51 research outputs found

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Time-domain optimization of amplifiers based on distributed genetic algorithms

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer EngineeringThe work presented in this thesis addresses the task of circuit optimization, helping the designer facing the high performance and high efficiency circuits demands of the market and technology evolution. A novel framework is introduced, based on time-domain analysis, genetic algorithm optimization, and distributed processing. The time-domain optimization methodology is based on the step response of the amplifier. The main advantage of this new time-domain methodology is that, when a given settling-error is reached within the desired settling-time, it is automatically guaranteed that the amplifier has enough open-loop gain, AOL, output-swing (OS), slew-rate (SR), closed loop bandwidth and closed loop stability. Thus, this simplification of the circuit‟s evaluation helps the optimization process to converge faster. The method used to calculate the step response expression of the circuit is based on the inverse Laplace transform applied to the transfer function, symbolically, multiplied by 1/s (which represents the unity input step). Furthermore, may be applied to transfer functions of circuits with unlimited number of zeros/poles, without approximation in order to keep accuracy. Thus, complex circuit, with several design/optimization degrees of freedom can also be considered. The expression of the step response, from the proposed methodology, is based on the DC bias operating point of the devices of the circuit. For this, complex and accurate device models (e.g. BSIM3v3) are integrated. During the optimization process, the time-domain evaluation of the amplifier is used by the genetic algorithm, in the classification of the genetic individuals. The time-domain evaluator is integrated into the developed optimization platform, as independent library, coded using C programming language. The genetic algorithms have demonstrated to be a good approach for optimization since they are flexible and independent from the optimization-objective. Different levels of abstraction can be optimized either system level or circuit level. Optimization of any new block is basically carried-out by simply providing additional configuration files, e.g. chromosome format, in text format; and the circuit library where the fitness value of each individual of the genetic algorithm is computed. Distributed processing is also employed to address the increasing processing time demanded by the complex circuit analysis, and the accurate models of the circuit devices. The communication by remote processing nodes is based on Message Passing interface (MPI). It is demonstrated that the distributed processing reduced the optimization run-time by more than one order of magnitude. Platform assessment is carried by several examples of two-stage amplifiers, which have been optimized and successfully used, embedded, in larger systems, such as data converters. A dedicated example of an inverter-based self-biased two-stage amplifier has been designed, laid-out and fabricated as a stand-alone circuit and experimentally evaluated. The measured results are a direct demonstration of the effectiveness of the proposed time-domain optimization methodology.Portuguese Foundation for the Science and Technology (FCT

    Numerical Simulations

    Get PDF
    This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation

    Simulation and Optimisation of SiGe MOSFETs

    Get PDF
    This research project is concerned with the development of methodology for simulating advanced SiGe MOSFETs using commercial simulators, the calibration of simulators against higher level Monte Carlo simulation results and real device measurements, and the application of simulation tools in the design of next generation p- channel devices. The methodology for the modelling and simulation of SiGe MOSFET devices is outlined. There are many simulation approaches widely used to simulate SiGe devices, such as Monte Carlo, hydrodynamic, energy transport, and drift diffusion. Different numerical techniques including finite difference, finite box and finite element methods, may be used in the simulators. The Si0.8Ge0.2 p-MOSFETs fabricated especially for high-field transport studies and the Si0.64Ge0.36 p-channel MOSFETs fabricated at Warwick and Southampton Universities with a CMOS compatible process in varying gate lengths were calibrated and investigated. Enhanced low field mobility in SiGe layers compared to Si control devices was observed. The results indicated that the potential of velocity overshoot effects for SiGe p-MOSFETs was considerably higher than Si counterparts, promising higher performance in the former at equal gate lengths at ultra-small devices. The effects of punchthrough stopper, undoped buffers and delta doping for SiGe p-MOSFETs were analysed systematically. It was found that the threshold voltage roll off might be reduced considerably by using an appropriate punchthrough stopper. In order to adjust the threshold voltage for digital CMOS applications, p-type delta doping was required for n+-polysilicon gate p-MOSFET. The use of delta doping made the threshold voltage roll off a more serious issue, therefore delta doping should be used with caution. The two-dimensional process simulator TSUPREM-4 and the two-dimensional device simulator MEDICI were employed to optimise and design Si/SiGe hybrid CMOS. The output of TSUPREM-4 was transferred automatically to the MEDICI device simulator. This made the simulation results more realistic. For devices at small gate length, lightly doped drain (LDD) structures were required. They would decrease the lateral subdiffusion and allow threshold voltage roll off to be minimised. These structures, however, would generally reduce drain current due to an increase in the series resistance of the drain region. Further consideration must be made of these trade-offs. Comparison between drift diffusion and hydrodynamic simulation results for SiGe p-MOSFETs were presented for the first time, with transport parameters extracted from our in-house full-band hole Monte Carlo transport simulator. It was shown that while drift diffusion and hydrodynamic simulations provided a reasonable estimation of the I-V characteristics for Si devices, the same could not be said for aggressively scaled SiGe devices. The resulting high fields at the source end of the devices meant that nonequilibrium transport effects were significant. Therefore for holes, models based on an isotropic carrier temperature were no longer appropriate, as it was shown by analysing the tensor components of the carrier temperature obtained from Monte Carlo simulation. Two-dimensional drift diffusion and Monte Carlo simulations of well-tempered Si p-MOSFETs with gate lengths of 25 and 50 nm were performed. By comparing Monte Carlo simulations with carefully calibrated drift diffusion results, it was found that nonequilibrium transport was important for understanding the high current device characteristics in sub 0.1 mum p-MOSFETs. The well-tempered devices showed better characteristics than the conventional SiGe devices. Both threshold voltage roll off and the subthreshold slope were acceptable although the effective channel length of this device was reduced from 50 nm to 25 nm. In order to adjust the threshold voltage for the digital CMOS applications, p-type delta doping was used for 50 nm well-tempered SiGe p- MOSFETs. As the delta doping made the threshold voltage roll off too serious, it was not suitable for 25 nm well-tempered SiGe p-MOSFETs

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    System level performance and yield optimisation for analogue integrated circuits

    No full text
    Advances in silicon technology over the last decade have led to increased integration of analogue and digital functional blocks onto the same single chip. In such a mixed signal environment, the analogue circuits must use the same process technology as their digital neighbours. With reducing transistor sizes, the impact of process variations on analogue design has become prominent and can lead to circuit performance falling below specification and hence reducing the yield.This thesis explores the methodology and algorithms for an analogue integrated circuit automation tool that optimizes performance and yield. The trade-offs between performance and yield are analysed using a combination of an evolutionary algorithm and Monte Carlo simulation. Through the integration of yield parameter into the optimisation process, the trade off between the performance functions can be better treated that able to produce a higher yield. The results obtained from the performance and variation exploration are modelled behaviourally using a Verilog-A language. The model has been verified with transistor level simulation and a silicon prototype.For a large analogue system, the circuit is commonly broken down into its constituent sub-blocks, a process known as hierarchical design. The use of hierarchical-based design and optimisation simplifies the design task and accelerates the design flow by encouraging design reuse.A new approach for system level yield optimisation using a hierarchical-based design is proposed and developed. The approach combines Multi-Objective Bottom Up (MUBU) modelling technique to model the circuit performance and variation and Top Down Constraint Design (TDCD) technique for the complete system level design. The proposed method has been used to design a 7th order low pass filter and a charge pump phase locked loop system. The results have been verified with transistor level simulations and suggest that an accurate system level performance and yield prediction can be achieved with the proposed methodology

    Physics-Based Modeling of Power System Components for the Evaluation of Low-Frequency Radiated Electromagnetic Fields

    Get PDF
    The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantle

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects
    corecore