
ART DIRECTED SHADER FOR REAL TIME RENDERING -

INTERACTIVE 3D PAINTING

A Thesis

by

CHETHNA KABEERDOSS

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

Chair of Committee, Ergun Akleman
Committee Members, Ann McNamara

John Keyser
Head of Department, Tim Mclaughlin

December 2016

Major Subject: Visualization

Copyright 2016 Chethna Kabeerdoss

ABSTRACT

In this work, I develop an approach to includeGlobal Illumination (GI) effects in non-

photorealistic real-time rendering; real-time rendering is one of the main areas of focus in

the gaming industry and the booming virtual reality(VR) and augmented reality(AR) in-

dustries. My approach is based on adapting the Barycentric shader to create a wide variety

of painting effects. This shader helps achieve the look of a 2D painting in an interactively

rendered 3D scene. The shader accommodates robust computation to obtain artistic reflec-

tion and refraction. My contributions can be summarized as follows: Development of a

generalized Barycentric shader that can provide artistic control, integration of this gener-

alized Barycentric shader into an interactive ray tracer, and interactive rendering of a 3D

scene that closely represent the reference painting.

ii

To my grandparents and my suies.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Ergun Akleman, my committee chair, for providing me

continuous support and inspiration while I was working on my thesis. Dr. Ann McNamara

and Dr. John Keyser, my committee members, for their constant support.

Special thanks to the faculty and staff of the department of Visualization for making

this the awesome place it is for misfits like me.

Yomi Adenuga and Vivek George, thank you for being there for me through thick and

thin. Ramakrishnan, Maragathmal, and Arumugam for the timely help because of which

I am pursuing my dream. Amudha Kabeerdoss, Rajagopal Kabeerdoss , and Rahul Doss,

thank you for your unconditional love and support that aids this curious heart to explore

new worlds.

iv

NOMENCLATURE

2D Two-dimensional

3D Three-dimensional

API Application Program Interface

AR Augmented Reality

CG Computer Graphics

GI Global Illumination

GPU Graphics Processing Units

NPR Non-Photorealistic Rendering

VR Virtual Reality

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . xi

1 INTRODUCTION . 1

1.1 Motivation . 1
1.2 Goal . 2

2 BACKGROUND . 5

2.1 Evolution of NPR . 5
2.2 Previous Work in Non-Photorealistic Rendering 9

3 METHODOLOGY: STRUCTURE OF GENERIC BARYCENTRIC SHADER 27

3.1 Effect Parameters . 29
3.2 Barycentric Formulation for Back-End Shaders 31
3.3 Extension . 32

3.3.1 Style Control with Control Images 32
3.3.2 Style Control with Basis Functions 33
3.3.3 Rectangular Box Property . 34
3.3.4 Painter’s Hierarchy . 35

4 BARYCENTRIC SHADER USED FOR THE REAL-TIME NPR SHADER . . 38

vi

LIST OF FIGURES

FIGURE Page

1.1 Chinese ink-and-brush painting with reflection created using 3D com-
puter graphics . 3

1.2 Charcoal Shader look-and-feel of hand-drawn charcoal drawing effect
for a variety of materials and shapes 3

2.1 Interactive Pen-and-Ink Illustration created by Salisbury et al: A single
scene, drawn in a variety of styles . 5

2.2 Watercolor effects . 6

2.3 Simulated watercolor effects . 6

2.4 Curtis et al’s Automatic watercolorization 7

2.5 Litwinowicz’s technique: an image produced showing the impressionist
effects . 7

2.6 An example of Philippe Decaudin’s cartoon images directly rendered
from a 3D model using his cartoon shader. 8

2.7 Gooch shader examples . 9

2.8 Flowchart showing the Evolution of NPR 10

2.9 An example of Paul Haeberli’s NPR images. 11

2.10 Barbara Meier’s technique: Frame from a painterly rendered animation 12

2.11 Barbara Meier’s painterly rendering pipeline 13

2.12 Litwinowicz’s technique for obtaining impressionist effects 14

2.13 Painterly Rendering with Curved Brush Strokes of Multiple Sizes. . . . 15

2.14 Brick-a-Brac (1995) by Cassidy Curtis. Computer generated sloppy ink
rendering style . 16

2.15 The New Chair (1998) directed by Cassidy Curtis : Loose and Sketchy
NPR . 17

2.16 Fishing (1999) by David Gainey, watercolor look done by Cassidy Curtis 17

viii

5.3 Specular highlight analysis in Cunningham’s painting, Decido 52

5.4 Color analysis of the silhouetted edge in Cunningham’s painting, Decido 53

5.5 Color analysis of the water in Cunningham’s painting, Decido 54

5.6 Color analysis of the shadows in Cunningham’s painting, Decido 55

6.1 A flowchart showing the process for creating the interactive 3D painting 56

6.2 3D scene modeled in Autodesk Maya 57

6.3 Passes rendered of the Creature from Autodesk Maya using Mental Ray 58

6.4 Post-processing of the 3D scene in Nuke 59

6.5 Final image of 3D scene . 60

6.6 Real-time render of the main body of the creature with our custom shader 61

6.7 Main body of the creature with silhouette edge variations 63

6.8 Main body of the creature with transparency variations 63

6.9 Main body of the creature with refraction variations 64

6.10 Custom textures used in the Body Shader 65

6.11 Water geometry rendered real-time with custom shader 66

6.12 Custom textures used in the Ant Shader 66

6.13 Custom textures used in the Cactus Shader 67

6.14 Shadow intensity variation seen on the ground and small creature 67

6.15 Clouds and bird rendered real-time with the custom shader 68

6.16 Frame of the final render . 68

x

LIST OF TABLES

TABLE Page

6.1 Comparison between mentral ray shader - maya rendering and barycen-
tric shader - real time rendering . 69

xi

1 INTRODUCTION

Early Computer Graphics(CG) rendering primarily focused on creating complex and

realistic images. Over the last two decades, a substantial amount of non-photorealistic ren-

dering (NPR) methods has been developed to enable the simulation of non-photorealistic

styles of art forms. According to David et al. [34] to better communicate complex digital

art, some form of visual abstraction is needed. Digital art benefited from advancements in

CG and rendering technology. Creating a non-photorealistic illustration proved to be more

often effective, information was better conveyed by omitting extraneous details and only

focusing on the relevant features.

However, there’s been a limited amount of research that explored real-time rendering

with global illumination(GI) effects, including reflection and refraction for NPR. This is

partly due to the unavailability of adequate software and hardware to support rendering

real-time reflection and refraction. The parallel processing powers of graphics processing

unit (GPU) coupled with the inherently parallel nature of ray tracing makes it possible for

an interactive raytracer with GI to exist [29]. Now it is possible to realize a real-time art

directable non-photorealistic shader.

1.1 Motivation

Development of a rendering and shading framework to obtain the desired look-and-

feel is not an easy task in practice. As explained [5], replication of a style acts as a measure

1

of our technique and understanding. To the degree that we lack the ability to make a picture

look realistic, we also lack the artistic control over it. Shade Trees architecture, a flexible

tree-structured shading model that can represent a wide variety of shading characteristics,

has laid the foundation for procedural shader concept to create any desired look-and-feel

[5] . Despite the success of shaders and shading languages [16], rendering the desired

style is a challenge even for highly qualified lighting technical directors. Recently, a new

approach called Barycentric Shaders, was developed by Akleman et al. [1] to simplify

shader development. They define barycentric operations in the form of parametric func-

tions, which satisfy partition of unity and guarantees that colors calculated by the functions

always stay inside the convex hull of a set of control colors. The method has been suc-

cessfully used in some specific artists’ styles including a recent Chinese-ink painting [25],

see Figure 1.1, and Charcoal rendering [12], see Figure 1.2. In this work, we present a

more general application of Barycentric Shaders that can be used to obtain any style that

resembles a painting specifically in real-time rendering.

1.2 Goal

This work, demonstrates the possibility of translating the visual aesthetics of a paint-

ing into real-time rendering. This approach is a streamlined process. We have devel-

oped a generic Barycentric shader that can be used in an interactive raytracer developed by

NVIDIA. The OptiX- Application Program Interface (API) [29] is an application frame-

work for achieving optimal ray tracing performance on the GPU. We chose to use this

2

Figure 1.1: Chinese ink-and-brush painting with reflection created using 3D computer
graphics

Figure 1.2: Charcoal Shader look-and-feel of hand-drawn charcoal drawing effect for a
variety of materials and shapes

framework to create painterly rendered scenes in real-time using GI. One main goal of

this shader is to ensure its design allows artists to achieve desired styles with the help of

3

intuitive and interactively modifiable shader control parameters.

Although Barycentric shading methods allow us to obtain the desired look-and-feel,

the current rendering pipeline does not allow interactive interaction with such artistic re-

sults that includes GI effects such as shadow, reflection, and refraction in real-time. There

is a need for the development of rendering methodology that allow interactive interac-

tion with artistically rendered virtual worlds i.e three-dimensional(3D) scenes. This work

develops a methodology that allows users to interact with such artistically rendered 3D

scenes. Gaming, augmented reality and virtual reality are industries where this shading

methodology is applicable. We demonstrate the effectiveness of this approach by trans-

forming an existing painting into a 3D painterly rendered scene.

4

2 BACKGROUND

The evolution of technology has lead to the creation of non-photorealistic shaders

with GI for real-time rendering. In this section we discuss previous research in NPR.

2.1 Evolution of NPR

Figure 2.1: Interactive Pen-and-Ink Illustration created by Salisbury et al: A single scene,
drawn in a variety of styles

According to Stuart Green, NPR is referred to as the creation of images without

aspiring to be realistic [31]. Some of the well-known NPR categories include:

• Pen and Ink illustrations Techniques: cross hatching, outlines, line art. Figure 2.1

5

shows an example of this technique.

Figure 2.2: Watercolor effects. (a) drybrush, (b) edge darkening, (c) backruns, (d) granu-
lation, (e) flow effects, (f) glazing

Figure 2.3: Simulated watercolor effects. (a) drybrush, (b) edge darkening, (c) backruns,
(d) granulation, (e) flow effects, (f) glazing

• Painterly Rendering Styles: watercolor, ink, impressionist, expressionist, pointilist. Fig-

ures 2.2, 2.3, 2.4, 2.5 show examples of this technique.

• Cartoons Effects: cartoon shading, distortion. Figure 2.6 shows an example of this tech-

nique.

• Technical Illustrations Characteristics: Matte shading, edge lines. Figure 2.7 shows an

example of this technique.

The flow chart shown in Figure 2.8 describes the evolution of NPR. It shows how

computer generated images in the form of pixel art, a term published by Adele Goldberg

6

(a) Automatic watercolorization of the finished painting (b) Low resolution image

Figure 2.4: Curtis et al’s Automatic watercolorization

Figure 2.5: Litwinowicz’s technique: an image produced showing the impressionist effects

7

Figure 2.6: An example of Philippe Decaudin’s cartoon images directly rendered from a
3D model using his cartoon shader.

and Robert Flegal[13], was a form of traditional digital art. The images were edited on

the pixel level, this kind of art can be seen in early 2D games. Pixel art is commonly

divided into two subcategories: isometric and non-isometric. The isometric pixel art is

created in 2.5D projection, this is commonly seen in games to provide a pseudo 3D viewing

effect. Non-isometric pixel art is created in orthographic views (top, side, front, bottom).

It involves the conversion of 3D wire frame geometry into 2D rendered images. These

images were either rendered as photorealistic (close approximation to the real world) or

non-photorealistic images (a stylized abstract of it’s real world counter-part).

8

(a)

(b)

Figure 2.7: Gooch shader examples. (a) Left to Right: Phong shaded object; New metal-
shaded object without edge lines; New metal-shaded object with edge lines; New metal-
shaded object with a cool-to-warm shift. (b) Left to Right: Phongmodel for colored object;
New shading model with highlights, cool-to-warm hue shift, and without edge lines; New
model using edge lines, highlights, and cool-to-warm hue shift; Approximation using con-
ventional Phong shading, two colored lights, and edge lines.

2.2 Previous Work in Non-Photorealistic Rendering

A significant amount of work has been published on real-time and non-real-time

NPR. One common goal is to produce images that closely mimic artistic or expressive

9

depictions.

Figure 2.8: Flowchart showing the Evolution of NPR

Haeberli introduced the first automatic and semi-automatic painterly rendering

algorithms for NPR to replicate impressionistic paintings in CG [15]. He developed a

program that interactively selects and manipulates visual information from a source image

or 3D scene. He describes a painting as an ordered list of brush strokes. Each brush

stroke represents a collection of attributes which includes the location, color, size, angle

and shape of the brush stroke. An example is shown in Figure 2.9. Several commercial

painting software, such has Adobe Photoshop, Fractal Design Painter and Matador Paint

10

System, have incorporated Haeberli’s NPR algorithms into their systems.

Figure 2.9: An example of Paul Haeberli’s NPR images. These images are obtained as a
result of non-linear filtering 2D images.

Decaudin introduced cell shading by using a combination of multi-pass rendering

and image processing techniques to create stylized images from data represented in a 3D

scene [11]. An example is shown in Figure 2.6. In cell shading, the characters and objects

in the scene are represented by their respective outlines. The outline varies in thickness.

The color inside can be uniform or a gradient between two colors. This shading also has

a shadow effect attribute. Decaudin also stated that, achieving cell shading requires two

11

separate outlines. One outline is created for the object’s silhouette and a second to crease

edges.

Meier [28] developed on Haeberli’s [15] work by attaching particles to 3D objects

and placing brush strokes to coincide with the particles. This resulted in images that re-

sembled impressionist paintings as shown in Figure 2.10. Figure 2.11 shows the painterly

rendering pipeline introduced by Meier.

Figure 2.10: Barbara Meier’s technique: Frame from a painterly rendered animation

Salesin et al. [34] implemented a number of principles of traditional pen-and-ink

illustrations as part of an automated rendering system. This was extended to an interactive

rendering system by Salisbury et al. [32]. Collections of strokes arranged in different pat-

12

Figure 2.11: Barbara Meier’s painterly rendering pipeline

terns are used to generate texture and tone. This paper created a mouse-based interface that

generated strokes (single and multiple) automatically. This can achieve texture, tone, and

shape. The user painted using textures and tones, and the computer generated individual

strokes. This system also allows edge extraction from images, useful for outlining. Figure

2.1 shows a scene created, in a variety of styles, from this system.

Litwinowicz’s paper [24], explores the technique of transforming ordinary video

segments into animations with a hand painted effect. This paper makes use of the

underlying principles of Haeberli’s [15] techniques for transforming images to painterly

animations. This conversion process includes a brush stroke orientation algorithm and a

technique to move the brush strokes for each frame. This produced a temporally coherent

13

painterly animation. An optical flow field was used to push short brush strokes along

scene movements and provided various tools for editing/correcting flow and layering

to obtain painterly/impressionist effects, see Figure 2.12. Figure 2.5 shows an image

produced with this technique.

Figure 2.12: Litwinowicz’s technique for obtaining impressionist effects. Two frames and
the optical flow field that maps pixels from one frame to another

Hertzman [17] presented a method that creates painted appearance from a photo-

graph, by automating the paint and draw process without human intervention. The method

involves painting with varying brush sizes to express various details in an image. Accord-

ing to Hertzman, achieving details in a painting requires the use of a layering technique.

This consists of a rough large brush sketch that is then painted over progressively with

smaller brushes until a visual resemblance to the source image is achieved. Figure 2.13

shows the progression of the layering technique.

Cassidy Curtis made a computer-generated short film, Brick − a−Brac, in 1995,

which had a sloppy ink rendering style. He created this as an exercise to demonstrate per-

sonality through animated lines, [7]. Figure 2.14 shows the animation rendering process.

In 1998 Curtis [8] created a Loose and Sketchy rendering style by drawing only what

14

Figure 2.13: Painterly Rendering with Curved Brush Strokes of Multiple Sizes. (a) A
source image. (b) The first layer of a painting, after painting with a circular brush of radius
8. (c) The image after painting with a brush of radius 4. (d) The final image, after painting
with a brush of size 2. Note that brush strokes from earlier layers are still visible in the
painting.

is necessary. A hand drawn sketch is an artist’s interpretation, it encourages the viewer

to participate in the completion of the image. This engages the viewer’s mind unlike a

photorealistic image. The line gesture conveys the character’s mental state. To achieve this

effect, the shader requires a user input depth map of the 3D models, and the conversion of

the animation into a sequence of gestural sketches. This tool was used for motion testing

and for creating finished animations in a non-photorealistic style. Figure 2.15 shows a

screen capture from the T he New Chair [9] short film using this NPR style.

Curtis also developed a watercolor look for the film Fishing [10], directed by David

15

Gainey, in 1999. He achieved the watercolor look using image processing and noise

synthesis. Figure 2.16 show a screen capture from the film.

Figure 2.14: Brick-a-Brac (1995) by Cassidy Curtis. Computer generated sloppy ink ren-
dering style

Gooch et al. [14] developed a shading approach that provides art directable control

of the color of the output image. This technique is now popularized as Gooch shading.

It involves the surface computation of a light source and the representation of objects in

the scene as two tone shades in the final image. This helps identify the surface orientation

of the object. Shading occurs only in mid-tones so that edge lines and highlights remain

visually prominent. The paper talks about technical illustrations occupying the middle

ground of abstraction, where the important properties of 3D objects are accented while the

extraneous detail are diminished. See Figure 2.7 for an example image.

16

Figure 2.15: The New Chair (1998) directed by Cassidy Curtis : Loose and Sketchy NPR

Figure 2.16: Fishing (1999) by David Gainey, watercolor look done by Cassidy Curtis

17

Kowalski et al. [22] in their 1999 paper proposed an algorithm to render stylized

fur, grass and trees. This stylized look suggests the complexity of the scene without rep-

resenting it explicitly. They use gra f tal textures which places fur, leaves, grass or other

geometric elements into the scene procedurally to achieve a particular effect. Gra f tal is

a stroke-based procedural texture that generates detailed elements such as fur, hair, and

grass. The important aspect of this paper is the algorithm that implements the placement

of these gra f tals to match the aesthetic requirements of a particular texture. Figure 2.17

shows an example of the gra f tal placement with relation to the camera distance.

Figure 2.17: A truffula tree top with static graftals organized in a three-level hierarchy. (a)
When the camera is close, all three levels are drawn. (b) As the camera zooms out, only
two levels are drawn, and (c) finally just the base level is drawn.

In the 2000s, research on NPR branched into different applications. [33], [18], [21].

Most notable of them included the NPR for interactive rendering and videos/animation

18

sequence. Lee [23] implemented a technique for rendering oriental black ink paintings

with realistic diffusion effects. This is based on a model that simulates a variety of

paper types and black ink properties. This explores real-time dynamic simulations

of realistic ink diffusion. Amount of water, coarse particles, density of paper/cloth are

some of the parameters used to explore the ink diffusion. See to Figure 2.18 for an example.

Figure 2.18: Black ink diffusion renderings using ink. (a)only a limited amount of water,
producing weak diffusion and (b) an abundant amount of water producing strong diffusion.

Kalnins et al. [20] presented a system for drawing stroke-based NPR styles directly

on 3D models. The system offers the choice of brush styles, paper textures, background

and base-coats. The artist decides a brush style, then draws strokes over the model from

one or more viewpoints. When the system renders the scene from any new viewpoint, it

adapts the number and placement of the strokes appropriately to maintain the original look.

See Figure 2.19

19

Figure 2.19: Artists directly annotated the same 3D teacup model to produce four distinct
rendering styles.

Chu et al. [4], presented a physically-based method for simulating ink dispersion in

absorbent paper. They developed an ink flow model based on the method of lattice Boltz-

mann equation (LBE). They implemented a painting system called MoXi using OpenGL

and the CG shading language. The ink simulation operations are implemented in fragment

programs running on the GPU (parallel processors).

The trend of using physics to produce artistic rendering was adopted by Olsen et al.

[30]. The research makes use of vortex dynamics and semi-Lagrangian fluid simulation to

create controlled vector fields. The vector field is used in the creation of painterly images

and animations. See Figure 2.20 for an example.

20

(a) (b)

Figure 2.20: Interactive Vector Fields used for Painterly Rendering. (a) The application
showing the field and region editing windows, (b) Rendering of a red poppy

Figure 2.21: Real-time 3D cartoon smoke

21

McGuire et al. designed an algorithm for rendering real-time interactive smoke an-

imations in stylized cartoon [27].The rendering algorithm implements four effects: cell

shading, shadowing, black outlines, and gradient fills. These can be selectively used to

approximate different cartoon styles and provide artistic control. Figure 2.21 shows an

example of this style of rendering.

Chen et al. [3] explored watercolor NPR in real-time Augmented reality using voro-

nio diagrams to mimic watercolor effects. To maintain visual coherence, edge detection

and re-tiling of the voronoi cells is needed. This work did not explore the inclusion of GI.

See figure 2.22

Lu et al. [26] explored the possibility of converting images, video, and 3D animation

sequences into painterly renderings in real-time. The parallel computing power of GPU

enables artists to execute the placement of brush strokes in real-time. See Figure 2.23

which shows the steps of the algorithm used for this type of rendering, and Figure 2.24

showing the variety of styles created using the software.

Imhof et al. [19] present a method for real-time painterly rendering by interpreting

off-surface paint strokes as volumetric data, near the surface of the 3Dmesh. Their method

is based on f in textures in which mesh edges are extended orthogonally off the surface and

textured to replicate the painterly renders of the custom offline rendering method. See

Figure 2.25 and Figure 2.26

Recently, Akleman et al. [1] generalized Gooch shading [14] using Barycentric al-

gebra to provide art-directed control of colors in the final images. This type of shader

22

(a) (b)

(c) (d)

(e)

Figure 2.22: Watercolor InspiredNon-Photorealistic Rendering for AugmentedReality. (a)
A Voronoi pattern, (b) An original AR frame , (c) Image processed by a Voronoi pattern,
(d) Detected edges in an AR frame , and (e) A final rendering, combining tiling and edges

guarantees the desired style irrespective of the underlying renderer and illumination model.

This method has successfully been used to generate shaders for Chinese ink-and-

brush paintings with reflection [25], refer to Figure 1.1. Similarly, the same barycen-

23

Figure 2.23: Main conceptual steps of Lu et al’s algorithm.

Figure 2.24: Variety of styles created using Lu et al’s algorithm.

24

Figure 2.25: Example fins extruded from mesh edges

Figure 2.26: This painterly cat rendered using fin texture approximation

25

tric shader was adopted in charcoal rendering with reflection [12], refer to Figure 1.2.

Liu’s work demonstrated global illumination effects such as reflections using Yang Ming’s

paintings as visual reference. Liu’s research provided a non-photorealistic water reflection

shader. Du’s work demonstrated effects such as reflection in charcoal renderings. These

shading approaches can only be used in post-production with no real-time interaction.

In this work, I provide a real-time interactive approach to rendering 3D versions of

paintings with GI while providing direct artistic control of resulting colors.

26

3 METHODOLOGY: STRUCTURE OF GENERIC BARYCENTRIC

SHADER

In this section, we present Barycentric Shaders a shading framework based on

barycentric algebra. Barycentric shaders provide an intuitive art-directed control over the

final output. Akleman et al. [1] demonstrated example scenarios where this framework

was used to produce user desired style of 3D scenes regardless of the underlying rendering

method and illumination model.

According to Akleman et al. [1], introducing an addition/subtraction operator in

shader development may result in negative values. The resulting color value is the differ-

ence between two points referred to as conceptual vector. The difference of two colors

may not result in a positive real value. Negative color values are difficult to understand

hence not intuitive to work with as control parameters.

The Barycentric Shader method poses a solution that uses operations that satisfies

partition of unity such as mixing operations. The results obtained are from colors defined

with positive real numbers. Using the barycentric algebra in shaders does not require a

significant conceptual change, it only requires the shader operator to be of the form given

by equation 3.1

c =
M

∑
i=0

ωi Ci where
M

∑
i=0

ωi = 1 and ∀ ωi ≥ 0 (3.1)

whereCi’s are colors, i.e. n-tuples of positive real numbers. The restriction that the weights

ωi are all positive and sum to 1 is called the partition of unity property. This property

27

guarantees that the solution c stay inside of the convex hull defined by the colors Ci. This

restriction does not impose any limit over the polynomials that can be used. Basis functions

of parametric polynomials used in geometric modeling, such as Bezier, B-splines and β -

splines satisfy this property.

Parametric rational, irrational or piecewise polynomial can be converted to a form

that satisfies the partition of unity property [2]. Choosing ω0 = (1 - t) and ω1 = t with 0 ≤

t ≤ 1, which results in the mix operator, utilizing the basis functions of first degree Bezier

curves, which satisfy partition of unity.

In addition, the convex hull property that comes with partition of unity, is particu-

larly useful in practical shader development applications. It provides an intuitive control

mechanism for obtaining desired results.

The extension of the Barycentric algebra into shader development can be imple-

mented by adapting primitives similarly used in geometric modeling. There are practical

aspects of shader development that differentiate this problem from modeling curves and

surfaces. In order to resolve this Akleman et al. [1] separated the rendering architecture

into three phases. The front-end shader, interface between Front and Back-end shader, and

the back-end shader.

• Front-end shaders:

Compute information about the geometric surface including displacement, bump,

normal vectors and angles. Akleman et al. [1] use classical shader calculation to

deal with negative and complex numbers. This step is carried to produce parameters

28

for the back-end shaders, that computes the final colors.

• Interface Between Front and Back-end Shaders:

The Front-end shaders combine all incoming radiance that produce a certain effect as

a lump sum term and turn this lump sum into a single color-point. Front end shader

also produce a single effect parameter for each effect. Let ki(p)∈ [0; 1] denotes effect

parameter that corresponds to the weight of importance of that particular effect i in

a given shading point p.

• Back-end shaders:

They are constructed using the barycentric operations to compute the color based on

the parameters passed from the front-end shaders. While developing the back-end

shader, a reference image is used to ensure the desired style is maintained regardless

of how the parameters from the front-end shaders are computed.

3.1 Effect Parameters

The number of effect parameters corresponds to the dimension of the shading func-

tions which is dependent on the chosen painting. The front-end shader provides a single

color-pointCi and an effect parameter ki. Ci gives a lump sum of all light reaching a given

point and produces a particular effect, while ki gives the importance of that effect in a given

shading point. Akleman et al. [1] discuss 6 different effects. In this research, we discuss

only the effects that are relevant to our goal.

• Diffuse Reflection Shader:

29

A diffuse front-end shader provides a single diffuse color-point that gives a lump

sum of all diffusely reflected light that reaches a given point and a diffuse effect

parameter that provides importance of that effect in that particular point. The lump

sum color point can be computed by including illumination coming from point lights,

ambient occlusion, environment illumination or final gathering or incoming photons.

It is helpful to compute shadow separately using either ray tracing or shadow maps.

Shadow parameter is used to adjust corresponding diffuse color-point, which gives

a better control over results.

• Specular Highlight Shader:

A specular highlight front-end shader provides a single color-point as a parameter

that is a lump sum of all specular reflected illumination for a given view direction and

specular highlight effect parameter. Specular highlights and true mirror reflection

are not compatible. A shader designer should decide how to compute the lump sum

parameter from the specular highlights and true mirror reflections.

• Silhouette Shader:

A silhouette front-end shader provides the silhouette color and effect parameter. It

provides information about the distance from the shading point to the silhouette edge

of an object from a given view direction. This effect parameter can be obtained as a

monotonically increasing function of n•no .

• Transparency Shader:

Transparency front-end shader provides a color-point which is computed by com-

30

bining refraction and mirror reflection. It makes use of the fresnel and transparency

effect parameter to describe the transparency of the point. Fresnel parameter is com-

puted as a function of the angle between normal vector, incident ray direction, and

index of refraction. Fresnel turns reflection and refraction into a lump sum parameter

that can be included as a single parameter.

3.2 Barycentric Formulation for Back-End Shaders

Barycentric shaders and parametric shapes originate from the same theoretical frame-

work, but there are significant differences between them, which can be broadly categorized

as follows:

• Position Dependency:

Every surface or volume point of a barycentric shader behaves differently. The

shader functions should consist of parameters of either texture coordinates (u, v)’s,

that correspond to surface positions, or volumetric positions (x, y, z)’s.

• Non-Scalar Parameters:

In shape modeling, parameters are single dimensional. For instance, a parametric

surface is defined by two single parameters. On the other hand, shading parameters

for each effect consists of one color-point and one effect parameter.

• Constraints on Colors:

For modeling objects, the entire parameter space is used to compute shapes. On the

other hand, in rendering we construct only a subset of allowed colors.

31

• Dimension:

In shape modeling, the number of parameters can be at most three; one for curves,

two for surfaces and three for volumes. On the other hand, the number of independent

shading effects can be much higher than three.

3.3 Extension

The parametric curve and surface methods in geometric modeling cannot be used

directly in the implementation of barycentric shaders. Akleman et al.[1] present solutions

that help in the development of these barycentric shaders.

3.3.1 Style Control with Control Images

The first approach Akleman et al. presents is based on using texture images as coeffi-

cients of parametric equations in Barycentric form. This formulation allows every shading

point to have different material property that can be derived from a set of texture or control

images.

Barycentric form provides partition of unity and guarantees that the final color of

any given shading point stays in the convex hull of control colors. The final color is just

a weighted average of the control colors. Thus a function computing the final color is a

weighted average of a set of control images, given as

I =
M

∑
i=0

Ωi Ii, and
M

∑
i=0

Ωi = 1, (3.2)

where Ii’s are the control images and Ωi’s are the weight images, that are computed from

basis functions and parameters which ensures they satisfy extended partition of unity. 1 is

32

a white image and I is the final rendering.

Figure 3.1: An example demonstrating the concept of control and weight images. I0 and
I1 are control images, Ω0 and Ω1 are weight images that satisfy partition of unity. I =
I0Ω0+ I1Ω1 is the final rendering obtained by taking a weighted average of the two control
images.

3.3.2 Style Control with Basis Functions

According to Akelman et al. control images determine overall style, and the basis

functions play an important role in obtaining desired styles. This is achieved by control-

ling how colors are distributed across the final image. An important element of visual

style is the functional continuities underlying the parametric function. G2 continuous

function appears significantly different in style than a function that is G0 discontinuous

in some regions. Apart from the number of discontinuous regions, the shapes and the

sizes of the functions influences our perception of style. The control texture images may

be discontinuous, which makes it difficult to evaluate the continuity of control images.

Where as we can always analyze properties of the basis functions that are used to create

33

the final images. For instance, consider the two renderings presented in Figure 3.2(a) and

(b). Although these images are discontinuous, it is easy to see in (a) there are only two

and in (b) there are four distinct regions. These perceived regions result from the number

of zero-degree B-splines. Note that when the number of zero degree basis functions

increases, the final image approaches a linear interpolation.

(a) (b)

Figure 3.2: A comparison of the effect of the number of discontinuities in changing the
final style. To create consistency, we obtained the two new control images needed in (b)
by using linear interpolation of the original control images.

3.3.3 Rectangular Box Property

If weights for a given shader point (u,v) are unsaturated, i.e. greyscale colors, then

the convex hull property obtained is dependent on the colors, see Figure 3.3a. This is

similar to geometric modeling where the convex hull is dependent on the defined points.

However, if weights are just random colors, each dimension gives a convex hull property

independent from one another. This results in a wide range of color. An example is shown

34

in Figure 3.3b.

(a) Ω0 : An unsatu-
rated (B&W) weight
image

(b) I: Final Rendering
using Ω0

(c) Ω0: A very satu-
rated weight image.

(d) I: Final Rendering
using Ω0

Figure 3.3: A comparison of convex hull vs. box property. A greyscale weight image
provides a convex hull. On the other hand, a very saturated weight image extends color
possibilities to a bounding box.

3.3.4 Painter’s Hierarchy

Handling a high number of effect parameters with a parametric equation can be chal-

lenging. This is simplified by using the painter’s hierarchy, i.e. following the layering order

the painter uses. A painter first creates a base image of the painting, which corresponds

roughly to diffuse reflection. Next, the other effects such as specular highlights, silhouette

edges, transparency and shadows are created. Similarly a hierarchy of effect parameters

can be created, starting with the most essential effect and the rest is added in sequence.

The most essential effect is denoted as I0 , the next one as I1 and so on.

35

particular effect. This particular equation provides convex hull property. An additional

advantage of this formulation is that we do not have to make a significant conversion from

front-end shader to back-end shader. On the other hand, wemust still be careful in handling

negative numbers.

Establishing the painter’s hierarchy is critical in achieving the desired style of ren-

dering, i.e having the structure of the shader closely follow the exact hierarchy of the cho-

sen painting. Choosing the parametric equations is equally important, i.e establishing the

barycentric operations and the control colors. In simplex equations each barycentric op-

eration is a mixture of 2 colors, this number can vary. For instance in cartoon shading,

discontinuous functions such as zero-degree B-splines can be used as barycentric basis

functions. For smoother color changes functions such as first-degree B-splines, quadric or

cubic Bezier curves can be used. The control colors can be identified by carefully sampling

the colors in the chosen painting. Any software, such as Adobe Photoshop, with a color

picker can be used for this process.

37

4 BARYCENTRIC SHADER USED FOR THE REAL-TIME NPR

SHADER

In this section, we present a simple non-photorealistic Barycentric shading network

that can be used in a real-time ray tracer. Barycentric shaders are capable of representing a

wide variety of non-photorealistic styles [1]. In this work, we focus on a real-time applica-

tion of Barycentric shaders for recreating expressive paintings. This section also describes

a basic structure of our generic Barycentric shader.

4.1 Hierarchical Zero-Degree Bezier Basis Functions to Represent Simplices in Color

Space

As discussed in the previous section, we use Barycentric basis functions to get a

controlled shader network. In this work, we use a specific type of Barycentric equations

that provides simplices, which are higher dimensional extensions of lines and triangles. An

M-simplex is a M-dimensional polytope defined as the convex hull of its M+1 points. An

M-simplex interpolates its M+1 end-colors denoted byCi, where i= 0,1, . . . ,M. Simplices

can be given using a high dimensional version of bilinear form, which is given iteratively

as follows:

38

Ambient Term: This is the zeroth term given as I0 k0Ω0 where I0 is the control texture

choosen k0Ω0 = 1. If necessary k0Ω0 term can be used to to create darker regions.

Diffuse Reflection Term: I1 is the diffuse control texture that gives us how we want

the object to be rendered when there complete diffuse illumination. Ω1 represents the

lump sum of all diffusely reflected light that reaches a given point and k1 is a percentage

that controls the amount of diffuse reflection. If k1 = 0, then there is no diffuse reflection.

The lump sum color point Ω1 can be computed by including illumination coming from

point lights. In this work we do not include ambient occlusion, environment illumination,

final gathering or incoming photons. Shadow is computed separately using ray tracing.

Shadow parameter is used to adjust corresponding diffuse illumination Ω1, which gives a

better control over the results.

Silhouette Highlight Term: I2 is the silhouette control texture that determines how the

object is to be rendered in silhouette regions. Ω2 represents the term that controls silhouette

regions and k2 is a percentage that controls the the amount of silhouette. If k3 = 0, then

there is no silhouette.

Specular Highlight Term: I3 is the specular highlight control texture that controls

how the object is rendered when there is full specular illumination. Ω3 represents the lump

sum of all specularly reflected light that reaches a given point while k3 is a percentage that

controls the the amount of specular highlight. If k3 = 0, then there is no specular highlight.

The lump sum color point Ω3 can be computed by including specular illumination coming

from point lights.

41

(a) I0 (b) I1

(c) I1 (d) I3

(e) Final render

Figure 4.1: Barycentric NPR shader breakdown. Single colors used for I0, I1, I2, and I3.
We chose k0 = k1 = k2 = k3 = 1. We ignored transparency by choosing k4 = 0. Final image
shows the shader applied on a sphere.

42

Transparency Term: I4 is the transparency control that determines how the object

is rendered in transparent regions. Ω4 is the term that combines incoming refraction and

reflection using Fresnel. In addition, k4 is a percentage that controls the amount of trans-

parency. In other words, if k4 = 0, then the object is opaque, otherwise it is transparent.

4.3.1 Effect of Control Textures

Figure 4.1 demonstrates the effect of control textures on final rendering. Note that

this particular shader does not have transparency since we chose k4 = 0.

4.3.2 Computing Ωi Terms in Front-End Shader

Ωi terms are standard terms computed by standard shaders. We frequently used

monotonically increasing functions to convert computed illumination to Ωi. The simplest

and one of the most useful monotonically increasing function is clamp, which can be de-

fined as,

y =Clamp(t, t0, t1) =

0 if t0 ≤ x,

t − t0
t1 − t0

if t0 < t < t1,

1 if x ≤ t1,

(4.4)

This function monotonically increases only t0 ≤ t1. We can now provide how Ωi terms are

computed in Front-End shader. Figure 4.2 shows a graphical representation of the clamp

equation

43

Figure 4.2: Monotonically increasing function represented as diagrams. (a) represents
interpolation between C0 and C1, (b) add t0 and t1 parameters to provide flexible controls
to blend the two colors C0 andC1

Diffusely Reflected Illumination

Ω1 is the lump sum of all diffusely reflected light that reaches a given point. It is

computed as

Ω1 =
N

∑
i=0

shLi tLi CLi (4.5)

where N is the number of lights in the scene, CLi is the color of light source Li, shLi is

the shadow parameter for the light Li computed by ray tracer and tLi is the monotonically

increasing function. This is the cosθ that is computed by dot product of surface normal n⃗

and light vector for the light Li n⃗Li as

tLi = clamp(⃗n · n⃗Li ,−1,1) = clamp(cosθ ,−1,1). (4.6)

Note that, in this case, the monotonically increasing function clamp(cosθ ,−1,1) is

44

given by the following equation

clamp(cosθ ,−1,1) =
cosθ +1

2
(4.7)

Silhouette

Ω2 is the silhouette illumination. To find out if a point on the surface of the 3D object

is the outline or silhouette, we check if the surface normal (N) is perpendicular to the eye

vector(camera ray), see Figure 4.3. It is computed as

Ω2 = clamp(1− n⃗ · n⃗E ,min,max) (4.8)

where n⃗E is the eye vector and max and min are used to control the size of the silhouette

and smooth transition region.

Figure 4.3: Surface normal(N) and eye vector/camera(I) ray are used to silhouette edge
detection

45

the refracted ray using the incident/incoming ray, surface normal and index of refraction,

see Figure 4.7. The index of refraction (IOR) in nature typically ranges from 1/2 to 2. An

examples is vaccum that has an IOR of 1 and water with an IOR of 1.333.

Figure 4.4: Specular computation

Figure 4.5: Clamping the specular value to obtain the desired specular highlight

The OptiX API [29] has a routine that calculates the refracted ray, based on the given

incident/incoming ray, surface normal and index of refraction inputs, for a given point.

47

Ω4 is the combination of reflection and refraction using Fresnel term f . It is com-

puted as

Ω4 = fCR +(1− f)CT (4.11)

where CR is the color of reflection andCT is the color of refraction.

Figure 4.6: How to compute a standard reflection ray for an incoming ray

Figure 4.7: How to compute a standard refraction ray for an incoming ray

48

5 VISUAL ANALYSIS

In this work, we reconstruct Rachel Cunningham’s digital painting, Decido,

shown in Figure 5.1. For this we need to develop a set of shaders for every object in

the scene that can produce a look-and-feel that is consistent with the objects in the painting.

Figure 5.1: ’Decido’ - Primary visual reference. Digital painting by Rachel Cunningham

The generic Barycentric shader presented in section 4 provides a framework to sim-

plify the process of creating shaders for the objects in the scene. In order to create a new

49

shader, we identify all the effects pertaining to the scene. Then analyse the layering tech-

nique used by the artist. This helped identify the shading hierarchy. The shader developed

using this information can be used for all the objects in the scene. This can be done by

using different texture maps, colors, and adjusting the effect parameters to achieve the de-

sired result. Therefore, the main problems are reduced to the identification of effects and

it’s order of application.

This identification of effects can be achieved by careful visual analysis of the

paintings we intend to reconstruct.

5.1 Visual Analysis

The purpose of this visual analysis is to discuss the artists’ use of shading, form,

shadow, reflection and refraction principles, that are then abstracted as effects. Since the

goal of this research is to explore the possibility of creating a real-time art-directed 3D

painting, the analysis emphasizes the artists style of painting, that is represented using

the generic barycentric shader. The result of this yielded a list of essential characteristics

and artistic aspects i.e effects and effect parameters used as guidelines for recreating the

painting in CG. These can be categorized as follows:

1. Diffuse Reflection Shader

2. Specular Highlight Shader

3. Silhouette Shader

4. Transparency Shader

50

5.1.1 Diffuse Reflection Shader

In this subsection, we discuss color and tones of Cunningham’s painting. In this

analysis, we extract the darkest and brightest color from each region and create a color ramp

for each region using the color values we sampled correspondingly. We use the Barycentric

shading method, which interpolates between two colors/images; the brightest(illuminated)

and darkest(unlit) color(image), that we call bright image and dark image. The resulting

color (diffuse color) is an equation derived from RGBα channel of the bright and dark

images.

Figure 5.2: Color analysis of the main object in Cunningham’s painting, Decido

In Figure 5.2, FC corresponds to the darkest and lightest foreground color of one of

the tentacles. BC corresponds to the darkest and lightest color of the same tentacle behind

the semi-transparent creature. And MC corresponds to the darkest and lightest color of

the creature. The color values obtained by taking samples from the image are used in

producing the texture map inputs for the Diffuse Reflection shader equation.

51

5.1.2 Specular Highlight Shader

The specular highlight in Cunningham’s painting is different for different parts of

the creature. On the body of the creature the specular is mostly diffused and, with a softer

fall off. On the eye of the rodent and snake the specular highlight is sharp. See figure 5.3.

Figure 5.3: Specular highlight analysis in Cunningham’s painting, Decido

5.1.3 Silhouette Shader

In this subsection, we discuss the edge or border that surrounds each character in

the painting. On close examination of the painting the character is surrounded by a thin

slightly jagged edge. The edge color is a slightly saturated value as compared to color of

the body. See Figure 5.4

52

Figure 5.4: Color analysis of the silhouetted edge in Cunningham’s painting, Decido

5.1.4 Transparency Shader

Reflection

The reflection in Cunningham’s painting is mainly seen in the water. The water

closer to the viewer has a hue that is darker as compared to that which is farther away from

the viewer. The water is murky as there is no representation of what could be below the

water surface. This reflection depicted is not physically accurate. By taking 2 sets of color

samples (the darkest and the lightest) from the region close to the viewer and farther away

from the viewer, we can map out the color range for the water based on the distance from

the camera. See Figure 5.5. The reflection as we can see is mostly objects near the water,

and there is no distinct sky reflection seen on the water surface. This can be handled by

using a hand painted environment map that is used while calculating the water reflections.

f is the Fresnel parameter, that is calculated using Schick’s approximation of Fres-

nel reflectance. This routine is provided by the OptiX API [29], this parameter is used

53

to determine how to combine the reflection and refraction colors. We can customize the

parameter for the purposes of our thesis to make use of this routine and achieve the desired

look and feel for the final result.

Figure 5.5: Color analysis of the water in Cunningham’s painting, Decido

Refraction

In Cunningham’s painting, refraction although is not seen in the water, she has in-

corporated it in the main creatures body. The color breakdown in Figure 5.2 shows one of

the tentacles from behind the creature’s body.

Transparency

We notice that the color of the tentacle is influenced by the a certain alpha factor or the

color of the body. The creatures limbs are opaque and minimal refraction almost nearing

transparency in the main body. To replicate this look, we hand painted a transparency map.

For each point on the surface, the transparency value is obtained from the map, the value of

which ranges from 0 to 1. 0 being completely transparent and 1 being completely opaque.

54

5.2 Shadow

Another goal of this thesis is the inclusion of artistic shadows. We compute shadows

separately using ray tracing, provided by the Optix API [29]. While analysing the shadows

in the painting, we notice that the color value of the shadowed regions in the painting do

not go completely black (0,0,0). See Figure 5.6. This quality is very important to achieve

in CG in order to achieve the painterly CG rendering. In order to replicate this effect using

Barycentric shaders, we took two color/texture maps values for the same object, similar

to how the diffuse reflection shader is calculated. In order to have artistic control of the

shadows we introduced a shadow intensity parameter, Ω1. This is then used to adjust the

corresponding diffuse illumination, giving more control over the results.

Figure 5.6: Color analysis of the shadows in Cunningham’s painting, Decido

55

6 IMPLEMENTATION

This section is about the implementation of the Barycentric shading method for NPR

as well as the process of creating the final 3D painting. Figure 6.1 illustrates the general

process and the stages to complete the interactive painting.

Figure 6.1: A flowchart showing the process for creating the interactive 3D painting

A 3D scene is created to represent the objects in the painting. This is shown in Figure

5.1. It consists of the main creature with the organs and its appendages, the land and the

water. Then, the Barycentric shader for NPR is developed in CUDA and attached to each

3D mesh. The user has real-time artistic controls to adjust the effect parameters.

In this research we use Autodesk Maya for 3D modeling, CUDA for developing

the shader and NVIDIA® OptiX™ ray tracing engine [29] to generate the interactive 3D

painting. Adobe Photoshop and The Foundry Mari were used for painting and editing

textures maps which were used in the Barycentric shader.

56

The primary visual reference is a digital painting created by Rachel Cunningham

using Adobe Photoshop, called ’Decido’, see Figure 5.1. Cunningham mavkes uses of the

layering technique to add richness and depth to this painting. The characters in the painting

have silhouetted edges, artistic shadows, reflections and transparency. These attributes

made this painting a perfect choice to use as a test bed for this research.

Figure 6.2: 3D scene modeled in Autodesk Maya

NVIDIA®OptiX™ ray tracing engine [29] is a general purpose ray tracingAPI. It in-

creases the ray tracing speed using the NVIDIA® CUDA™ GPU computing architecture.

It has built in routines that handle recursive ray generation, collision detection, environment

mapping. Taking advantage of this technology, we developed a generic Barycentric shader

57

for non-photorealistic real-time rendering. This shader handles real-time reflections, re-

fractions and shadows. This shader is largely based on the principle of the Barycentric

Shaders developed by Akleman et al [1].

6.1 Scene Modeling and Development

We modeled the characters in the 3D scene to match the characters in the reference

painting. The layout of the scene was designed to ensure the position of the characters

were similar to that of the reference painting. Finally a virtual camera was created in

Autodesk Maya to match the references’ point of view. Figure 6.2 shows an image capture

of the 3D scene.

(a) Normal Map (b) Beauty

Figure 6.3: Passes rendered of the Creature from Autodesk Maya using Mental Ray

6.1.1 Rendering Scene Using Mental Ray

To evaluate the visual aesthetics and the volume of the reconstructed scene, we first

rendered the geometry out of Autodesk Maya using Mental Ray renderer. The textures for

the 3D mesh were hand-painted, to achieve the same look and feel of the visual reference.

58

These textures were plugged into Mental Ray’s shaders. We illuminated the scene with

carefully placed virtual lights mimicking the lighting in the original painting. Shaders in

Mental Ray didn’t offer enough artistic control. We rendered out beauty(contains diffuse,

specular, reflection, refraction and shadow color information), and normal passes for

every object in the scene. This was done to have more control of the final image in post

production. Figure 6.3 shows the beauty and normal map passes of one of the characters

of the painting modeled in 3D.

Figure 6.4: Post-processing of the 3D scene in Nuke

59

Figure 6.5: Final image of 3D scene

6.1.2 Digital Compositing/Post Processing

The rendered passes are imported into The Foundry’s Nuke, a compositing software

where post processing is done. Built-in nodes in Nuke which execute the basic 2D image

operations are used to achieve the final image. We used the blur, grade, and edge detect

nodes to assemble the passes for each of the objects in the scene. These are then combined

using the merge node. See Figure 6.4 showing the post-processing done in Nuk. Figure

6.5 which shows the final image.

The scene was rendered with a moving virtual camera. Several passes were needed

in order to have artistic control during post production. Each pass has a render time that

ranges from a few seconds up to 2 minutes, in Autodesk Maya. The final sequence is

rendered out of Nuke taking a minimum of 2 minutes per frame.

60

6.2 Creating a Generic Barycentric Shader for Non-Photorealistic Real-time Rendering

The crux of this thesis is to create an art-directable Barycentric shader for real-time

rendering with GI. This shader is aimed at replicating the results, that were achieved in

post production, in real-time. The NVIDIA® OptiX™ ray tracing engine [29] gave us

a platform to explore this idea. The API is well suited for building custom shaders in

CUDA. CUDA is a parallel computing platform and an API model created by NVIDIA®.

We make use of CUDA to a build generic art-directable Barycentric shader for NPR in

real-time.

Figure 6.6: Real-time render of the main body of the creature with our custom shader

61

Based on the visual analysis done in section 5, we developed a procedural shader

which computes the diffuse reflection, specular highlight, silhouette, transparency and

shadow. While testing the shader on the objects, we quickly realised that not every object

made use of every effect in the shader. This can be controlled by enabling the appropri-

ate effect parameter. Below we describe the generic shader used for each object and the

parameters provided to the user for art-directable control.

The customised barycentric shader that was used for the main creatures body, see

Figure 6.6 contained effects which computes the diffuse reflection, specular highlight, sil-

houette, and transparency. The effect parameters for all were set to 1. The shader included

controls for specific dark and light color/texture input, controls for the color of the silhou-

etted edges, and thickness of the edge. A control for transparency of the object, the index

of refraction and controls for setting the specular quality. To compute the diffuse reflec-

tion, two hand painted textures, one dark and one light were given as inputs. Similarly, to

compute the silhouette, a hand painted texture map was given as input and the edge param-

eter δ0 and δ1 values were defined. Figure 6.7 shows different thickness variations of the

silhouetted edge.

In order to control the transparency, a hand painted transparency map was provided

as input to the shader, see Figure 6.8.

And finally to control the amount of refraction, we defined the index of refraction,

fresnel minimum(0 to 1), fresnel maximum(0 to 1), fresnel exponent parameters, see Figure

6.9 (fresnel min = 0.1, fresnel maximum = 1.0, fresnel exponent = 3). NVIDIA’s API takes

62

(a) δ0 = 0 and δ1 = 0.87 (b) δ0 = 0 and δ1 = 0.67

Figure 6.7: Main body of the creature with silhouette edge variations

(a) Without transparency map (b) With transparency map

Figure 6.8: Main body of the creature with transparency variations

in the value of these inputs to compute the refraction and reflection color for a given point

on the surface of the object.

Figure 6.10 shows hand painted textures for the creature’s body. The color values

for the textures were obtained by sampling colors from the original painting.

The customised barycentric shader used for the water in the scene computed for the

transparency (reflection& refraction) and specular effects. Figure 6.11 shows the reflection

63

(a) IOR > 1 (b) IOR < 1

Figure 6.9: Main body of the creature with refraction variations

of the environment map on the surface of the water. The water geometry was created with

ripples to match the look of the painting. Based on the visual analysis done in section 5,

we created a custom sky map for the reflection on the water.

The customised barycentric shader used for the ant, rodent, ground, and cactus han-

dled shadows, and bump mapping. The visual analysis discussed on shadows in section

5 indicates that shadows aren’t completely black. In order to handle this the shader takes

in a dark diffuse and a light diffuse color or texture map. And based on the shadow in-

tensity or effect parameter (Ω0) we interpolated between the two colors or texture maps.

Figures 6.12, ??, ??, 6.13, show the custom texture maps used for the ant, rodent, ground

and cactus geometry. These textures were hand painted, the color values for them were ob-

tained by sampling colors from the original painting. Figure 6.14 which shows the shadow

interpolations.

For the clouds and the bird, we used hand painted textures and normal maps. This

shader computed the diffuse reflection and transparency effect to achieve the desired look.

As seen in Figure 6.15.

64

(a) Diffuse - light (b) Diffuse - dark

(c) Silhouette (d) Normal

(e) Transparency (f) Specular

Figure 6.10: Custom textures used in the Body Shader

65

6.3 Results

Figure 6.16 shows a screen capture of rendered frame. This is the final result of the

interactive 3D scene. The scene renders at 5 frames per second.

(a) Reflecting custom sky map (b) Reflecting environment map

Figure 6.11: Water geometry rendered real-time with custom shader

(a) Diffuse - light (b) Diffuse - dark

Figure 6.12: Custom textures used in the Ant Shader

66

(a) Diffuse - light (b) Diffuse - dark

Figure 6.13: Custom textures used in the Cactus Shader

(a) tsh = 0.15 (b) tsh = 0.35

Figure 6.14: Shadow intensity variation seen on the ground and small creature

67

Figure 6.15: Clouds and bird rendered real-time with the custom shader

Figure 6.16: Frame of the final render

68

Comparison

Property In Maya using men-
tal ray

Real-time using
barycentric shaders

Time to render
one frame

20s - 2 mins 0.2s

Real time interac-
tion

No Yes

Artistic Control No Yes

Color space con-
trol

No Yes

Table 6.1: Comparison between mentral ray shader - maya rendering and barycentric
shader - real time rendering

69

7 CONCLUSIONS AND FUTURE WORK

The goal of this research was to create a barycentric shader for NPR with GI for

real-time raytracing. The shader we created also allows user control over diffuse, specular,

reflection, refraction, transparency, silhouette and shadow effects. The shader was used

in an example scenario to replicate the look of a painting. We used a digital painting by

Rachel Cunningham Decido [6], as the primary visual reference.

In order to achieve the look and feel of the 2D painting in 3D, a visual analysis of the

paintingwas conducted to understand the essential effects. We then substituted our findings

in the generic barycentric shader to customize it for the characters in chosen painting. This

work shows a proof of concept that a barycentric shader can be art directable in real-time

NPR with GI. The shader and the control parameters it provided was effective in matching

the look and feel of the painting.

Although this approach provides artistic control in real-time, this process still re-

quires human efforts in terms of providing the 3D model of the painting, textures and

normal maps in order to get the desired look. The extension of this work would include ap-

plying this shader concept to achieve NPR style real-time rendering with GI in augmented

and virtual reality settings. Another extension of this work could include developing a

barycentric shader to render grass, hair or fur in real-time.

70

REFERENCES

[1] E. Akleman, D. H. House, and S. Liu, “Barycentric shaders: Art directed shading

using control images,” Proceedings of Expressive’2016: Computational Aestetics

Conference, p. Accepted, 2016.

[2] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use

in Computer Graphics &Amp; Geometric Modeling. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1987.

[3] J. Chen, G. Turk, and B. MacIntyre, “Watercolor inspired non-photorealistic

rendering for augmented reality,” in Proceedings of the 2008 ACM Symposium on

Virtual Reality Software and Technology, ser. VRST ’08. New York, NY, USA:

ACM, 2008, pp. 231–234. [Online]. Available: http://doi.acm.org/10.1145/1450579.

1450629

[4] N. S.-H. Chu and C.-L. Tai, “Moxi: Real-time ink dispersion in absorbent paper,”

ACM Trans. Graph., vol. 24, no. 3, pp. 504–511, Jul. 2005. [Online]. Available:

http://doi.acm.org/10.1145/1073204.1073221

[5] R. L. Cook, “Shade trees,” SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 223–231,

Jan. 1984. [Online]. Available: http://doi.acm.org/10.1145/964965.808602

[6] R. Cunningham, “Decido(decisions),” Digital Painting, Available: http://www.

rachelcunninghamwang.com/digital-painting.html, 2012, [Online].

71

http://doi.acm.org/10.1145/1450579.1450629
http://doi.acm.org/10.1145/1450579.1450629
http://doi.acm.org/10.1145/1073204.1073221
http://doi.acm.org/10.1145/964965.808602
http://www.rachelcunninghamwang.com/digital-painting.html
http://www.rachelcunninghamwang.com/digital-painting.html

[7] C. J. Curtis, “Brick-a-Brac,” Available:http://otherthings.com/uw/pigeons/brick2.

html, 1995, [[Online]; https://vimeo.com/118034969].

[8] ——, “Loose and sketchy animation,” in ACM SIGGRAPH 98 Electronic Art and

Animation Catalog, ser. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp.

145–. [Online]. Available: http://doi.acm.org/10.1145/281388.281913

[9] ——, “The New Chair,” 1998, [[Online]; https://vimeo.com/119315695].

[10] D. Curtis, Cassidy J.and Gainey, “Fishing,” 1999, [[Online]; https://vimeo.com/

118042611de].

[11] P. Decaudin, “Cartoon looking rendering of 3D scenes,” INRIA, Research Report

2919, Jun. 1996. [Online]. Available: http://phildec.users.sf.net/Research/RR-2919.

php

[12] Y. Du and E. Akleman, “Charcoal rendering and shading with reflections,” in ACM

SIGGRAPH 2016 Posters, ser. SIGGRAPH ’16. New York, NY, USA: ACM, 2016.

[13] A. Goldberg and R. Flegal, “ACM president’s letter: Pixel art,” Commun.

ACM, vol. 25, no. 12, pp. 861–862, Dec. 1982. [Online]. Available: http:

//doi.acm.org/10.1145/358728.358731

[14] A. Gooch, B. Gooch, P. Shirley, and E. Cohen, “A non-photorealistic lighting

model for automatic technical illustration,” in Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH

72

http://otherthings.com/uw/pigeons/brick2.html
http://otherthings.com/uw/pigeons/brick2.html
https://vimeo.com/118034969
http://doi.acm.org/10.1145/281388.281913
https://vimeo.com/119315695
https://vimeo.com/118042611de
https://vimeo.com/118042611de
http://phildec.users.sf.net/Research/RR-2919.php
http://phildec.users.sf.net/Research/RR-2919.php
http://doi.acm.org/10.1145/358728.358731
http://doi.acm.org/10.1145/358728.358731

’98. New York, NY, USA: ACM, 1998, pp. 447–452. [Online]. Available:

http://doi.acm.org/10.1145/280814.280950

[15] P. Haeberli, “Paint by numbers: Abstract image representations,” in Proceedings

of the 17th Annual Conference on Computer Graphics and Interactive Techniques,

ser. SIGGRAPH ’90. New York, NY, USA: ACM, 1990, pp. 207–214. [Online].

Available: http://doi.acm.org/10.1145/97879.97902

[16] P. Hanrahan and J. Lawson, “A language for shading and lighting calculations,”

SIGGRAPH Comput. Graph., vol. 24, no. 4, pp. 289–298, Sep. 1990. [Online].

Available: http://doi.acm.org/10.1145/97880.97911

[17] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple sizes,” in

Proceedings of the 25th Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp. 453–460.

[Online]. Available: http://doi.acm.org/10.1145/280814.280951

[18] A. Hertzmann and K. Perlin, “Painterly rendering for video and interaction,” in

Proceedings of the 1st International Symposium on Non-photorealistic Animation

and Rendering, ser. NPAR ’00. New York, NY, USA: ACM, 2000, pp. 7–12.

[Online]. Available: http://doi.acm.org/10.1145/340916.340917

[19] N. Imhof, A. Milliez, F. Jenal, R. Bauer, M. Gross, and R. W. Sumner, “Fin textures

for real-time painterly aesthetics,” in Proceedings of the 8th ACM SIGGRAPH

73

http://doi.acm.org/10.1145/280814.280950
http://doi.acm.org/10.1145/97879.97902
http://doi.acm.org/10.1145/97880.97911
http://doi.acm.org/10.1145/280814.280951
http://doi.acm.org/10.1145/340916.340917

Conference on Motion in Games, ser. MIG ’15. New York, NY, USA: ACM, 2015,

pp. 227–235. [Online]. Available: http://doi.acm.org/10.1145/2822013.2822021

[20] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee, P. L. Davidson,

M. Webb, J. F. Hughes, and A. Finkelstein, “Wysiwyg npr: Drawing strokes directly

on 3d models,” ACM Trans. Graph., vol. 21, no. 3, pp. 755–762, Jul. 2002. [Online].

Available: http://doi.acm.org/10.1145/566654.566648

[21] M. Kaplan, B. Gooch, and E. Cohen, “Interactive artistic rendering,” in Proceedings

of the 1st International Symposium on Non-photorealistic Animation and Rendering,

ser. NPAR ’00. New York, NY, USA: ACM, 2000, pp. 67–74. [Online]. Available:

http://doi.acm.org/10.1145/340916.340925

[22] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev, R. Barzel, L. S.

Holden, and J. F. Hughes, “Art-based rendering of fur, grass, and trees,”

in Proceedings of the 26th Annual Conference on Computer Graphics and

Interactive Techniques, ser. SIGGRAPH ’99. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 1999, pp. 433–438. [Online]. Available:

http://dx.doi.org/10.1145/311535.311607

[23] J. Lee, “Diffusion rendering of black ink paintings using new paper and ink models,”

Computers Graphics, vol. 25, no. 2, pp. 295 – 308, 2001. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0097849300001321

74

http://doi.acm.org/10.1145/2822013.2822021
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/340916.340925
http://dx.doi.org/10.1145/311535.311607
http://www.sciencedirect.com/science/article/pii/S0097849300001321

[24] P. Litwinowicz, “Processing images and video for an impressionist effect,”

in Proceedings of the 24th Annual Conference on Computer Graphics and

Interactive Techniques, ser. SIGGRAPH ’97. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 1997, pp. 407–414. [Online]. Available:

http://dx.doi.org/10.1145/258734.258893

[25] S. Liu and E. Akleman, “Chinese ink and brush painting with reflections,” in

SIGGRAPH 2015: Studio, ser. SIGGRAPH ’15. NewYork, NY, USA: ACM, 2015,

pp. 8:1–8:1. [Online]. Available: http://doi.acm.org/10.1145/2785585.2792525

[26] J. Lu, P. V. Sander, and A. Finkelstein, “Interactive painterly stylization

of images, videos and 3d animations,” in Proceedings of the 2010 ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, ser. I3D

’10. New York, NY, USA: ACM, 2010, pp. 127–134. [Online]. Available:

http://doi.acm.org/10.1145/1730804.1730825

[27] M. McGuire and A. Fein, “Real-time rendering of cartoon smoke and clouds,” in

Proceedings of the 4th International Symposium on Non-photorealistic Animation

and Rendering, ser. NPAR ’06. New York, NY, USA: ACM, 2006, pp. 21–26.

[Online]. Available: http://doi.acm.org/10.1145/1124728.1124733

[28] B. J. Meier, “Painterly rendering for animation,” in Proceedings of the 23rd Annual

Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH

75

http://dx.doi.org/10.1145/258734.258893
http://doi.acm.org/10.1145/2785585.2792525
http://doi.acm.org/10.1145/1730804.1730825
http://doi.acm.org/10.1145/1124728.1124733

’96. New York, NY, USA: ACM, 1996, pp. 477–484. [Online]. Available:

http://doi.acm.org/10.1145/237170.237288

[29] NVIDIA, “Nvidia® optix™ ray tracing engine,” Available:https://developer.nvidia.

com/optix, 2016. [Online]. Available: https://developer.nvidia.com/optix

[30] S. C. Olsen, B. A. Maxwell, and B. Gooch, “Interactive vector fields for painterly

rendering,” in Proceedings of Graphics Interface 2005, ser. GI ’05. School of

Computer Science, University of Waterloo, Waterloo, Ontario, Canada: Canadian

Human-Computer Communications Society, 2005, pp. 241–247. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1089508.1089548

[31] F. Pfenning, “NPR,” Available:http://www.cs.cmu.edu/~fp/courses/graphics/

pdf-2up/21-npr.pdf, 2003, [Online]; pp. 3–, accessed 17 April 2003.

[32] M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H. Salesin, “Interactive pen-

and-ink illustration,” in Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, ser. SIGGRAPH ’94. New York, NY, USA:

ACM, 1994, pp. 101–108. [Online]. Available: http://doi.acm.org/10.1145/192161.

192185

[33] M. Shiraishi and Y. Yamaguchi, “An algorithm for automatic painterly rendering

based on local source image approximation,” in Proceedings of the 1st International

Symposium on Non-photorealistic Animation and Rendering, ser. NPAR ’00.

76

http://doi.acm.org/10.1145/237170.237288
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
http://dl.acm.org/citation.cfm?id=1089508.1089548
http://www.cs.cmu.edu/~fp/courses/graphics/pdf-2up/21-npr.pdf
http://www.cs.cmu.edu/~fp/courses/graphics/pdf-2up/21-npr.pdf
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/192161.192185

New York, NY, USA: ACM, 2000, pp. 53–58. [Online]. Available: http:

//doi.acm.org/10.1145/340916.340923

[34] G. Winkenbach and D. H. Salesin, “Computer-generated pen-and-ink illustration,”

in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’94. New York, NY, USA: ACM, 1994, pp. 91–100.

[Online]. Available: http://doi.acm.org/10.1145/192161.192184

77

http://doi.acm.org/10.1145/340916.340923
http://doi.acm.org/10.1145/340916.340923
http://doi.acm.org/10.1145/192161.192184

APPENDIX A

SHADER CODE

s t a t i c __dev i ce__ vo id np rShade r (f l o a t impo r t a n c e _ c u t o f f ,

f l o a t 3 c u t o f f _ c o l o r ,

f l o a t f r e s n e l _ e x p o n e n t ,

f l o a t f resne l_minimum ,

f l o a t fresnel_maximum ,

f l o a t r e f r a c t i o n _ i n d e x ,

i n t r e f r a c t i o n _maxd ep t h ,

i n t r e f l e c t i o n _maxd e p t h ,

f l o a t bo rde rWid thPa r ame t e r ,

f l o a t 3 r e f r a c t i o n _ c o l o r ,

f l o a t 3 r e f l e c t i o n _ c o l o r ,

f l o a t 3 e x t i n c t i o n _ c o n s t a n t ,

f l o a t 3 d i f f u s e _ l i g h t ,

f l o a t 3 d i f f u s e _ d a r k ,

f l o a t 3 s p e c_ co l o r ,

f l o a t 3 b o r d e r _ c o l o r ,

f l o a t 3 normalmap_color ,

f l o a t 3 t r a n s p a r e n cymap_co l o r ,

boo l e an k1 ,

boo l e an k2 ,

boo l e an k3 ,

78

boo l ean k4)

{

/ /−−−−−−−s u r f a c e normal−−−−−−−//

c o n s t f l o a t 3 normal = no rma l i z e (r tT r an s fo rmNorma l (

RT_OBJECT_TO_WORLD, shad ing_no rma l)) ;

/ /−−−−−−−f r o n t h i t po i n t−−−−−−−//

c o n s t f l o a t 3 fhp = r t T r a n s f o rmPo i n t (RT_OBJECT_TO_WORLD,

f r o n t _ h i t _ p o i n t) ;

/ /−−−−−−−back h i t po i n t −−−−−−−//

c o n s t f l o a t 3 bhp = r t T r a n s f o rmPo i n t (RT_OBJECT_TO_WORLD,

b a c k _ h i t _ p o i n t) ;

/ /−−−−−−−world g eome t r i c normal−−−−−−−//

f l o a t 3 wo r l d_geome t r i c_no rma l = no rma l i z e (r tT r an s fo rmNorma l (

RT_OBJECT_TO_WORLD, geome t r i c _no rma l)) ;

/ /−−−−−−− i n c i d e n t d i r e c t i o n −−−−−−−//

c o n s t f l o a t 3 i = r ay . d i r e c t i o n ;

/ /−−−−−−−t r a n sm i s s i o n d i r e c t i o n −−−−−−−//

f l o a t 3 t ;

79

/ /−−−−−−− r e f l e c t i o n d i r e c t i o n −−−−−−−//

f l o a t 3 r ;

/ /−−−−−−−t a n g e n t t o t h e sh ad i ng normal−−−−−−−//

f l o a t 3 s h a d i n g _ t a n g e n t = make_ tangen t (shad ing_no rma l) ;

/ /−−−−−−−world sh ad i ng normal−−−−−−−−−−//

c o n s t f l o a t 3 wor l d_ shad ing_no rma l = no rma l i z e (r tT r an s fo rmNorma l (

RT_OBJECT_TO_WORLD, shad ing_no rma l)) ;

/ /−−−−−−−t a n g e n t t o t h e wor ld sh ad i ng normal−−−−−−−−//

c o n s t f l o a t 3 wo r l d _ s h a d i n g _ t a n g e n t = no rma l i z e (r tT r an s fo rmNorma l (

RT_OBJECT_TO_WORLD, s h a d i n g _ t a n g e n t)) ;

/ /−−−−−−−r e v e r s e normal−−−−−−−−−−//

c o n s t f l o a t r evn = copy s i g n f (1 . f , do t (− r ay . d i r e c t i o n ,

wo r l d_geome t r i c_no rma l)) ;

/ /−−−−−−−f a c e fo rwa rd normal−−−−−−//

f l o a t 3 f f n o rma l = wor l d_ shad ing_no rma l * revn ;

/ /−−−−−−−−−−−−−−− t e x t u r e / c o l o r i n p u t s−−−−−−−−−−−−−−−−//

f l o a t 3 I0 = d i f f u s e _ l i g h t ;

f l o a t 3 I1 = d i f f u s e _ d a r k ;

f l o a t 3 I3 = s p e c _ c o l o r ;

f l o a t 3 I4 = b o r d e r _ c o l o r ;

80

/ /−−−−−−−−−c a l c u l a t e d c o l o r ou t pu t s−−−−−−−−−//

f l o a t 3 I1_da sh ;

f l o a t 3 I2_da sh ;

f l o a t 3 I3_da sh ;

f l o a t 3 I4_da sh ;

f l o a t r e f l e c t i o n = 1 . 0 f ;

f l o a t 3 r e s u l t = make_ f l o a t 3 (0 . 0 f) ;

f l o a t 3 cT = make_ f l o a t 3 (0 . 0 f) ;

f l o a t 3 cR = make_ f l o a t 3 (1 . 0 f , 1 . 0 f , 1 . 0 f) ;

c o n s t i n t dep th = p r d _ r a d i a n c e . dep th ;

f l o a t 3 b e e r _ a t t e n u a t i o n ;

/ /−−−−−−−−−−Beer ’ s law a t t e n u a t i o n −−−−−−−−//

i f (do t (normal , r ay . d i r e c t i o n) > 0) {

b e e r _ a t t e n u a t i o n = exp (e x t i n c t i o n _ c o n s t a n t * t _ h i t) ;

} e l s e {

b e e r _ a t t e n u a t i o n = make_ f l o a t 3 (1) ;

}

/ /−−−−−− r e f r a c t i o n c a l c u l a t i o n −−−−//

i f (r e f r a c t i o n _ i n d e x != 0 . 0) {

i f (d ep th < min (r e f r a c t i o n _maxd ep t h , max_depth))

81

{

i f (r e f r a c t (t , i , normal , r e f r a c t i o n _ i n d e x))

{

/ /−−−−−−check f o r e x t e r n a l o r i n t e r n a l r e f l e c t i o n −−−−−−−//

f l o a t c o s _ t h e t a = do t (i , normal) ;

i f (c o s _ t h e t a < 0 . 0 f)

c o s _ t h e t a = −c o s _ t h e t a ;

e l s e

c o s _ t h e t a = do t (t , normal) ;

/ /−−−− f r e s n e l _ s c h l i c k method p r ov i d ed by t h e OptiX API

−−−−//

r e f l e c t i o n = f r e s n e l _ s c h l i c k (c o s _ t h e t a , f r e s n e l _ e x p o n e n t ,

f resne l_minimum , fresnel_maximum) ;

f l o a t impo r t a n c e = p r d _ r a d i a n c e . impo r t a n c e * (1 . 0 f−

r e f l e c t i o n) * o p t i x : : l uminance (r e f r a c t i o n _ c o l o r * b e e r _ a t t e n u a t i o n

) ;

f l o a t 3 c o l o r = c u t o f f _ c o l o r ;

i f (impo r t a n c e > impo r t a n c e _ c u t o f f) {

c o l o r = TraceRay (bhp , t , d ep th +1 , impo r t a n c e) ;

}

cT += (1 . 0 f − r e f l e c t i o n) * r e f r a c t i o n _ c o l o r * c o l o r ;

}

82

}

/ /−−−−−− r e f l e c t i o n c a l c u l a t i o n −−−−−−//

f l o a t 3 c u t o f f C o l o r = c u t o f f _ c o l o r ;

i f (d ep th < min (r e f l e c t i o n _maxd e p t h , max_depth))

{

r = r e f l e c t (i , normal) ;

f l o a t impo r t a n c e = p r d _ r a d i a n c e . impo r t a n c e * r e f l e c t i o n *

o p t i x : : l uminance (r e f l e c t i o n _ c o l o r * b e e r _ a t t e n u a t i o n) ;

i f (impo r t a n c e > impo r t a n c e _ c u t o f f) {

c o l o r = TraceRay (fhp , r , d ep th +1 , impo r t a n c e) ;

}

}

cT += r e f l e c t i o n * r e f l e c t i o n _ c o l o r * c u t o f f C o l o r ;

I2 = cR*cT ;

}

f l o a t 3 p_normal = f a c e f o rwa r d (normal , −r ay . d i r e c t i o n ,

wo r l d_geome t r i c_no rma l) ;

/ /−−−−−−−− r e f l e c t e d ray−−−−−−−−−−//

83

f l o a t 3 r e f l e c t e dR a y = r e f l e c t (r ay . d i r e c t i o n , p_normal) ;

/ /−−−−−−−s u r f a c e h i t po i n t−−−−−−−//

f l o a t 3 h i t _ p o i n t = r ay . o r i g i n + t _ h i t * r ay . d i r e c t i o n ;

un s i gned i n t num_ l i gh t s = l i g h t s . s i z e () ;

/ /−−−−−−Di f f u s e R e f l e c t i o n e f f e c t c a l c u l a t i o n −−−−−−//

c o n s t f l o a t 3 temp = make_ f l o a t 3 (0 . 5 f , 0 . 5 f , 0 . 5 f) ;

c o n s t f l o a t 3 normalMapConvert = 2 . 0 f * (normalmap_co lo r − temp) ;

c o n s t f l o a t 3 ndash = no rma l i z e ((normal+normalMapConvert) / 2 . 0 f) ;

f l o a t tnew = f a b s (do t (− no rma l i z e (r ay . d i r e c t i o n) , n o rma l i z e (normal))

) ;

omega_0= pow (tnew , 4 . 0 f) ;

/ /−−−−−−S i l h o u e t t e e f f e c t c a l c u l a t i o n −−−−−−//

f l o a t bnew = 1 − tnew ;

i f (bnew>bo rde rWid t hPa r ame t e r) {

omega_1 = 1 . 0 f ;

}

e l s e {

omega_1 = 0 . 0 f ;

}

84

/ /−−−−−−t r a n s p a r e n c y e f f e c t c a l c u l a t i o n −−−−−−//

f l o a t omega_2 = (t r a n s p a r e n c ymap_ co l o r . z) ;

/ /−−−−−−Mixing D i f f u s e Colors−−−−−−//

I 1_da sh = I0 *omega_0*k1 + I1 *(1−omega_0*k1) ;

/ /−−−−−−Mixing S i l h o u e t t e wi th D i f f u s e−−−−−−−−−//

I 2_da sh = I4 *omega_1*k2 + I1_da sh *(1−omega_1*k2) ;

/ /−−−−−−Mixing t r a n s p a r e n c y c o l o r wi th Border and D i f f u s e−−−−−−−//

/ /−−−−−−−−−−− t r a n s p a r e n c y om i t t e d i n t h e s i l h o u e t t e −−−−−−−−−−//

i f (omega_1 == 0 . 0 f) {

I3_da sh = I2 *(omega_2*k3) + I2_da sh *(1−omega_2*k3) ;

}

/ /−−−−−−Spe cu l a r h i g h l i g h t c a l c u l a t i o n −−−−−−//

I 4_da sh = I3_da sh ;

/ /−−−−−−l o o p i n g t h r ough l i g h t s −−−−−−//

f o r (i n t i = 0 ; i < num_ l i gh t s ; ++ i) {

Ba s i cL i g h t l i g h t = l i g h t s [i] ;

/ /−−−−−−− l i g h t v e c t o r−−−−−−−−//

f l o a t 3 L = o p t i x : : n o rma l i z e (l i g h t . pos − h i t _ p o i n t) ;

85

/ /−−−−−−Spe c u l a r Component−−−−−−//

f l o a t snew = do t (r e f l e c t e dRay , L) ;

snew= (snew −0.90 f) / (0 . 9 9 f −0.90 f) ;

i f (snew > 1 . 0 f) {

snew = 1 . 0 f ;

}

i f (snew < 0 . 0 f) {

snew = 0 . 0 f ;

}

omega_3=snew *0 .3 f ;

/ /−−−−mixing s p e c u l a r h i g h l i g h t w i th c o l o r c a l c u l a t e d t h u s f a r

−−−−//

I 4_da sh = I3 *omega_3*k4 + I4_da sh *(1−omega_3*k4) ;

}

/ /−−−−−−−−−r e t u r n i n g c a l c u l a t e d f i n a l co l o r −−−−−−−//

p r d _ r a d i a n c e . r e s u l t = I4_da sh ;

}

Listing A.1: Barycentric shader function written in CUDA

86

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation
	Goal

	BACKGROUND
	Evolution of NPR
	Previous Work in Non-Photorealistic Rendering

	METHODOLOGY: STRUCTURE OF GENERIC BARYCENTRIC SHADER
	Effect Parameters
	Barycentric Formulation for Back-End Shaders
	Extension
	Style Control with Control Images
	Style Control with Basis Functions
	Rectangular Box Property
	Painter's Hierarchy

	BARYCENTRIC SHADER USED FOR THE REAL-TIME NPR SHADER
	Hierarchical Zero-Degree Bezier Basis Functions to Represent Simplices in Color Space
	Extended Hierarchical Zero-Degree Bezier Basis Functions
	The Particular Hierarchy Used in Our Shaders
	Effect of Control Textures
	Computing i Terms in Front-End Shader

	VISUAL ANALYSIS
	Visual Analysis
	Diffuse Reflection Shader
	Specular Highlight Shader
	Silhouette Shader
	Transparency Shader

	Shadow

	IMPLEMENTATION
	Scene Modeling and Development
	Rendering Scene Using Mental Ray
	Digital Compositing/Post Processing

	Creating a Generic Barycentric Shader for Non-Photorealistic Real-time Rendering
	Results

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDIX SHADER CODE

