complementary

sensitivity function set at 3 dB,
- the maximum magnitude Smax of the sensitivity function

set at 6dB.

Fig.5 and Fig.6 show the optimal open-loop Nichols and lin-
log Nyquist loci. The optimal parameters position the
frequency uncertainty domains to minimize the variation of
the M magnitude peak. Then maximal value of sensitivity
functions are Mmax = 1.3dB and Smax = 6dB. The optimal
resonant frequency is 0.05.
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Fig.5 - Optimal open-loop Nichols and uncertainty domains
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The computed pseudo-continuous rational controller obtained
for the velocity feedback is nine-order filter:
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The digital controllers CP(z-1) and Cv(z
-1) are obtained from

CP(w) and Cv(w) using the inverse w-transformation defined
above.

Fig.7 presents the simulated output v with the Crone
controller for the nominal mechanical structure. This result is
compared with that obtained with a PID controller computed
to have the same gain cross-over frequency and defined by:
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Crone controller gives better results since the overshoot is
less important than with the PID as the Crone approach
permits to manage phase margin and also other stability
margins as gain margin, magnitude peaks,...
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Fig.7 - Simulated controlled output for the nominal
mechanical structure with the Crone controller and with a

PID controller

In Fig.8, the simulated output is shown for three different
mechanical structure (minimal, nominal and maximal values
of the parameters) and certifies that the Crone control system
is robust.
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Fig.8 - Simulated controlled output for three different
mechanical structures with the Crone controller

In the case of maximal values of the mechanical structure
parameters, Fig.9 shows that the plant input u is less than 100
mA. Thus, the plant is not too much solicited. For other
loads, plant inputs are similar.
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Fig.9 - Plant input

A further simulation is achieved to verify the behavior of the
control system faced with a quick variation of the stiffness
parameter. The initial value of the stiffness is 150000N/m
and its final value is 50000N/m. Moreover, the initially
neglected non-linear friction force of the hydraulic cylinder is
now modeled by a 700N static friction and a 500N coulomb
friction. Fig.10 shows that the tracking remains very good
and that the effect of the perturbation is very-well rejected.
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Fig.10 - Simulated controlled output with a quick variation of
the stiffness parameter (c/105 - -) and non-linear friction force

5 - CONCLUSION

The robust control of a non-linear mechatronic plant with
time-variant parameters can be designed using both an input-
output linearizing feedback and a linear robust control
system. The linear reference model used by the input-output
linearizing method must be chosen carefully. In the case of an
hydraulic actuator, a pressure-difference inner-loop improved
significantly the disturbance rejection. Crone control design
(based on fractional differentiation) permits the uncertainty of
the perturbed plant to be taken into account through a
structured description which is less pessimistic than most of
the other robust control design approaches. Final results
demonstrate the efficiency of the proposed control-system
design method.
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