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Abstract 

Abstract 
 
In ultrasonic pulse-echo measurements with a long cylindrical buffer rod, it has been 

known that spurious echoes (also known as trailing echoes) are often generated due to 

diffraction and mode conversion of ultrasonic waves within the rod of a finite diameter. 

From the cross-sectional view of a cylindrical buffer rod, it is found that such trailing 

echoes are generated when the mode converted waves are parallel to each other and 

propagate to the side wall of the rod perpendicularly. Such trailing echoes are considered 

as noise and therefore, they deteriorate the signal-to-noise ratio (SNR) in the pulse-echo 

measurements because of their possible overlapping with the main echo while a 

pulse-echo measurement is being performed. Although tapering or cladding for the 

cylindrical buffer rod may be effective to reduce such trailing echoes, they are not always 

sufficient for practical uses of the buffer rod. In this work, a new idea of using polygonal 

buffer rods has been proposed as an alternative method to reduce the trailing echoes and 

result in improving the SNR. The idea is basically to use a polygonal rod whose normal 

sectional shape is a polygon such as a triangle, square, pentagon, hexagon or heptagon. 

The effectiveness of such polygonal rods is examined numerically and experimentally. It 

is found from a three-dimensional numerical simulations based on a finite difference 

method that  having sides any one of which is not parallel to any of the 

other sides, such as triangle, pentagon and heptagon, are effective to reduce the trailing 

echoes because of less interferences among mode converted waves in the rod. However, 

there still exists a certain amount of trailing echoes even in the odd polygonal rods where 

such trailing echoes are generated by the possible interference of the waves due to the 

bilateral symmetry shape of the odd polygons. In order to eliminate such remaining 

trailing echoes, the idea of using irregular polygons is proposed. Since the symmetry 

shape of the polygons results in generating trailing echoes, such generation can be 

prevented by distorting one vertex of the regular polygon. By such distortion, the 

influence of symmetry is eliminated. The effectiveness of such irregular polygonal buffer 

rods on restraining the generation of trailing echoes is numerically and experimentally 
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investigated. It is found that the trailing echoes are completely eliminated with the 

irregular pentagon and the SNR is five times higher than the regular pentagon. 

Furthermore, cladding effect on the reduction of the trailing echoes is also investigated. It 

is found that the trailing echoes are reduced when the velocity of cladding layer is faster 

than that of the core and  the highest SNR can be obtained when Vclad = 120% Vcore and 

clad = 70% core. Based on such investigation, it has been demonstrated numerically that 

polygonal buffer rods with an optimum cladding layer provide higher SNR as expected. 

Thus, it is highly expected that the polygonal buffer rods proposed in this work can be 

promising tool for advanced ultrasonic measurements and evaluations.  
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Introduction   
 
 

Ultrasound, due to its ability that can probe any surface or object 

nondestructively, makes it a promising candidate for the material characterization or 

process monitoring of industrial processes at elevated temperature. In this chapter, the 

principle of ultrasound is presented. In addition, the common measurement methods 

using ultrasound are presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

1.1 Introduction of ultrasound 

Increasing demands of high quality end products enhance the needs to monitor the 

production of the industrial processes that are normally conducted at high temperature.  

Although the conventional method such as thermocouple is capable for such monitoring, 

however, thermocouple is sometimes not stable, non-repeatable, and gives a slow 

response. For a precise measurement and monitoring of a manufacturing process, a fast 

response, robustness, repeatable and does not disturb the production line is desired. For 

such approach, ultrasound is a suitable tool for measuring material properties or process 

monitoring due to its capability to interrogate the internal parts of materials 

nondestructively [1-7]. Ultrasound, also known as sound waves, propagates at a 

frequency greater than 20,000Hz and sensitive to any disturbance in the elastic mediums 

such as solids, liquids and gases. When the ultrasonic waves encounter any boundary or 

medium that has different acoustic impedance, the ultrasonic waves will be reflected. 

The degree of reflection depends on the acoustic impedance of a medium. 

 

1.2 Acoustic impedance 

Acoustic impedance is a product of density and velocity of a material. The sound waves 

with high frequency (ultrasound) travel through material under the influence of sound 

pressure that is caused by the molecules in the medium. The acoustic impedance is 

given in Equation 1.1, 

 

       (1.1) 

 

where Z,  and V are acoustic impedance (Pa.s/m3), density (kg/m3) and velocity (m/s), 

respectively. Since each material has its distinctive velocity and density, the acoustic 

impedance for each material can be calculated.  

 

1.3 Reflection and transmission 

1.3.1 Normal angle 

When an ultrasonic wave perpendicularly impinges on an interface between two 

mediums, as shown in Figure 1-1, a part of the wave is reflected back into medium I at 
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normal angle. While, the remaining part of the incident wave is transmitted into medium 

II. Such phenomenon is because the incident wave encounters an interface with 

different acoustic impedance (impedance mismatch). The amount of ultrasonic waves 

(energy) that are reflected at a boundary can be calculated in percentage (%). The 

greater the impedance mismatch, the greater the percentage of energy that will be 

reflected at the boundary between one medium or more. The degree of reflection is 

given by Equation 1.2, 

 

                        (1.2) 

 

where R, Z1 and Z2 are reflection, acoustic impedance for the first medium and acoustic 

impedance for the second medium, respectively. The reflected amount of reflected 

energy plus with the transmitted energy must equal to the amount of incident energy. 

Therefore, the amount of transmitted energy can be simply calculated by Equation 1.3 

where T and R are transmission and reflection, respectively. 

 

           (1.3) 
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Figure 1-1: Normal reflection and transmission of waves at an interface between two 

mediums
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1.3.2 Oblique angle 

Meanwhile, when an ultrasonic wave passes through an interface between two different 

mediums at an oblique angle, as shown in Figure 1-2, depending on the index of 

refraction of the materials, the ultrasonic waves will be reflected and refracted. Such 

reflection and refraction are strongly influenced by Snell s Law, as given in Equation 

1.4, where VL and VS are longitudinal wave velocity and shear wave velocity, 

respectively.  

 

                        (1.4) 

 

Figure 1.1 shows the behaviors of wave reflection on two different mediums. As the 

incident wave ( 1) with longitudinal velocity of VL1 reached the interface between 

medium 1 and medium 2, the incident wave is reflected and refracted. The angle for 

both incident and reflected waves are same due to the same velocity. However, the 

refracted angle is different from both incident angle and reflected angle due to velocity 

difference. Since the refracted angle ( 2) is bigger than the incident angle ( 1), the 

velocity for the second medium is faster than that of medium 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Oblique reflection and refraction of waves at an interface between two 

mediums. 

VL1

Medium I
Medium II

VL

VL2

N



Chapter 1: Introduction 

1.4 The principle of ultrasonic testing 

Ultrasonic testing can be carried out either in pulse-echo mode or through transmission 

mode. Such testing is based on vibration in materials which consists of atoms that are 

forced to move in a vibrational motion. Such movement is not possible in a vacuum 

state. Therefore, ultrasonic testing is possible in solid, liquid and gas state. In solid, the 

sound waves can propagate in four modes; longitudinal wave, shear wave, surface wave 

and plane wave. Based on these four waves, longitudinal wave and shear wave are the 

commonly used in ultrasonic testing. Figure 1.3 shows the difference between a 

longitudinal wave and a shear wave. It is observed that for longitudinal wave, the 

oscillations occur is the direction of the wave propagation. It is also called as pressure 

or compression waves due to compression and expansion forces that occur in such 

direction. Longitudinal wave can be generated in all states; solids, liquids and gases 

since the wave energy travel through the atomic structure of a material. Unlike 

longitudinal wave, the shear wave propagates at direction perpendicular to the wave 

propagation. For an effective propagation of shear wave, the material should be in solid. 

In addition, shear wave is weaker than longitudinal wave because shear wave is usually 

generated from the reflection of longitudinal wave. Ultrasonic testing, due to its 

nondestructive ability, has a higher accuracy compared to other nondestructive testing 

such as liquid penetrant and magnetic particle, in terms of defect detection and thickness 

measurement. In addition, the size, location and shape of such defects can be obtained 

from ultrasonic testing. It also provides deep penetration so that defects or material 

properties in narrow places can be measured at fast time response. However, there are 

some limitations with ultrasonic testing. One of the common disadvantages is that in 

order to carry a precise and accurate testing using ultrasound, an experienced and skilled 

examiners are required. Besides that, the test objects must be smooth and not rough for 

precise measurement. Adequate amount and suitable type of couplant are also necessary 

for an effective transfer of ultrasonic wave energy between the transducer and a test 

object (for contact method).  
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1.4.1 Pulse-echo mode 

The principle of a pulse-echo is shown in Figure 1-4. It is observed that only one 

ultrasonic transducer is used for the measuring. That means such ultrasonic transducer 

act as the transmitter and receiver as well. From the ultrasonic transducer, due to 

vibration in the piezoelectric element embedded in the transducer, an ultrasonic wave is 

generated and propagates into the specimen. Since no transducer is located at the bottom 

of the specimen, due to impedance mismatch, the ultrasonic wave is reflected at the 

normal angle. Such reflected ultrasonic wave is then propagates back to the upper side 

of the specimen and received at the ultrasonic transducer. Pulse-echo technique is wide 

applied in many applications due to its simplicity of aiding only one transducer during 

the measurement is being conducted. One of the common examples of using the 

pulse-echo technique is measuring the water depth [8]. The depth of the water can be 

calculated by dividing into half the time the reflected wave arrived. Take note that the 

pulse-echo method is also possible to be applied on a specimen that has many layers. 

Since each material has their own acoustic impedance, the ultrasonic waves will be 

Figure 1-3: Difference between longitudinal and shear waves
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reflected at each boundary (interface). Therefore, the thickness of the layers in a 

specimen can be obtained easily [9]. A typical pulse-echo testing consists of 

pulser/receiver, transducer and a display device. A pulser-receiver, which is connected 

to the ultrasonic transducer, is an electronic device that can produce high voltage 

electrical pulses. Based on such pulses, the transducer generates high frequency 

ultrasonic waves (energy). Such high frequency sound waves are then introduced and 

propagate through the material in the form of waves. When there are some defects such 

as voids or cracks, some of the ultrasonic waves will be reflected and received at the 

transducer. The received waves are then converted to an electrical signal by the 

transducer and later displayed on the screen. Since the velocity of the ultrasonic wave 

and the time it was received are known, the distance for such defects can be calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: A pulse-echo mode
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1.4.2 Through-transmission mode 

The principle for conducting an ultrasonic measurement using the through-transmission 

mode is also similar with the pulse-echo mode, expect, two transducers are used where 

one transducer is employed for transmitting and another transducer is for receiving the 

wave signal. Figure 1-5 shows the schematic of a through-transmission mode. It is 

observed that the two ultrasonic transducers are located on the same vertical line. Such 

placement is important so that the ultrasonic waves can be transmitted to the receiver 

precisely.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Types of ultrasonic testing (non-contact methods)  

There are several ultrasonic methods for material characterizations and process 

monitoring where such methods are divided into non-contact and in-contact techniques. 

The common non-contact methods are laser ultrasound and electromagnetic acoustic 

transducer (EMAT). 

 

Figure 1-5: A through-transmission mode

Ultrasonic 
transducers

Specimen



Chapter 1: Introduction 

1.5.1 Laser ultrasound 

Laser ultrasound uses lasers to generate and detect ultrasonic waves in any medium 

such as solid, liquid or gas. Laser ultrasound, which is a non-contact method, can 

generate any types of waves such as longitudinal, shear, surface and plate at desired 

frequency [8-13]. It is widely used to measure thickness, detect cracks or flaws and also 

material characterizations [14].The basic principle of laser ultrasound method would be 

a generation laser, a detection laser and a detector. Figure 1-6 shows the basic 

experimental set-up for laser ultrasound. The pulsed generation laser will hit on a 

material or workpiece, where such workpiece will absorb the pulsed laser. The absorbed 

pulsed laser in a workpiece is then converted to heat, which results to rapid localized 

temperature increase. Such rapid temperature increase leads to a rapid thermal 

expansion of a local region, which leads to generation of ultrasound waves into the 

medium. The ultrasonic waves are generated either by thermoelastic or ablative. The 

difference between these two (thermoelastic and ablate) is that the tendency to melt the 

workpiece or material. If the material does not melt, the generation mechanism is called 

thermoelastic and if the material does melt, such regime is called ablate.  

 

The unique features of laser ultrasound are: 

1) Couplant-free method since it is a non-contact method 

2) Can be carried out in a far distance 

3) Can be carried out in moving conditions where speed can be up to 20 m/s 

4) The generated waves with high bandwidth enhances spatial resolution rather than the 

conventional contact transducer, so that the defect detection is more reliable 

5) Can be operated on curved complex surfaces 

6) Can probe macrostructures to very thin films because the broadband systems provide 

information from kHz to GHz. 

 

However, there are some limitations with laser ultrasound where it has lower sensitivity 

rather than conventional contact piezoelectric transducer (PZT) transducer. Besides that, 

the experimental set up for laser ultrasound can be very expensive compared to other 

conventional ultrasonic techniques.  
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1.5.2 Electromagnetic acoustic transducer (EMAT) 

Another non-contact method, is electromagnetic acoustic transducer, also eliminates the 

use of couplant [15,16]. This technique has been applied in many industrial processes 

such as manufacturing, automotive and pressure vessels  This transducer is commonly 

generates shear horizontal bulk wave mode, surface wave, lamb wave and other 

guided-wave modes in metallic and/or ferromagnetic materials [17]. Figure 1-7 below 

shows the difference between a conventional piezoelectric transducer and an 

electromagnetic acoustic transducer. The basic component for a conventional 

piezoelectric transducer is crystal while EMAT consists of a magnet and an electric coil. 

The ultrasonic waves are generated and received by the coil and magnet in the EMAT 

where the measured object is made from a conductive material. Therefore, the ultrasonic 

waves are transmitted through magnetic field interaction. There are two mechanisms to 

generate such ultrasonic waves; Lorentz force and magnetostriction. Lorentz force is 

Figure 1-6: Schematic diagram of a laser ultrasound set-up
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used when the material is conductive while magnetostriction is used when the material 

is ferromagnetic. The alternating current (AC) current supplied for the coil generates 

eddy current on the surface of the object. Such current, which is generated at a very thin 

layer of the object, reduces its thickness as the frequency of AC increases. The eddy 

current in the magnetic field experiences Lorentz force where it is applied on the surface 

region of an object due to the interaction between the electrons and atoms. Such 

interaction and distribution of Lorentz force can be controlled by the design of the 

magnet and coil, location of transducer and object and material properties.  

For ferromagnetic material, when the alternating current (AC) is applied on the 

electric coil, it induces an AC magnetic field and therefore, produces magnetostriction at 

ultrasonic frequency in the material. Such magnetostriction is defined by a dimensional 

change in the ferromagnetic material when an external magnetic field is applied. The 

flux field of a magnet expands or collapses depends on the voltage in the coil while the 

amount of change (dimension) depends on the magnitude and direction of the field [18].  

The similarity between piezoelectric and electromagnetic acoustic transducer is that 

both of them can be used in pulse-echo, pitch-catch and through-transmission methods. 

However, there are some advantages and disadvantages between these two transducers. 

As stated earlier, electromagnetic acoustic transducer (EMAT) eliminates the use of 

couplant compared to piezoelectric transducer. Due to such couplant-free, ultrasonic 

testing with EMAT can be conducted in a dry environment. In addition, since EMAT is a 

non-contact method, it will be less sensitive to the condition of the object surface. 

Unlike piezoelectric transducer, the surface object must be smooth for a precise 

measurement. Therefore, the surface for EMAT testing can be in a rough surface. 

Besides that, it is easier to generate shear waves with EMAT compared to piezoelectric 

transducer. Although EMAT is better than piezoelectric transducer due to non-contact 

and couplant-free, however, the ultrasonic waves generated by EMAT is weaker 

compared to that generated by piezoelectric transducer. In addition, since the ultrasonic 

waves are transmitted through a magnetic flux region between the test objects, which 

means the test objects must be magnetic and metallic. EMAT has been used in many 

applications such as flaw detection in steel products, thickness measurements, defect 
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inspection on plates [19] laser weld inspection on automotive components, railway 

inspection [18,20].  

 

 

 

 

 

 

 

 

1.6 Types of ultrasonic testing (contact methods)  

For contact methods, the common techniques used in ultrasonic testing are high 

temperature ultrasonic transducer and buffer rod.  

 

1.6.1 High temperature ultrasonic transducer  

For the application at high temperature, it is impossible to employ the conventional 

piezoelectric transducers due to their temperature limitation. Due to such problem, high 

temperature ultrasonic transducer is used. The use of high temperature ultrasonic 

transducer is very necessary in material characterization and process monitoring at high 

temperature, particularly in the industrial processes that deals with hot metal pipes or 

Figure 1-7: Difference between a piezoelectric transducer and an electromagnetic 

acoustic transducer. 
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tanks. Since the conventional ultrasonic transducer is limited to such high temperature, 

it is very necessary to use the high temperature ultrasonic transducer. The common 

piezoelectric materials for a high temperature ultrasonic transducer bismuth titanate, 

BIT (Bi4Ti3O12), modified BIT, lead metaniobate, and BIT/PZT film (sol-gel 

technology) [21]. Although most of the commercialized high temperature ultrasonic 

transducers can withstand up to 400oC, however, due to thermal cycle [22,23], such 

transducer is limited for higher temperature application (>400oC). Therefore, the 

material selection for a high temperature transducer is very important. It is reported that 

lithium niobate (LiNbO3) which is well known for its high Curie temperature is used as 

the piezoelectric material for a high temperature transducer. The LiNbO3 single crystal 

was bonded on a stainless steel substrate. Such transducer was heated in an electric 

furnace with temperature ranging from room temperature up to 1000oC.  

 

 

1.6.2 Buffer rod 

Buffer rod (also known as waveguide) act as a medium to transmit and receive the 

ultrasonic signals from the measured materials that are located in harsh environments 

such as narrow places and high temperature. The common type of a buffer rod is usually 

associated with a long cylindrical buffer rod, as shown in Figure 1.8 [24]. It is observed 

that the wave propagates along the axial direction of the buffer rod. The rod material 

should have low ultrasonic loss so that the energy (ultrasonic waves) can be confined in 

the core properly with less attenuation along the long rod [30,55,56]. Materials such as 

sapphire and quartz have very low of ultrasonic loss; therefore, less diffraction of wave 

will occur and minimized the generation of trailing echoes. However, such materials 

have several limitations such as expensive, mechanical and thermal properties that are 

not compatible with the measurement condition and easy to generate cracks during 

thermal cycle. Therefore, metals such as steel and aluminum are usually selected as the 

buffer rod material since they are machinable and have high melting points. Ceramic 

and polymer buffer rods are also available depending on the probed material. Acoustic 

impedance which is the product of density and velocity influences the material selection 

for the buffer rod [30,56]. Such selection is important for a precise measurement of the 
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probed parts. Metal buffer rods are known for their robustness and high melting 

temperature, however, for the process monitoring related to polymer, the measured 

signals are found to be weak. This is due to the acoustic impedance mismatch between 

polymer (sample) and metal (buffer rod). Therefore, the reflection coefficient at the 

interface of metal buffer rod and polymer is large. This leads to less amount of the 

guided ultrasonic waves (energy) in the metal buffer rod transmitted into the molten 

polymer, leading to poor SNR [56] In order to overcome this, polyetheretherketone 

(PEEK) has been proposed as the core of a clad polymer buffer rod [30]. The cladding 

layer is made of heat-resistant epoxy. As the result, high SNR is obtained and the 

application of such proposed clad polymer buffer rod is applicable up to 350oC. In 

addition, since polymer has a poor thermal conductivity, the length of polymer buffer 

rod can be short. This reduces the attenuation waves in the rod, leading to better 

received signal at the ultrasonic transducer. Unlike polymer, the thermal conductivity of 

metal is high; therefore, the metal buffer rod must be sufficiently long enough so that 

during the cooling process at UT, it will not reduce the temperature of the measured 

sample.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8: A typical uniform cylindrical buffer rod

Direction of the wave propagation
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1.7 Applications of buffer rod 

Since the buffer rod act as a waveguide in probing the surface or the interior part of a 

material or an object nondestructively, it can be applied in a room temperature as well as 

high temperature. One of the common applications of a buffer rod technique is crack or 

defect detection. In this measurement, some of the cracks may be located in narrow 

places which are hard to be reached by the examiner. Such problem can be overcome 

with the aid of a buffer rod. Figure 1-9 shows the application of a buffer rod in a narrow 

place in the middle of a material. Take note that the pulse-echo measurement is usually 

used where one end of the buffer rod is applied with the conventional ultrasonic 

transducer (UT) while the other end is contacts the samples directly. For a sufficient 

transmission of the ultrasonic waves from the buffer rod into the die, a couplant is used 

between the buffer rod and the die. It is noted that a longer rod leads to wave attenuation 

along the rod; therefore, the selection of rod material is important [51]. From the buffer 

rod, the ultrasonic waves that are generated by the ultrasonic transducer are transmitted 

into the material. Take note that the material for both buffer rod and the material are 

preferably to be the same, so that the impedance mismatch is small. Therefore, almost 

all the ultrasonic waves will be transmitted into the material efficiently. As the 

ultrasonic wave reached the end of the material, due to the impedance mismatch 

between the material and its surrounding (air), it is reflected at a normal angle and will 

be received at the UT. However, if the ultrasonic wave arrived at any cracks that are 

within the axial direction of the buffer rod, such wave will then be reflected at received 

at the UT. Take note that the reflected wave from the crack surface will arrive first at the 

UT rather than the reflected wave from the end surface of the material. The location of 

the crack can also be calculated if the thickness of the material is known.   
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In order to measure the material properties while the material is being heated, a buffer 

rod is applied as the waveguide with a conventional piezoelectric UT. Although it has 

been mentioned that the high temperature UT is commercially available, but due to 

some limitations, the use of the conventional type of UT with a buffer rod is preferable. 

Figure 1-10 shows how a buffer rod is employed at one end of the material while it is 

heated. Such measurement, which is in a pulse-echo mode, is possible to be conducted 

without damaging the conventional UT that can only withstand up to 50oC.  

 

 

 

Figure 1-9: Crack detection in a narrow place of a material using a buffer rod

Figure 1-10: Measuring a heated material using a buffer rod
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Since it is very attractive fact that the buffer rod technique is applicable for measuring 

the material properties at high temperature, it is widely applied in many industrial 

processes such as die casting [25,26], polymer extrusion [27-36], molten metals [37-44], 

particle detection [45-47] and injection molding [48-50]. However, in such industrial 

processes, the operating temperature is very high around ~700oC. Therefore, a cooling 

system is usually installed near the UT. Such cooling system which is aided by water or 

air is usually installed with coils. Figure 1-11 shows a buffer rod that is installed with a 

cooling system. With such cooling system, the application of buffer rod at high 

temperature is more reliable.  
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Figure 1-11: Buffer rod with a cooling system for high temperature applications
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The application of buffer rod in industrial processes such as die casting and particle 

detection in molten aluminum is presented. In die casting, it is hard to measure the 

molten metal in a die that consists of several layers of steel. Such layers make the 

pulse-echo measurement complicated where the ultrasonic waves will be reflected at the 

boundary of different media [33]. Therefore, the buffer rod technique is the appropriate 

solution for such measurement since it can be attached directly onto external surface or 

even mounted in the die. In addition, the solidification process of a cast metal can be 

measured with the buffer rod technique. Solidification is the stage where the molten 

metal that is subjected into a mold is fully solidifies. With the aid of the buffer rod, the 

time when the metal has fully solidified can be measured by the buffer rod. Figure 1-12 

shows the stages for detecting the solidification of a metal [26]. From the top image of 

Figure 1-12, no molten metal is filled between the dies, therefore, such gap between the 

two dies is called cavity. Since the acoustic impedance between the buffer rod and air 

(cavity) is huge, almost all the ultrasonic waves that are generated by the UT will be 

reflected back to the UT. However, as the molten metal fills in the die, due to small 

impedance mismatch between the buffer rod and the molten metal, the ultrasonic waves 

are transmitted into the molten metal, as shown by the middle image. Therefore, only 

small amount of the ultrasonic waves will be reflected at the interface between the end 

of the buffer rod that is in contact with the molten metal and the molten metal. That 

means, only weak signal will be received at the UT. After the cast metal has fully 

solidified, it will shrink where such shrinkage results to the formation of cavities 

between the cast metal and the surface of the two dies. Therefore, the ultrasonic wave 

will be reflected due to such cavity where such reflected wave indicates that the cast 

metal has been solidified, as shown by the last image in Figure 1-12. In molten metal 

industries, the cleanliness of a molten particle is very important since many unwanted 

impurities or particles are presented. By using such buffer rod with a cooling system as 

shown in Figure 1-11, a buffer rod is immersed into a container containing molten metal. 

The buffer rod is clamped by a jig outside of the container. The measurement mode is in 

pulse-echo since only one UT is installed. It has been reported that when two buffer 

rods are used for detecting the particles in a molten metal, it is called as a pitch-catch 

mode [41].  
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Figure 1-12: Monitoring a solidification process using a buffer rod.
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Although buffer rod technique is well known for its simplicity, robustness and fast 

response, this technique is commonly associated with the generation of spurious echo 

(also known as trailing echoes) that are generated due to wave diffraction and mode 

conversion within a rod having finite diameter.  

 

 

 

Figure 1-13: Particle detection in a molten metal using a buffer rod
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1.8 Generation of trailing echoes by buffer rod 

Buffer rod technique is commonly associated with the generation of spurious echo (also 

known as trailing echoes) that is generated due to wave diffraction and mode conversion 

within a rod having finite diameter. Figure 1-14 shows such generation that is clearly 

observed between the first echo and second echo. Such generation is unwanted due to 

possible overlapping with the first echo and deteriorates the signal-to-noise ratio (SNR). 

There are several methods to reduce such generation such as taper and cladding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8.1 Threading effect 

Threading is basically a screwed surface that is fabricated onto the outer surface of the 

uniform rod, as shown by Figure 1-15. The function of threading is to disturb the mode 

conversion that occurred at the rod-air boundary. By such disturbance, the mode 

converted shear waves will be out of phase, therefore, the UT will not detect the 

generated trailing echoes.  

 

Figure 1-14: Generation of trailing echoes between the first and second echoes
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1.8.2 Tapering effect 

Taper is defined by reducing the diameter of one or both ends of the buffer rod so that it 

disturbs the rod periphery. Figure 1-16 shows a taper buffer rod where one end rod has a 

smaller diameter than the other end rod. The difference between these two diameters is 

defined by the taper angle, . Such angle prevents the detection of trailing echoes at the 

ultrasonic transducer since the echoes are not in phase [14-16]. The larger the tapering 

angle, the better the SNR of the received signal. However, such approach requires 

bigger diameter of buffer rods and will not be practical for the applications at narrow 

places. It was found that taper angle of 1o is adequate for reducing trailing echoes [14]. 

In addition, double taper was found to be better than the single taper since it has the 

advantage of small access and small thermal mass which makes the cooling process 

efficient [3,14,23].  

 

 

 

 

 

 

 

 

 

Taper angle, 

Figure 1-16: A taper cylindrical buffer rod 

Figure 1-15: A threaded uniform cylindrical buffer rod 
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1.8.3 Cladding effect 

Although tapered buffer rods with short length and thick diameter are proven to reduce 

the trailing echoes effectively, however, such rods are difficult to apply for the 

production monitoring where the buffer rods should be mounted. Such mounting will 

disturb the rod periphery and weakens the measured signals [14]. Therefore, the use of 

cladding is widely applied on uniform or taper buffer rod. Cladding is introduced by 

applying another layer on the outer surface of the rod except the end surfaces of the rod. 

Figure 1-17 shows a schematic of a clad cylindrical buffer rod. Thermal spray and 

electroplating are some of the methods to produce the cladding layer [18]. It is noted 

that thermal spray produces a porous state of cladding layer that enhances the dispersion 

of trailing echoes into the cladding layer; therefore thin layer of cladding is possible 

[1,13,19]. The function of cladding is to guide the ultrasonic waves in the core so that 

strong signal can be maintained throughout the measurement [1,11,20] Although the 

mode conversion still occur, the propagation of the generated trailing echoes is on the 

interface between the core and the clad. Therefore, the trailing echoes will not be 

received at UT and great SNR is obtained. In order to achieve such performance of clad 

buffer rods, the velocity of clad should be higher than that of core.  

 

 

The selection of clad material depends on the core material so that the energy of the 

ultrasonic waves is strongly confined in the core.  

The benefits of cladding are: 

1) High performance where the trailing echoes are greatly reduced 

2) High amplitude of the desired signal 

3) Can be applied in transmission or reflection measuring mode 

4) Low ultrasonic loss since the ultrasonic waves are properly guided in the 

core 

5) Machinable where metals are usually used as the cladding layer 

6) No energy loss during immersion in molten metal 

7) Additional layer of cladding is possible for mounting purpose 
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1.8.4 Other methods to reduce trailing echoes 

Besides taper and cladding, the SNR can be improved by introducing a focused lens at 

one end of buffer rod. By using such rods, the ultrasonic waves can be focused onto 

small area of about one wavelength [19]. Figure 1-18 shows a double taper clad buffer 

rod where one of the end rod has a spherical concave ultrasonic lens. Although long 

buffer rods are commonly used where such length leads to wave attenuation, it was 

found that the resolution of the received image in ultrasonic imaging is still adequate. 

Such focused buffer rod is also able to monitor the alumina particles with the size of 

160 m suspended in molten aluminum successfully. Another approach of making a 

focused buffer rod is by introducing a conical tip with the angle of 45o as shown by 

Figure 1-19, so that the trapping of air bubbles on the tip surface during the immersion 

of sample is prevented [21,22,24]. Such angle is also ensures all the reflected waves (the 

direction of such waves is depicted by arrows) are received in phase at the transducer, 

thus forming a strong amplitude signal [25].  

 

 

 

 

 

 

 

 

 

Figure 1-17: A clad cylindrical buffer rod 

Taper angle, 

Focused lens
Figure 1-18: A double taper cylindrical buffer rod with one focused lens 
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1.9 Problem statements 

1) Based on the discussion made on laser ultrasound, electromagnetic acoustic 

transducer, high temperature ultrasonic transducer and buffer technique, it is noted that 

each technique has its own benefits and limitations. In this work, the buffer rod is 

chosen as the measuring tool due to its fast response, simplicity, cost effective (in terms 

of the experimental setups), robustness, safety and strong signal. 

2) Although the trailing echoes can be reduced by using the tapering or cladding effects, 

the fabrication and machining process of these methods on the buffer rods may be 

difficult for some materials that are hard to machine and brittle.  

3) In addition, although the cladding effect seems promising for reducing the trailing 

echoes significantly, very few works have been conducted on finding the appropriate 

Figure 1-19: A buffer rod with a conical tip of 45o.

45o

Buffer rod
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condition for a cladding layer. Such condition is very important for the future use so that 

the optimum clad buffer rod with high SNR can be designed and fabricated.  

 

1.10 Objectives of research 

1) To reduce trailing echoes and improve the signal-to-noise ratio (SNR) so that strong 

signal can be obtained from any ultrasonic measurements. 

2) To propose geometrical shapes as the cross-sectional shapes of the buffer rods since 

the current methods such as threading, tapering and cladding only focus on the outer 

surface of a cylindrical buffer rod. In this work, the geometrical shapes are polygons.  

3) To investigate the appropriate condition of a cladding layer since less work has been 

reported on investigating the optimum condition for such layer.  

 

1.11 Construction of thesis 

Chapter 1 

In chapter 1, the fundamentals of ultrasound are presented. Also this chapter reviews the 

literature study and related works on ultrasonic pulse-echo technique. In addition, some 

applications of buffer rod method in the pulse-echo measurements and some problems 

of using the buffer rod are described extensively. Based on such background, the scope 

of the present study is addressed. 

 

Chapter 2 

In chapter 2, the generation of trailing echoes in a cylindrical buffer rod is numerically 

and experimentally investigated. Such generation is verified from the numerical 

simulation where a three-dimensional finite difference method is employed. It is found 

that the generation of trailing echoes can be illustrated from the cross-sectional shape 

itself. A trailing echo can be generated when the mode converted shear waves propagate 

to the side wall of the rod perpendicularly and constructive interferences between the 

waves occur effectively. Thus, the generation mechanism of such trailing echoes is 

theoretically described. In addition, the validity and effectiveness of using the numerical 

simulation has been demonstrated experimentally. 
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Chapter 3 

In chapter 3, the cladding effect to reduce the trailing echo is examined numerically. It is 

found that the SNR changes drastically with the material combination for the cladding 

and core and the highest SNR is appeared when the velocity and density of the cladding 

are approximately 120% and 70% of the core, respectively. It should be noted that an 

appropriate SNR is obtained when the velocity of cladding is approximately 110% of 

the core regardless of the density value of the cladding on the condition that the density 

value is within the range from 75% to 150% of the core. This fact obtained here could 

be useful for reducing trailing echoes that are appeared in polygonal buffer rods 

developed in this work. 

 

Chapter 4 

In chapter 4, polygonal buffer rods have been proposed to reduce the trailing echoes and 

result in improving the SNR in ultrasonic pulse-echo measurements. The idea is 

basically to use a polygonal rod whose normal sectional shape is a polygon such as a 

triangle, square, pentagon, hexagon or heptagon. The effectiveness of such polygonal 

rods is examined numerically and experimentally. It is found from a three-dimensional 

sides any one of which is not parallel to any of the other sides, such as triangle, 

pentagon and heptagon, are effective to reduce the trailing echoes, because of less 

interferences among the mode converted waves in the rod. It should be noted that there 

still exist a certain amount of trailing echoes even in the odd polygonal rods where such 

trailing echoes are generated by the possible interference of the waves due to the 

bilateral symmetry shape of the odd polygons. 

 

Chapter 5 

In chapter 5, to eliminate such remaining trailing echoes existing in the odd polygonal 

rods, an effective idea of using irregular polygons is proposed. Because the symmetry 

shape of the polygons results in generating trailing echoes, such generation can be 

prevented by distorting the half side of a polygon. The effectiveness of such irregular 

polygonal buffer rods on restraining the generation of trailing echoes is numerically and 
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experimentally investigated. It is found that the trailing echoes are almost completely 

eliminated with the irregular pentagon and the SNR of the pulse-echo is approximately 

five times higher than the regular pentagon. 

 

Chapter 6 

General conclusions and future prospects of the research are summarized in chapter 6. It 

is highly believed that the proposed method; polygonal buffer rods are effective to 

reduce the trailing echoes and improve the SNR. The mechanism presented in this work 

is also beneficial for designing the optimum buffer rod with high SNR.  
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1.12 Conclusions 

1) The existing methods to reduce the trailing echoes and improve the signal-to-noise 

ratio (SNR) such as threading, tapering and cladding are proven to be effective. 

However, all of these methods only focus on the external surface of the buffer rod rather 

than the cross-sectional shape itself. In addition, such existing methods have their own 

disadvantages such as machining (threading and tapering) and material selection 

(cladding).  

 

2) New idea which focuses on the cross-sectional shape is proposed in this work. Since 

the common buffer rod is in the shape of a cylindrical buffer rod where the 

cross-sectional shape is in the shape of a circle, such circle is changed to a geometrical 

shape which is a polygon.  
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Chapter 2 
 
Generation of Trailing Echoes in a 

Cylindrical Buffer Rod  
 
 
 

It is known that trailing echoes are often generated in a long cylindrical buffer 

rod due to diffraction and mode conversion of waves along the rod having a finite 

diameter. In order to understand such generation, in this chapter, the generation of 

trailing echoes in a cylindrical buffer rod is examined by a numerical simulation based 

on a finite difference method. The mechanism to generate a trailing echo in a cylindrical 

buffer rod is presented. The validity of the simulation results is then verified with 

experiment. 
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2.1 Mechanism to generate trailing echoes  

It is known that trailing echoes are often generated with long cylindrical buffer rods 

where such generation is due to wave diffraction and mode conversion of waves along a 

finite diameter of rods [2-15].  

 

2.1.1 Wave diffraction 

Wave diffraction is the bending of waves around obstacles and openings. There are two 

principles in wave diffractions; axial pressure profile and polar coordinate 

diffraction-type presentation. In this work, the first principle which is the axial pressure 

profile is used in this work. This is because of the pressure subjected on the rod by the 

transducer that is located at the center of the cross-sectional shape of buffer rod. In 

addition, this principle is correlated with the mechanism of the first principle where the 

pressure is emitted from the center line of the transducer. The definition of axial 

pressure profile is the diffraction plots the maximum pressure of an ultrasonic waveform 

as a function of the axial coordinate emanating from the center line of a transducer. 

Since the diffraction occurs at any obstacles or openings, which means the waves are 

diffracted from the edge of a transducer, as shown by Figure 2-1. The ultrasonic 

transducer is located at the center of the cross-sectional shape. There are two types of 

waves generated from the ultrasonic transducer (source) which are edge wave and plane 

wave, respectively. The plane wave propagates along the axial direction of the buffer 

while the edge wave propagates to the side wall of the rod at oblique angle. The plane 

wave is the fastest to be reflected at the rod end and received at the source compared to 

edge wave.  

 

2.1.2 Mode conversion 

The second stage for generating a trailing echo is mode conversion. The mode 

conversion means that a wave changes its type from longitudinal to shear waves and 

vice versa when it reached a rod boundary due to the acoustic impedance mismatch. The 

angle for such conversion can be calculated from Snell s Law, if the incident angle for 

the longitudinal wave and velocity for both medium are known. Figure 2-2 shows the 
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mode conversion between two medium.. The angle for such conversion is shown by 

Equation 2.1, 

 

                  (2.1) 

  

where VL and VS are longitudinal wave velocity and shear wave velocity, respectively. 

As shown in Fig 2-22, the reflected angle for S1 is smaller than that of L1. This is 

because shear waves travel slower than longitudinal waves. 
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Figure 2-1: Wave diffraction where two types of waves are generated from the 
ultrasonic transducer.  

Figure 2-2: Mode conversion between two mediums. 
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2.1.3 Mechanism to generate trailing echoes in a cylindrical buffer rod 

Figure 2-3 shows the mechanism to generate the first and second trailing echoes for a 

cylindrical buffer rod from side view (top figure) and cross-sectional view (bottom 

figures), where UT, L and S are ultrasonic transducer, longitudinal wave and shear wave, 

respectively. The UT which is located at the center of the cross-sectional shape is a 

longitudinal type and the number (0,1,2..) for each wave denotes the number of 

reflection and mode conversion of waves, i.e., the first reflected longitudinal wave is 

depicted as L1. From the source (UT), a pair of longitudinal waves (L0) with critical 

incident angle ( c) propagates to the rod boundary separately and each L0 is reflected to 

L1. Such oblique propagation is due to the wave diffraction where L0 is an edge wave. 

Due to such critical angle, the reflected angle for both L1 is 90o. It is noted that there are 

many incident angles of L0 emitted by the UT, however, in order for a UT to receive a 

wave, the wave direction must be in a perpendicular direction to the UT. During the 

reflection of L0 to L1, L0 is also partially converted to shear wave (S1) due to mode 

conversion. As shown in Figure 2-3, the reflected angle for S1 is smaller than that of L1. 

This is because shear waves travel slower than longitudinal waves. It is noted that the 

angle for such conversion is calculated by Snell s Law. Each of S1 is then propagates to 

their opposite rod boundary and converted again to L2. The propagation of S1 to its 

opposite rod boundary is depicted in the first and second figures from left in the 

cross-sectional view of Figure 2-3. It is observed that both S1 are parallel to each other 

and propagate to the side wall of the rod perpendicularly. Such parallelism and the 

arrival of S1 perpendicular to the rod boundary (from cross-sectional view) result to the 

conversion of S1 to L2, where the propagation of L2 is perpendicular to UT. Such 

perpendicular direction will then interfere at UT and generate an echo. Such echo can be 

either main echoes or trailing echoes. These echoes (main and trailing echoes) can be 

distinguished by their time delay. The same mechanism is also true for generating the 

second trailing echoes where L3 arrived at UT in a perpendicular direction. Therefore, 

from the cross-sectional view, a trailing echo can be generated if the mode converted 

shear waves propagate to the side wall of the rod perpendicularly. In addition, in order 

to generate a trailing echo, three stages are involved; wave diffraction, mode conversion 
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and interference at UT. In order to verify the mechanism, a cylindrical buffer rod is 

numerically investigated.  

 

 

 

 

 

 

 

 

 

2.2 Three-dimensional numerical simulation 

In this work, a commercially available three-dimensional numerical simulation based on 

a finite difference analysis called Wave3000 from CyberLogic, Inc. (New York) is used 

to investigate the behavior of ultrasonic waves propagating in any 3D objects. This 

software uses a three-dimensional isotropic model made by a discrete grid [20]. 

Equation 2.2 shows a hyperbolic partial differential equation for the general wave 

equation with a constant wave velocity, c.  

 

 

Figure 2-3: Mechanism to generate the first and second trailing echoes for a 
cylindrical buffer rod, from the side view (top figure) and cross-sectional view 
(bottom figures), respectively.  

L1
L0

UT

L1

c

0

L3

L3

L2
S2

S2
L2

S1

S1



Chapter 2: Generation of Trailing Echoes in a Cylindrical Buffer Rod 

     (2.2) 
 

 

If the simulation is in two-dimensional (2D), there are two different axis which are x 

and y where; 

 =                 (2.3)     

 

But since the finite difference method is in three-dimensional simulation, an additional 

axis which is z is added where;  

 

 =  +               (2.4)     

 

In an isotropic medium, the elastic wave equation in 3D is shown by Equation 2.5 

where  and  are the Lame parameters,  is the density, f is the source function of the 

driving force and w is the displacement vector [21].  

 

  (2.5) 

 

 

The divergence operator, ( .w) shown in Equation 2.5 can be elaborated as shown 

in Equation 2.6.  

 

 

       (2.6) 
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For longitudinal waves, the propagation direction is assumed to be along the z-axis, 

which is the axial direction of the rod. The equation (Equation 2.2) is used to calculate 

the displacements of ux, uy and uz at each spatial grid point at every time step that the 

user defined. Such displacements at each spatial grid point also occur under the 

boundary conditions at every interface that impose continuity of stresses and 

displacements. The wave behavior such as propagation motions for both longitudinal 

and shear waves in the medium can be obtained at every time step, as long as the 

stability requirement for the finite difference equations is satisfied. In order to make a 

stable calculation, the time step was chosen according to the von Neumann stability 

equation, as shown by Equation 2.7, where VL, VS and  are the longitudinal wave 

velocity, shear wave velocity and grid spacing, respectively. The grid spacing,  should 

be smaller than the shortest wavelength related to the highest frequency in the pulse and 

the lowest wave velocity in the medium, so that the sufficient accuracy in the 

calculation can be achieved.  

 

 

-
      (2.7) 

 

 

2.2.1 Three-dimensional simulation model 

In order to create such 3D objects, there are several shape commands that are provided 

in Wave3000 such as block, cylinder or ellipsoid. However, since the 3D objects are 

polygonal buffer rods, it is a time consuming process to create such buffer rods using 

these shape commands. In order to overcome such problem, another command in 

Wave3000 is used to create the 3D models for the polygonal buffer rods where such 

command is Create 3D object by slices . This command allows the user to create any 

3D model from a set of 2D slices or images in the file format of PCX, DICOM or RAW. 

These 2D slices or images will be transferred and defined as 3D models in Wave3000. 

In this work, PCX file format is used for the 2D image since such file format is 

commonly available in any graphic software. In order to create the 2D slices, 
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commercially available graphic software called CorelDRAW Graphic Suite X4 is used. 

Take note that in this work, the length of the buffer rod is 100 mm. Therefore, in order 

to design an adequate rod, the diameter of the circle is 20 mm. That means that the area 

of the designed circle is 314 mm2. The circle is then export as PCX type so that it can be 

run in Wave3000. By using the Create 3D object by slices  command, since the 

resolution is 10 voxel/mm and the rod length is 100 mm, the value for the slice 

thickness is set to be 1000. The current file format which is in 2D image is changed to 

WHF when it is in 3D object. The material for the 3D cylindrical buffer rod is defined 

as mild steel. During defining the material for a 3D object, the material properties such 

as density, longitudinal wave velocity, shear wave velocity, wavelength, acoustic 

impedance and others are given. The longitudinal velocity, shear velocity and density 

for mild steel are 5900 m/s, 3200 m/s and 7800 kg/m3, respectively. The values for each 

parameter (material properties) can be changed since the values for density,  (kg/m3), 

lambda,  (MPa) and influence the material properties. In this simulations, 

the lambda,  is defined as the 1st Lame constant while mu,  is defined as the 2nd Lame 

constant. These two constants are the variables used to calculate the material properties 

such as Young s Modulus, Poisson s ratio, bulk modulus, longitudinal velocity and shear 

velocity of the 3D objects. The equation for each material property is presented below. 

 

 

Young s modulus =            (2.8) 

 

Poisson s ratio =        (2.9) 

 

Bulk Modulus =                (2.10) 

 

Longitudinal wave velocity =      (2.11) 
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Shear wave velocity =      (2.12) 

  

The value for lamba,  and mu,  can also be calculated where the equations are: 

 

       (2.13) 

 

 =        (2.14) 

 

Take note that the range of the gray level is 0 to 255, where 255 is defined as vacuum. It 

is observed that the 3D model changed its color to red when the gray level is defined as 

178. Therefore, such value depends on which gray color that has been defined during 

creating the 2D image. In order to transmit ultrasonic waves into the 3D model, an 

ultrasonic transducer (UT) is defined at one end of the rod. The location for the UT is 

defined by the center of mass of the cross-sectional shape. Since the center of mass for a 

circle is at the center, the offset values for x-axis (H center offset) and y-axis (V center 

offset) are set at 0 (zero). Take note that in this work, the UT diameter is 6.35 mm; 

therefore, the UT radius is set to 3.175 mm. The UT type is defined as a Sine Gaussian 

longitudinal and the measurement type is in pulse-echo mode. Such measurement mode 

means that only UT will be used that act as a transmitter and also a receiver. By clicking 

the time function for the Sine Gaussian pulse, the waveform can be defined by defining 

the values for duration, amplitude, frequency and time constant a , respectively. In this 

simulation, the equation for the Sine Gaussian is given by: 

 

 

 

           (2.15) 
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Take note that the time constant, a is inversely proportional to the bandwidth. That 

means by decreasing the time constant, the bandwidth will be increased. In this work, 

the value for duration, amplitude, frequency and time constant are 0.6 s, 1, 5 MHz and 

0.15 s. Such values are chosen so that the waveform is almost similar with the 

waveform that is expected to be obtained in the experimental works. Figure 2-4 shows 

the waveform of the Sin Gaussian Pulse that is defined by these values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the output parameters for the pulse-echo measurement are defined in the 

Receiver Configuration  section where the user can choose which types of wave as the 

output. In this work, the output type of wave is chosen as longitudinal wave. The 

measurement data is then saved in txt. file format. Finally, the parameters such as 

frequency, wavelength, simulation time and others are manually defined in the Job 

Parameter  section in the software. The frequency is defined by the operating frequency 

of the UT that the user used. The value of resolving wavelength is chosen based on the 

lowest velocity in the pulse. That means the value for the resolving wavelength must be 

lower than the wavelength for the shear velocity. The wave propagation can also be 

Figure 2-4: Waveform for the Sine-Gaussian Pulse. 
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recorded using the Save Image Frequency  function. However, take note that since the 

3D model takes a huge computational time, a huge memory size is needed for such 

recording function. Therefore, in this work, free recording software called CamStudio, 

is used to record the wave propagation. Before running the simulation, the parameters 

and values that have been defined for the 3D model is checked. In this work, since the 

mode resolution and the resolving wavelength are 10 voxel/mm and 0.6 mm, 

respectively, the grit size for each axis (x, y and z) is given. Since there are 10 voxels 

for every 1 mm, that means the length for each grit 0.06 mm. The total grit for each axis 

is 10 times from the defined length. That means when the diameter of rod is defined as 

20 mm, it means that there are 200 voxels in such diameter. The total step is 0.9, based 

on equation 2.3 where such time step gives the value of the total step of 13084. For 

grid/voxel, if the value is more than 1, it means that the calculation is more accurate 

where additional grid is added into the calculation so that the simulation process is 

smoother, rather than that when the value of the grid /voxel is less than 1. The value of 

grid/voxel can simply calculated by resolution/wavelength. In addition, the user can also 

view their 3D model by View   3D Viewer  during and after the simulation. The 

simulation is conducted using a 64-bit workstation with multi-core Intel ® Xeon ® 2.4 

GHz processors and 28 GB RAM (Precision T7500, Dell, Austin, Texas).  

 

2.2.2 Simulation results and discussion 

Figure 2-5 shows the simulated waveform for a cylindrical buffer rod where the 

formation of the first, second and third trailing echoes depicted as TE1, TE2 and TE3 

are clearly observed between the first echo (E1) and second echo (E2). In this work, in 

order to measure the performance of buffer rods, SNR is used where it is defined as a 

ratio of the amplitude of the first echo (E1) relative to that of the largest trailing echoes 

accompanying the main echo: SNR = A0/A1 [5, 16,17]. Poor value of SNR is obtained 

due to big amplitude of the first trailing echo (TE1). Since the numerical simulation is 

carried out in three-dimensional, the wave propagation studies are possible from the 

side view and the cross-section view of the simulation model. Figure 2-6 shows the 

captured images of one round-trip of ultrasonic pulsed echo propagating through the 

100 mm length cylindrical buffer rods, from side view (top image) and cross-section 
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view (bottom images), respectively. The brighter in the image means the higher 

amplitude in the ultrasonic waves. From the side view, the desired signals such as first 

echo and trailing echoes can be identified by the bright lines that are almost parallel to 

the UT surface, depending on the time delay. Therefore, from left, the first, second and 

third bright lines are identified as E1, TE1 and TE2, respectively. Meanwhile from the 

cross-section view, the desired signals such as main echo and trailing echoes are 

identified by the bright cross-section. Based on the simulation results, the mechanism to 

generate such trailing echoes in cylindrical buffer rods has been verified. In order to 

confirm the validity of the simulation results, experiment is conducted on a 100mm 

length cylindrical buffer rod using the same condition used in the simulation. 

 

2.3 Experiment 

2.3.1 Experimental setup 

The experimental setup is shown in Figure 2-7 where the buffer rod is connected to the 

pulser receiver. It is observed that a layer of couplant (usually liquid type) is employed 

between the ultrasonic transducer and the end of one rod. The pulser receiver is 

connected with a computer for displaying and analyzing the received signals. A steel 

(S45C) cylindrical buffer rod having the same dimension as the three-dimensional 

cylindrical simulation model is fabricated. Figure 2-8 shows the fabricated buffer rod 

having the rod length of 100 mm and rod diameter of 20 mm. The fabricated cylindrical 

buffer rod is paired with a longitudinal UT as shown in Figure 2-9. The operating 

frequency and diameter of UT are 5 MHz and 6.35 mm, respectively. Since the 

measurement is a pulse-echo mode, only one transducer is used for transmitting and 

receiving the ultrasonic pulsed waves. Although it has been reported that diameter of 

UT should be 75% of diameter rod, the tendency of trailing echo does not change 

drastically as long as the size of UT is smaller than the rod so that all energy can be 

launched and coupled out of the core efficiently [10]. Operating frequency of 5MHz is 

chosen due to its efficiency and acceptable loss (in terms of attenuation) in the probed 

parts [18].  
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Figure 2-5: Simulated waveform for the 100 mm length cylindrical buffer rod 

Figure 2-6: Captured images of one-round trip ultrasonic pulsed echo propagating 
through the 100mm length cylindrical buffer rod, from side view (top image) and 
cross0section view (bottom images), respectively.
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Figure 2-7: Experimental set-up for a pulse-echo measurement with a buffer rod 

Figure 2-8: 100 mm length cylindrical buffer rod
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The couplant which was not defined in the numerical simulation is applied between the 

UT and one end of the rod. In order to eliminate the influence of gripping on buffer rods 

during the pulse-echo measurement, a jig is used to hold the buffer rod, as shown in 

Figure 2-10. Such approach is to prevent any energy loss where the ultrasonic pulsed 

waves may be transferred into the hand grip of the examiner. Besides that, the pressure 

subjected by the transducer on the surface of rod is constant. Next, the ultrasonic 

transducer is connected to a pulser-receiver (Olympus 5073PR) as shown in Figure 2-11. 

In order to receive the ultrasonic pulse waves, the pulser-receiver is connected to a 

computer where the LabView program is used to analyze the received signals, as shown 

in Figure 2-21. The received signals are then saved in an Excel file format. By using the 

LabView program, several precise measurements such as distance, velocity can be 

calculated on the received signal using the cross-correlation method [19].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9: A longitudinal ultrasonic transducer with operating frequency of 5MHz
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Figure 2-11: Pulser-receiver 

Figure 2-10: Buffer rod is attached on a jig
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2.3.2 Experiment results and discussion 

The measured signal of a 100 mm length cylindrical buffer rod is shown in Figure 2-12. 

It can be seen that the wave shows a similar behavior in terms of main echoes and 

trailing echoes as the simulations result. Although the tendency of wave behavior 

including trailing echoes for the measured waveform is similar with that of simulated 

waveform, there are some discrepancies on the amplitude of signals. It has been 

reported that such difference of amplitude may due to the noise distributions that do not 

implemented in the simulation condition, misalignment of the rod geometry during the 

fabrication process, generation of noise between the piezoelectric element in the UT and 

buffer rod and some noise error generated in the measuring system [6]. However, these 

factors did not give a significant effect on the measured waveform since the measured 

signal is clearer than that of simulated signal. Therefore, it is believed that the 

discrepancies of amplitude between the measured and simulated waveforms may be 

influenced by the voxels of the simulation model. It is noted that a simulation model has 

even and inclined surfaces, depending on the cross-sectional shape. In order to create a 

three-dimensional model, the voxels are meshed in rows and columns based on the 

three-dimensional Cartesian coordinate system (x-axis, y-axis and z-axis). Since the 

shape of a voxel is a cube, the inclined surfaces of a simulation model are not smooth 

and may result to diffuse reflection, as shown by Figure 2-13. Such reflection may 

affect the amplitudes of the reflected waves since specular reflection does not occur on 

such rough surfaces. However, the tendency of the wave propagations including trailing 

echoes is similar for both simulation and experimental works; therefore, it is noteworthy 

to say that the simulation works was carried out appropriately.  
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Figure 2-12: Measured waveform for the 100 mm length cylindrical buffer rod

Figure 2-13: Meshed voxels on the boundary of a circle
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2.4 Conclusions 

The influence of cylindrical buffer rod in generating trailing echoes has been 

investigated numerically and experimentally.  

1) The mechanism to generate trailing echoes is presented. The mechanism for such 

generation is numerically and experimentally investigated. Therefore, the mechanism to 

generate trailing echoes for a cylindrical buffer rod is verified.  

 

2) Based on the wave propagation studies, the generation of trailing echoes can be 

depicted from the cross-sectional shape. From the cross-sectional shape, a trailing echo 

is generated when the parallel mode converted shear waves propagate to the side wall of 

the rod perpendicularly, as shown by Figure 2-14.  

 

 

 

 

 

 

 

 

 

 

3) The trailing echoes are significantly generated in the cylindrical buffer rods due to 

the cross-sectional shapes which is a circle. Since a circle has infinite symmetry axis, 

trailing echo is possible to be generated at any point of the cross-sectional shape 

(circle).  

 

4) In order to overcome or reduce such generation, the cross-sectional shape of a buffer 

rod having no parallel sides should be used. Therefore, the idea of using polygonal 

buffer rods in reducing the trailing echoes will be implemented. The effect of such 

polygonal buffer rods will be numerically and experimentally investigated in the next 

chapter. 

Figure 2-14: Propagation of a pair of parallel mode converted shear waves to the side 
wall of the rod perpendicularly
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In this chapter, the influence of cladding effect on cylindrical buffer rods is presented. 

Cladding is well known for its effectiveness in reducing trailing echoes and improves 

the signal-to-noise ratio (SNR). However, the effectiveness of cladding effect is mostly 

presented in experimental works. In this chapter, the influence of a cladding layer on a 

cylindrical buffer rod is numerically investigated. It is important to obtain an 

appropriate condition for a cladding layer that can prevent the generation of trailing 

echoes completely. It is also believed that the presented work in this chapter is 

beneficial for others to design the optimum clad buffer rod.  
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3.1 Cladding effect 

A clad buffer rod which commonly consists of a core and a cladding layer has been 

experimentally demonstrated that it is capable to reduce the trailing echoes significantly 

[1, 2]. Such clad buffer rod has been applied in many materials and process monitoring 

at high temperature such as die casting process [3], curing process of molten polymer 

[4], material characterization in molten zinc [5], injection molding process [6], online 

monitoring of liquid magnesium [7], particle detection in liquid aluminum [8], molten 

glass measurement [9], plastic forming process monitoring [10], and cleanliness 

evaluation of molten light metals [11]. Therefore, clad buffer rods are proven to be 

capable in providing a desirable pulse-echo measurement at high temperature with high 

SNR. Such high performance of clad buffer rods depends on the core and clad materials 

where trailing echoes are generated due to the difference of the acoustic impedances at 

the interface between the cladding layer and the core of buffer rod [12]. Therefore, in 

this chapter, such combination of core and cladding layer is investigated using 

numerical simulation. It is expected that the new finding on such optimum cladding 

layer could be beneficial for others to fabricate and fabricate the desired clad buffer 

rods.  

 

3.2 Investigate the appropriate cladding layer 

In the beginning stage of this study, a 25 mm cylindrical buffer rod is numerically 

simulated using two-dimensional numerical simulation software that based on a finite 

difference analysis from CyberLogic, Inc. called Wave2000 Pro. Such 2D simulation is 

good enough to simulate the influence of a cladding layer on a cylindrical buffer where 

the result is almost agree with the experimental results [13]. The simulated waveform 

for a 25 mm length cylindrical buffer rod is shown in Figure 3-1 where the SNR is 

clearly deteriorated. Since acoustic impedance is known as the product of density and 

velocity, in this work, such density and velocity of the cladding are changed from 50% 

to 150% of those of the core which is assumed as mild steel. Figure 3-2 shows the 2D 

simulation model of a clad cylindrical buffer rod where the rod length, rod diameter, 

cladding thickness are 25 mm, 5 mm and 2 mm, respectively. Although the size is small 

which a quarter from the previous 100 mm cylindrical buffer rod presented in Chapter 3, 
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it is still possible to examine the influence of acoustic impedances at the interface. The 

ultrasonic transducer (UT) diameter is 1.6 mm and a Gaussian-type longitudinal pulse 

of 5MHz is employed at the center of the cross-sectional shape. The longitudinal wave 

velocity, shear wave velocity and density of the steel core used in the analysis are 5900 

m/s, 3200 m/s, and 7800 kg/m3, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 The influence of velocity of the cladding layer on trailing echoes 

In order to investigate the influence of velocity of the cladding layer on trailing echoes, 

the density for both core and clad are kept constant. That means the density for core and 

clad are 7800 kg/m3, while the velocity of clad is changed from 50% to 150% of the 

core. Figure 3-3 shows the simulation results in captured images of the pulse wave 

propagating through seven kinds of clad buffer rods (left) and the corresponding 

waveforms (right). From the wave propagation images, the bright lines nearest and 

parallel to the UT are the first echo. Due to the difference of acoustic impedance, it is 

observed that the waves are reflected at the interface between core and clad. However, 

Trailing echoes

1st echo

20 5 10 15
Time delay ( s)

2nd echo

SNR = 1.5

Figure 3-1: Simulated waveform for a 25 mm length cylindrical buffer rod 
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such reflection is not observed for the clad layer of Vclad = 100% Vcore since the acoustic 

impedance for both core and cladding are the same, as shown by the fourth captured 

image from top in Figure 3-3. Similar trailing echoes as generated in Fig. 3-2 are 

observed when the velocity of clad is less than that of core. However, when the velocity 

of clad is more than that of core (110% to 150%), almost no significant trailing echoes 

are observed. Such significant reduction is due to the partial conversion of longitudinal 

waves to shear waves at the interface between the core and cladding is restrained so that 

less shear waves causing trailing echoes are generated at the interface [12]. In addition, 

as shown by the simulated waveforms in Figure 3-3, the amplitude, location and number 

of trailing echoes depend on the velocity of waves. Such velocity dependent 

phenomenon of the trailing echoes is related to wave reflection and refraction at the 

interface. The velocity of cladding basically influences the refraction angle in the 

cladding and the amplitude of reflection and refraction waves. Based on previous 

studies regarding the influence of velocity of the cladding layer, faster velocities of clad 

provide better wave guidance for the longitudinal elastic waves in the clad buffer rods 

[12, 14]. The generation of trailing echoes is based on the fundamental of geometrical 

optics and the mode conversion from longitudinal to shear waves at the interface 

between the core and clad. This means that not only the reflected shear wave which is 

mode-converted at the interface but also refracted waves which are transmitted into the 

cladding from the core play an important role in generating the trailing echoes although 

such partial conversion of the waves depends on the incident angle to the interface. In 

general, the refraction angle increases with the velocity of cladding and can be almost 

parallel to the interface when the velocity has a particular value with which the incident 

angle is near a critical angle. In such situation, it is considered that the generation of 

spurious noises is partially restrained owing to a kind of confinement effect of the 

refracted waves to the cladding. Therefore, faster velocities of the cladding layer are 

effective to reduce the trailing echoes. However, faster velocity of clad gives larger 

difference in acoustic impedance between the core and clad. Such large difference may 

leads to bigger amplitude of trailing echoes, as shown by the last captured image in the 

left side of Figure 3-3 where the velocity of clad is more than core by 150%. Thus, 

faster velocity of cladding may not always effective to reduce trailing echoes and 
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optimum value of velocity may exist depending on the material combination of the core 

and clad.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Schematic diagram of the two-dimensional simulation model for a clad 
cylindrical buffer rod. 
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3.4 Finding the optimum property for the cladding layer 

In previous subsection, the influence of velocity of clad on trailing echoes has been 

investigated where the density for core and clad are constant. In order to find the 

optimum property for the cladding layer, the influence of acoustic impedance of a 

cladding layer on SNR is examined for different clad buffer rods. In this work, both the 

density and clad velocity are systematically changed within the range from 50% to 

150% of those of a core. The material for the core is mild steel. Figure 3-4 shows the 

variations of SNR with the clad velocity for various densities. As expected, high SNR is 

obtained when the velocity of clad is faster than that of core. Based on this figure, the 

maximum SNR is obtained when the velocity of clad is 120% and the density of clad is 

70%. In addition, it is observed that the SNR seems to be constant when the velocity of 

clad is 110% that that of the core. In order to investigate such constant values of SNR, 

another graph is plotted where the x-axis and y-axis are density and velocity of clad, 

respectively. Figure 3-5 shows the influence of density of the cladding layer on the SNR 

with various velocities of the cladding layer. Again, as expected, high SNR is obtained 

when the velocity of clad is higher than that of core. In addition, it is interesting to note 

here that a constant value of SNR of 25 is obtained when the velocity of clad is 110% of 

the core. Such plateau is depicted in an oval shape. Such finding is very important and 

beneficial for designing the optimum clad buffer rods because the density is flexible as 

long as the velocity of clad is 110% than that of the core.  
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Figure 3-3: Simulation results showing captured images of pulse wave propagations 
for seven kinds of clad buffer rods (left) and the corresponding final waveforms 
(right) 
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Figure 3-5: Variations of SNR with the density of clad for various velocities of 
cladding 
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3.5 Verifying the validity of the optimum condition for a cladding layer 

Based on Figure 3-4 and Figure 3-5, it is known that the highest SNR is obtained when 

the velocity and density of clad are 120% and 70% than that of the core. In addition, it 

is known that the SNR is improved as long as the clad velocity is higher than that of the 

core. In order to verify the validity of the results obtained in Figure 3-4 and Figure 3-5, 

three cladding materials are chosen where the velocity of each material is higher than 

steel (core). The cladding materials are zirconium oxide, ZrO2, Molybdenum, Mo and 

Titanium, Ti, respectively. The velocity for ZrO2, Mo and Ti are 119%, 107% and 103% 

of core, respectively while the density for ZrO2, Mo and Ti are 73%, 128% and 55% of 

core, respectively. Based on these materials, it is expected that the highest SNR will be 

given by ZrO2 since the material properties (velocity and density) are almost similar 

with the condition that gives the highest SNR in Figure 3-4 where Vclad = 120% Vcore and 

clad = 70% core. Once again, the rod length and cladding thickness are 25 mm and 2 

mm, respectively. The simulated waveforms for such clad buffer rods are shown in 

Figure 3-6. As expected, excellent waveforms with almost no trailing echoes are 

successfully obtained for each cladding material. The SNR is also improved 

tremendously. Therefore, the conditions for a cladding layer presented in Figure 3-4 and 

Figure 3-5 are verified. The SNR for all the simulated waveforms in Figure 3-6 can be 

predicted using Figure 3-4. Figure 3-7 shows the SNR for all the cladding materials 

such as ZrO2, Mo and Ti, respectively. The highest SNR is given by ZrO2, followed by 

Mo and lastly, Ti. Although an optimum condition for a cladding layer is achieved, 

however, the fabrication of a clad buffer rod is sometimes difficult. The common 

methods to fabricate clad cylindrical buffer rods are thermal spray and electroplating. 

However, it is difficult to control the density of the cladding layer since these methods 

will produce a porous layer [1]. However, since a plateau is achieved where high SNR is 

obtained when the density is clad in the range of 70% ~ 150%, the fabrication process 

of a clad buffer rod may be less difficult. However, take note some materials may not in 

such range of density, therefore, the new idea of using polygonal buffer rod is proposed. 

Such idea eliminates the use of taper and cladding since the cross-sectional shape of a 

conventional buffer rod is changed from circle to regular polygons.  
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Figure 3-6: Simulated waveform for a clad cylindrical buffer rod where the core is 
steel while the clad materials are zirconium oxide, ZrO2, Molybdenum, Mo and 
Titanium, Ti, respectively.  
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Figure 3-7: Expected value of SNR for each of the cladding materials such as 
zirconium oxide, ZrO2, Molybdenum, Mo and Titanium, Ti, respectively. 
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3.6 Conclusions 

The appropriate condition for a cladding layer has been investigated. The results 

obtained in this Chapter are summarized as follows: 

1) Based on the simulation results, trailing echoes are reduced when the velocity of clad 

is faster than that of core. It is found that at such velocity, the mode converted waves 

propagate at the interface between the core and cladding layer. Since it is known that 

trailing echoes are generated due to such mode converted waves in the core, such faster 

velocity of clad refrain the mode converted waves to reflect in the core. Therefore, the 

generation of trailing echoes is restrained and the SNR is significantly improved.  

 

2) A plateau of high SNR (approximately 25) when Vclad = 110% Vcore and clad = 

70% ~ 150% of the core. Such finding is beneficial in designing and fabricating an 

optimum clad buffer rod since the density of clad is flexible.  

 

3) Highest SNR is obtained when the cladding condition is Vclad = 120% Vcore and 

clad = 70% core. Take note that faster cladding does not always improve the SNR due 

to huge difference of acoustic impedances between the core and clad.  

 

4) The validity of this investigated is verified with a clad cylindrical buffer rod. Since 

the highest SNR is obtained when Vclad = 1 , 

zirconium oxide (ZrO2) is chosen as the clad material. The velocity and density for 

ZrO2 are 122% and 73% than those of steel. As expected, high SNR is obtained where 

the trailing echoes are almost eliminated. Similar result is expected for other clad 

materials such as Titanium and Molybdenum since their velocities are faster than steel.  

 

5) Although a plateau is achieved when the density of clad is 70% ~ 150% of core, the 

fabrication of clad cylindrical buffer rods that uses thermal spray or electroplating can 

be difficult if the density of clad is less than 70% than that of the core. Such difficulty 

arises due to the porous state of the cladding layer due to such fabrication processes. 

Therefore, the idea of using polygonal buffer rod is proposed where such idea 

eliminates the use of taper and cladding. 
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Reducing Trailing Echoes with 
Regular Polygonal Buffer Rods 

 
 

Previously, the generation of trailing echoes in cylindrical buffer rods has been 

numerically and experimentally investigated. It was found that due to the infinite 

symmetry axis in a circle, infinite interferences will occur among the infinite pairs of the 

parallel mode converted waves and generate trailing echoes. Such generation can be 

restrained if the cross-sectional shapes have no parallel sides. In this chapter, several 

polygon shapes consists of even and odd polygons are proposed. Although the generation 

of trailing echoes is expected for the even polygons, but for the comparison and 

verification purposes, the even polygons are also considered in this study. The 

effectiveness of buffer rods having the cross-sectional shapes of polygons is numerically 

and experimentally investigated. For a fair comparison with the previous cylindrical 

buffer rod, the cross-section area and length for the polygonal buffer rods are constant.  
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(a) (b) (c) (d) (e)

4.1 The proposed regular polygons 

In this study, the proposed polygons are triangle, square, pentagon, hexagon and heptagon, 

as shown in Figure 4-1. These shapes are divided into two categories which are even 

polygons and odd polygons, respectively. The even polygons are square and hexagon 

while the odd polygons are triangle, pentagon and heptagon, respectively. For a fair 

comparison with the previous 100 mm length cylindrical buffer rod, the average area for 

all polygons is 300mm2 ± 5%. Since all the proposed polygons are regular type, therefore 

they are equiangular, equilateral and symmetry in shape.  

 

 

 

 

 

 

 

 

4.2 Even polygons 

The proposed even polygons are square and hexagon. Based on the previous investigation 

on cylindrical buffer rod, the generation of trailing echoes is possible when the 

cross-sectional shapes have parallel sides. Therefore, it is highly expected that buffer rods 

having the cross-sectional shapes of square or hexagon will also generate trailing echoes 

and deteriorate the SNR.  

 

4.2.1 Mechanism to generate trailing echoes in even polygonal buffer rods 

By using the similar approach in investigating the mechanism to generate trailing echoes 

in cylindrical buffer rods as discussed in the previous chapter, the propagation direction 

of longitudinal waves is also assumed to be along the axial direction of the rod and 

normal to the ultrasonic transducer (UT). Therefore, from the cross-sectional view, only 

Figure 4-1: The proposed regular polygons for the cross-sectional shapes of buffer 
rods such (a) triangle, (b) square, (c) pentagon, (d) hexagon and (e) heptagon, 
respectively.
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shear waves can be observed. From the previous chapter, it is also found that the 

generation of trailing echoes can be depicted from the cross-sectional shape itself. 

Therefore, the mechanism to generate trailing echoes for regular polygonal buffer rods is 

presented from the cross-sectional view of regular polygonal buffer rods. Figure 4-2 

shows the mechanism to generate the first trailing echo for a square polygonal buffer rod 

where shear wave is depicted as S and the subscript number for the shear wave means 

that it has been reflected once from the side wall of the rod. From each side of the regular 

square, the first reflected shear waves (S1) propagate to their opposite boundary 

separately. Such propagation is also similar with the cylindrical buffer rod where S1 is 

parallel with each other. Such parallelism is due to the parallel sides in the regular square. 

Thus, all S1 arrived at the side wall of the rod perpendicularly and generate the first 

trailing echo. Similar mechanism is also depicted for the regular hexagon, as shown in 

Figure 4-3. Therefore, even polygonal buffer rods having the cross-sectional shapes of 

square and hexagon are able to generate trailing echoes. Therefore, no improvement of 

SNR is expected for even polygonal buffer rods. 

  

 

 

 
Figure 4-2: Mechanism to generate the first trailing echo for a regular square

S1
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4.3 Odd polygons 

The proposed odd polygons are triangle, pentagon and heptagon. Since none of the odd 

polygons have parallel sides, the generation of trailing echoes is expected to be restrained 

and improve the SNR.  

 

4.3.1 Mechanism to reduce trailing echoes in odd polygonal buffer rods 

Figure 4-4 shows the mechanism to reduce trailing echoes for a regular triangle. From 

each side of the regular triangle, the first reflected shear waves (S1) propagate to their 

opposite rod boundary separately. It is observed that none of the S1 arrived at the side 

wall of the rod perpendicularly; therefore, no trailing echo is generated. Each of S1 is then 

reflected to S2 where unfortunately, the second reflected shear waves (S2) propagate to 

the side wall of the rod perpendicularly and generate the first trailing echo. Take note that 

Figure 4-3: Mechanism to generate the first trailing echo for a regular hexagon

S1
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the reflected angle for S2 is the same as the incident angle for S1. Such arrival is due to 

bilateral symmetry shape of the odd polygons where the wave propagation behaviors 

separated by the symmetry are like a mirror-image. Therefore, it is found that symmetry 

influences the generation of trailing echoes. Similar mechanism is also observed for other 

odd polygons such as pentagon and heptagon, as shown in Figure 4-5 and Figure 4-6, 

respectively. It is also found that the second reflected shear waves (S2) will generate the 

first trailing echoes because the propagation directions of such waves are perpendicular to 

the side wall of the rod. The presented mechanism for all regular polygonal buffer rods is 

then verified using the three-dimensional numerical simulations. 

 

 

 

 

 

 

 

 

Figure 4-4: Mechanism to generate the first trailing echo for a regular triangle

S2S1
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Figure 4-5: Mechanism to generate the first trailing echo for a regular pentagon
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Figure 4-6: Mechanism to generate the first trailing echo for a regular heptagon
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4.4 Three-dimensional simulation on the regular polygonal buffer rods 

The influence of polygons as the cross-sectional shapes of buffer rod is numerically 

investigated using the same simulation conditions used on the 100 mm length steel 

cylindrical buffer rod. The three-dimensional simulation models for all the regular 

polygonal buffer rods are also created by using the slices command presented in Chapter 

2. Figure 4-7 shows the three-dimensional simulation models for all polygonal buffer 

rods. A 5 MHz longitudinal UT with diameter of 6.35 mm is employed at the center of 

mass for each cross-sectional shape.  

 

 

 

 

4.4.1 Simulation results  

The simulated waveforms and the SNR for all polygonal buffer rods are shown in Figure 

4-8(a) and (b), respectively. As expected, the trailing echoes are significantly generated in 

even polygonal buffer rods (square and hexagon) due to the parallel sides. It is found that 

the SNR for the odd polygonal buffer rod is gradually increased from triangle, pentagon 

and heptagon, where such improvement will be discussed in the next section. In addition, 

it is believed that the low amplitudes of trailing echoes generated in odd polygonal buffer 

rods are due to wave attenuation. Since the trailing echoes are generated by the second 

reflected shear waves (S2), the wave propagation path is longer than that of the first 

reflected shear waves (S1).  

Figure 4-7: Three-dimensional simulation model for all polygonal buffer rods
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4.5 Wave propagation studies after the generation of the first echo 

Since three-dimensional numerical simulation is used to investigate the wave propagation 

behavior including trailing echoes in all polygonal buffer rods, the wave propagation 

studies from side view and cross-sectional view are possible. Such wave propagation 

studies are important to verify the mechanism that has been discussed for all the regular 

polygonal buffer rods. Since the mechanism is discussed from the cross-sectional view, 

Figure 4-8: (a) Simulated waveform and (b) the SNR for all polygonal buffer rods. 
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the wave propagation studies will also be presented from such view. Take note that the 

wave propagation studies are carried out after the generation of the first echo.  

 

4.5.1 Even polygon 

The wave propagation after the generation of first echo for the regular square and regular 

hexagon are presented in Figure 4-9 and Figure 4-10, respectively. The generation of the 

first echo is given by the bright cross section as shown by the first captured image from 

left in Figure 4-9 and Figure 4-10, respectively. After the generation of the first echo, it is 

observed that the shear waves (depicted by the bright lines) propagate to the center of the 

cross-sectional shapes. The direction of such waves is found to be perpendicular to the 

rod boundary. Such finding is similar with the mechanism depicted in Figure 4-2 and 

Figure 4-3 for even polygonal buffer rods. Due to such behavior, the wavefronts of the 

waves are parallel to the side wall of the rod. Due to such parallelism, as expected, shear 

waves arrived at their opposite rod boundary perpendicularly, as depicted by the last 

captured image. Such arrival will then generate the first trailing echo. Similar wave 

propagation behavior is also observed for the regular hexagon, as presented by the 

captured images in Figure 4-10. Therefore, the mechanism depicted in the previous 

section is verified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9: Captured images of shear waves starting from the generation of the first 
echo (bright cross-section) until the generation of the first trailing echo, from the 
cross-sectional view of a regular square.
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4.5.2 Odd polygons 

Since the mechanism to generate the first trailing echoes for square and hexagon have 

been verified, it is also expected that the mechanism depicted for the odd polygons as 

shown in Figure 4.4, 4.5 and 4.6 are also true. Figure 4-11 shows the captured images 

during the propagation of shear waves in the regular triangle after the generation of the 

first echo. As expected, none of the first reflected shear waves arrived at the side wall of 

the rod perpendicularly. However, since the first reflected shear waves arrived at the side 

wall of the rod not perpendicularly, they are reflected at the same angle as the incident 

angle. Such reflected waves, known as the second reflected shear waves are 

perpendicular to the side wall of the rod, therefore, the first trailing echo is generated. 

Similar wave propagation behaviors are also observed for the regular pentagon (Figure 

4-12) and the regular heptagon (Figure 4-13) where the second reflected shear waves will 

arrive at the side wall of the rod perpendicularly. The parallelism between the second 

reflection shear waves and the rod boundary for each odd polygon are depicted in oval. 

Therefore, the mechanism depicted for each odd polygonal buffer rod is verified. Noted 

that the shear waves propagate from the inclined surface of a polygon is less bright that 

the shear waves that propagate from the straight surface. It is believed that the voxels on 

the inclined surfaces of a polygon influences such brightness. Since it has been 

Figure 4-10: Captured images of shear waves starting from the generation of the first 
echo (bright cross-section) until the generation of the first trailing echo, from the 
cross-sectional view of a regular hexagon. 



Chapter 4: Reducing Trailing Echoes with Regular Polygonal Buffer Rods 

mentioned in Chapter 2 that these voxels will create an uneven surface on the inclined 

side of a polygon, therefore, a diffuse reflection occurs. Such reflection influences the 

wave energy where the energy will be reflected in a different reflected angle. That means 

although the material is the same, the incident angle is not the same as the reflected angle 

due to the rough surfaces. Therefore, the brightness of the waves that are reflected from 

such inclined surface of a polygon is less than that of from the smooth plane/surface.  

 

4.6 Wave propagation studies from the side view and the cross-sectional view 

4.6.1 Even polygons 

Based on the wave propagation studies that are conducted on all regular polygons, the 

wave propagations with the desired signals such as first echo and trailing echoes are 

presented from the side view and the cross-sectional view. Figure 4-14 shows the 

captured images of one-round trip of ultrasonic pulse echo propagating through (a) square 

buffer rod and (b) hexagon buffer rod. The desired signals such as the first echo and the 

trailing echoes are identified by the bright lines that are parallel to the UT. Since the 

brightness indicates the strength of amplitude, square buffer rod shows a set of brighter 

lines compared to the hexagon buffer rod.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Captured images of shear waves starting from the generation of the first 
echo (bright cross-section) until the generation of the first trailing echo, from the 
cross-sectional view of a regular triangle.
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Figure 4-13: Captured images of shear waves starting from the generation of the first 
echo (bright cross-section) until the generation of the first trailing echo, from the 
cross-sectional view of a regular heptagon.

Figure 4-12: Captured images of shear waves starting from the generation of the first 
echo (bright cross-section) until the generation of the first trailing echo, from the 
cross-sectional view of a regular pentagon.
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Figure 4-14: Desired signals such as the first echo (E1) and trailing echoes (TE) are 
identified by the one-round trip propagation of ultrasonic waves from the side view 
(top image) and cross-sectional view (bottom images) for (a) square buffer rod and (b) 
hexagon buffer rod, respectively.
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4.6.2 Odd polygons 

The wave propagation studies from the side view and cross-sectional view for all odd 

polygonal buffer rods having the cross-sectional shapes of (a) triangle, (b) pentagon and 

(c) heptagon, are presented in Figure 4-15. Similar behavior is also observed for all the 

odd polygons where the brightness of the first trailing echo depicted in the side view and 

cross-sectional view are gradually decreasing, starting from triangle, followed by 

pentagon and finally, heptagon. Such observations corresponded with the simulated 

waveforms shown in Figure 4-8(a) where among the odd polygonal buffer rods, the 

biggest amplitude of the first trailing echo is generated by triangle, followed by pentagon 

and lastly heptagon. Based on the simulation results and the wave propagation studies on 

regular polygonal buffer rods, it can be concluded that the symmetry shape of regular 

polygons influence the generation of trailing echoes. In addition, since the time delay is 

corresponding to the path of the wave propagation, the time delay for the first trailing 

echo for all odd polygonal buffer rods are delayed compared to even polygonal buffer 

rods. This is because the wave propagation of shear waves to generate the first trailing 

echo is longer for odd polygons compared to even polygons. It is noted that the first 

trailing echo for odd polygonal buffer rods are generated by the arrival of the second 

reflection of shear waves. Unlike even polygonal buffer rods, the first trailing echo is 

generated by the first reflection of shear waves. Therefore, the path of the wave 

propagation to generate the first trailing echo is shorter for even polygons compared to 

odd polygons. To verify the simulation results, all regular polygonal buffer rods are 

fabricated.  
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Figure 4-15: Desired signals such as the first echo (E1) and trailing echoes (TE) are 
identified by the one-round trip propagation of ultrasonic waves from the side view 
(top image) and cross-sectional view (bottom images) for (a) triangle buffer rod, (b) 
pentagon buffer rod and (c) heptagon buffer rod, respectively.
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4.7 Experiments on the regular polygonal buffer rods 

Figure 4-16 shows the fabricated regular polygonal buffer rods having different 

cross-sectional shapes such as triangle, square, pentagon, hexagon and heptagon. The rod 

material is steel S45C. For a fair comparison with the simulation results, the rod length 

and cross-sectional area are kept constant. Figure 4-17 shows the measured waveform for 

one-round trip of pulse wave propagating through the 100 mm regular polygonal buffer 

rods. It is found that both waveform and SNR show a similar tendency with the 

simulation results in Figure 4-8(a). Although there are some discrepancies in the 

amplitude of trailing echoes, such difference has been explained in Chapter 3. Therefore, 

the three-dimensional numerical simulation based on a finite difference method has 

successfully simulated the polygonal buffer rods appropriately.  

 

 

Figure 4-16: The fabricated steel (S45C) polygonal buffer rods having different 
cross-sectional shapes such as (from left); triangle, square, pentagon, hexagon and 
heptagon. 
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Figure 4-17: (a) Measured waveform and (b) the SNR for all polygonal buffer rods. 
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4.8 Influence of the polygon shapes on the time arrival of the first trailing echo at 

the ultrasonic transducer  

Based on the simulated waveforms shown in Figure 4.8(s), it is observed that the first 

trailing echoes are generated at different time for all the polygonal buffer rods. Such 

arrival time, which depicted by a dash line is shown in Figure 4.18. Take note that the 

previous cylindrical buffer rod presented in Chapter 2 is also included for the comparison 

purpose on the arrival time of the first trailing echo. Based on the dash line, it is observed 

that the first trailing echo to arrive at UT is the regular square. Therefore, the sequence of 

arrival, from the first to the last to arrive at UT is square, hexagon, circle, triangle, 

pentagon and heptagon, respectively. The mechanism to generate the first trailing echo 

has been discussed in the previous section where a trailing echo is generated when the 

mode converted shear waves arrived at the side wall of the rod perpendicularly. It is 

believed that such wave propagation also influences the generation time of the trailing 

echoes. The longer the path it takes to generate a trailing echo, the longer is the time 

delay (µs). Figure 4.19 shows the comparison of such arrival that is measured in length, l 

(mm), for all the cross-sectional shapes such as circle, triangle, square, pentagon, 

hexagon and heptagon, respectively. It is observed that the shortest path to generate the 

first trailing echo is given by square where the path is 17.7 mm. Based on Figure 4.19, the 

sequence of such path length, from the shortest to the longest, is square, hexagon, circle, 

triangle, pentagon and heptagon. This sequence is found to be correlated with the arrival 

time of the first trailing echo as shown in Figure 4.18. Therefore, it can be concluded that 

the arrival of the first trailing echo can be estimated roughly from the cross-sectional 

shape. However, such estimation is only possible with a reference. In this work, the 

estimation is based on the cylindrical buffer rod where the arrival time for the trailing 

echoes can be calculated since the rod diameter and rod velocity are known [1,2]. Take 

note that the path shown in Figure 4.19 is only for generating the first trailing echo. 

Therefore, the path may not be the same for generating the following trailing echoes such 

as the second trailing echo and the third trailing echo.  
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Figure 4-18: Time arrival of the first trailing echo from the simulated waveform for 

buffer rods the SNR for all polygonal buffer rods. 
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4.9 Influence of regular odd polygons on the amplitude of trailing echoes 

Based on the simulated and measured waveforms of polygonal buffer rods, it can be seen 

that the amplitude of trailing echoes are gradually reduced from triangle, pentagon and 

heptagon. Such reduction improves the SNR where heptagon has the highest SNR 

compared to other odd polygons. It is believed that such improvement is influenced by 

the area of a polygon. Previously, it is known that the trailing echo is generated when the 

mode converted shear waves arrived at the side wall of the rod perpendicularly. Besides 

l = 20 mm l = 22.3 mm l = 17.7 mm

l = 33.7 mm l = 19.1 mm l = 36.8 mm

S2S1

Figure 4-19: The propagation of shear waves for generating the first trailing echoes, 

measured in length (mm). 
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the arrival time for the trailing echoes, the area for such arrival at the side well 

perpendicularly can also be depicted. Figure 4-20 shows the comparison for such area for 

triangle, pentagon and heptagon, respectively. Take note that such area is discussed from 

one side of the polygon since the odd polygons are regular. Therefore, the wave 

propagation behaviors from any side of a regular polygon are the same. The area which 

contributes to the generation of trailing echoes is depicted with dash lines. Based on 

Figure 4-20, it can be concluded that the bigger the area, the greater amplitude of trailing 

echoes will be generated. Based on the simulation and experimental results, among the 

odd polygonal buffer rods, the biggest amplitude of trailing echoes is generated by the 

regular triangle. Such finding corresponds to the largest area depicted in the regular 

triangle compared to pentagon and heptagon. In addition, such area for both pentagon and 

heptagon are almost similar, therefore, similar amplitude of trailing echoes are also 

generated, as shown by the measured waveform in Figure 4-17(a). In addition, it is found 

that the second trailing echo in the pentagon buffer rod has bigger amplitude than the first 

trailing echo. Figure 4-21 shows the influence of area for generating the first and second 

trailing echoes for a regular pentagon. It is found that the second trailing echo is 

generated by the fourth reflected shear waves (S4). It is observed that the area for 

generating the second trailing echo is bigger than that of the first trailing echoes. Based 

on the measured waveform for the regular pentagon as shown in Figure 4-17(a), the 

second trailing echo is indeed has a bigger amplitude than that of the first trailing echo. 

Based on Figure 4-20, the smallest area that influences the generation of trailing echoes is 

given by heptagon. Therefore, heptagon is capable to generate the smallest amplitude of 

trailing echoes compared to other regular polygonal buffer rods. Such hypothesis has 

been verified by the simulated and measured waveform shown in Figure 4-8(a) and 

Figure 4-17(a), respectively. Therefore, the greater the number of sides of odd polygon, 

the smaller amplitude of trailing echoes is generated. Such hypothesis is then investigated 

with a nonagon buffer rod since nonagon has bigger number of sides compared to 

heptagon.  
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Figure 4-20: Comparison of the area that contributes to the generation of the first 
trailing echoes between triangle, pentagon and heptagon. 
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Figure 4-21: Comparison between the area that contributes to the generation of the 
first and second trailing echoes for a regular pentagon. 
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4.10 Influence of regular nonagon on the trailing echoes 

Figure 4-22 shows the measured waveform of a 100 mm length nonagon buffer rod. 

Unfortunately, it is found that the amplitude of trailing echoes is bigger than that of 

heptagon. In addition, the delay time (µs) for generating the first trailing echo is faster 

than that for the regular odd polygons such as pentagon and heptagon. Such finding is 

believed to be influenced by the shape of a regular nonagon that is almost similar with a 

circle, although no parallel sides in the regular nonagon. Figure 4.23 shows that the first 

(S1) and second reflected (S2) shear waves are capable to arrive at the side wall of the rod 

perpendicularly. Take note that although such propagation is also occurred in the odd 

polygons such as triangle, pentagon and heptagon, however, due to a smaller number of 

sides, the interference between the first reflected shear waves (S1) is not that significant. 

Therefore, the first trailing echo can be generated by the first reflected shear waves (S1) 

in the regular nonagon. Based on such finding, heptagon is still the most suitable shape 

compared to the other regular polygons for effectively reduce the trailing echoes and 

improves the SNR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4-22: Measured waveform for a 100 mm length nonagon buffer rod. 
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4.11 Clad polygonal buffer rods 

Based on the simulation and experimental results, it is found that the trailing echoes can 

be generated for all regular polygonal buffer rods due to the symmetry shapes. Since an 

optimum condition of a cladding layer has been obtained, as discussed in the previous 

chapter, it will be interesting to apply such condition on the regular polygonal buffer rods. 

Since it has been verified the zirconium oxide (ZrO2) is effective to reduce the trailing 

significantly when the core is steel, clad regular polygonal buffer rods are numerically 

investigated 

 

4.11.1 Simulation results and discussions 

By using the same command to create the 3D models for the polygonal buffer rods, clad 

polygonal buffer rods with rod length of 25 mm and cladding thickness of 2 mm are 

created. Figure 4-24 shows the 3D models for (a) unclad and (b) clad regular polygonal 

buffer rods having different cross-sectional shapes such as triangle, square, pentagon, 

hexagon and heptagon, respectively. Based on Chapter 3, a plateau of high SNR has been 

obtained when Vclad = 110% Vcore and clad = 70% ~ 150% core. Although such condition 

has been verified with other materials that have faster velocity than steel, it is necessary 

to investigate if such cladding layer is applicable on the polygonal buffer rods. Therefore, 

S2S1

Figure 4-23: Measured waveform for a 100 mm length nonagon buffer rod. 
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the effectiveness of the optimum cladding layer on regular polygonal buffer rod is 

numerically investigated. The core is defined as steel where the longitudinal velocity, 

shear velocity and density are 5900 m/s, 3200 m/s and 7800 kg/m3, respectively. 

Meanwhile, the cladding layer is defined as zirconium oxide (ZrO2) since it has been 

proven that the trailing echoes are significantly reduced and the SNR is tremendously 

improved. The dimeter of UT is 1.6 mm and the operating frequency is 5 MHz. Figure 

4-25 shows the simulated waveforms for unclad and clad regular polygonal buffer rods. 

As expected, the trailing echoes are significantly reduced and the SNR is greatly 

improved as shown in Fig. 4-26. Therefore, the condition of a cladding layer presented in 

Chapter 3 is applicable on other types of rods.  

 

 

 
Figure 4-24: Three-dimensional simulation model for (a) unclad and (b) clad regular 
polygonal buffer rods. 

(a) (b)
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Figure 4-25: Simulated waveforms for (a) unclad and (b) clad regular polygonal 
buffer rods.  
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Figure 4-26: Signal-to-noise ratio (SNR) for (a) unclad and (b) clad polygonal buffer 
rods.  
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Although the clad polygonal buffer rods are proven to be effective in eliminating the 

trailing echoes significantly, however, the fabrication of such clad rods may be difficult. 

Since it known that trailing echoes are possible to be generated in any regular polygons 

due to their symmetry shapes; therefore, for the novelty purpose of this work, the idea of 

using irregular polygons as the cross-sectional shapes of buffer rods is proposed.. That 

means the influence of symmetry is eliminated by the irregular polygons. By eliminating 

such influence, it is highly expected that the reflected shear waves will not arrive at the 

side wall of the rod perpendicularly. Therefore, no trailing echoes will be generated and 

the SNR will be significantly improved.  
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4.12 Conclusions 

1) The idea of using regular polygonal buffer rods is proposed and its effectiveness on 

reducing trailing echoes and improving the SNR is numerically and experimentally 

investigated.  

 

2) It is found that odd polygonal buffer rods (triangle, pentagon and heptagon) are better 

in terms of reducing trailing echoes compared to even polygonal buffer rods (square and 

hexagon). Such finding is corresponding with the parallel sides in a regular polygon 

where due to the parallel sides, even polygons such as square and hexagon produce 

significant amplitude of trailing echoes compared to odd polygons.  

 

3) Trailing echoes are still generated in odd polygons due to the influence of bilateral 

symmetry of odd polygons. Due to such influence, the wave propagation behavior 

separated by a symmetry axis is the same at both sides.  

 

3) The path for the wave propagation for generating the first trailing echo for odd 

polygons is longer than that for even polygons. This is because for odd polygons, the first 

trailing echo is generated by the second reflection of shear waves. Unlike even polygons, 

the first trailing echo is generated by the arrival of the first reflection of shear waves at 

the side wall of the rod perpendicularly. Therefore, the path that is responsible for 

generating the first trailing echo for odd polygons is longer than that of even polygons. In 

addition, it is also found that such path influences the arrival time of the trailing echoes 

where the longest time delay for the first trailing echo to arrive at the UT is given by 

heptagon since the path for such arrival for heptagon is the longest. Therefore, the longer 

the path, the longer time it takes to arrive at the UT.  

 

 

4) The amplitude of the first railing echo for odd polygons is gradually decreased from 

triangle, followed by pentagon and lastly, heptagon. Such reduction is found to be 

influenced by the area at which a generation of a trailing echo is possible. It is found that 

the biggest area for possible generation of trailing echoes is given by triangle, followed 
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by pentagon and lastly heptagon. The validity of such approach is also proven for a 

regular pentagon where the area for generating the second trailing echo is bigger than that 

of the first trailing echo 

 

5) Although the amplitude of trailing echoes are gradually decreases as the number of 

sides increases, however, such hypothesis is found to be untrue for nonagon. Although 

nonagon has bigger number of sides compared to heptagon, however, due to its similar 

shape to circle, bigger amplitude of trailing echoes are generated compared to regular 

heptagon. In addition, it is possible to generate the first trailing echo by the first reflected 

shear waves (S1) to the bigger number of sides in a regular nonagon. Therefore, the SNR 

for nonagon is smaller than that for heptagon. In addition, due to such finding, heptagon 

is the most suitable shape for reducing trailing echoes and improving the SNR compared 

to other regular polygons.  

 

6) In order to reduce the trailing echoes generated in regular polygonal buffer rods, the 

influence of cladding is numerically investigated. Based on the investigation carried in 

Chapter 4, the material for both core and clad are defined as steel and zirconium oxide 

(ZrO2), respectively. The cladding thickness is also similar, which is 2 mm. As expected, 

the SNR for all clad polygonal buffer rods is improved. This means that such cladding 

condition is applicable on any cross-sectional shapes of buffer rods. 

 

7) Since the fabrication of clad regular polygonal buffer rods may be difficult, the idea of 

using irregular polygons as the cross-sectional shapes of buffer rods is proposed. Such 

new idea is expected to prevent the generation of trailing echoes completely. The 

effectiveness of the new idea is presented in the next chapter.  
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Chapter 5 
 

Preventing the Generation of 
Trailing Echoes with Irregular 

Polygonal Buffer Rods 
 
 

Based on the investigation on the influence of polygonal buffer rods on the 

generation of trailing echoes, it was found that the odd polygonal buffer rods (triangle, 

pentagon and heptagon) are better than the even polygonal buffer rods (square and 

hexagon) for improving the SNR. Such improvement is due to the generation of trailing 

echoes that occur during the second reflection of shear waves where the wave 

propagation path for such waves is longer than that of the first reflection of shear waves. 

Therefore, the second reflection of shear waves will be attenuated due to a longer path of 

wave propagation and result to generating a trailing echo having smaller amplitude. 

Unfortunately, although the odd polygons are better than the even polygons due to no 

parallel sides, all regular polygons are capable to generate trailing echoes due to their 

symmetry shape. Therefore, it is believed that the trailing echoes can be eliminated 

completely if the cross-sectional shapes (polygons) have no parallel sides and not 

symmetry. In this chapter, the irregular polygons are designed and proposed. The 

effectiveness of irregular polygonal buffer rods in preventing the generation of trailing 

echoes is numerically and experimentally investigated.  
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5.1 Definition of irregular polygons 

An irregular polygon is defined as a shape that has no symmetry axis where one or more 

side lengths of the irregular polygon are different from the side length of a regular 

polygon having the same number of edges. By referring to this definition, the possible 

shapes for an irregular polygon are infinite. Therefore, for simpler designs of the irregular 

polygons, only one vertex of a regular polygon is distorted. Figure 5-1 shows the 

schematic figure of a regular polygon which is square. The edge that connects two sides 

of a square is denoted as vertex. A regular square has two symmetry axes and all the side 

lengths are the same (equilateral).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1 Designing the irregular polygons.  

Since it is known that a trailing echo can be generated due to the symmetry of the 

cross-sectional shapes, the influence of such symmetry needs to be eliminated. Such 

elimination is possible where one or more vertices of a regular polygon are distorted. 

However, in order to design simple and less complicated shapes of irregular polygons, in 

this work, only one vertex of a regular polygon is distorted. Therefore, the value of the 

Vertex

Symmetry 
axis

Side length

Figure 5-1: Schematic figure for a regular square denoting the parts of a polygon 
such as vertex, symmetry axis and side length, respectively.  
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side length at which the distortion takes place will be different from the value of such 

length where the polygon is regular shape. Such distortion is due to design less complex 

shapes of irregular polygons where the location of the ultrasonic transducer (UT) at one 

end of the buffer rod can be easily defined. This is because the UT must be located at the 

center of mass of each of the cross-sectional shapes. However, it is noted that by 

distorting only one vertex of a regular polygon, the possible design of an irregular 

polygon is infinite. Therefore, it is important to choose a distortion point so that it can be 

used as a guideline to design the irregular polygons. Figure 5-2 shows a regular square 

with four different points of distortion denoted as I, II, III and IV, respectively. Such 

different distortions produce the irregular square where the influence of symmetry is 

eliminated. In addition, such distortion also results to a constant value of area for both 

regular and irregular squares. Based on Figure 5-2, it is observed that only two sides for 

each of the irregular square have the same value. Therefore, all the proposed designs of 

the irregular square are not equilateral neither equiangular. All the proposed shapes of the 

irregular square (I, II, III and IV) are simulated where the rod length, rod diameter and 

UT frequency are 25 mm, 5 mm and 20 MHz, respectively.  

 

 

 

 

 

Figure 5-2: Regular square with its irregular designs denoted as I, II, III and IV, 
respectively.  

Irregular Square I
Irregular Square II

Irregular Square III
Irregular Square IV
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Figure 5-3 shows the simulated waveforms and the signal-to-noise ratio (SNR) for all the 

proposed shapes of the Irregular Square such as I, II, III and IV, respectively. As expected, 

the SNR for all the irregular square are improved since the influence of symmetry has 

been eliminated by distorting one vertex of a regular square. Based on Figure 5-3, the 

highest SNR is given by the Irregular Square II where the value is 15.6. Such value is 

found to be 15 times higher than the SNR for a regular square. Based on Figure 5-3, it 

can be concluded that a significant improvement of the SNR can be obtained when the 

distortion is carried out at a point that is far from its initial regular point and close to the 

peak of a regular shape. It is believed that such significant improvement is due to less 

number of the reflected shear waves that can arrived at the side wall of the rod 

perpendicularly compared to the other Irregular Squares such as I, III and IV. In addition, 

the SNR for the Irregular Square I is smaller than that of the Irregular Square II where 

such difference may be caused by the possible arrivals of the shear waves to the side wall 

of the rod perpendicularly during the early stage of reflection of shear waves. Based on 

the magnified waveform shown in Figure 5-3, it is observed that the amplitude of the 

trailing echoes generated in Irregular Square I is bigger than that of Irregular Square II. 

Based on this finding, the irregular shapes for triangle, pentagon, hexagon and heptagon 

are designed. The guidelines for designing an irregular polygon are: 

 

1) The influence of symmetry is eliminated by distorting only one vertex of a regular 

polygon. The distorted point must be far from the initial regular point and close to the 

peak of a regular polygon.  

2) No parallel sides are created by such distortion in (1) 

3) The area for the irregular polygon is kept constant, for a fair comparison with the 

regular polygons, 
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Figure 5-3: Simulated waveforms and the signal-to-noise ratio (SNR) for regular (R) 
square and its irregular shapes such as I, II. III and IV, respectively.   
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5.1.2 Proposed irregular polygons 

The irregular polygons such as triangle, square, pentagon, hexagon and heptagon are 

designed using the presented guidelines. Unfortunately, there is an obstacle that occurred 

due to the current guidelines where the distortion point must be far from the initial regular 

point. Based on Figure 5-4, it is observed that such guideline is successfully applied on 

designing the irregular polygons such as square, pentagon, hexagon and heptagon, but not 

for the irregular triangle where the distortion point is near to its initial regular point. This 

is due to the limitation of the raw material where the raw material is in the shape of a 

cylindrical rod having the diameter of 28 mm. Since the side length of a regular triangle 

is almost 26 mm, it is impossible to machine an irregular triangle where the distortion 

point is far from its initial regular point. In order to overcome such problem, a vertex of a 

regular triangle is distorted as far as the machining is possible. Figure 5-5 shows the 

obstacle during designing and machining the irregular triangle using the raw material 

which is in the shape of a cylindrical rod.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-4: Designing and machining limitations of the irregular triangle due to the 
raw material.  
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Due to this problem, the area for the irregular triangle is smaller than that of a regular 

triangle. Although the comparison between the regular and irregular triangle is no longer 

fair, a significant improvement of SNR for the irregular triangle is expected to be 

occurred since the influence of symmetry is eliminated. The second obstacle arises during 

designing the irregular hexagon using the current guidelines. It is found that although the 

influence of symmetry is eliminated due to the distortion on one vertex of a regular 

hexagon and no parallel sides are generated due to the distortion, a pair of the original 

parallel sides in a regular hexagon is still remained, as shown by Figure 5-5. Therefore, 

trailing echoes can still be generated for the irregular hexagon and the SNR will not be 

significantly improved.  

 

 

 

 

 

In order to eliminate the remaining parallel sides in the irregular hexagon as shown in 

Figure 5-5, two vertices should be distorted. However, by distorting the second vertices, 

the area for the new irregular hexagon is slightly bigger than the previous irregular 

hexagon. Figure 5-6 shows how the new irregular hexagon is designed by distorting two 

vertices instead of one vertex. It is highly believed that the generation of trailing echoes 

can be completely eliminated by such distortion on two different vertices of a regular 

hexagon. It is believed that the difference of area may not affect the performance of the 

ultrasonic pulsed echoes in the irregular polygonal buffer rods as long as no shear waves 

can arrive at the side wall of the rod perpendicularly.  

Vertex
Parallel sides

Figure 5-5: A pair of parallel sides is still remained in the irregular hexagon due to 
only one vertex is distorted.  
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Although the obstacles found in triangle and hexagon are overcome by proposing the new 

designs of irregular polygons, in this work, the effectiveness of buffer rods having the 

cross-sectional shapes of irregular polygons with only one distorted vertex on preventing 

the generation of trailing echoes is numerically investigated. Figure 5-7 shows the 

proposed designs for all the polygons such as triangle, square, pentagon, hexagon and 

heptagon, respectively. Take note that the area for all the proposed irregular polygons is 

kept constant with their corresponding regular polygons, except for triangle.  

 

 

 

 

 

 

Figure 5-7: The proposed irregular polygons for the cross-sectional shape of buffer 
rods such (a) triangle, (b) square, (c) pentagon, (d) hexagon and (e) heptagon, 
respectively.

(a) (b) (c) (d) (e)

Vertex

Figure 5-6: Designing a new irregular hexagon where a second vertex (depicted in a 
circle) is distorted in order to eliminate the parallel sides.  
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5.2 Mechanism to prevent the generation of trailing echoes for irregular polygonal 

buffer rods 

 

5.2.1 Even polygons 

Figure 5-8 shows the propagation of shear waves in an irregular square II, as proposed in 

Figure 5-2 and Figure 5.7(b), respectively. It is found that although the parallel sides have 

been eliminated, however, the second reflected shear waves (S2) which are originated 

from side B and side D, arrived at the side wall of the rod perpendicularly. Therefore, the 

first trailing echo for the irregular square is generated. Meanwhile, the second reflected 

shear waves (S2) which are originated from from side A and side C did not arrive at the 

side wall of the rod perpendicularly. Therefore, although the parallel sides in the irregular 

square have been eliminated, the generation of trailing echoes is not completely 

prevented due to some of the second reflected shear waves (S2) that can arrive at the side 

wall of the rod perpendicularly. Since the trailing echo is possible to be generated by the 

second reflected shear waves (S2) that arrive at the side wall of the rod perpendicularly, 

the propagation of the third reflected shear waves (S3) is then investigated. Figure 5-9 

shows the propagation of the third reflected shear waves (S3) that are originated from side 

A and side C, respectively. Unfortunately, the third reflected shear wave (S3) which is 

originated from side C arrived at the side wall of the rod perpendicularly and generate a 

trailing echoes. Since the propagation length for S3 is longer than that of S2, it can be 

concluded that the first trailing echo is generated by S2 while the second trailing echo is 

generated by S3. Therefore, the generation of trailing echoes for the irregular square is not 

completely prevented.  
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Figure 5-8: Propagation of the first (S1) and second (S2) reflected shear waves for the 
irregular square.

Figure 5-9: Possible generation of trailing echoes for the irregular square where the 
reflected shear waves arrived at the side wall of the rod perpendicularly.
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It has been mentioned that the proposed irregular hexagon will show the least 

improvement on the SNR due to only one vertex is distorted. Therefore, a pair of parallel 

sides is still remained and will generate trailing echoes. The reason and solution to 

overcome such problem has been discussed in the previous subsection. In addition, since 

the remaining parallel sides are not inclined, strong amplitude of trailing echo is expected 

to be generated. This is due to the ultrasonic waves that are not reflected diffusely on a 

straight plane. The mechanism for generating the first trailing echo in the irregular 

hexagon is shown in Figure 5-10. As expected, due to the parallel sides between the upper 

and bottom sides of the irregular hexagon, a pair of parallel first reflected shear waves 

(S1) is generated. Such parallelism leads to the arrival for each of the S1 to the opposite 

side wall of the rod perpendicularly and generate the first trailing echo.  

 

 

 

 

 

 

Based on the mechanism for generating trailing echoes for the irregular even polygons 

such as square and hexagon, it can be concluded that the generation of trailing echoes is 

Figure 5-10: Propagation of the first reflected shear waves (S1) for the irregular 
hexagon.
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still possible where some of the shear waves arrived at the side wall of the rod 

perpendicularly. Therefore, the generation of trailing echo is not completely prevented. 

As mentioned previously, such generation is not completely prevented due to the 

guidelines where only one vertex of a regular even polygon is distorted. Such distortion 

leads to two obstacles. The first obstacle is that some of the second reflected shear waves 

(S2) arrive at the side wall of the rod perpendicularly and generate the first trailing echo. 

However, the SNR can still be improved since the propagation path for S2 is longer than 

that of S1. Therefore, the generated trailing echoes will have a smaller amplitude. The 

second obstacle is that some of the parallel sides are still remained although the influence 

of symmetry has been eliminated. In order to overcome such problem, a new irregular 

hexagon has been designed and proposed, as shown in Figure 5-6 where two vertices of a 

regular hexagon are distorted. However, by such approach, the area for the new irregular 

hexagon is slightly bigger than the previous irregular hexagon. Therefore, for a constant 

area between the regular hexagon and the new irregular hexagon with two distorted 

vertices, a different design for such irregular hexagon is shown in Figure 5-11. Take note 

that each vertices are distorted at a point where it is far from the initial regular point. 

From this new design, it is observed that all the parallel sides in the regular hexagon are 

eliminated. In addition, no new pairs of parallel sides are created by these two distorted 

vertices. Therefore, it is highly expected that the generation of trailing echoes will be 

completely prevented and the SNR will be significantly improved.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5-11: New design of the irregular hexagon having two distorted vertices and 
constant area with the regular hexagon. 
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5.2.2 Odd polygons 

Figure 5-12 shows the propagation of shear waves for the irregular triangle. Unlike the 

regular triangle, the first trailing echo is generated due to the arrival of the second 

reflection of shear waves (S2) to the side wall of the rod perpendicularly. However, based 

on Figure 5-12, it is observed that none of the second reflection of shear waves (S2) 

propagates to the side wall of the rod perpendicularly. Therefore, no trailing echo is 

generated and the SNR is expected to be improved. A similar mechanism is also observed 

for the irregular pentagon where none of the second reflected shear waves (S2) arrived at 

the side wall of the rod perpendicularly, as shown by Figure 5-13.  

 

 

 

 

 

 

S2S1

Figure 5-12: Propagation of the first (S1) and second (S2) reflected shear waves for the 
irregular triangle.
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Lastly, the propagation of shear waves for the irregular heptagon is presented in Figure 

5-14. However, unfortunately, it is observed that one of the second reflected shear wave 

(S2), as depicted in oval, propagates to the side wall of the rod perpendicularly. Such 

arrival is presented in Figure 5-15. From side A, the first reflected shear wave (S1) 

propagates to its opposite boundary which is side B. Since such arrival is not 

perpendicular to the side wall of the rod, therefore, S1 is reflected at side B as S2. It is 

observed that the propagation direction of S2 is perpendicular to side C; therefore, a 

trailing echo is generated. Although the influence of symmetry has been eliminated in the 

irregular heptagon, some of the reflected shear waves are able to arrive at the side wall of 

the rod perpendicularly and generate trailing echoes. This phenomena is similar with the 

irregular square where the first trailing echo is generated by the arrival of the second 

reflected shear waves (S2) at the side wall of the rod perpendicularly. Since it shows the 

same mechanism, it can be concluded that two vertices need to be distorted rather than 

Figure 5-13: Propagation of the first (S1) and second (S2) reflected shear waves for the 
irregular pentagon.
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one. Since it has been mentioned before, the reason why only one vertex is distorted is 

that the possible designs of the irregular polygons are less than the irregular polygons 

having two or more distorted vertices. In order to prevent the arrival of the second 

reflected shear waves (S2) to the side wall of the rod for the irregular heptagon, a new 

design for the irregular heptagon is proposed as shown in Figure 5-16. Take note a same 

approach used for designing the new irregular hexagon is applied on this new irregular 

heptagon. Again, take note by this approach, the area for the new irregular heptagon is 

slightly bigger than the regular heptagon. The second vertex is chosen so that it will 

prevent the arrival of the second reflected shear waves (S2) generated from side B to the 

side C perpendicularly. The propagation of shear waves for the new irregular heptagon is 

presented in Figure 5-17. From such propagation, it is observed that none of the second 

reflected shear waves (S2) arrived at the side wall of the rod perpendicularly. Therefore, 

the SNR for the new irregular heptagon having two distorted vertices is expected to be 

better than that of the irregular heptagon having only one distorted vertex.  

 The mechanism that shows the propagation of shear waves for all the irregular 

polygons such as triangle, square, pentagon, hexagon and heptagon are numerically 

simulated. However, take note that only the new irregular heptagon having two distorted 

vertices is simulated rather than the new irregular hexagon that also has two distorted 

vertices. Such approach is due to the good performance of the regular heptagon that gives 

the highest SNR compared to the other regular polygons.  
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Figure 5-15: Mechanism to generate the first trailing echo for the irregular heptagon.

S2S1

S2S1
A

B

C

Vertex

Figure 5-14: Propagation of the first (S1) and second (S2) reflected shear waves for the 
irregular heptagon.
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Figure 5-17: Propagation of the first (S1) and second (S2) reflected shear waves for the 
new irregular heptagon.

Irregular heptagon II

Vertex

Regular heptagon

S2S1

Figure 5-16: New design for an irregular heptagon
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5.3 Three dimensional simulations on the irregular polygonal buffer rods 

In order to verify the mechanism for all the proposed irregular polygons, numerical 

simulations are conducted on each irregular polygonal buffer rod using the same 

simulation conditions used on the regular polygonal buffer rods. 

 

5.3.1 Simulation results and discussions 

Figure 5-18 shows the simulated waveforms for (a) regular and (b) irregular polygonal 

buffer rods. As expected, all irregular polygonal buffer rods except for irregular hexagon 

show a significant reduction of trailing echoes. Therefore, the mechanism to prevent the 

generation of trailing echoes is verified.  
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Figure 5-18: Simulated waveforms for (a) regular polygonal buffer rods and (b) 
irregular polygonal buffer rods.
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The SNR for the comparison between the regular and irregular polygonal buffer rods is 

presented in Figure 5-19. It can be seen that the SNR for pentagon is significantly 

improved compared to other irregular polygons. 
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Figure 5-19: Signal-to-noise ratio (SNR) for (a) regular polygonal buffer rods and (b) 
irregular polygonal buffer rods based on the simulated waveforms. 
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However, based on the simulated waveforms in Figure 5-18(b), a trailing echo having 

small amplitude is still generated for the irregular triangle buffer rod. Such trailing echo 

is also observed from the wave propagation studies of the irregular triangle buffer rod, as 

shown by the captured images in Figure 5-20 where E1 and TE1 are the first echo and 

first trailing echo, respectively. An investigation is then carried out to determine the 

reason for generating such trailing echo. Figure 5-21 shows the mechanism to generate 

such trailing echo for an irregular triangle buffer rod. It is observed that after several 

reflections, the mode converted shear waves (S6) arrived at the side wall of the rod 

perpendicularly and therefore, generates the first trailing echo. Therefore, it can be 

concluded that although at first it seems that none of the reflected shear waves are able to 

arrive at the side wall of the rod perpendicularly, after several times of reflections, some 

of the reflected shear waves are still possible to arrive at the side wall of the rod 

perpendicularly and generate trailing echoes. However, take note that the amplitude for 

such trailing echoes is expected to be small since the shear waves have been reflected for 

several times.  

 

 

 

 

 

 

 

Figure 5-20: Captured images of one round-trip ultrasonic pulsed echo for a 100 mm 
length irregular triangle buffer rod.
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For the irregular square, it is expected that two trailing echoes will be generated based 

due to the second (S2) and third (S3) reflection of shear waves that arrived at the side wall 

of the rod perpendicularly. Both arrival are shown in Figure 5-8 and Figure 5-9, 

respectively. Such arrival is verified from the wave propagation studies on the irregular 

square, as shown in Figure 5-22. It is observed that there are two bright lines that are 

parallel to the UT after the first echo (E1). These two bright lines are identified as the 

trailing echoes. The first bright line that arrived at UT is the first trailing echoes (TE1) 

while the later arrival of the bright line is the second trailing echo (TE2). The propagation 

of shear waves for generating the first trailing echo by the second reflection of shear 

waves (S2) is also shown by the captured images in Figure 5-23. The first image shows 

the generation of the first echo which gives a bright cross-section while the last image 

shows the propagation of the second reflected shear waves (S2) to the side wall of the rod 

which is in a perpendicular direction.  

 

  

Figure 5-21: Possible generation of a trailing echo for the irregular triangle.
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 Figure 5-23: Captured images during the wave propagation studies for generating the 
first trailing echo for an irregular square. 

UT

E1 TE1 TE2

Figure 5-22: Captured images of one round-trip ultrasonic pulsed echo for a 100 mm 
length irregular square buffer rod.
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The highest SNR is given by the irregular pentagon where the SNR is improved five 

times higher compared to the regular pentagon. It is found that such guideline in 

designing an irregular polygon is good enough for successfully developing an irregular 

polygonal buffer rod with high SNR. Figure 5-24 shows the captured images during the 

one round-trip of ultrasonic pulsed echoes propagating through the 100 mm length 

irregular pentagon buffer rod. Since it is observed in Figure 5-18(b) that no trailing 

echoes are generated for the irregular pentagon, therefore, no bright lines that indicate the 

presence of trailing echoes are observed. Therefore, the UT only received the first echo 

since the direction of such echo is parallel to the UT.  

 

 

 

 

For the irregular hexagon buffer rod, as expected, significant trailing echoes are still 

generated due to the parallel sides that are still remained although half of the regular 

hexagon has been distorted. As shown by the captured images in Figure 5-25, the first and 

second trailing echoes are easily distinguished due to their brightness. The mechanism for 

generating the trailing echoes for the irregular hexagon is also verified by the wave 

propagation studies on the cross-sectional shape of irregular hexagon buffer rod. Figure 

Figure 5-24: Captured images of one round-trip ultrasonic pulsed echo for a 100 mm 
length irregular pentagon buffer rod.
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5-26 shows that indeed, the first reflection of shear waves (S1) are parallel to the rod 

boundary, as depicted in oval.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-26: Wave propagation shows that the first trailing echo is generated by the 
first reflection of shear waves (S1), as depicted in oval. 

Figure 5-25: Captured images of one round-trip ultrasonic pulsed echo for a 100 mm 
length irregular hexagon buffer rod.
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In addition, it is found that the SNR for both regular and irregular hexagon are almost the 

same. Such similarity is due to the influence of the location of the parallel sides. If the 

parallel sides that are designed for the irregular hexagon are not the inclined surface, the 

amplitude of trailing echo may be smaller due to diffuse reflection, which has been 

explained in the previous chapter. Therefore, the SNR will be increased since the 

amplitude of trailing echo is reduced. A similar tendency of small improvement on the 

SNR is also observed for the irregular heptagon. This is expected due to the influence of 

parallel sides when only one vertex of a regular heptagon is distorted. As stated earlier, in 

order to overcome such influence, two vertices need to be distorted. Figure 5-27 shows 

the simulated waveforms for both irregular heptagon with one vertex distorted (top 

waveform) and irregular heptagon with 2 vertices distorted (bottom waveform). It is 

observed that the trailing echoes are reduced and the SNR is improved.  

 

 

 

 

Figure 5-27: Simulated waveforms for the irregular heptagon with one vertex distorted 
(top) and irregular heptagon with two vertices distorted (bottom).
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5.4 Experiment on the irregular polygonal buffer rods 

Based on the simulation results, all the proposed irregular polygonal buffer rods, except 

for the irregular hexagon and irregular heptagon with only one vertex distorted, are 

fabricated using steel S45C. It is noted that irregular hexagon was not fabricated due to 

no improvement on the SNR. Meanwhile, for the irregular heptagon, irregular heptagon 

with two vertices distorted shows better performance in terms of smaller trailing echoes 

and higher SNR. Figure 5-28 shows the fabricated irregular polygonal buffer rods having 

different cross-sectional shapes such as (a) triangle, (b) square, (c) pentagon and (d) 

heptagon, respectively. The length and area for all irregular polygonal buffer rods are kept 

constant, for a fair comparison with the regular polygonal buffer rods and based on the 

guidelines during designing an irregular polygon. Each of the fabricated irregular 

polygonal buffer rods is then experimentally investigated with a 5 MHz ultrasonic 

transducer having diameter of 6.35 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b)

(c) (d)

Figure 5-28: Fabricated irregular polygonal buffer rods having different 
cross-sectional shapes such as (a) triangle, (b) square (c) pentagon and (d) heptagon
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5.4.1 Experimental results and discussions 

Figure 5-29 shows the measured waveform for (a) regular polygons and (b) irregular 

polygons where the polygons are triangle, square, pentagon and heptagon. It is observed 

that for the irregular polygonal buffer rods, the tendency of trailing echoes is similar for 

both simulated and experiment waveforms. However, based on the measured waveforms 

for both regular and irregular heptagon, only small improvement on reducing the 

amplitude of trailing echoes is observed. Therefore, although the new design of irregular 

heptagon with two vertices distorted has been proposed, the amplitude of the trailing 

echoes for both regular and irregular heptagon are almost the same. Meanwhile, as 

predicted, the irregular pentagon shows a significant performance on preventing the 

generation of trailing echoes where the SNR is the highest compared to other irregular 

polygons, as shown in Figure 5-30.  
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Figure 5-29: Measured waveforms for (a) regular polygonal buffer rods and (b) 
irregular polygonal buffer rods
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Figure 5-30: Signal-to-noise ratio (SNR) for (a) regular polygonal buffer rods and (b) 
irregular polygonal buffer rods based on the measured waveforms
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5.5 Conclusions 

The effectiveness of irregular polygon as the cross-sectional buffer rod in restraining the 

generation of trailing echoes has been investigated. It is found that: 

 

1) The current guidelines that distorts only one vertex of a regular polygon is not 

suitable for even polygons that have six edges and more since the influence of 

parallel sides will still be remained. In addition, by such distortion, the second 

reflected shear waves (S2) can still arrive at the side wall of the rod 

perpendicularly, as observed for the irregular square and irregular heptagon.  

 

2) In order to overcome such problems, two vertices of a regular polygon should be 

distorted. The distortion point for these two vertices must be far from the initial 

regular points.  

 

3) The new guidelines are: 

a) The influence of symmetry is eliminated by distorting two vertices of the 

regular polygon. The two vertices should be distorted at a point that is far 

from the initial regular points. 

b) For a fair comparison with the regular polygons, the two vertices should be 

distorted at a point where the area for both the regular and irregular polygons 

is constant. Therefore, the selection of which vertices that need to be distorted 

is important so that the area is constant.  

c) The influence of the parallel sides in the regular polygons is eliminated by the 

distortion on two vertices 

d) No new pairs of parallel sides are created by such distortion 

 

4) The mechanism that shows the propagation of shear waves from each of the 

irregular polygons is verified from the wave propagation studies conducted during 

the numerical simulations.  
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5) Based on the proposed irregular polygons, the highest SNR is given by the 

irregular pentagon. Therefore, it can be concluded that although the current 

guidelines result to some obstacles, the current guidelines have successfully 

designed an irregular polygonal buffer rod with high SNR.  
 
 

 

 

 

 



Chapter 6 
 

General Conclusions and Future 
Works 

 
 

The overall results from the three-dimensional numerical simulations and 

pulse-echo measurements on buffer rods having different cross-sectional shapes such as 

circle, regular polygons and irregular polygons are summarized. In addition, the obstacles 

that are found throughout this work are also addressed in this chapter. Further 

investigation for better outcome is also proposed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.1 General conclusions 

 

1) Generation of trailing echoes 

It is found that the generation of trailing echoes can be depicted from the cross-sectional 

shape itself where a trailing echo will be generated if the mode converted shear waves 

arrive at the side wall of the rod perpendicularly. Such arrival will produces longitudinal 

waves that are in-phase with the ultrasonic transducer. Therefore, interference will occur 

at the ultrasonic transducer and give the main signals such as main echoes and trailing 

echoes. Figure 6-1 shows how the first trailing echoes are generated for a cylindrical 

buffer rod where the first reflected shear waves (S1) arrived at the side wall of the rod 

perpendicularly from the cross-sectional view. In addition, it is observed that S1 are 

parallel to each other due to the geometry of circle.  
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Figure 6-1: Mechanism to generate the first main echo and the first trailing echo for a 
cylindrical buffer rod, from the side view and cross-sectional view.



2) Regular polygonal buffer rods 

It is found that odd polygons are better than even polygons since the first reflected shear 

waves are able to arrive at the side wall of the rod perpendicularly. Therefore, the 

generation of trailing echoes is restrained during the first reflection of shear waves. 

However, due to the bilateral symmetry shapes for all the odd regular polygons, trailing 

echoes can still be generated where the second reflected shear waves (S2) arrived at the 

side wall of the rod and generate the first trailing echo. However, since the trailing echo is 

generated by S2 rather than S1, the amplitude of the trailing echo is expected to be small 

due to wave attenuation. Figure 6-2 shows the mechanism to generate the first trailing 

echo for a regular triangle (left) and a regular square (right). For triangle, the first trailing 

echo can only be generated by the second reflected shear wave (S2) since the first 

reflected shear wave (S1) did not arrive at the side wall of the rod perpendicularly. 

Meanwhile for square, it is observed that the first trailing echo is generated when the first 

reflected shear wave (S1) arrived at the side wall of the rod perpendicularly. Therefore, 

based on this figure, it clearly shows why the regular odd polygons are better than the 

regular even polygons in improving the signal-to-noise ratio (SNR) although the 

generation of trailing echoes is still possible.  
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Figure 6-2: Generation of the first trailing echo due to the arrival of shear waves to the 
side wall of the rod perpendicularly for regular triangle (left) and regular square 
(right). 



3) Irregular polygonal buffer rods 

The signal-to-noise ratio (SNR) of the irregular polygonal buffer rods are improved 

except for the irregular hexagon due to some problems that arose based on the guidelines 

used in this work. The problems are: 

 

a) The guidelines did not consider the propagation of the reflected shear waves after the 

first reflection, to the side wall of the rod. This is because it is found that some of the 

reflected shear waves can arrive at the side wall of the rod perpendicularly and generate 

the trailing echoes 

b) The arrival of such problem stated in (a) is due to only one vertex of the regular 

polygon is distorted. In order to overcome such problem, two vertices of a regular 

polygon should be distorted so that the arrival of the reflected shear waves to the side 

wall of the rod perpendicularly can be restrained. In addition, by distorting only one 

vertex, the parallel sides in the regular even polygons that have the number of edge of six 

or more, will still be remained. Therefore, the new guidelines for designing the irregular 

polygons are: 

 

i) The influence of symmetry is eliminated by distorting two vertices of a regular polygon 

ii) The distortion point for these two vertices should be far from their initial regular point  

iii) The influence of parallel sides is eliminated by such distortion 

iv) The area is kept constant by choosing two vertices that will not alter the area of the 

irregular polygons. 

v) No new parallel sides are generated by such distortion in (i).  

 

The effectiveness of irregular polygons having two distorted vertices on improving the 

SNR is shown by the irregular heptagon. In addition, it is noteworthy to state that the 

current guidelines are good enough for producing an irregular polygonal buffer rod that 

can improve the SNR significantly. Such high performance irregular polygonal buffer rod 

is shown by the irregular pentagon where the value is five times higher than the regular 

pentagon buffer rod (simulation result).  

 



4) Clad polygonal buffer rods 

The SNR is significantly improved when the velocity of the clad is faster than that of the 

core where the mode converted shear waves are confined in the cladding region and 

restrained the generation of trailing echoes. The highest SNR is obtained when Vclad = 

120% Vcore and clad = 70% core. In addition, an interesting plateau of high SNR is 

obtained when the Vclad = 110% Vcore and clad = 70 ~ 150% core. The validity of the 

findings is verified with materials that have faster velocity than the core which is steel. 

The materials for the cladding layer are zirconium oxide, molybdenum and titanium. 

Based on these clad materials, the highest SNR is shown by zirconium oxide since its 

material properties is Vclad = 119% Vcore and clad = 73% core where closest to the clad 

properties that gives the highest SNR. Based on this verification, a cladding layer of 

zirconium oxide is applied on the regular polygonal buffer rods for improving the SNR. It 

is found that the SNR for all clad regular polygonal buffer rod improved tremendously.  

 

Based on the findings that are obtained from the simulation and experimental works, it is 

proven that polygonal buffer rods can be a promising tool for improving the SNR. In 

addition, the mechanisms for preventing the trailing echoes and the appropriate cladding 

condition presented in this work can be useful for designing the optimum buffer rod.  

 

 

 

 

 

 

 

 

 

 

 

 

 



6.2 Future works 

1) It has been mentioned that the current guidelines in designing an irregular polygon is 

not suitable for the even polygons such as hexagon. Therefore, a new guideline is 

necessary for preventing the generation of trailing echoes in polygonal buffer rods 

completely. It has been mentioned that the new guideline should not focus on maintaining 

the half side of the regular polygon. The new guidelines: 

 

(1) The influence of symmetry is eliminated by distorting two vertices of the 

regular polygon 

(2) Such distortion in (1) is to prevent any of the reflected shear waves propagate 

to the side wall of the rod perpendicularly. 

(3) By distorting two vertices of the regular polygons, the area is kept constant 

(if possible), so that the comparison between the regular and irregular polygons 

is fair. 

 

 

2) The theoretical equation for estimating the time delay between the main echoes and 

trailing echoes in a cylindrical buffer rod is well known. The calculation on such time 

delay is possible if the velocity and diameter of the rod are known. In this work, it has 

been mentioned in Chapter 5 that such time delay obtained for a 100 mm length 

cylindrical buffer rod is used as a reference in predicting the arrival time of the first 

trailing echoes for the polygonal buffer rods. Although the path for generation the first 

trailing echoes was measured and compared between the polygonal buffer rods, such 

approach is not optimized. Therefore, a theoretical equation is needed for estimating the 

arrival time of a trailing echo in the polygonal buffer rods.  

 

2) It has been proven that irregular polygonal buffer rods are effective in preventing the 

trailing echoes. Therefore, it would be interesting to apply the irregular polygonal buffer 

rods for the material characterization or process monitoring at high temperature. However, 

it may be some difficulty in mounting the irregular polygonal buffer rod in the machinery 

section due to sharp edges of polygonal rods. An additional layer is needed for the 



threading purpose so that the irregular polygonal buffer rods can be mounted easily. By 

introducing a cladding layer, the small amplitudes are expected to be eliminated 

completely since the ultrasonic pulsed echoes in the core are well guided. Since the core 

is made of steel (S45C), the appropriate cladding material would be stainless steel where 

the pairing of steel and stainless steel has been used widely in many application at high 

temperature.  
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