2,461 research outputs found

    Diffuse Reflection Diameter in Simple Polygons

    Full text link
    We prove a conjecture of Aanjaneya, Bishnu, and Pal that the minimum number of diffuse reflections sufficient to illuminate the interior of any simple polygon with nn walls from any interior point light source is n/21\lfloor n/2 \rfloor - 1. Light reflecting diffusely leaves a surface in all directions, rather than at an identical angle as with specular reflections.Comment: To appear in Discrete Applied Mathematic

    SWAP Version 3.2. Theory description and user manual

    Get PDF
    SWAP 3.2 simulates transport of water, solutes and heat in the vadose zone. It describes a domain from the top of canopy into the groundwater which may be in interaction with a surface water system. The program has been developed by Alterra and Wageningen University, and is designed to simulate transport processes at field scale and during whole growing seasons. This is a new release with special emphasis on numerical stability, macro pore flow, and options for detailed meteorological input and linkage to other models. This manual describes the theoretical background, model use, input requirements and output tables

    NuSTAR Hard X-ray Survey of the Galactic Center Region I: Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    Get PDF
    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ1.3\Gamma\sim1.3-2.32.3 up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα\alpha fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (1023\sim10^{23} cm2^{-2}), primary X-ray spectra (power-laws with Γ2\Gamma\sim2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX>1038L_X \stackrel{>}{\sim} 10^{38} erg s1^{-1}. Above ~20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD0.9MM_{\rm WD} \sim 0.9 M_{\odot}. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.Comment: 27 pages. Accepted for publication in the Astrophysical Journa

    高いSN比を有する超音波パルスエコー計測のための多角形バッファーロッドの開発

    Get PDF
    国立大学法人長岡技術科学大

    A study of the structural rearrangements accompanying room temperature recovery of high purity aluminum

    Get PDF
    X-ray methods (Laue back reflection and transmission) and etch pit studies were used in order to follow structural changes in the deformed metallic lattice during room temperature recovery. The accumulative evidence indicates that the deformed lattice undergoes subboundary movements and regrouping of fragments within a few days after stressing. On the basis of a superficial investigation, it was found that fast neutron bombardment increases the rate of room temperature recovery. Through the use of a new etchant, a finer substructure was revealed within the Lacombe subgrain. Glide strain values were determined for the series investigated, and a new approach was attempted in the study of substructures using the Laue transmission method on a specially prepared single crystal specimen of foil thickness. A way of disclosing the internal detail within the etch pits was found through inking --Abstract, page ii

    Doctor of Philosophy

    Get PDF
    dissertationThree-dimensional (3D) models of industrial plant primitives are used extensively in modern asset design, management, and visualization systems. Such systems allow users to efficiently perform tasks in Computer Aided Design (CAD), life-cycle management, construction progress monitoring, virtual reality training, marketing walk-throughs, or other visualization. Thus, capturing industrial plant models has correspondingly become a rapidly growing industry. The purpose of this research was to demonstrate an efficient way to ascertain physical model parameters of reflectance properties of industrial plant primitives for use in CAD and 3D modeling visualization systems. The first part of this research outlines the sources of error corresponding to 3D models created from Light Detection and Ranging (LiDAR) point clouds. Fourier analysis exposes the error due to a LiDAR system's finite sampling rate. Taylor expansion illustrates the errors associated with linearization due to flat polygonal surfaces. Finally, a statistical analysis of the error associated with LiDar scanner hardware is presented. The second part of this research demonstrates a method for determining Phong specular and Oren-Nayar diffuse reflectance parameters for modeling and rendering pipes, the most ubiquitous form of industrial plant primitives. For specular reflectance, the Phong model is used. Estimates of specular and diffuse parameters of two ideal cylinders and one measured cylinder using brightness data acquired from a LiDAR scanner are presented. The estimated reflectance model of the measured cylinder has a mean relative error of 2.88% and a standard deviation of relative error of 4.0%. The final part of this research describes a method for determining specular, diffuse and color material properties and applies the method to seven pipes from an industrial plant. The colorless specular and diffuse properties were estimated by numerically inverting LiDAR brightness data. The color ambient and diffuse properties are estimated using k-means clustering. The colorless properties yielded estimated brightness values that are within an RMS of 3.4% with a maximum of 7.0% and a minimum of 1.6%. The estimated color properties effected an RMS residual of 13.2% with a maximum of 20.3% and a minimum of 9.1%

    Novel applications of luminescence for solar energy

    Get PDF
    Luminescent solar concentrators (LSCs) provide indirect light concentration by absorbing both direct and indirect incident light, and have applications in building-integrated photovoltaics (BIPV). Fibre LSCs were found to have a linear relationship between photon concentration and fibre lengths in scales suitable for LSC modules. Using raytrace modelling, cylindrical LSC arrays were found to exhibit light trapping properties at certain angles of incidence, which can pave the way for more efficient BIPV applications. Novel optics for a double-illuminated water splitting reactor were introduced, for the objective of solar hydrogen for energy storage and sustainable transport fuels. A reflective cone embedded in a waveguide reflects incident concentrated light into the waveguide. Raytrace modelling and practical high concentration measurements demonstrate the viability of the optical system as well as necessity for a perfectly smooth reflective cone. It was also shown that replaced the reflective cone with a quantum well solar cell (QWSC) in order to harness the photoluminescence (PL) is not a viable concept with current QWSC structures. Another form of sustainable transport fuels is to use biofuels produced by algae. Algae have evolved to absorb excess amounts of energy, even when it is detrimental to their own growth and survival. This causes inefficiencies when growing algae in raceway ponds. The luminescent solar diffuser (LSD) is an optical funnel, optimisable by use of a genetic algorithm, that can be retrofitted into an algae raceway pond in order to better distribute incident light into the pond depths. This was calculated to increase algae growth rates in the pond, thereby increasing the yield of an algae farm.Open Acces
    corecore