395 research outputs found

    An introduction to model-independent diffusion magnetic resonance imaging.

    Get PDF
    ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    Deterministic diffusion fiber tracking improved by quantitative anisotropy

    Get PDF
    Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T 1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics. © 2013 Yeh et al

    Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    Get PDF
    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm^2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals

    Higher-Order Tensors and Differential Topology in Diffusion MRI Modeling and Visualization

    Get PDF
    Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a noninvasive method for creating three-dimensional scans of the human brain. It originated mostly in the 1970s and started its use in clinical applications in the 1980s. Due to its low risk and relatively high image quality it proved to be an indispensable tool for studying medical conditions as well as for general scientific research. For example, it allows to map fiber bundles, the major neuronal pathways through the brain. But all evaluation of scanned data depends on mathematical signal models that describe the raw signal output and map it to biologically more meaningful values. And here we find the most potential for improvement. In this thesis we first present a new multi-tensor kurtosis signal model for DW-MRI. That means it can detect multiple overlapping fiber bundles and map them to a set of tensors. Compared to other already widely used multi-tensor models, we also add higher order kurtosis terms to each fiber. This gives a more detailed quantification of fibers. These additional values can also be estimated by the Diffusion Kurtosis Imaging (DKI) method, but we show that these values are drastically affected by fiber crossings in DKI, whereas our model handles them as intrinsic properties of fiber bundles. This reduces the effects of fiber crossings and allows a more direct examination of fibers. Next, we take a closer look at spherical deconvolution. It can be seen as a generalization of multi-fiber signal models to a continuous distribution of fiber directions. To this approach we introduce a novel mathematical constraint. We show, that state-of-the-art methods for estimating the fiber distribution become more robust and gain accuracy when enforcing our constraint. Additionally, in the context of our own deconvolution scheme, it is algebraically equivalent to enforcing that the signal can be decomposed into fibers. This means, tractography and other methods that depend on identifying a discrete set of fiber directions greatly benefit from our constraint. Our third major contribution to DW-MRI deals with macroscopic structures of fiber bundle geometry. In recent years the question emerged, whether or not, crossing bundles form two-dimensional surfaces inside the brain. Although not completely obvious, there is a mathematical obstacle coming from differential topology, that prevents general tangential planes spanned by fiber directions at each point to be connected into consistent surfaces. Research into how well this constraint is fulfilled in our brain is hindered by the high precision and complexity needed by previous evaluation methods. This is why we present a drastically simpler method that negates the need for precisely finding fiber directions and instead only depends on the simple diffusion tensor method (DTI). We then use our new method to explore and improve streamsurface visualization.<br /

    Gaussian process regression can turn non-uniform and undersampled diffusion MRI data into diffusion spectrum imaging

    Full text link
    We propose to use Gaussian process regression to accurately estimate the diffusion MRI signal at arbitrary locations in q-space. By estimating the signal on a grid, we can do synthetic diffusion spectrum imaging: reconstructing the ensemble averaged propagator (EAP) by an inverse Fourier transform. We also propose an alternative reconstruction method guaranteeing a nonnegative EAP that integrates to unity. The reconstruction is validated on data simulated from two Gaussians at various crossing angles. Moreover, we demonstrate on non-uniformly sampled in vivo data that the method is far superior to linear interpolation, and allows a drastic undersampling of the data with only a minor loss of accuracy. We envision the method as a potential replacement for standard diffusion spectrum imaging, in particular when acquistion time is limited.Comment: 5 page
    corecore