5 research outputs found

    Raman imaging for determining the sequence of blue pen ink crossings

    Get PDF
    This manuscript presents a preliminary investigation on the applicability of Raman imaging for non-destructive and rapid analysis of blue crossing ink lines. The MCRmethod was used to facilitate visualization of the distribution of inks of the same colour and the most predominant Raman signature at the crossing was used to interpret theorder of application of inks. Different pen ink types, different times separating the application of the two ink lines and different paper substrates were used. From the 90 Raman images examined, the correct order of application was determined in more than 60 % by direct observation. The remainder cases were not as clear due to the uneven distribution of inks and the empty spaces similar to a net-like pattern observed at the crossing. This pattern was possibly caused by physical impediments (the first ink applied acting as a physical barrier) or chemical impediments (the two inks did not stick). Such impediments were more strongly observed in the crossings involving the U. Eye pen ink, causing the complete skipping of this ink line. Moreover, most crossings showed some mixing between the two inks and it was more accentuated when the times separating the application of the inks were shorter, since the ink was fresher. The use of white or certificate papers did not seem to influence in the inks distribution nor determining the order of the inks. Although this study provided useful insights regarding crossing ink lines, future statistic studies may be helpful for more objective examinations

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    Art Directed Shader for Real Time Rendering - Interactive 3D Painting

    Get PDF
    In this work, I develop an approach to include Global Illumination (GI) effects in non-photorealistic real-time rendering; real-time rendering is one of the main areas of focus in the gaming industry and the booming virtual reality(VR) and augmented reality(AR) industries. My approach is based on adapting the Barycentric shader to create a wide variety of painting effects. This shader helps achieve the look of a 2D painting in an interactively rendered 3D scene. The shader accommodates robust computation to obtain artistic reflection and refraction. My contributions can be summarized as follows: Development of a generalized Barycentric shader that can provide artistic control, integration of this generalized Barycentric shader into an interactive ray tracer, and interactive rendering of a 3D scene that closely represent the reference painting

    Human interaction with digital ink : legibility measurement and structural analysis

    Get PDF
    Literature suggests that it is possible to design and implement pen-based computer interfaces that resemble the use of pen and paper. These interfaces appear to allow users freedom in expressing ideas and seem to be familiar and easy to use. Different ideas have been put forward concerning this type of interface, however despite the commonality of aims and problems faced, there does not appear to be a common approach to their design and implementation. This thesis aims to progress the development of pen-based computer interfaces that resemble the use of pen and paper. To do this, a conceptual model is proposed for interfaces that enable interaction with "digital ink". This conceptual model is used to organize and analyse the broad range of literature related to pen-based interfaces, and to identify topics that are not sufficiently addressed by published research. Two issues highlighted by the model: digital ink legibility and digital ink structuring, are then investigated. In the first investigation, methods are devised to objectively and subjectively measure the legibility of handwritten script. These methods are then piloted in experiments that vary the horizontal rendering resolution of handwritten script displayed on a computer screen. Script legibility is shown to decrease with rendering resolution, after it drops below a threshold value. In the second investigation, the clustering of digital ink strokes into words is addressed. A method of rating the accuracy of clustering algorithms is proposed: the percentage of words spoiled. The clustering error rate is found to vary among different writers, for a clustering algorithm using the geometric features of both ink strokes, and the gaps between them. The work contributes a conceptual interface model, methods of measuring digital ink legibility, and techniques for investigating stroke clustering features, to the field of digital ink interaction research
    corecore