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ABSTRACT OF THE DISSERTATION 

PHYSICS-BASED MODELING OF POWER SYSTEM COMPONENTS FOR THE 

EVALUATION OF LOW-FREQUENCY RADIATED ELECTROMAGNETIC FIELDS 

by 

Mohammadreza Barzegaranbaboli 

Florida International University, 2014 

Miami, Florida, USA 

Professor Osama A. Mohammed, Major Professor 

The low-frequency electromagnetic compatibility (EMC) is an increasingly important 

aspect in the design of practical systems to ensure the functional safety and reliability of 

complex products. The opportunities for using numerical techniques to predict and 

analyze system’s EMC are therefore of considerable interest in many industries. 

As the first phase of study, a proper model, including all the details of the component, 

was required. Therefore, the advances in EMC modeling were studied with classifying 

analytical and numerical models. The selected model was finite element (FE) modeling, 

coupled with the distributed network method, to generate the model of the converter’s 

components and obtain the frequency behavioral model of the converter. The method has 

the ability to reveal the behavior of parasitic elements and higher resonances, which have 

critical impacts in studying EMI problems. 

For the EMC and signature studies of the machine drives, the equivalent source 

modeling was studied. Considering the details of the multi-machine environment, 

including actual models, some innovation in equivalent source modeling was performed 
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to decrease the simulation time dramatically. Several models were designed in this study 

and the voltage current cube model and wire model have the best result. The GA-based 

PSO method is used as the optimization process. Superposition and suppression of the 

fields in coupling the components were also studied and verified. The simulation time of 

the equivalent model is 80-100 times lower than the detailed model. All tests were 

verified experimentally. 

For the EMC study of the switching activities, 3DFE modeling of a typical power 

electronic drive was implemented with an innovation in defining switching activities. The 

measurement was also applied for verification of the numerical results, and for 

investigating the stray fields under different operating conditions. 

As the application of EMC and signature study, the fault diagnosis and condition 

monitoring of an induction motor drive was developed using radiated fields. In addition 

to experimental tests, the 3DFE analysis was coupled with circuit-based software to 

implement the incipient fault cases. The identification was implemented using ANN for 

seventy various faulty cases. The simulation results were verified experimentally. Finally, 

the identification of the types of power components were implemented. More than 170 

circumstances of the combinations of the typical power components were tested 

experimentally and the identification is explained. The results show that it is possible to 

identify the type of components, as well as the faulty components, by comparing the 

amplitudes of their stray field harmonics. The identification using the stray fields is 

nondestructive and can be used for the setups that cannot go offline and be dismantled. 
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1. Introduction 

Compliance with electromagnetic compatibility (EMC) standards is an increasingly 

important aspect in the design of practical engineering systems.  Consideration of EMC 

issues at the design stage is necessary to ensure functional safety and reliability of 

complex modern products. These products are  increasingly  reliant  on  electronic sub-

systems to provide powering, communication, control and monitoring function  that are  

needed  to  provide  enhanced  levels  of functionality of systems. Typical examples 

include; transportation vehicles (road, rail, sea and air), manufacturing plants, power 

generation and distribution as well as communication systems.  

Opportunities  for  using  numerical  simulation  techniques to  predict  and  analyze  

the system  EMC  and  related  issues (e.g.  human  electromagnetic field  exposure  and  

installed  antenna performance) are therefore of  considerable  interest  in many  

industries.  

For efficient control and use of electric energy, electronics and power electronics are 

increasingly used within electrical systems. Examples of such technologies are solar and 

wind power conversion systems, electric vehicles, variable speed drives and energy-

efficient lighting systems. These technologies are also used in evolving Smart Grid 

applications. A basic performance of such modern electrical systems is related to the 

EMC in the area of low frequency disturbances. Based on the above background, the 

importance of low frequency EMC study is considerably increasing.  

On the other hand, the power electronic technologies are also used in evolving 

machine-drive equipment such as vessels and aircrafts. The electromagnetic signature is 



 

2 
 

observable at low frequency in the local magnetic field, however, several threats are 

present in military applications: detection and classification, and subsequent detonation 

of sea mines, detection and localization of submarines out of the air. Due to the 

improvement in the sensitivity of electromagnetic field sensors and smart signal 

processing, electromagnetic signature reduction is vital. Thus, the first goal is to decrease 

the detection range by complying with strict electromagnetic signature requirements.  

The other electromagnetic signature study aspect of the radiated fields in low-

frequency is condition monitoring of the components. Faults in the winding of the 

machines, as well as switch’s failure and many other issues, can be detected without the 

need of system dismantling. This is critically beneficial for sensitive applications, which 

may not be easily possible to reach the components for online testing. On the other hand, 

offline testing of the component may be costly. 

1.1 Introduction to electromagnetic compatibility 

The presence of unwanted voltages or currents in electrical equipment is stated as 

interference in electrical systems, which can damage the equipment or degrade its 

insulation and performance. Electromagnetic interference (EMI) is a fairly 

comprehensive term that covers a wide range of undesirable electrical voltages and 

currents with a frequency spectrum from the DC frequency level up to the GHz range. 

EMI may be introduced into an electric circuit through the following paths:   

• Conducted over the power cables or signal cables.  
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• Radiated as magnetic or electric field from components, which is the source of the 

interference, and then coupled into another electric component, which is the 

victim. 

There are two main sources of EMI:  

• Natural events, such as snow storms, electrical storms, rain particles, and solar 

radiation, as well as lightning, electrostatic discharges (ESD) and cosmic 

discharges. This type of interference is commonly called static 

or atmospheric noise.   

• Inherent interference, which is noise within a piece of electronic equipment, 

caused by thermal agitation of electrons flowing through circuit resistance. (This 

noise is usually noticed as the background noise heard in a radio receiver when it 

is tuned to a frequency between stations). 

• Man-made interference, which is principally generated by electrical equipment 

used for industrial and domestic power supply, communications and control 

applications [1]. 

This study concentrates on the man-made sources of EMI and mainly those present in 

the industrial environment. Every electrical circuit should be considered to be a potential 

source of electrical interference, particularly those where switching of inductive or 

capacitive circuits takes place. Fortunately, most electrical interference is of such a 

sufficiently low level that it has no noticeable effect on other items of electrical 

equipment. 
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EMC refers to the ability of equipment to function satisfactorily without producing 

emissions that degrade the performance of other equipment, and also are not affected by 

emissions from other equipment. 

Electromagnetic interference (EMI) covers various main groups as shown in figure 

1.1.  

Fig. 1.1 The main origins of the electromagnetic interference in low and high frequency 
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The rapid increase in the use of non-linear power electronics devices, such as AC and 

DC variable speed drives, has increased the overall importance of EMI in industry. To 

compound the problem, there has been a rapid increase in the number of electronic 

control and communications devices, which operate at low voltages and high speeds, and 

are susceptible to this high level of interference. 

A simple but effective way to understand interference problems is to remember that 

there are always three elements to every interference issue:  

1. There must be a source of interference energy.  

2. There must be a receptor or victim that is upset by the interference energy.  

3. There must be a coupling path between the source and the receptor. 

The management of EMI and EMC in industrial environments falls into two 

categories:  

• The establishment of standards for the containment of EMI by setting maximum 

limits on EMI emissions from electrical equipment.  

• The establishment of standards for the susceptibility (or immunity) of electronic 

devices through good design and shielding of electronic equipment, which will enable 

them to operate within certain levels of interference. 

1.2 The sources of electromagnetic interference 

It is not practical to completely eliminate the electrical interference. The main 

objective is to minimize its effect on neighboring electronic equipment [1]. 

The main sources of EMI in the industrial environment are:  

• Any circuit which produces arcs.  
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• Circuits which generate non-sinusoidal voltages, produce electric fields. 

• Circuits which generate non-sinusoidal currents, produce magnetic fields. 

The AC variable speed drives use power electronic techniques to convert AC to DC 

(rectifier) and then to convert DC to AC (inverter) to provide a variable voltage variable 

frequency (VVVF) output. The overall efficiency and performance of the electric motor 

depends on the quality of the current to the motor. Over the past decade, a smooth 

sinusoidal current waveform has been achieved through the use of pulse width 

modulation (PWM) and high frequency switching (10 kHz to 20 kHz). Unfortunately, the 

AC converter has become a major source of both conducted and radiated electromagnetic 

interference (EMI).  

The two main areas of EMI generation are:  

• Supply side (mains)  

The switching frequency of a 6-pulse diode bridge is 360 Hz on a 60 Hz power 

supply system. The harmonics generated by the rectifier fall into the frequency spectrum 

up to about 3 kHz and are conducted back into the power system. The radiated EMI from 

the rectifier is of relatively low frequency (low di/dt).  

• Machine side  

Due to the high inverter switching frequencies (typically between 2 kHz to 20 kHz), 

high frequency harmonics up to 10 MHz (RFI) are generated by the inverter and 

conducted along the cable to the motor. The EMI radiated from this cable is therefore of 

relatively high frequency, often with high dv/dt [1].  
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Supply-side harmonic interference is a continuous distortion (up to 3 kHz) of the 

normal sinusoidal current waveform. The distortion frequencies are multiples of the 

fundamental 60 Hz frequency.  

Harmonic interference relates mainly to low-order odd harmonics, similar to the 

image shown in fig. 1.2. 

 

Fig. 1.2 Low order odd harmonic superimposed by the electromagnetic interference 

Motor-side interference is a continuous high frequency distortion superimposed on 

top of the normal sinusoidal waveform. 

The high frequency (RFI) superimposed on a sinusoidal waveform is shown in fig. 

1.3. These orders of harmonics generates while the harmonic orders of the machine 

couple with the harmonic orders of the inverter (switching frequencies). 

 

Fig. 1.3 High frequency harmonics produced by the electromagnetic interference 

AC converters do not themselves radiate a high level of EMI energy. The 

electromagnetic fields in the immediate area (<100 mm) of the converter can be quite 
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high, but these weaken quite quickly according to the inverse square law and are 

insignificant at a distance of about 300 mm. When AC converters are mounted in metal 

enclosures, the electromagnetic radiation is largely eliminated. The main mechanism of 

propagation of the EMI is through the supply cables, the cables to the motor and most 

important through the earth connections. The supply cable is the most important route for 

the transfer of EMI. Conduction along the control and communication cables is fairly rare 

because these cables are usually well shielded and their source impedance is high.  

 In addition to the inverter and machine, railroad and mass transit systems have some 

unique types of EMI source problems. These include: 

• Propulsion system’s high voltage and high current operational mode emissions. 

• Train signaling systems and their associated computer operating codes. 

• Third rail shoes arcing broadband emissions. 

• High voltage contact switching arcing broadband emissions. 

• Train control system’s emissions. 

• Track train control circuits. 

• Right away emission sources. 

Moreover, medical equipment utilized in medical facilities has numerous EMI 

sources. Some of the more prominent of these are listed below: 

• Life support equipment, such as ventilators, cardiac defibrillators, infusion 

pumps, etc. 

• Patient telemetry and assistance equipment, which includes electrocardiographs 

and motorized wheelchairs. 

• Electrical surgical units and their associated support equipment. 
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• Magnetic Resonance Imagine (MRIs) systems. 

• X-ray units, both therapeutic and diagnostic. 

• Gamma Beam Electron Accelerators and Therapeutic equipment. 

1.3 Electromagnetic compatibility and power smart grid 

After explaining the various sources of EMI and their reason, the EMI in the power 

smart grid is discussed in this section. The smart grid is a very remarkable issue 

nowadays. The term is widely used by many, especially politicians. The International 

Electro-technical Commission (IEC) has defined the concept of smart grid [2]. The 

definition states that the smart grid is an electrical energy system that uses information 

technology. The smart grid is thus not only related to electrical networks, but to the entire 

power system. With smart grid technologies, as well as power technologies for 

renewables and improved energy efficiency, there is an increased use of electronics. We 

see growth in the use of power electronics, as well as electronics for information 

technologies. 

One example of smart grid application is the possibility of charging electric car 

batteries during the hours with a surplus of low cost renewable energy. When the 

electricity price is high, electric cars may feed energy back to the electrical network. This 

can be achieved using a continuous transfer of electricity price information with 

automatic control of the power flow to and from the electric cars. The term smart grid is 

thus enabling a “smart” electrical system where the entire power system, with networks 

as well as connected equipment, is converting between electrical energy and other forms 

of useful energy.  
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The physical characteristic of smart grid technologies, with an increased incorporation 

of potentially sensitive electronics, naturally has implications with respect to 

electromagnetic compatibility (EMC). The satisfactory function of electrical and 

electronic equipment with respect to the electromagnetic disturbances is the aim of EMC. 

The IEC defines [3], [4] EMC as “the ability of an equipment or system to function 

satisfactorily in its electromagnetic environment without introducing intolerable 

electromagnetic disturbances to anything in that environment”. In the European Union 

EMC Directive the “equipment or system” of IEC corresponds to the EU term 

“equipment”, where equipment in turn is subdivided into apparatus and fixed installation. 

Electromagnetic disturbances may be radiated or conducted, and electrical/electronic 

equipment is potentially sensitive to any or to both of these types of disturbances. 

Disturbances are in turn subdivided into a number of low and high frequency phenomena, 

where IEC defines low-frequency up to and including 9 kilohertz. 

Examples of lack of EMC in relation to evolving smart grid technologies have been 

reported in Sweden. Kilo-watt hour meters in households sending data signals through 

power lines have caused interference with, for example, dimmer controlled lamps and 

electrical appliances. There are also cases reported where electrical apparatuses in 

households have interfered with electronic kilowatt-hour meters with adverse errors in 

registration of energy. Power electronics in wind power plants have emitted disturbances 

interfering with transfer of kilowatt-hour meter readings as signals on power lines. Power 

electronic-based photovoltaic solar and wind energy equipment may emit disturbances 

causing variations, such as voltage fluctuations and unbalance [4]. However, with a 
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proper design such equipment may well improve voltage quality, for instance by reducing 

depth of voltage dips [5]. Voltage quality can be seen as an umbrella name for deviations 

from ideal voltage conditions at a site in a typical network, shown in fig.1.4 [6].  

 

Fig. 1.4 Power system made-up of equipment 

This is equivalent to electromagnetic disturbances of the voltage at the site. With no 

disturbances the voltage quality is perfect, otherwise, it is not. Electromagnetic 

disturbances are defined as electromagnetic phenomena that may degrade the 

performance of equipment [7]. Adequate voltage quality contributes to the satisfactory 

function of electrical and electronic equipment in terms of EMC. Electromagnetic 
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disturbances as imperfect voltage quality at a site in a network can be regarded as 

electromagnetic emission from the network [8].  

Over the years, focus has shifted between various electromagnetic phenomena. During 

the 1980s, low-order harmonics were important to the program due to the introduction of 

thyristor and diode based current stiff line commutated power electronics. Similarly, 

voltage fluctuations causing flickering lights were of great concern where arc furnaces 

were the main source of disturbances. In the 1990s, the use of variable speed drives for 

induction motors was introduced on a large scale. Voltage dips were causing 

interruptions in industrial processes due to inadequate immunity for those drive systems 

[9]. 

Presently, there is an increased awareness of electromagnetic disturbances in the 

frequency range up to a few kilohertz. This is due to switched converter technologies 

used over time in an increasing number of apparatuses, from energy-efficient luminaries 

to charging units for electrical vehicles. Due to connection of wind and solar power at the 

end of weak feeders, the occurrence of temporary over-voltages is a disturbance of 

increased concern. Regardless of the phenomena, it is clear that an appropriate division of 

responsibilities for networks and connected equipment is dominant. 

1.4 Literature review 

The previous works of the investigation of the radiated fields in the power system can 

be categorized into the following five sections: 

• EMC studies in power system. 

• Electromagnetic computational modeling studies. 
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• Electromagnetic signature studies. 

• System monitoring studies. 

• Fault and failure diagnosis. 

11.4.1 EMC studies in power system 

The EMC studies in the power system, which can be categorized as the low frequency 

EMC studies, include those on the source of EMC in the power system, such as lightning 

pre-stroke phenomena, the lightning return-stroke phase and related electromagnetic 

scenario lightning electromagnetic pulse (LEMP), geomagnetic-storm-originated 

electromagnetic disturbance on power transmission lines, and evaluation of the AC 

interferences between transmission lines and metallic underground structures. Moreover, 

the degradation mechanisms affecting the shielding properties of a generic conducting 

enclosure under critical exposure conditions were studied. The critical situation can be 

namely when such a thin-walled structure is introduced into a quasi static magnetic field. 

Finally, the EMC studies regarding the power converter are reviewed. As mentioned 

before, one of the main source of the EMI is the presence of power electronic elements; 

therefore, a vast part of the literature review belongs to this issue. 

1.4.1.1 The lightning pre-stroke phase 

Through [10–21], the lightning pre-stroke phase is investigated and its essential role 

in determining the reliability of structural protection systems is acknowledged. Even the 

efficiency of the supplementary protection system, to which the task of mitigating 

induced effects on inner victims is assigned, is critically dependent on the striking 

performances. Hence, special attention is paid to the so far overlooked electrodynamic 
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mechanism involved in the attachment process, since a pure electrostatics-based method, 

traditionally applied to air termination placement, is verified to be only partially 

satisfactory. The problem of mitigating the interference of a LEMP with the sensitive 

circuitry placed inside a building is an important problem, which is studied. However, 

such a victim can be equipped with largely available lightning protection devices. 

Applying reliable guidelines to the primary protection system still turns out to be the 

requirement for a successful EMC design of the secondary protection system. Several 

subjects are methodically treated and stimulating arguments, for ultimately exploring 

more reliable estimation methods applied to the interception efficiency of air terminals, 

are provided. The thundercloud electrostatic modeling, along with the study of the pre-

stroke electrostatic and electrodynamics, is investigated in the mentioned literature. 

In lightning physics, the stepped leader attachment process and recognizing of 

location of the lightning point where a flash will strike are subjects of paramount 

importance for safety/security and EMC problems. By perceiving that the striking points 

exactly positioned on the inception and launch location of an attaching leader in response 

to an advancing stepped leader, the connection between the attachment process and the 

striking point is explained. However, when the attachment phenomenon is limited to the 

late moments of the pre-stroke phase, the striking point is unpredictable.  This is most 

probable when the physical and geometrical properties of the striking object and its 

surroundings are expected to play an influencing role. In general, the struck structure can 

be a natural or man-made global object, or an aircraft. Regarding the former class of 

victims, a considerable number of models and experimental methods have been adopted 

for evaluating the induced effects on detecting the loops placed inside a building. In these 
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investigations, the lightning flash is assumed to strike a metallic part of a protected 

building or outer points, for instance lying on the earth plane [11]. In both case studies, a 

lightning electromagnetic pulse (LEMP) prediction is utilized for progressing the 

theoretical evaluation of the induced mechanism, which of course carefully takes into 

account the shielding properties of the protection system. Specifically, the supposed 

primary protection system is configured as a pair of air (rods, catenary wires or meshed 

conductors) and earth terminations connected to the opposite ends of an interposed set of 

down conductors. Such an all-metal structural protection system can also be effective 

against inner LEMPs. The effectiveness of this protection system against fire, explosion 

and injury to occupants has long been verified. However, a secondary protection, 

generally involving surge protective devices, is often additionally needed [1].  

1.4.1.2 Electromagnetic scenario lightning electromagnetic pulse related to the 

lightning return-stroke 

The corresponding to the above material are the subject of the research which 

analyzes the lightning return-stroke phase and related electromagnetic scenario lightning 

electromagnetic pulse (LEMP) [11],[22]-[38].  

The induced effects on the canonical victim represented by an overhead horizontal 

line positioned near a flash are investigated. Although the LEMP quasi-static component 

is assumed to be near to the return-stroke channel, the more surprising coupling feature 

emerged here is that the LEMP quasistatic component is not involved significantly. The 

significant reasons explaining such an unexplored behavior are to be enquired into the 
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combinative electromagnetic performances of the wet earth plane, channel and upper 

cloud, all together envisioned to form an interconnected discharging system. 

The interest in the lightning phenomenon and the related effects have increased 

recently due to a the variety of reasons. Although the physics of lightning has never 

changed, a large debate on the progressive tropicalization of the climate in some regions 

is currently underway, (for example, this seems to occur in the European nations facing 

the Mediterranean basin), a phenomenon which is showing significant changes in the 

currently available thunderstorm maps and lightning statistics from earlier studies. 

Moreover, the growing number of exposed structures and systems and their non-uniform 

territorial distribution is making the application of security criteria an increasingly 

pressing and diversified problem. It is an increasing social necessity for a careful charting 

of the notions of risk awareness and safety with special reference to household and office 

appliances connected to distribution and communication lines. Also, as mentioned before, 

the reduction of electronic components’ size and optimization of the insulating 

compartment of power systems coincide in significantly increasing the sensitivity and 

vulnerability to the lightning generated electromagnetic impact. 

The large amount of latest experimental data and models (see, for example, the 

review books or selected collections of articles ([11], [25], [27], [38]) allows an insight 

into such an attractive and important subject. On the other hand, the required collection of 

evidence prior to standardization (especially addressed here to protection/mitigation 

criteria and devices), seems to be still in progress (see, for example, [17], [35]). Lightning 

can be substantially considered as an unstable product of little understood electrification 

processes, which develop inside a thunder-cloud or banks of thunderclouds. Therefore, 
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the currently available models are questionable because the incidental, changeable and 

irreproducible nature of such a phenomenon makes the interpretation more hypothetical. 

Typically, available referential data are sets of recorded oscillograms arranged in the 

form of excitation-field components, in which the detection at a distance from the 

discharging channel is approximately known [1]. This representation of a LEMP, which 

is the usual demonstration of it, unfortunately, can no longer be considered as a proper 

benchmark to substantiate the reliability of electromagnetic models of lightning. 

Consequently, the impressive reproductions of experimental oscillograms can be derived 

from different, and sometimes conflicting, models owing to the large number of variables 

and assumptions invariably introduced and combined successfully. 

1.4.1.3 Effects of geometrical storms on long distance AC transmission system 

The EMC effects of geometrical storms on long distance AC transmission system are 

also discussed in the literature [39-47]. Solar Induced Currents (SICs) are the cause of 

many detrimental effects on power systems. It is worth noting that the scientific interest 

for this topic is cyclical and follows the relevant periods of the solar activity. The solar 

flares cause the ejection of particles with particular trajectories that could interact with 

the earth’s magnetic field. After the incidence of the solar flare (about twenty to forty 

hours), these particles can cause relatively rapid transient variations in the earth’s 

magnetic field, well-known as geomagnetic disturbances or geomagnetic storms. This 

magnetic interaction can cause problems on electric power system and on the 

communications system. This is primarily due to the fact that the geomagnetic 

disturbances produce an induced Earth-Surface Potential (ESP). The induced potential 
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and the size of the system increase compatibly. Subsequently, the induced ESP gives rise 

to spurious currents in long transmission lines and equipment that are in some way 

grounded at points geographically remote from each other. Therefore, the strategy is to 

build the longer transmission lines, which are able to cover large geographical areas. For 

this reason, some of the problems caused by geomagnetic storms can become more 

pronounced. Several studies on the occurrence of relevant ejection of particles by solar 

flares have been conducted in the past and it has been observed that this phenomenon has 

a cyclic characteristic with an estimated period of about eleven years. 

As mentioned above, the spurious currents due to the geomagnetic disturbances are 

called Solar Induced Currents (SICs) in power systems. Some measurements of SICs on 

actual power systems are reported in the literature ([39-41]). The effects on equipment 

and irregular operations of power systems are the main concern and it was shown in the 

literature that they all can nearly be traced to the presence of the SIC in the windings of 

transformers ([42-46]). The SIC can be considered quasi-DC and their main effect is the 

simultaneous AC and DC excitation of energized transformers, since the SICs have a 

fundamental period of several minutes (from 6 to 15 minutes). The SICs have been 

measured in excess of 100A in transformer neutral leads in extreme cases [47]. 

1.4.1.4 Interferences between the AC transmission lines and metallic underground 

structures 

The evaluation of the interferences between the AC currents transmission lines and 

metallic underground structures and pipelines are investigated [48-50]. The requisite to 

develop mathematical tools and demonstrations for the computation of electromagnetic 
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interference with underground metallic assemblies has originated from the general trend 

in the last few decades, of concentrating most utility structures (overhead AC 

transmission lines, traction lines, telecommunication lines, pipelines for fluid 

transportation, etc.) in the same corridors. The interest towards the influence of AC on 

metallic structures is related to the possible resulting hazards regarding the safety of 

people coming into contact with the pipeline, the risks of damage to the pipeline coating 

and metal and the risks of damage to the equipment connected to the pipeline (cathodic 

protection systems [48]). 

1.4.1.5 Metallic enclosures exposed to quasi-static fields 

One of the most appealing EMC problems consists of predicting the shielding 

degradation of discontinued metallic enclosures exposed to quasi-static fields [51-56]. 

The two main origins should be considered. First, irrespective of the presence of 

apertures, regular non-magnetic conducting panels often organized in a way to form an 

enclosure, perpetually make the interior vulnerable system less effectively impermeable 

to the magnetic than to the electric field. The negligible reflective and absorptive 

behaviors of the enclosure wall at low frequencies causes the unfavorable performance 

against magnetic fields. Similarly, the large conductivity of the adopted materials causes 

the favorable performance against electric fields, which leads to the displacement current 

collected by the hollow body to company the low-resistance wall, where it flows in the 

form of a conduction current. Moreover, the coupling to an interior wire crossing an 

aperture represents a paradigmatic case study with reference to the concentrated field 

penetration. Therefore, the fields of interest often reduce to the components of the net 
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electric field tangential to them, and the simultaneous magnetic field linking the exposed 

segment of the wire. Due to the structures assumed by the above fields passing through 

the hole and actually coupled to the inside conductor, it is confirmed that the former field 

often approaches zero, while the latter is important. 

The above observations especially apply to high-current source cases, namely when 

the application is for example constructed of the “bulk current injection” (BCI) for 

laboratory tests [51]. Classically, such simulations have long been adopted to explore the 

induced effects of a lightning discharge directly striking an aircraft, in which the current 

spreads up over the conducting portions of the enclosure and takes the path of least 

impedance. Specifically, replicating the development of the residual field in the shielding 

volume is the requirement for a careful knowledge of induced effects on the complex 

wiring laid onboard aircraft and running nearby the apertures. In this case, a large amount 

of the produced magnetic field may be assumed to be of quasi-static nature due to the 

limited spectral components of the return-stroke current and the short geometrical 

amounts often involved (hole dimensions and spectator’s distance, both small in 

comparison to the free-space wavelength). 

1.4.1.6 Power quality 

Power quality (PQ) monitoring is a very multipart task, and recently it is assuming a 

growing significance because of the large diffusion of non-linear and time-varying loads 

and their interactions with the power supply system. Consequently, the distributor/ 

customer responsibility question is currently challenging the EMC community. The brief 

description of the PQ scenario and an overview on the disturbances affecting electrical 
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power systems and related international standards are described in the literature [1], [57-

66]. The capability of evaluating the PQ at the point of common coupling in terms of 

harmonic distortion is described in [1]. The value of the procedure is sustained even by a 

comparison with other harmonic assessment procedures. The main causes of the PQ 

disturbances, as well as the detrimental effects they have on the electrical systems, are 

described. Among these issues, harmonics are investigated more accurately. 

In terms of Electromagnetic Compatibility, the sufficient voltage quality contributes 

to the satisfactory function of electrical and electronic equipment. Electromagnetic 

disturbances as imperfect voltage quality at a site in a network can be regarded as 

electromagnetic emission from the network [61]. According to the EMC Directive 

network in equipment, this is in line with the original name of IEC Technical Committee 

(TC) 77 which was “EMC between electrical equipment including networks”; now 

simply EMC [61].  The electromagnetic energy transfer with adequate voltage quality at 

its sites is the technical function of an electrical network. Similarly, immunity of an 

electrical network can be seen as the ability to absorb disturbing emissions, such as 

distorted current with adequate voltage quality while transferring energy, i.e. with 

satisfactory function. For instance, low order harmonics and voltage fluctuations, and 

network strength are relevant for network immunity [62], [63]. In terms of geomagnetic, 

the induced current caused by space weather is another example of electromagnetic 

immunity relevant to an electric grid [64] to keep its function satisfactory. 
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1.4.1.7 Power converters 

One of the main practical aspects of studying EMC is the power converters and their 

contribution in the EMC problems of the power network. There are numerous 

publications about these articles. They include modeling, prediction and reduction of the 

EMI regarding the power electronic components and power converters in the system [67-

91].The appearance of EMI noise in different types of power converters used in SMPS 

units has also been explained in several articles. While the references [70] and [71] deal 

with buck converters, the generation of conducted noise in boost-power-factor-correction 

(PFC) converters is discussed through [72]–[74], and [75]–[77] deal with forward 

converters, and [78] and [79] deal with offline fly-back converters. The popular boost ac–

dc PFC converter is utilized next as an instance to provide some background regarding 

the generation and measurement of EMI noise in SMPS units. In details, many 

researchers developed the EMI filters for mitigating the conducted EMI. Both passive 

and active EMI filters (AEFs) have been used along with the input power supply lines to 

mitigate the noise. The design of passive filters for use in power electronics is particularly 

challenging, since the filters are terminated with varying noise source (SMPS) and load 

(power line) impedances [70], [80], [81].  

A commonly used filter topology is shown in fig. 1.5(a) [80], [82]–[84]. The 

equivalent CM and DM filter circuits of this filter are shown in fig. 1.5(b) and (c). In 

practice, often the leakage inductance of the CM inductor, CM leakage alone, is used as 

the DM inductor. 
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Fig. 1.5 EMI filter. (a) Overall filter. (b) CM equivalent filter. (c) DM Equivalent Filter 
[69] 

The detailed surveys of the EMI passive filters are mentioned in [69].AEFs use active 

electronic circuits to suppress the unwanted signals and are possible alternatives to 

immense passive EMI filters. Based on the method used, an AEF can be of feed forward 

or feedback type, or a combination of both types. A feed forward AEF injects an equal 

amount of noise of opposite polarity to reduce the noises. A feedback AEF, on the other 

hand, uses a high-gain feedback-control loop to reduce the noise level.  

Fig. 1.6 shows four possible topologies for feedback AEF. The inductor or the voltage 

across the AEF can be sensed or the compensation can be through injection of a series 

voltage or a shunt current [85], [86].  

 
Fig. 1.6  Feedback AEFs. (a) Voltage-sense voltage compensation. (b) Current-sense 
voltage compensation. (c) Voltage-sense current compensation. (d) Current-sense current 
compensation [69]. 
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Series-voltage compensation shown in fig. 1.6(a) and (b) increases the effective 

impedance of the series path, whereas the shunt-current compensation [see fig. 1.6(c) and 

(d)] reduces the effective impedance of the shunt path. In general, all the feedback 

configurations of AEF can be applied for reduction of both CM and DM noises. Although 

the main function of switch control is to regulate the power flow, the control can also be 

changed to influence the radiated and conducted EMI generated by the power converter. 

The first and one of the simplest techniques to reduce the EMI is the selection of low 

switching frequency. That is to say, the switching frequency plays an important role in 

minimizing the EMI filter requirements with a reduced switching frequency, resulting in 

lower EMI noise at the expense of large-sized passive components [87].  In [88], a very 

low 100 Hz switching frequency, corresponding to one switching per half of an ac cycle, 

has been utilized in the boost PFC converter to help in meeting the EMC standards. 

Conducted EMI needs have been encountered with just a simple first-order filter. 

However, the passive elements used in the converter are expected to be larger as a result 

of the very low switching frequency.  

The other technique, which is used for the reduction of noises, is utilizing different 

kinds of switching patterns of pulse width modulation (PWM). The investigation of the 

frequency-modulation spread range approach has been done in [76] and [89], which 

associate the modulation parameters with the resulting spread in the spectrum. It has been 

suggested in [89] that the modulation frequency must be close to or greater than the 

measurement resolution bandwidth (RBW) set by the standards. Rossetto et al [87] used a 

600-W boost PFC converter for modulation at the switching frequency, 100 Hz, in 

synchronism with the rectified ac-voltage waveform. The switching frequency is tried to 
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be modulated in a way that it is at its minimum value when the ac current is at its 

maximum. In addition to spreading the EMI noise, this would also reduce the switching 

losses. Mihalic and Kos [90] adopted a random PWM (RPWM) scheme to spread the line 

noise spectrum. In RPWM, the pulse width is randomly changed at a constant switching 

frequency, while the average pulse width value is reserved matching to the required duty 

cycle. Using simulations, [91] has compared the EMI performance of different control 

schemes as follows: 1) synchronous PWM; 2) asynchronous PWM; 3) hysteresis with 

varying band; 4) hysteresis with fixed band; and 5) constant on-time methods and 

resolved that hysteresis control with fixed band performs better than the other methods.  

11.4.2 Electromagnetic computational Modeling studies 

The modeling process in the field of electromagnetic compatibility means the 

establishment of a connection between the source of interference or any other cause and 

its effect, which can be the response of the component as the part of the system. This 

relationship can be established in several ways, depending on the type of problem, its 

complexity, and the degree of approximations with respect to an exact formulation. The 

possible methods involve: 

• Using circuit theory for designating the conducted disturbance, such as 

voltage dips, over-voltages, voltage stoppages, harmonics, and common 

ground coupling [72], [92]-[94]. 

• Using an equivalent source model (usually circuit) with either distributed or 

lumped parameters, such as in low-frequency electromagnetic field coupling 

expressed in terms of mutual inductances and stray capacitances, field-to-line 
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coupling using the transmission line approximation, and cable crosstalk [95]-

[97].  

• Formulating the problem in terms of formal solutions to Maxwell’s equation 

and making analytical models based on that [98-101]. 

• Physics based modeling using numerical methods, such as finite element 

method, finite differential method, method of moment, and so forth [102]-

[110]. 

Generally, the methods used in EMC modeling are not only to visualize 

electromagnetic phenomena but also to predict and suppress interferences, which can be 

regarded as either theoretical or experimental.  

More details about the EMC modeling will be discussed in the second chapter. 

1.4.3 Electromagnetic signature studies 

The definition of the electromagnetic signature study is opposite to the EMC/EMI 

application, which is the reduction of the radiated fields. It is tried in this study to utilize 

the radiated field that is mainly in low frequencies from a few Hz to several kHz. The 

radiated fields can be processes through numerical and data acquisition techniques. The 

application of this process is monitoring the behavior of the components through the 

electromagnetic signatures, as well as diagnosing the faults and failures. For this purpose, 

various modeling techniques, as well as experimental performances are used, which are 

summarized in the following. 



 

27 
 

1.4.3.1 System monitoring studies 

Many researches have been implemented in characterization and detection of the 

source of harmonics and inter-harmonics [111]-[118]. In [111], the principle of the 

harmonic and inter-harmonic is discussed and the proposed model is suggested. Then, the 

inter-harmonic assessment is considered with particular attention to the problem of the 

frequency resolution and of the computational burden associated with the analysis of 

periodic steady-state waveforms. Finally, modeling of different kinds of inter-harmonic 

sources and the extension of the classical models developed for power system harmonic 

analysis to include inter-harmonics, are discussed. The modeling for the assessment of 

the sources is discussed more in [112]. A new algorithm termed hybrid blind source 

separation is used for the localization. Although, the application of this localization is for 

high frequency components, identifying and locating the sources on the basis of predicted 

measures, which are used in this research, can be inferred and used for the low frequency 

components. Some literature such as [113], [114] focused on the improving the 

measurement and extraction techniques to enhance the investigation of harmonics and 

inter-harmonics. The enhancements are in about higher degree of accuracy, 

structural/performance robustness, and frequency adaptivity. In [115], simulation and 

experimental study of the identification of the inter-harmonic source location in power 

systems are implemented. The method is based on the inter-harmonic impedances 

measured at the metering points and comparing them with the harmonics of the utility 

system. The main idea behind this method is that the inter-harmonic impedance of the 

system is much smaller than that of an inter-harmonic-generating load. 
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Besides inter-harmonic, some other methods are used for source identification. In 

[116], an approximate technique was proposed for the reconstruction of magnetic field 

distribution in the proximity of unknown sources based on two nested optimization 

algorithm. Moreover, in [117], the cascade correlation network was used for the 

harmonic source detection. The Current-injection-based harmonic power flow was used 

to calculate bus voltages and total harmonic distortion. D. Srinivasan et al [118] proposes 

a neural-network (NN)-based approach to nonintrusive harmonic source identification. In 

this approach, NNs were trained to extract important features from the input current 

waveform to uniquely identify various types of devices using their distinct harmonic 

“electromagnetic signatures”. The identification was particularly implemented based on 

the measurement of current at the incoming supply point and comparing the magnitude of 

different components from home appliances to computer apparatuses and power 

components. 

11.4.3.2 Fault and failure diagnosis 

In early research, the fault detection in machines involved simple techniques, such as 

overcurrent or overvoltage detection. Following the detection, it was required to bring the 

machine offline to clear the fault. In safety-critical applications; however, a shutdown of 

the motor may not be an option. This demands better fault detection approaches. The first 

step in dealing with a fault in the drive is the ability to detect it quickly and determine its 

location and severity accurately. Through the analysis of electromagnetic signature, the 

problems of off-line analysis of the failures has been resolved.  
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Between the online methods, the air gap flux electromagnetic signature technique 

measures the rotating field of the machine by utilizing the sensor installed in the machine 

to detect faults. Valuable research efforts were presented regarding this technique [119]-

[128]. The broken bar and stator winding short-circuit are studied in [119] and [120] 

through data acquisition methods and experiments in low and medium frequencies. 

Similarly, Chadebec et al [121] showed the trustworthiness of fault detection on electrical 

machines by analysis of the low frequency magnetic field signature. The other advantage 

of using stray field in the fault diagnosis, such as the fault in lamination and broken bars, 

were explained in several publications such as [122]- [126].  

The air-gap magnetic flux can give good results in detecting interturn short-circuit; 

however, installing and maintaining the sensor is the drawback of this method. Hence, in 

this research, we will measure the radiated magnetic field outside the motor using the 

magnetic antenna and use the frequency response analysis for interturn fault detection. 

Since it’s possible to locate the field antenna close to the machine, the magnetic behavior 

of only the faulty machine would be evaluated. This is also useful in cases where there 

are other machines around the faulty one.   

11.5 Problem statement 

As mentioned in the previous parts and the literature reviews, power electronic 

devices are increasingly used within electrical systems for efficient control and use of 

electric energy. Solar and wind power, electric vehicles, variable speed drives and smart 

grid applications are examples of such technologies. Electromagnetic interference occurs 

due to the presence of these electronic devices in these systems. It can be conducted or 
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radiated to neighboring equipment. This radiated or conducted EMI may cause 

malfunction or de-rating at low power frequency and high frequency applications (such 

as radar).  The de-rating of systems may cause them to work under their normal rates. 

Based on these issues, the importance of low frequency field signature analysis is 

considerably increasing.  

Although in low frequencies the reduction of radiated or conducted interferences are 

proposed, they can also be used for investigating the behavior of the components. The 

system monitoring and fault/failure diagnosis of the power components can be achieved 

through studying the radiated and conducted electromagnetic signatures.  

One of the most important aspects of electromagnetic signature study in power 

system is the modeling of components, including electrical machines, cable runs, power 

converters, and their enclosures. Since testing various techniques in actual machines, 

drives and other components are cost prohibitive, one needs to study and develop 

techniques that reduce the radiated fields and evaluate their levels with a high level of 

precision. Some researchers are involved in the modeling of these devices for the 

mitigation of radiated fields [129]-[132]. Most of the works reported in the literature were 

related to high frequencies. As discussed above, low-frequency devices also radiate 

electromagnetic fields that disturb other devices in their vicinity, and therefore the 

detection and mitigation of electromagnetic fields are increasingly important. 

11.6 Research objective 

The objectives of this research are based on the issues that are stated above. In order 

to achieve the optimum performance of a component in the power system, many studies 
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should be implemented. Moreover, a well-designed algorithm for the purpose of fault and 

failure diagnosis requires numerous tests. However, testing various techniques on the 

power components experimentally costs a huge amount of money and time; in addition, it 

may cause destructive damages. Therefore, primitive tests for finding optimum 

performances are fulfilled by using physics-based modeling. The full three-dimensional 

(3-D) finite element method is used as the physics-based modeling. The detailed 

modeling of typical components in a power system setup are implemented for the 

purpose of studying the radiated field at given distances. Hence, the radiated electric and 

magnetic fields of the sources at the area around the components are obtained and 

investigated. However, the full 3-D finite element modeling for the purpose of studying 

the multi components cases becomes difficult, which is because of the significant 

increase of the number of meshes and the presence of very tiny elements in the 

components and the proportion of them to the large area of the simulation. Simulating in 

the large area is because of the need to observe the electromagnetic signatures at the far 

distances. Therefore, equivalent source modeling is used. The particle swarm 

optimization method is utilized to implement the equivalent source model physically. The 

other equivalent source models in the process of embedding the equivalent source 

models, such as dipole models and quadra-pole models are utilized.  

Finally, the particle swarm optimized based on genetic algorithm is used. This model 

decreases the simulation times more than 100 times, while it keeps the accuracy up to 95 

percent. The drawback of this modeling method is that the model should be revised and 

the optimization process should be implemented for each different state of the 

components. Therefore, the wire modeling is utilized. This new model uses the magnetic 
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and electric field densities and the current density around the wire and improvises the 

wire model with the modified value of current and voltages. Consequently, the equivalent 

source model would be created. This model has the ability to be used for various 

situations and state of the components while it keeps the accuracy up to more than 98 

percent. 

As the EMC applications point of view, the equivalent source models, as well as the 

full finite element models, can be used for testing different kinds of shielding. Different 

electrical and chemical features of the materials are utilized to have the optimum 

shielding of the components. Moreover, the proper locations of the shields are tested. The 

other application is improving the performance of the components, such as optimizing 

different types of switching techniques of the converters. The optimum switching patterns 

can be considered for the purpose of less EMI, as well as the fault diagnosis of the 

switches. 

As the electromagnetic signature study applications’ point of view, the full finite 

element modeling should be used; however, there is a limitation of the number of meshes 

for the multi-components modeling. For this issue, the multi-symmetry and multi-linear 

modeling are used, which resolve this limitation and decrease the simulation time. This is 

explained more in the next section. Then, the system monitoring of the system is 

implemented. The source identification is fulfilled for the purpose of detecting the 

component, which is not operating properly. Various couples of the components, such as 

generator-motor, converter-fed motors, and controlled drives are tested to define the 

proper algorithm for this purpose. In detail, the fault detections of the machines, as well 

as the converter switches, are employed using the electromagnetic signatures. Moreover, 
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the type of short-circuit in the induction motors, as well as the identification of the 

location of short-circuit in the winding of the induction motors, are investigated all 

through the radiated electromagnetic signatures. 

11.7 Original contribution and significance 

In order to implement the full finite element for the electromagnetic signature study 

applications and EMC applications, several modifications in the solver are implemented. 

We used the fast generalized minimal residual technique, GMRES, as the iterative solver 

with the krylov as the pre-conditioner. The fast GMRES is a variant of the GMRES 

method with flexible preconditioning that enables the use of a different pre-conditioner at 

each step of the Arnoldi process. In particular, a few steps of GMRES can be used as a 

pre-conditioner for fast GMRES. The flexibility of this solution method is beneficial for 

the problem with nonlinear material characteristics, such as the core of the motor. 

Consequently, the multi-symmetric problems will generate that can be solved much faster 

than the problem with the regular settings.  

Since the proposed setup consists of the electric machines, the nonlinearity of the 

features of ferromagnetic materials makes the solution of finite element problems 

complex. In this case, since there are several materials with nonlinear characteristics, the 

linear solver cannot be used. On the other hand, using nonlinear material rises the 

simulation time dramatically. Hence, a modification in choosing the solver and the 

iterative solver is employed. Instead of having a linear or curved B-H curve, the ramp of 

the curve in several zones is calculated (µr1, µr2 …) and used instead of the B-H curve. 

The benefit of this modification for this study is that the magnetic flux density of a 
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component alters in a very small period due to the steady state condition of the proposed 

system. For higher frequencies, it goes down to under 1T. Therefore, in this case, a 

specific zone of the permeability can be chosen for this component. Similarly, the 

permeability of the other components of the system can be chosen based on the working 

frequency of them. Therefore, having the idle parts of the B-H curves of the elements 

would be avoided, and the simulation time decreases. This algorithm can be defined in 

the material properties part of the FE simulation. 

For the equivalent source modeling, the optimizations in the values of the model 

parameters of component, such as voltage and current, are employed. Moreover, the 

model is a cube model; therefore, the optimum dimensions should be obtained to have 

similar electromagnetic signatures as the actual results. All of these are obtained by using 

particle swarm optimization based on the genetic algorithm. Having numerous objective 

functions for the optimization procedure increases the process time; hence, the objective 

functions were considered either E-field or H-field in addition to the dimensions of the 

cube. Both situations satisfy the requirements and the equivalent source model radiates 

similar fields as the actual model. 

In terms of the types of results, the frequency response analysis in addition to time 

domain analysis through equivalent source models and full models are achieved. The 

application of time-domain analysis is studying the effect of rotation, which is 

considered. 

The optimized models have one drawback, which is the application of the models for 

a defined situation. In other words, if any change in the voltage, power or variation in the 

construction of the component is required to be implemented, the objective functions 
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should be solved again, which takes time (sometime more than the simulation time of the 

full finite element models). Hence, the wire model based on the structure of the actual 

model of the proposed component is designed. The parameters of the wire model are 

voltage and current, which are obtained based on the electric and magnetic field density 

and current density of the actual components. In order to have a comprehensive model for 

different levels of voltages and currents, as well as sizes of the components, the 

appropriate factors are considered that enable the model to be used as a generalized 

model for designed components. The accuracy of the wire model is so close to the actual 

results. 

Modeling the power electronic-based components, such as the power converter, has 

the problem of simulating the switching activities, while the low frequency model is 

proposed. In order to achieve this, the modification in the material of the insulator 

attached to the switch is done, which makes the current loop based on the switching 

frequency. The effect of this switching frequency in the low frequency response is 

demonstrated and discussed. 

The application of the electromagnetic signature study is monitoring the behavior of 

the components and diagnosing the faults that occurred in the components. This is 

achieved though the harmonic and inter-harmonic study of the radiated electric and 

magnetic fields. To do this, the harmonic orders of each component should be addressed 

to their physical operation. In consequence, the types of fault, as well as the location of 

them, can be identified by analyzing the frequency response of the electromagnetic 

signatures. This study is implemented experimentally and by simulating the full finite 

element of the components. The equivalent source modeling cannot be used, because the 
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diagnosis process can be accomplished by studying the harmonic orders, which are 

affected from the material features of the cores, as well as the wires, whereas the wire 

equivalent source models consist of lines and nodes. In addition to the fault diagnosis and 

system monitoring, the optimization in the performance of the components are achieved 

by studying the electromagnetic signatures. For instance, different types of switching are 

implemented and their radiated fields are observed. Based on the fields, the optimum 

switching technique for the purpose of fault diagnosis, as well as having less EMI, is 

obtained. 

11.8 Organization of the dissertation  

The dissertation is organized as follows: 

In chapter 2, the advances in computational modeling of the electromagnetic 

compatibility were discussed. The models are classified. The utilized method in the 

research was described in details. Then, the full 3-D finite element modeling of the 

components were described and the related novelties were mentioned in chapter 3. The 3-

D FEM was coupled with the transmission line modeling and utilized in EMC modeling 

of the printed circuit board. Based on this, the optimization process in the modeling was 

performed and explained. 

The equivalent source modeling methods from the simple dipole model to the PSO-

GA based cube model are explained in chapter 4. Before discussing the experimental 

implementation of the low-frequency EMC analysis, as well as electromagnetic signature 

analysis, the requirements for low-frequency EMC experiments are reflected in chapter 5. 

The wire model, which is based on the physics of the components as the most developed 
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equivalent source model, is explained in chapter 6. Then, the modified 3-D finite element 

modeling for the purpose of fault diagnosis is demonstrated in chapter 7. The first 

application of this modeling was fault type diagnosis, which is presented in chapter 8. 

The different types of unbalanced currents applied to an induction machine and the 

electromagnetic signature is studied with the trained neural network are present in chapter 

9. Finding the location of the short-circuit as the main fault in the electrical machines are 

discussed along with the study of finding the optimum location of antenna. In chapter 10, 

the various combinations of components are studied experimentally for the purpose of 

source identification with and without faults. Moreover, the improvements of their 

performance of them were employed. Finally, the conclusion and recommendation for the 

future work are presented in chapter 11, respectively. 
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2. Advanced Modeling in Computational Electromagnetic Compatibility 

2.1 Overview 

Before starting the modeling of the components, the advances in modeling the 

computational electromagnetic compatibility along with the types of modeling in this 

field are discussed and compared. 

James Clerk Maxwell derived his celebrated four equations and established 

electromagnetics as a rigorous theory and published this work in the famous treatise in 

1865 [133]. 

Relating the behavior of electromagnetic fields and sources, several other physical 

relationships are necessary for their solution, in addition to Maxwell’s equations 

themselves. The most important are Ohm’s law, the equation of continuity, and the 

constitutive relations of the medium and the imposed boundary conditions of the physical 

problem of interest. Before Maxwell, the science of electromagnetism had existed mostly 

as an experimental discipline for several centuries through the works of scientists, such as 

Benjamin Franklin, Charles Augustin de Coulomb, Andre´ Marie Ampere, Hans 

Christian Oersted, and Michael Faraday. The early doubt about Maxwell’s theory 

vanished in 1888 when Heinrich Hertz transmitted and received radio waves, thus having 

demonstrated the validity of the Maxwell theory. 

The early works on analytical solution methods in electromagnetics, based on 

Maxwell’s equations, were mainly focused on the area of radio science. Some of such 

applications of the electromagnetic theory started to appear not long after Maxwell’s 

treatise had established. Among the analyzed simple geometries were the fields radiated 
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from the Hertzian dipole, an infinitely long straight circular wire and two coaxial cones 

[134]. In most of the cases, the equations were solved as boundary value problems having 

yielded to the solution in terms of infinite series expansions. 

By the incidence of computational electromagnetics, analytical methods in 

electromagnetics enabled handling the practical engineering problems. This was brought 

on by the advent of the digital computer in the 1960s. While much effort of the early 

research based on analytical methods was focused on the study of antennas in radio 

science, the emergence of computational electromagnetics opened up a number of new 

areas of applications. At the beginning, the emphasis was on high frequency radar 

systems related to defense. This was mainly due to the concentration of available research 

funds for such a work during that time. Indeed, in what is reported as one of the earliest 

cases of solving electromagnetic problems on a digital computer in the 1950s, the 

machine was built due to the need for calculating artillery ballistic tables [135]. 

Since that time, a continuing advancement in computational methods has been 

prompted by the rapid progress in computer hardware. Frequency domain integral 

equation techniques having simpler mathematical framework than their time domain 

counterpart started to appear in the mid-1960s [136,137]. One of the first digital 

computer solutions of the Pocklington’s equation was reported in 1965 [138]. This was 

followed by one of the first implementations of the finite difference method (FDM) to the 

solution of partial differential equations in 1966 [139] and time domain integral equation 

formulations in 1968 [140] and 1973 [141,142]. Through the 1970s, the finite element 

method (FEM) became widely used in almost all areas of applied electromagnetism 

encompassing power engineering and electronics applications, microwaves, antennas and 



 

40 
 

propagation, and electromagnetic compatibility. Good review of various types of FEM 

along with many important FEM applications in electrical engineering and electronics till 

date has been presented in Ref. [143]. The boundary element method (BEM) developed 

in the late seventies for the purposes of civil and mechanical engineering [144] started to 

be used in electromagnetics in the 1980s. Nevertheless, there have been many 

applications of BEM in electromagnetics; the primer of BEM for electrical engineers 

appeared quite recently [145]. 

Up to a dozen or more computational methods are nowadays commonly in use for 

electromagnetic modeling purposes, there is no particular method, which can claim 

superiority over the whole range of applications [146]. The physical and mathematical 

base on which a specific method has been built often gives it some advantage when 

dealing with a particular class of problem. Nevertheless, the integral equation formulation 

handled via the method of moments (MoM) with its wide application and versatility is 

accepted by many researchers to be a sort of ‘‘workhorse’’ in computational 

electromagnetics [147]. An excellent review of the numerical methods used in 

computational electromagnetics has been given in literature in 1998 [148]. Among many 

others, a rather comprehensive textbook on numerical methods in electromagnetics is the 

one by Sadiku [149], whereas a relevant review of theoretical models and computational 

methods used in electromagnetic compatibility is available in Ref. [150]. 

Analysis of wire antennas and scatterers and related EMC applications by using the 

integral equation approach has been presented in Ref. [151]. Direct time domain 

techniques for the solution of certain classes of EMC problems have been documented in 

Refs. [151,152]. 
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2.2 EMC Computational Models and Solution Methods 

Generally, the methods used in EMC are not only to visualize electromagnetic 

phenomena but also to predict and suppress interferences which can be regarded as either 

theoretical or experimental. This research is oriented to the consideration of theoretical 

approach and related computational models in the analysis of EMC problems. The 

experimental approach is also used for verification of the theoretical approach, which is 

explained in the next chapters. 

It is the rapid progress in the development of digital computers that has provided 

advances in EMC computational models in the last few decades. 

Electromagnetic modeling provides the simulation of an electrical system to 

investigate the electromagnetic behavior for a rather wide variety of parameters including 

different initial and boundary conditions, excitation types, and different configuration of 

the system itself. The important fact is that the modeling is undertaken within a 

significant shorter time than it would be necessary for building and testing the 

appropriate prototype via experimental procedures. The basic purpose of an EMC 

computational model or electromagnetic signature model is to predict a victim response 

to the external excitation generated by a certain EMI source. 

A basic electromagnetic signature model includes the sources that could be either low 

frequency electrical power components or high frequency radio transmitters or any kind 

of undesired electromagnetic pulse (EMP). If the study is in the case of EMC, then the 

EMI victim is also important that can be any electrical equipment, medical electronic 

equipment or even the human body itself. 
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In principle, all EMC models arise from the challenging electromagnetic theory 

concepts and foundations are based on Maxwell equations. The governing equations of a 

particular problem in differential, integral, or integro-differential form can be readily 

derived from the four Maxwell equations. 

EMC models are analyzed using either analytical or numerical methods. Though both 

approaches can be used in the design of the electrical systems, analytical models are not 

useful for accurate simulation of electric systems or their use is restricted to the solution 

of rather simplified geometries with a high degree of symmetry (canonical problems). 

On the contrary, a more accurate simulation of various practical engineering problems 

is possible by the use of numerical methods. In this case, errors are primarily related to 

the limitations of the mathematical model itself and the applied numerical method of 

solution, respectively. 

Commonly, analytical and numerical techniques are used for a wide variety of 

purposes such as: 

• Predicting system-level response to EMI sources 

• Evaluating the behavior of EMC protection measures 

• Processing measures system test data 

The development of analytical and numerical modeling techniques has had a marked 

impact on the area of EMC. These techniques are used in the design, construction, test, 

and evaluation phases. 

• Defense electric systems 

• Communications and data transmission systems 

• Power utilities 
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• Consumer electronics 

EMC computational models can be validated via experimental measurements or 

theoretical study, comparing the results to already well-established numerical models. 

2.3 Classification of EMC Models 

There are many possible classifications of EMC computational models used in 

research and practical purposes [150-154]. 

Based on the mentioned literatures, EMC models can be classified as: 

• Circuit theory models featuring the concentrated electrical parameters 

• Transmission line models using distributed parameters in which low frequency 

electromagnetic field coupling are taken into account 

• Models based on full-wave approach taking into account radiation effects for 

the treatment of electromagnetic wave propagation problems 

It is worth emphasizing that, for the purpose of modeling using full wave, it’s mostly 

based on the thin-wire scattering theory. 

Almost all problems in science and engineering can be formulated in terms of 

differential, integral, and variational equations. Generally, these are two basic approaches 

to solve problems in electromagnetics:  

• Differential or the field approach 

• Integral or the source approach. 

The field approach deals with a solution of a corresponding differential equation with 

associated boundary conditions, specified at a boundary of a computational domain. 

Historically, this approach has been derived by Gilbert, Faraday, and Maxwell. The field 
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approach is very useful for handling the interior (inner, closed, or bounded) field 

problems. 

The electromagnetic field sources’ concept, or the integral approach, is based on the 

solution of a corresponding integral equation. Historically, this approach was promoted 

by Franklin, Cavendish, and Ampere, among others. It is worth noting that the source 

approach is convenient for the treatment of the exterior (open, outer, or bounded) field 

problems. 

Mostly, the methods for solving partial differential equations or integral equations can 

be classified as analytical or numerical ones. 

The principal drawback of the analytical methods is the inability to handle problems 

involving complex geometries and inhomogeneous domains. This difficulty can be 

overcome by applying numerical methods. 

The main problems arising in the application of numerical methods is related to the 

spurious solutions, convergence rate, and accuracy. 

 

Fig. 2.1. The field approach 

A classical boundary-value problem can be formulated in terms of the operator 

equation: 
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( )L u p=                                                                                                                         (2-1) 

On the domain Ω with conditions F(u)=q(Г) prescribed on the boundary Г (fig. 2.1), 

where L is the linear differential operator, u is the solution of the problem, and p is the 

excitation function representing the known sources inside the domain. Methods for the 

solution of the interior field problem are generally referred to as differential methods or 

field methods. 

On the contrary, if L represents an integral operator, unknowns are related to field 

sources, that is, charge densities or current densities distributed along the boundary Гʹ 

(fig. 2.2). Once the sources are determined, the field at an arbitrary point, inside or 

outside the domain, can be obtained by integrating the sources. 

 

Fig. 2.2. The integral approach 

Methods of solutions for the exterior field problems are referred to as the integral 

methods, or method of sources. The boundary conditions used in electromagnetic field 

problems are usually of the Dirichlet (forced) type, the Neumann (natural) type, or their 

combination (mixed boundary conditions). These boundary conditions can be either 

homogeneous or inhomogeneous. 
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2.4 Time domain vs. Frequency Domain Modeling 

The problems being analyzed can be regarded as steady state or transient, and the 

solution methods are usually classified as frequency or time domain. The frequency and 

time domain techniques for solving transient electromagnetic phenomena have been fully 

documented in [149]. 

A frequency domain solution is commonly applied for many sources but as one single 

frequency whereas with the time domain, it is for a single source but many frequencies 

[150]. While this is true for the continuous integral Fourier transform, it is often not 

possible in practice to obtain the equivalent solution from another domain for highly 

resonant structures, when the discrete Fourier transform is used. Equivalence of the 

results in the two respective domains is true only under a precise set of conditions, which 

are hard to meet in practice. 

One important difference between the two approaches is that the time domain solution 

obtained is specific to the temporal variation of the excitation source. The transient 

response of a structure when subjected to different excitations, for example, a step-

function or a Gaussian voltage source will require the computation process to be repeated 

for the respective solutions. Whereas, in the frequency domain approach, the solution 

from one set of computations can be applied to obtain transient results from different 

sources if the geometry of the structure is unchanged. This difference is a significant 

factor when considering the relative merits of the two approaches. 

Comparison based on computational efficiency between the two approaches yields the 

general conclusion that the computer time required for a solution using both the integral 

equation frequency domain and the implicit time domain approaches is proportional to 
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(L/ΔL)3(D-1), where L is a characteristic dimension of the structure, ΔL the frequency 

dependent space discretization, and D the dimensionality, which for a wire is 2. For the 

explicit time domain approach, the time is proportional to (L/ΔL)2(D-1)+1+r, where 0≤ r ≤1 . 

Although in many situations, the time domain approach has better advantages, it can be 

said that the computational efficiency of each approach is dependent on the structure 

being analyzed and the form of the result being sought. 

Other statements arising from the concession between the frequency and the time 

domain approach are as follows [149]: 

• Better physical insight when using the time domain approach. However, an 

understanding of the resonant characteristic can only be obtained from the 

frequency spectrum. 

• Nonlinearities are more conveniently handled in the time domain.  

• Interactions (e.g., pulse reflection) may be isolated in the time domain using time-

range gating. 

• It is possible to obtain singularity expansion method poles more directly and 

efficiently in the time domain. 

• Frequency domain formulation is relatively simpler and easier to use, thus 

allowing more complex structures to be analyzed more conveniently.  

• For complicated geometry, larger computing effort may be required for the more 

complex formulation of the time domain approach. 

One factor of increasingly importance in favor of the frequency domain approach is in 

analyzing electromagnetic compatibility (EMC) properties. Accurate frequency domain 

information is required for such work as regulatory standards are specified in this form. 
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Due to its simpler formulation, versatile general purpose frequency domain codes are 

widely available and are used by professionals and amateurs alike. An efficient frequency 

domain transient analysis methodology is likely to find applications in many fields by 

users of such codes. 

The problem of excessive computer time becomes critical in transient 

electromagnetics. In the frequency domain approach to a transient problem, the 

computation must be repeated over the bandwidth for hundreds or even thousands of 

times at a frequency sampling interval. For a highly resonant structure, this 

straightforward unabridged approach will simply be beyond the practical limit in terms of 

the computer time required to solve a problem. 

Much effort in computational electromagnetics research has been directed toward 

reducing the computation operation count for solving problems. This is achieved through 

several ways in the analytical formulation, using specialized Green’s function 

approximations applied particularly to integration and matrix solving techniques. Very 

often improvements in computation efficiency are achieved at the expense of sacrificing 

accuracy and the utility of a formulation that is, narrowing the range of applications for a 

particular formulation. Several techniques for reducing the computation operation count 

in frequency sampling, when analyzing the transient behavior of resonant structures have 

been discussed in [155]. 

2.5 Analytical or Numerical Method 

A general mutual concession between analytical and numerical methods can be done, 

as follows: 
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Analytical solution methods yield exact solutions but are limited to a narrow range of 

applications, mostly to canonical problems. There are not many practical engineering 

problems that can be worked out using these techniques. On the other hand, the numerical 

techniques are applicable to almost all scientific engineering problems, but the main 

drawbacks are related to the approximation limit in the model itself, space and time 

discretization. Moreover, the criteria for accuracy, stability, and convergence are not 

always straightforward and clear to researchers. 

The most commonly used analytical methods in electromagnetics are as follows [149]: 

• Separation of variables 

• Series expansion 

• Conformal mapping 

• Integral solutions such as Laplace and Fourier transform 

• Perturbation methods 

While the numerical methods used in electromagnetics, among others, are as follows: 

• Finite difference method (FDM) 

• Finite element method (FEM) 

• Boundary element method (BEM) 

• Method of moment (MOM) 

• Transmission-Line modeling 

• Monte Carlo method 

• Method of lines 
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Practicably, the most powerful analytical method is the separation of variables; it is 

the method that will be summarized in the following. 

The method of separation of variables (sometimes called the method of Fourier) is a 

convenient method for solving a partial differential equation (PDE). Basically, it entails 

seeking a solution which breaks up into a product of functions, each of which involves 

only one of the variables. For example, if we are seeking a solution Θ(x, y, z, t) to some 

PDE, we require that it has the product form 

( , , , ) ( ) ( ) ( ) ( )x y z t X x Y y Z z T tΘ =                                                                                    (2-2) 

A solution of the form in Eq. (2.2) is said to be separable in x, y, z, and t. For example, 

consider the following functions:  (a)
3cos( )x t t y , (b) 2 2

xy
t

+ , (c) (2 ) cos10x y z t+ . (a) 

is completely separable, (b) is not separable, while (c) is separable only in z and t. 

   To determine whether the method of independent separation of variables can be 

applied to a given physical problem, we must consider the PDE describing the problem, 

the shape of the solution region, and the boundary conditions —the three elements that 

uniquely define a problem. For example, to apply the method to a problem involving two 

variables x and y (or ρ and φ, etc.), three things must be considered: 

The differential operator L must be separable, i.e., it must be a function of Θ (x, y) 

such that 

{ ( ) ( )}

( , ) ( ) ( )

L X x Y y

x y X x Y yΘ
                                                                                                          (2-3) 

is a sum of a function of x only and a function of y only. All initial and boundary 

conditions must be on constant-coordinate surfaces, i.e., x=constant, y=constant. 
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The linear operators defining the boundary conditions at x=constant (or y= constant) 

must involve no partial derivatives of Θ with respect to y (or x), and their coefficient 

must be independent of y (or x). 

With this preliminary discussion, we will now apply the method of separation of 

variables to PDEs in rectangular, circular, cylindrical and spherical coordinate systems. 

In each of these applications, we shall always take these three major steps: 

1) Separate the (independent) variables 

2) Find particular solutions of the separated equations, which satisfy some of the 

boundary conditions 

3) Combine these solutions to satisfy the remaining boundary conditions 

On the other hand, the applications of numerical methods are in electromagnetics and 

many other industrial uses, such as continuum problems that includes: hydrodynamics, 

thermodynamics, or acoustics, which are based on the advantage to model a particular 

problem without a requirement of high level mathematics and physical knowledge, 

respectively. Because of the complexity of the proposed models, numerical method is 

highly recommended. 

2.6 Overview of Numerical Methods 

It is important to clarify some principles and ideas of how to describe field problems 

via partial differential or integral equations. Namely, there are some basic differences 

between domain methods (e.g. finite element method), boundary methods (e.g. boundary 

element method), and source simulation methods (charge or current simulation method). 

This section deals with fundamentals of the FDM, FEM, and direct BEM. 
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2.6.1 Modeling of Problems via the BEM and MoM 

Integral formulations of partial differential equations along the boundary are carried 

out using the Green integral theorem. The resulting equations are modeled discretizing 

only the boundary and by integrating any known Ωs within a given subdomain. Modeling 

of partial differential equations through their boundary integral formulations results in 

less unknowns but dense matrices. The formulation of the boundary element method 

using field and potential quantities rather than field sources is usually called the direct 

BEM formulation. Integral equation over unknown sources Ωʹs (sources outside the 

boundary) can also be derived from the green integral theorem, and the solution method 

can be referred to as a special variant of the boundary element method – indirect 

boundary element method. 

The well-known method of moment (MoM) is equivalent to BEM when using sub 

sectional bases and Dirac delta function as weighting functions. BEM, on the contrary, 

offers a more general relationship in which shape functions corresponding to sub 

sectional bases are taking systematically as in the finite element method (FEM). Thus, 

BEM can be regarded as a combination of the classical boundary integral equation 

method and the discretization concept originated from FEM. 

2.6.2 Modeling of problems via the domain methods: FDM and FEM 

FDM is generally one of the simplest numerical methods. Modeling via FDM is 

undertaken discretizing the entire domain and converting the differential operator into 

difference equations. 
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FEM modeling of partial differential equations is performed by discretizing the entire 

calculation domain Ω, and integrating any known source Ωs within the domain. Dirichlet 

and Neumann boundary conditions can be prescribed along the boundary Γ for both FDM 

and FEM. Modeling of differential equations with FEM results in an algebraic equation 

system, which provides a sparse matrix. This matrix is usually banded and in many cases 

symmetric depending on the solution of the problem.   

The finite difference method is a highly versatile method and has been used to analyze 

objects with an extremely wide range of size and complexity. 

Historically, the finite difference method was developed in the 1920s for some 

applications in hydrodynamics. The finite difference method is based on the 

approximation of the function derivatives using finite differences. That is, a differential 

equation is replaced by a finite difference equation.  

FDM is one of the simplest numerical methods but at the same time suffers from 

relatively poor convergence rate. This drawback can be overcome by increasing the 

number of unknowns in the corresponding matrix systems. More details about the FDM 

are explained in [149]. 

The finite element method is one of the most commonly used numerical methods in 

science and engineering. The method is highly automatized and very convenient for 

computer implementation based on step by step algorithms. The special features of FEM 

are related to efficient modeling of complex shape geometries and inhomogeneous 

domain, and also to the relatively simple mathematical formulation, providing a highly 

banded and symmetric matrix, which is similar for accuracy refinement by higher order 

approximation and automatic inclusion of natural (Neumann) boundary conditions. This 
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method generally gives better results than the FDTD in modeling complicated boundaries 

and is particularly suited for problems with closed boundaries. In this method, the entire 

domain space to be analyzed is discretized into a gird of elements of finite size. 

Particularly for the purpose of low frequency EMC study, FEM is used, since the 

analysis is in a huge region and there are numerous types of materials and boundaries. 

For high frequency, MoM is more appropriate [143]. 
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3. 3-D Finite Element Method Coupled with Transmission-Line Modeling in 

EMC Study 

3.1. Overview 

After explaining the details of the computational electromagnetic model in EMC 

study, the 3-D finite element method as the well-known and reliable method for the low 

frequency EMC study is selected as the physics based modeling and coupled with the 

transmission line modeling method for evaluating the behavior of the proposed 

component which is converted in this chapter. The other components are studied in the 

next chapter along with the concept of the equivalent source modeling. 

In order to evaluate the actual behavior of the converter at the design stage, a 

numerical model of the inductor was created and implemented using the finite element 

(FE) analysis. Using the numerical model, the physics based circuit model was obtained 

for the converter’s resonant circuit. The acquired physics based circuit model was used to 

approximate the electrical behavior of the resonant circuit. The operating condition of the 

half-wave ZCS buck converter was verified both numerically and experimentally. It was 

shown that, by using the proposed model, it is possible to evaluate realistic waveforms of 

voltages and currents including the effects of parasitic elements. This is essential step for 

studying electromagnetic field emissions in power converters for the evaluation of their 

EMI interactions for EMC compliant designs. 

Soft-switching converters are becoming more popular as they have lower loss and 

noise characteristics, as compared to pulse width modulation (PWM) converters. In these 
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types of converters, the resonance circuit is a major contributor to the creation of EMI. It 

can cause unexpected current noise flow in the common mode path [156].  

Generally, in order to control the conducted emissions (CE) noise in the soft-

switching converters, the issue of parasitic elements must be considered during the design 

stage. These parasitics are circuit elements (resistance, inductance or capacitance) that are 

possessed by electrical components, but are not desirable for them to have it.  

So far, various algorithms were introduced to eliminate or minimize the effects of 

these unwanted elements [157-159]. Previously, methods based on the parallel-plate 

waveguide and FEM analysis were introduced to solve the PCB unwanted coupling 

problems and reduce the EMI effects of the converters [160-163]. 

All components and interconnections contain unintentional (parasitic) circuit 

elements which often a combination of them can make a change in the operating 

condition of the whole power converter. This makes the EMI issues more complicated. 

Furthermore, the switching action causes various parasitic elements in the converter and 

results in conducted and radiated energy at unpredictable frequencies. In practice, these 

parasitic oscillation frequencies are most difficult to filter out. They often cause the most 

interference with signal processing circuitry. 

Therefore, an understanding of the magnitude of these parasitic elements and the 

characteristics of the components over a range of frequencies will ensure the correct 

choice of their application. Moreover, it is important for investigation of the effects of 

switching-frequency control on EMI generation. 

The operating principle of the Quasi-resonant converters is described in [164]. These 

converters are obtained by adding the resonant elements  and  to the PWM switching 
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converters. Fig. 3.1 shows the simplified circuit model of the ZCS-Buck converter. The 

parasitic elements in the configuration of the resonant components can affect the 

operating condition of the whole converter. In order to have a more precise study on the 

converter behavior, a distributed model should be obtained for each of the elements. 

A planar inductor based resonant circuit is designed for the converter's resonant 

inductor (shown by Lr in fig. 3.1). This design can meet the packaging constraints in 

power electronic converters in addition to the required EMI compliance levels. The 

design and characteristic optimization of the planar inductor is studied in references [165-

168]. The electromagnetic radiation of a PCB planar inductor is discussed in [169], [170]. 

As an example, based on the procedure in reference [164], the inductance value is 

selected to be	 = 1μH, and the resonant capacitor is selected to be  400rC nf= . With 

this selection, the resonant frequency will be 0

1
251.65

2π  r r

f kHz
L C

= = . 

 

Fig. 3.1. Half wave zero current switching buck converter’s circuit model. 

Subsequently, in order to find the parameters of the converter, a finite element 

analysis is performed on the resonant part of the converter. After obtaining the high 

frequency physics based model of the resonant circuit, the resonant behavior of the 

proposed planar inductor based resonant circuit is compared with the ideal resonant 

Cr 
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circuit. The FE analysis is used to study the electromagnetic behavior of the proposed 

resonant circuits in section 3 of this chapter. As a result, a high frequency model is 

obtained for the resonant circuit under a wide range of switching frequencies. Finally, the 

resonant circuit design was optimized in order to compensate the destructive effects of 

parasitic elements in the operation of the converter. The results were verified through the 

simulation and experimentation. 

3.2. Modeling Procedure 

Under PWM operating conditions, the inductor’s resistance, inductance and 

capacitance behave differently from the low frequency operation. The windings have skin 

and proximity effects, which cause the resistance to be much higher than the low 

frequency value. The inductance value decreases with the increase in the operating 

frequency, while the small capacitance effect comes in the picture at high frequencies. 

Under such PWM operation, the inductor winding’s capacitance is distributed between 

several parts of the winding (turn-to-turn and turn-to-ground). Hence, to obtain accurate 

values of the resistances, inductances (self and mutual), and capacitances (self and 

mutual), a detailed numerical model for the inductor should be used. Also, this strategy is 

used for the capacitor of the converter since, in higher frequencies, the self and mutual 

inductances, as well as the self and mutual capacitances, have effects in the frequency 

response analysis. 

In reference [171], a method based on the vector fitting algorithm was proposed for 

modeling the physics-based representation of transformers. This is also applicable to the 

inductor design. The method used in this study is based on the lumped-parameter model 
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presented in [172], [173]. This method is used to obtain the s-domain model of a spiral 

winding planar inductor, which can be used to find the frequency response of the 

inductor. The proposed model includes the windings’ resistances, self-inductances, 

ground capacitances, the inter-turn capacitances within each winding and the mutual 

inductive and capacitive couplings between the two windings. 

3.2.1 Physics based modeling using 3-D FEM 

A three-dimensional finite element study was performed on the resonant circuit 

components, in order to calculate the parasitic elements of these components, which can 

affect the operating condition of the converter.  

The electromagnetic field inside the inductor and capacitor is governed by the 

following set of nonlinear partial differential equations [171]: 

( )( ) ( )( ), . / 0v t Vσ∇ × ∇ × = ∇ ∂ ∂ + ∇ =A J A                                                                 (3-1) 

where A is the magnetic vector potential, J is the total current density, ν is the magnetic 

reluctivity, V is the electric scalar potential, and σ is the electric conductivity. By solving 

these equations, the resistance and inductance of the inductor are calculated as a function 

of frequency. 

Also the electrostatic problem is solved for the calculation of capacitances matrix as 

capacitances are a function of geometry rather than frequency. An electrostatic analysis is 

assumed to be a linear analysis, which means that the electric field is proportional to the 

applied voltage. The analysis determines the electric scalar potential distribution caused 

by the applied voltage. The following Maxwell equation is solved during electrostatic 

analysis. 
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).( Vε ρ∇ ∇ = −                                                                                                                (3-2) 

where ρ is surface charge density, ε is permittivity, V is electric scalar potential. By 

coupling electric and magnetic analyses, electromagnetic analysis for frequency response 

analysis based on (3-3) are applied in this simulation.  

Typically, the quasi-static electromagnetic analysis is used as the analysis approach in 

these cases, but this method has one problem. The changing electric displacement field 

over time is considered as zero (∂D/∂t=0). This assumption can be used for low 

frequency analysis. However, for higher frequency analysis, this assumption affects the 

result [174], [175]. Therefore, a new approach was used in this research in which ∂D/∂t is 

considered. 

To derive the time harmonic equation, this physics interface solves magnetic and 

electric interface. The analysis is started with Maxwell-Ampere’s law including 

displacement current. This does not involve any extra computational cost in the 

frequency domain. Firstly a time-harmonic field is assumed as (3-3). 

( ) ev jσ ω∇× = = + × + +H J E B D J                                                                              (3-3) 

Using the definitions of the fields = ∇ ×  and = −∇ −  and combining 

them with the constitutive relationships, B = µ0(H + M) and = , the Ampere’s law 

can be rewritten as (3-4). 

( ) ( ) ( ) ( )2 1
0 0 0

ej j Vωσ ω ε μ σ σ ωε−− + ∇× ∇× − − × ∇× + + ∇ =A A M A Jv                  (3-4) 

The equation of continuity is again obtained by taking the divergence of Ampere’s 

law. It is the equation solved for the electric potential. Thus the following equations for V 

and A are achieved: 
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( ) ( ) ( ) ( )( )2
0 0. 0ej j V jωσ ω ε σ σ ωε ω−∇ − − × ∇ × + + ∇ − + =A A J Pv                       (3-5) 

A particular gauge can be obtained with reducing the system of equation by choosing 

Ψ = −jV/ω in the gauge transformation. Therefore, the modified magnetic vector potential 

is obtained. 

j
V

ω
= − ∇A A                                                                                                                (3-6) 

Working with  is often the best option when it is possible to specify all source 

currents as external currents Je or as surface currents on boundaries. 

( ) ( ) ( ) ( )2 1
0 0 0

ej j V jωσ ω ε μ σ σ ωε ω−− + ∇ × ∇ × − − × ∇ × + + ∇ = +A A M A J P  v       (3-7) 

where A is magnetic potential , Je is external current density, M is magnetization and  is 

the motion speed which here, it is equal to zero. 

The equation (3-7) is modified version of a classic quasi-static equation (3-4), which 

is implemented in FE softwares [176]. Further modification in this study is applied by 

linking MATLAB software with FE software. This can be done by defining a variable in 

MATLAB codes as D and making a link to the FE software, then considering this D 

(electric displacement field) instead of the default D. This new defined electric 

displacement field is based on the electric field obtained from the solution of software. 

The other element ( )	is defined in the same way. 

Another necessity of this type of analysis is the need of simultaneous estimation of 

capacitance and inductance that the former one can be calculated by the electrostatic 

analysis and the latter one by the magnetostatic analysis. This type of interface can be 

used for 3D, 2D in-plane, and 2D axisymmetric models. Note that the magnetic and 
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electric currents physics interfaces support the stationary and frequency domain study 

types better than the transient domain study. 

Fig. 3.2 shows the planar spiral inductor and capacitor models used in the power 

converter.  

 

Fig. 3.2 Field spectrum from the finite element analysis for the calculation of high 
frequency model of this component. (a) Magnetic field intensity of spiral planar inductor 
(b) Capacitor (c) Electric field in small part of the capacitor (d) Mesh in capacitor. 

 

To find a numerical solution for this problem, the coupling of the FE and a circuit 

based analysis is utilized. The amount of energy, magnetic and electric field are estimated 

from the FE model. The results are then imported to the circuit-based software (Spice), in 

order to evaluate the performance of the whole circuit.  

After solving the FE model, the inductance, capacitance and resistive matrices were 

obtained via calculation of the energy matrix in the FE model. The magnetic energy is 

calculated by: 

* * *
1 1 2 2 1 2

1 1 1
 ( ) ( ) ( )
2 2 2V V V

W Re dv Re dv Re dvμ μ μ= ⋅ + ⋅ ⋅⋅ ⋅+ ⋅  H H H H H H           (3-8) 

(a) 
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where Hi is the magnetic field intensity inside the model and   is the permeability of the 

model. 

Following the calculation of the magnetic energy in the FE model, equation (3-8), all 

self and mutual inductances were estimated based on the magnetic energy value, [177], 

[178]. Also the explanation about deriving capacitances and resistances is mentioned in 

the same references. 

3.2.2 Solution Method 

As it was discussed, a numerical technique based on adaptive MEI-FEM (magnetic-

electric interface finite element method) is used. This method has much more accurate 

result, as compared to quasi-static electromagnetic finite element method, electrostatic 

finite element method, and magnetostatic finite element method. All experiments are 

performed on a x5677 dual core 3.47 GHz CPU and 192GB RAM. The iteration process 

is terminated when the normalized backward error (tolerance) is reduced by 10-3. 

To implement the MEI-FEM, the adaptive grouping method is used to reduce the 

memory consumption and captures the fine details of the structure. The simulation time 

for the analysis of the inductor with five million degrees of freedom and 10-3 percent 

tolerance of energy was 3 hours. Also, the simulation time for the analysis of the 

capacitor with three million degrees of freedom, fig. 3-2(d), with 1e-7 percent tolerance of 

energy was about 2 hours. Fig. 3-3 shows the energy tolerance versus the number of 

degrees of freedom.  

The analysis method, which is used in this analysis is generalized minimal residual 

method (usually abbreviated GMRES) with successive over-relaxation (SOR) as pre and 
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post smothers. The GMRES is an iterative method for the numerical solution of a system 

of linear equations [179].  

 
Fig. 3.3 Energy tolerance versus degrees of freedom 

In numerical linear algebra, the method of SOR is a variant of the Gauss–Seidel 

method for solving a linear system of equations, resulting in faster convergence. A 

similar method can be used for any slowly converging iterative process. The SOR method 

uses a more accurate approximation of the matrix, which leads to fewer iterations but 

slightly more work per iteration than in the Jacobi method. 

The geometry of the elements are non-uniform (The length of some elements are 

much bigger than the width of them). Therefore, the geometric multi-grid method is 

chosen as the pre-conditioner and F-cycle as multi-grid cycle. In addition, the parallel 

sparse direct linear solver (PARDISO) method with 1e-8 pivoting perturbation is chosen 

as the coarse solver. 

3.3 Development of transmission-line model 

After obtaining the parameters of the component, the transmission line model is 

developed.  
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The influence of the capacitive reactance is increased by increasing the switching 

frequency. Therefore, very small capacitive reactances can affect the input transfer 

function in higher frequencies. In addition, mutual inductances between elements at far 

distances are more significant in the transfer function in high frequencies. Therefore, a 

model, which considers all these reactances is essential. The transmission-line or 

distributed-section model considers almost all tiny capacitive reactances and mutual 

inductances, so it is eligible for frequency response analysis.  

Following the calculation of all required parameters for the distributed model, these 

parameters are located in the model, then the model evaluation procedure starts. As in the 

lumped parameter model the evaluation procedure from the distributed parameter nature 

of the problem at hand, we start at a location x and moving an infinitesimal distance Δx 

toward the lower end of the winding, the potential difference ΔV is calculated as: 

11 1

22 2

( ) ( )( , ) ( , )

( ) ( )(

ˆ

ˆ, ) ( , )

m

m

Z s x Z s xV x s I x s

Z s x Z s xV x s I x s

 Δ ΔΔ   
=     Δ ΔΔ      

                                                             (3-9) 

where ( , ) and ( , ) are the current following in Z1 and Z2, respectively. The 

indices 1 and 2, indicates the first and the second layers of the inductor’s and capacitor’s 

models. A detailed description of this method is presented in reference [172].  By 

transferring the modal domain into a phase domain, the voltages of the top terminal in 

two layers are calculated as: 

( )1 111 12

2 221 22

( ) ( )( )

( ) ( )( ) ( )
s s

s s

V s I sM s M s

V s I sM s M s

    
=     

    
                                                                       (3-10) 

where ( ) are elements of impedance matrix in s-domain. 
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To determine the frequency characteristics of the inductor, we set s= jω in the related 

equations. The input impedance is given by: 

( ) 1

1

( )

( )
s

in
s

V j
Z j

I j

ωω
ω

=                                                                                                       (3-11) 

Using the above equations, input impedance on the component is calculated as the 

following:  

( ) ( )11inZ j M jω ω=                                                                                                     (3-12) 

The rational function given by (3-12) can be represented by an equivalent electrical 

network as shown in fig. 3.4. Note that, the circuit model in fig. 3.4 is not unique and can 

be shown in various configurations. This network reflects the frequency dependence of 

the inductor resistance, inductance and capacitance. Using	 ( ), the natural 

frequencies are determined. 
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Fig. 3.4 Infinitesimal section of a two-layer winding of planar inductor. 

The distributed model parameters of the designed inductor, from the finite element 

analysis were; R1= 0.2713 Ω, R2=0.2713 Ω, L1=0.557 µH, L2=0.557 µH, Lm=0.307 µH, 

Cs1=8 pF, Cs2=8 pF, Cg1=0.33 pF, Cg2=0.33 pF, Cm=6.7 pF. Also, the distributed model 

parameters of the capacitor were; Rc1,2,3= 0.006725 Ω, Rcm=10 kΩ, Lc1,2,3=5 pH, Cs1,2,3= 

0.49 pF, Cg1,2,3=4.42 pF, Cm=177 nF. As mentioned earlier, the indices 1 and 2 of the 

inductor parameters stand for the first and the second layers of the inductor, as shown in 

fig. 3.2 (b). Note that the neutral-end terminal point of the first layer is connected to the 

line-end terminal of the second layer.  

An advantage of the transmission-line model is to reveal the frequency response 

behavior of the model. Therefore, using only the simplified modeling of the resonant 
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stage of HW ZCS-Buck converter doesn’t show all the resonances and only shows the 

basic resonance as depicted in fig. 3.5 (a). 

The embedded distributed model, which is shown in fig. 3.4 should have at least 5 

sections to have reasonable result. We considered 10 sections in this study to have better 

and more accurate results. The schematic of this model is shown in fig. 3.6. As 

mentioned in [172], the result will be more accurate with more number of sections but 

from specific number of section like 10 the results will not change significantly.   

Utilizing the distributed parameter model developed in this paper, as shown in fig. 3.5 

(b), a realistic picture emerges. The number of resonances becomes more practical and 

representative of the real device than the one given in fig. 3.5 (a). Accounting for 

parasitic resonances in higher frequencies will enable a realistic inclusion of EMC issues 

in the design stage.  

 
(a)                                                                (b) 
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          (c) 

Fig. 3.5 Frequency response analysis of the ZCS buck converter. (a) simple model (b) 
distributed-parameter frequency model, (c) optimized distributed-parameter frequency 
model. 

Through the optimization procedure [180], the size and geometry of the spiral planar 

inductor are changed in a way to minimize the effects of the parasitic parameters on the 

operating condition of the converter. The proposed algorithm is summarized as follows: 

• Step 1: Design the planar inductor in the FE software. 

• Step 2: Calculate the magnetic and electric fields based on equations (3-9)-(3-12). 

• Step 3: Calculate resistances, inductances and capacitances based on equation (3-

12). 

• Step 4: Substitute the obtained parameters into the circuit shown in fig. 3-4. 
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Fig. 3.6 Circuit model for high-frequency representation of the resonant circuit 
 

The circuit shown on the left hand side of fig. 3.6 depicts the high-frequency model 

for inductor used in the resonant circuit and the circuit on the right hand side is the high-

frequency model of the capacitor. Configuration of this circuit is based on the proposed 

transmission-line model shown in fig. 3.4. The numbers of transmission lines are chosen 

as ten for inductor and 5 for capacitor for better accuracy [172], [173]. Models for the 

inductor and capacitor are connected to build the resonant circuit used in the topology of 

the converter. 
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3.4 RESONANT CIRCUIT DESIGN OPTIMIZATION 

As shown in fig. 3.5, the first resonance frequency in fig. 3.5(b) is much lower than 

the expected resonance frequency (the first resonance frequency shown in fig. 3.5(a)). 

This phenomenon may deteriorate the operation of the converter. Because the resonance 

part of the converter is designed to resonate in 250 kHz (in this example), but in practice, 

it’s resonating at lower frequencies.  

In order to solve this problem, an optimization procedure is utilized in the design of 

the planar inductor. The main objective in the procedure of the optimization is to set the 

resonance frequency to desired value (i.e 250 KHz), while reducing the amplitude of 

higher order harmonics. To achieve this goal, through the optimization process the planar 

inductor trace thickness and voltage clearance is changed, as well as the number of turns. 

Therefore, a multi-objective function is formed as a combination of each of these single 

objectives. The first part of this multi-objective function is calculated from a transient 

non-linear FE analysis to calculate the value of the inductor.  Moreover, the second part 

of this multi-objective function is calculated from the circuit simulation of the resonant 

circuit, which is implemented in the Pspice environment. A classic genetic algorithm 

multi-objective optimization scheme is utilized to do the optimization task automatically. 

The variable of the genetic algorithm are indeed the inductance value of the planar 

inductor and magnitude of the harmonics in the resonant circuit output. 

Fig. 3-7 depicts the flowchart of the parameter optimizing procedure using GA. GA is 

a population based global search procedure, which is inspired by natural selection and 

genetics law [181]. Parameters for optimization are number of turns in each layer (N) and 

inductor’s trace dimensions. The GA evolves the given population of individuals. 
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Fig. 3.7 The optimization process 

The objective function is as follows: Objectiove function=
2 2

1 2. . ( )inf Z sα αΔ +  where, 

, =Weights signifying the importance of the objective function (taken as 1 in our case), ∆ : frequency of the main resonance (resonant circuit first natural frequency) and ( ): 
input impedance of the resonant circuit. The main purpose of GA is to find the minimum 

for objective function. 

The fitness function computes the error of the simulated and specified reference 

signal at each time point. The errors are then squared and added together to give a single 

scalar objective value. 

The fitness values shown in fig. 3.8, illustrate that after about 10 number of iteration 

the error reaches to an acceptable value. Table 3.1 shows the results of the GA-algorithm 

and are compared to the conventional inductors. Note that the optimization procedure is 

mainly applied on the design of the planar inductor and the resonance capacitor is not 

considered in the design optimization. 
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Fig. 3.8 Iteration accomplished by GA to minimize the objective function 
Table 3.1: Optimal values for designed inductor resulted from GA 

Planar inductor design L µH) Trace width (mil) Number of turns 

Un-optimized 1 40 8 

Optimized  0.76 29.75 6 

Fig. 3.5 (c) shows the frequency spectrum of the optimized resonant circuit. In fig. 

3.5 (c), compared to fig. 3.5 (b), the unwanted higher frequency resonances are reduced. 

Also, the main resonance frequency is set to its desired value. (i.e. 250 KHz) 

3.5 RESULTS AND DISCUSSION 

Fig. 3.9, shows the experimental setup used to test and verify the results. In this setup, 

to inspect and record the results, a 600 MHz, 10 G sample/s oscilloscope was used. The 

bandwidth for both the voltage and current probes were 100 MHz. The converter should 

operate in zero-current switching condition. Therefore, the switching frequency and duty 

cycle are set by the digital function generator. 
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Fig. 3.9. Schematic of the converter’s experimental setup 
 

Fig. 3.10 shows the effects of high-frequency operating conditions on the zero current 

switching (ZCS) of the MOSFET in the converter circuit. In this configuration, it was 

expected to increase the output voltage of the converter by increasing the operating 

frequency of the MOSFET, while keeping the ZCS sequence as shown in the ideal case 

(without considering all parasitic elements) in fig. 3.10 (a). The simulation results show 

that the ZCS behavior of the converter is completely lost as a result of using the high-

frequency circuit model for the resonance circuit as shown in fig. 3.10 (b). The 

parameters in these circuits were evaluated from the FE implementation described in the 

previous section.  
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                                      (a)                                                                             (b) 

Fig. 3.10. Voltage and current of the switches in ZCS-Buck converter, (a) ideal case, 
(b) actual case 

To keep the desired performance of the converter, the switching frequency of the 

converter should be kept below the value shown in fig. 3.10 (b). In an actual case 

(distributed-parameter frequency model), it can be observed from fig. 3.10 (b) that the 

next resonant frequencies happen at the frequencies starting from 4.5 MHz and above. 

The fig 3.11 shows a comparison between two different designs of the resonant circuit. 

The fig. 3.11 (a) shows the FFT analysis of the primary design of the resonant circuit and 

fig. 3.11 (b) shows the FFT of the optimized resonant circuit output signal. It is noticed 

that, the number and amplitude of harmonics is reduced by design optimization. 

  
                                     (a)                                                                                   (b) 

Fig. 3.11. FFT spectrum of the resonant circuit. a)Initial design, b) Modified design 
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To verify the simulation results in fig. 3.10, an experimental test was carried out. The 

fig. 3.12 shows the measured voltage and current of the MOSFET, which is located in 

series with the resonance inductor (see fig. 3.1). As it is illustrated in fig. 3.12(a), in the 

primary design (Un-optimized) of the resonance circuit, by increasing the switching 

frequency above a certain value the unwanted resonances will appear.  These resonances 

can harm the proper zero-current switching operation of the converter. 

The fig. 3.12 (b) shows the switch’s voltage and current, in the circuit with the 

optimized resonance circuit. As it is demonstrated in this figure, the converter is 

operating in zero-current switching condition, as it was expected. 

In the fig. 3.12 (a), some distortions are observed in the switch’s voltage waveform. 

These distortions are mainly because of the parasitic elements of the circuit and poor 

layout of the PCB, which are not considered in this study. 
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(a)                                                                             

 

(b) 

Fig. 3.12. Measured voltage and current of the switches in ZCS-Buck converter, (a) 

primary designed circuit, (b) optimized circuit 

 

3.6 Conclusion 

In this chapter, a method for the frequency response model of the converter’s 

components is presented using coupled FE-transmission line method computations. FE 

analysis was performed to obtain the frequency behavioral model of the converter. The 

natural frequencies, computed from the proposed s-domain model, was used to analyze 

the circuit's electrical behavior and operation. The results show that the s-domain model 

of the converter has the ability to reveal the behavior of parasitic elements, as well as 

higher resonances, which has critical impact in studying EMI problems. This model can 

also be implemented for other types of converters making it practical for the evaluation 

on EMI/EMC issues in the design and development stages. The power converter 

discussed in this chapter is not a representative of all power converter designs but can 

show the value of considering the effects of parasitic components on operation of the 
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power converters, especially when their switching frequencies are increased. By 

considering the effects of parasitic components, one can modify the converter’s circuit 

design in a way to reduce the effects of parasitic components and set the operating 

condition, so that satisfies the converter’s behavioral characteristics. 
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4.  4. Equivalent Source Modeling and 3-D Full Finite Element Modeling for 

the Studying Radiated Electromagnetic Field 

4.1 Overview 

In recent years, there has been an increased interest in the expansion of multi-level 

numerical simulation methods for investigation of EMI issues, in the early stages of the 

design of electrical apparatus at low frequency. Systems such as electric drives and power 

converter circuits are in this category of systems being studied. EMI studies of a 

complete motor drive system were performed by a number of researchers [108], [182]-

[189]. In [182, 183], the kHz range frequency models of the various components of a 

complete motor drive were developed. The efforts have been made to measure the EMI 

emissions from kHz up to the GHz range in the case of adjustable speed drives (ASD). 

The EMI modeling and simulation for inverters were also performed. For EMI caused by 

the ground current in [182], the coupled FE-circuit high-frequency electric machine 

model for simulating electromagnetic interference in a motor drive was presented. The 

model can predict the EMI caused by the ground current and motor terminal overvoltage. 

The proposed model in [183] can be used as a computational prototyping tool for 

evaluating the high-frequency operating conditions of electric machines numerically. 

Likewise, studies in lower frequency are performed. For electromagnetic signature 

studies outside the machine, Le Coat et al evaluated electromagnetic signatures of 

induction machines [108]. Two types of these machines were studied experimentally and 

theoretically using 2D and 3D methods.  The 3D model consists of several frames as 

conductors and specific frame with suitable permeability as stators. The results show that 
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this model has good accuracy and is suitable for single machine case studies. More 

similar works, in this area, were conducted by others [185-189].  

In order to study the electric and magnetic behavior of power components in multi 

component study, an accurate physics-based model of each component is considered in 

this paper. For instance, all windings, types of connections, in addition to the geometrical 

features slot shapes, rotor and stator structures, as well as material properties, are 

considered in developing the actual machine model.  

In addition to electric machines, other components, such as power converters, cables 

and transformers, have very tiny elements. Considering all of these in the FEA model 

causes an increase in the computational complexity. In addition to keeping in mind the 

essential elements of each parameter for the EMI study, there is a need to observe the 

fields at far distances. Therefore, a very large region must be considered in such a model. 

Consequently, the number of degrees of freedom in meshing increases dramatically, and 

subsequently the speed of analysis will decrease. Accordingly, logical simplification in 

designing components should be implemented.  

In this chapter, it is proposed to develop the complete geometrical model of the 

machine to a simple rectangular prism, but it should produce similar electromagnetic 

behaviors for studying the EMI issues. The basic concept for EMI signature evaluation 

for this case is explained in the following section. Then, the study approach is 

investigated for firstly primitive models and then the embedded model for the purpose of 

simplifying the model of the electrical machine. The optimization process and other 

theoretical aspects are explained in this part. The magnetic and electric field are chosen 

as the objective function, which is the most important parameter in the optimization. The 



 

81 
 

various aspects of the model, including time analysis, are also studied. Since it is 

proposed to use this model as a typical model for an induction machine, other operating 

conditions of this machine are investigated. For verification purposes, in all parts of this 

study, the results of the model are compared with the result of the actual model. 

4.2 Low-frequency stray field computation 

The interest is primarily in the radiation pattern of the electric component (in this case 

electrical machines) at a distance from the source. Hence, the electromagnetic fields are 

usually measured at a considerably far distance from the components. The electric and 

magnetic fields specifically at an infinite distance can be the most effective index in 

investigating the EMI [175]. Since the wave length in power frequency, 60Hz, is so large, 

the far distance means thousands of kilometers or more. Therefore, the region and 

proposed measurement points, which are intended to be far, should be considered at a 

very far distance. However, computationally utilizing such a large region could be 

impossible. Hence, we need to obtain the fields virtually. The process of obtaining the 

fields, in this case, is investigated. 

Time-varying electric and magnetic fields generate mmfs and emfs that can sustain 

the fields that compromise the flux. Also, obviously a consequence of the interaction of 

electric and magnetic fields is that they tend to propagate as waves. Therefore, it can be 

concluded that a time-varying current will radiate electromagnetic waves. On a more 

fundamental level, since the current is moving charges, the time-varying current is 

accelerated charge and it can be declared that a charge that undergoes accelerated motion 
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will radiate an electromagnetic wave. Based on the fact that currents and fields in the DC 

machine are time-varying, the same rule can be applied for the direct current machine.  

Fig. 4.1 shows the geometry for calculating the radiated field from a typical power 

component at a far distance.  

To determine the electromagnetic field, the machine is considered to be situated at the 

origin and oriented along the z-axis. We shall use an approach based on the magnetic 

vector potential and obtain electric and magnetic fields consistent with Maxwell’s 

equations, while fulfilling certain other pertinent requirements. The magnetic potential 

for the static case at a point P(r, θ, ϕ) will be as follows: 

4 z
Idl

A
r

μ
π

= a                                                                                                                    (4-1) 

where I is the current of the machine and µ is the permeability. If the current of the 

element is assumed to be time-varying in the manner I=I0cosωt, we expect the 

corresponding magnetic vector potential to be that in (4-2), with I replaced by I=I0 cosωt. 

Proceeding in this manner would however lead to fields inconsistent with Maxwell’s 

equations. The reason is that the time-varying electric and magnetic fields give rise to 

wave propagation [188].  

0 cos( )
4 z

I dl
A t r

r

μ ω β
π

= − a                                                                                                 (4-2) 

where β is the phase constant (ω/υp) and υp is the velocity of propagation of the wave.  
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θ

φ

 

Fig. 4.1 The model’s environment for calculating field in far distance 

The Magnetic potential in terms of its components in spherical coordinates is 

expressed in (4-3). Also, the magnetic field according to Maxwell’s equations is obtained 

(4-4). 

0 cos( )
(cos sin )

4 r

I dl t r
A

r θ
μ ω β θ θ

π
−= −a a                                                                     (4-3) 

0
2

sin cos( ) sin( )
[ ]

4

I dl t r t r
H

r r r θ
θ ω β β ω β

π
− −= − a                                                            (4-4) 

Using Maxwell’s curl equation for H we will have the electric field. 

0
3 2

2
0

3 2

2 cos sin( ) cos( )
[ ]

4

sin sin( ) cos( ) sin( )
[ ]

4

r

I dl t r t r
E

r r

I dl t r t r t r

r r r θ

θ ω β β ω β
πεω
θ ω β β ω β β ω β

πεω

− −= +

− − −+ + −

a

a

                                     (4-5) 

The expression for the complete electromagnetic field, equations (4-4) and (4-5) 

appears to be complicated. Fortunately, it is seldom necessary to work with the complete 
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field expression. This is because one is often interested in the field far from the electric 

machine that is governed predominantly by the terms involving 1/r. Thus, from (4-4) and 

(4-5), we find that for the machine of length dl oriented along the z-axis and carrying 

current I=I0 cosωt, the electric and magnetic fields at values of r far from the dipole are 

given by: 

2
0 0sin sin

sin ( ) sin ( )
4 4

I dl I dl
E t r t r

r rθ θ
β θ ηβ θω β ω β

πεω π
= − = − −a a                                   

(4-6) 

0 sin
sin ( )

4

I dl
H t r

r θ
β θ ω β

π
= − − a                                                                                   (4-7) 

These fields in equations (4-6) and (4-7) are known as the radiation fields, since they 

are the components of total fields that contribute to the time-varying radiated power away 

from the component. 

The present concept is based up on the Stratton-Chu [184] magnetic field intensity 

solution to the time-harmonic form of Maxwell's equations.  The mathematical form used 

here, given by Silver [185],[186], yields the magnetic flux density as a volume integral of 

the electric and magnetic current densities,  J  and M,  respectively: 

( ) 2[( . ) ].
4

jkR

V

j e
B P k j dV

R
ωμ

πω

−−= ∇ ∇ + + ×∇ M JM                                                     (4-8) 

In the above equation, P  denotes the observation point,  V  is  the  volume occupied  

by  J  and  M. R  is the vector from the current density elements  ,J  and  M, to the 

observation point  P. ω  is  equal to  2πf, where  f is  the frequency  of  the currents,  k  is 

the  wave number given  by  k = ω(με) , and  ε  and  µ  are the permittivity and 
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permeability  of  the  medium,  respectively. Also, the time-harmonic variation e has 

been suppressed. 

It is assumed that the volumetric current density elements, JdV, can be represented as 

linear current elements I dl, located at infinity and aligned with the current flow 

directions. Recalling that M = 0, and completing the indicated vector operations, (4-9) 

becomes: 

( ) ( ) ( )
2

1

1
[ ].

4

l jkR

R

l

µ e
B P jk I l dl u

Rπ

− = + × 
  R                                                             (4-9) 

Where uR is the unit vector pointing in the direction of R.  The bracketed term in (4-9) 

describes the time-harmonic retardation effects for the current element I dl, and suggests 

a criterion for using a quasi-static electromagnetic formulation. (The geometry is 

illustrated in fig. 4.1) when examining (4-9), it is seen that whenever 

c
R<< 

2πf
                                                                                                                     (4-10) 

(where c is the homogenous medium light speed), the bracketed term may be 

approximated by 1/R2 and (4-2) reduces to the electromagnetic quasi-static result 

( ) ( ) ( )
2

1

2

3
1

1
[ ]. ]

4

l

ii i
i l

µ
B P I l dl R

π =
≅ ×

iR                                                                 (4-11) 

In  (4-11),  the  summation is  over the  two  points at the  far distance in the region 

with  I is the currents in the motor wires, dl is the current elements  along the motor 

wires, and R is the vector from the current elements  dl,  to the observation point  P  (i  = 

1  and  2  for the corresponding points). Additionally, to facilitate computer 

programming, the vector  R,  is used in the cross product  of  (4-11),  in  contrast to the 
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unit vector uR which was used  in  (4-12), resulting in Ri
3 in the integrand denominator of  

(4-13). 

Returning to (4-11), the distances Ri between the differential line elements dli and the 

observation point P are: 

( ) ( )22 2 1/2
1 [ 2 cos 2 ]R a a z Z zρ ρ ϕ π= + − − + −                                                            (4-12) 

( ) ( )22 2 1/2
2 [ 2 cos 2 ]R a a z Z zρ ρ ϕ π= + + − + −                                                           (4-13) 

where  ρ, φ, z  are the cylindrical coordinates  of  the observation point  P. Assuming  that  

the  currents  Ii, are oppositely directed, identical,  and  uniform over the length  of  the  

winding in motor,  substitution  of the  differential current elements  dli  and the distances  

Ri  into  (11) yields the Cartesian components  of  the magnetic  flux density: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
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−
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 1R
                       (4-14) 
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                                                                     (4-16) 

In  the above equations,  I  is  the total current  in  each wire  of  the  motor in phase A,  

Z1 and  Z2 are  axial coordinates  of  the electrical machine end points, and  R1  and R2  are 

given  by  (4-12) and (4-13). According to standards, when  ρ= 0, (4-14)-(4-16)  reduce  
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to  well-known  expression  for  the on-axis magnetic flux densities  of  motors in the 

region [187],  [188]. 

In order to deduce the electric and magnetic fields, with the spherical coordinate 

components of B known, the next step is straightforward. The free space relationship (4-

17) is applied to (4-18): 

1
0H Bμ−=                                                                                                                      (4-17) 

0

1
E H

jωε
= ∇×                                                                                                            (4-18) 

The analysis method, which is used in this analysis, is the generalized minimal 

residual method (usually abbreviated GMRES) with successive over-relaxation (SOR) 

pre and post smoothers. The GMRES is an iterative method for the numerical solution of 

the system of linear equations [179]. In numerical linear algebra, the SOR is a variant of 

the Gauss–Seidel method for solving a linear system of equations, resulting in faster 

convergence. The convergence is shown in fig. 4.2. A similar method can be used for any 

slowly converging iterative process. The SOR method uses a more accurate 

approximation of the matrix, which leads to fewer iterations but slightly more work is 

required per iteration than in the Jacobi method. It should be noted that the problem 

consists of nonlinear equations due to the presence of the B-H curve of the core of the 

motor. The iterative solver solves the problem by dividing the nonlinear curves to the sets 

of linear one, as µr ramp and solving each of them individually, [179]. 
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Fig. 4.2 convergence of the problem using GMRES solver 

4.3 Initial models 

The electromagnetic signature study of the electrical machine in fig. 4.1 can be 

estimated based on equations (4-14)-(4-18). Since the electric and magnetic fields are 

interconnected to each other through (4-17) and (4-18), studying each of them shows the 

behavior of the electric machine at a far distance. However, as mentioned earlier, 

estimating the parameters of electrical machines at far distance requires significant time, 

especially for multi-component studies using physics-based simulations. Therefore, a 

logical simplification is used here throughout the optimization. The details of the 

modified quasi-static method used for solving the 3D modeling were explained fully in 

chapter 3. 

For simulation purposes, a 3-phase, 380-V, 5-A, 120-turn/phase induction machine 

with stack length of 15 (cm) and outer diameter of 17.5 (cm) is simulated in the 3D 

electromagnetic FE domain for one instant of time at the frequency of 60Hz. 
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The mesh of this full 3D model is applied from volumes to nodes to have a great 

accuracy (see fig. 4.3). The mesh of critical situations, such as gaps between stator and 

rotor, the teeth, curves of windings, is selected finely. On the other hand, the mesh of the 

air in the environment is considered coarsely. Nevertheless, the number of degrees of 

freedom is about 2.26 million, which took about 6 hours to solve the model for a single 

instant of time at the frequency of 60Hz. The radiated electric and magnetic fields of this 

model are shown in fig. 4.4. The equivalent source modeling tries to keep the accuracy in 

comparison with this model and decrease the simulation time to be able to have the low 

frequency radiated field analysis in a sequence of time or as frequency response analysis. 

 

Fig. 4.3 3-D FE model of the induction motor 

The spatial view of the stray magnetic and electric fields from the motor is shown in 

fig. 4.4. It is proposed to design a model to have the similar stray field. 
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                       (a)                                                                      (b) 

Fig. 4.4 the stray electric and magnetic spatial fields in meter in x axis (a) the electric 

field (V/m), (b) the magnetic field density (T) 

4.3.1 Single current loop model 

In order to find a comprehensive and accurate model for the electric machine, a 

simple current loop instead of  an accurate model of the electric machine is first analyzed 

in this part. The reason for using the single current loop is that the stray field at far 

distance will be dipoles. Therefore, a current loop may be able to resemble this dipole. 

The current loop is located in the stator, which is shown in fig. 4.5. In order to 

analyze the accuracy of this model, all components of electric and magnetic fields are 

investigated at far distances and compared with the stray fields of the single phase of the 

actual machine.  As it is shown in fig. 4.5 to fig. 4.9, the magnetic field density of x and y 

components (Bx and By) of these two models are almost the same but the magnetic field 

density of the z component is different. Consequently, this model has a problem in one 

component. 
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(a)                                                                        (b) 
Fig. 4.5 Prototype of the proposed machine (SCIM) in Finite Element Analysis (a) actual 

model, (b) Initial equivalent current loop model for EMI and electromagnetic signature 

studies 

 
(a)                                                                      (b) 

Fig. 4.6 Magnetic Flux Density (normal) spatial in (a) single phase of actual machine and 

(b) single loop model 
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(a)                                                                      (b) 

Fig. 4.7 Magnetic Flux Density spatial, X component in (a) single phase of actual 

machine and (b) single loop model 

          

 (a)                                                                       (b) 

Fig. 4.8 Magnetic Flux Density spectrum in Y component in (a) single phase of actual 

machine and (b) single loop model 
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 (a)                                                                  (b) 

Fig. 4.9 Magnetic Flux Density spectrum in Z component in (a) single phase of actual 

machine and (b) single loop model 

4.3.2 Double current loop model 

As it is obtained from the last part, the single current loop model cannot be used 

instead of the model of even a single phase of the actual machine for electromagnetic 

studies at far distances. Therefore, the double current loop model with variable angles in 

between loops is used instead. The FE model of the double current loop is shown in fig. 

4.10.  

 
Fig. 4.10 The FE model of the double current loop model 
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The current of the lines of the loops can be adjusted to have similar amplitude of the 

actual machine, but the main issue is the spatial fields, which should be the same in all 

three X, Y and Z components. Therefore, the spatial stray fields from the double current 

loop are captured in one meter and shown in the following, from fig. 4.11 to fig. 4.14. 

 
                            (a)                                                              (b) 

Fig. 4.11 Magnetic Flux Density (norm) spatial fields in (a) actual machine and (b) 

double current loop model 

 
(a)                                                          (b) 

Fig. 4.12 Magnetic Flux Density spatial fields in X component in (a) actual machine and 

(b) double current loop model 
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                              (a)                                                             (b) 

Fig. 4.13 Magnetic Flux Density spatial fields in Y component in (a) actual machine and 

(b) double current loop model 

 

                            (a)                                                                (b) 

Fig. 4.14 Magnetic Flux Density spatial fields in Z component in (a) actual machine and 

(b) double current loop model 
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All components of the magnetic field are demonstrated in fig. 4.11 to fig. 4.14. As 

shown in the figures, the numbers of poles are the same in both cases, but there are still 

some difference between the actual and the double current loop model case in the 

position of the maximum magnetic field density. For example, the concentration of the 

stray fields from the equivalent source model in fig. 4.11 and fig. 4.12 are not similar to 

the actual model’s one. Hence, equivalent source modeling endeavors to increase the 

parameters of the model to have more control of all parameters, including concentration, 

amplitude and the number of poles. Therefore, the cube model is implemented. 

4.4 Current cube model 

After investigating single and double current loop models, investigating the cube 

model is proposed in this part. Since there is more variables in the cube model, there is 

more possibility to reach better results. The cube model has twelve legs, as well as all 

other cubes, whereas each lag has a current, which can be in each direction of the leg. 

The prototype of the model is shown in fig. 4.15. 

 
                         (a)                                                               (b)  

Fig. 4.15 Prototype of the proposed machine (SCIM) in Finite Element Analysis (a) 

actual model, (b) An equivalent current loop model for EMI and electromagnetic 

signature studies 
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As shown in fig. 4.15, the model has current in all of its branches, which are 

evaluated based upon an intelligent optimization process. To enhance the possibility to 

get similar results, legs of the plane also defined as variables. Then, the cube branches’ 

lengths (A, B, C) and the corresponding currents to each leg (ix1 ix2 ix3 ix4, iy1 iy2 iy3 iy4, and 

iz1 iz2 iz3 iz4) are calculated. Therefore, the model may change to a prism, when it’s 

optimized. The proposed optimization process (GA-based PSO) is as follows: 

PSO is a population-based algorithm that exploits a population of individuals to probe 

the promising region of the search space. In this context, the population is called swarm 

and the individuals are called particles. Each particle moves with an adaptable velocity 

within the search space and retains in its memory the best position it ever encountered. 

The global variant of PSO, which is the best position ever attained by all individuals of 

the swarm, is communicated to all the particles. The general principles for the PSO 

algorithm are stated in [190]: 

The Particle swarm optimization is launched by initializing an N set of K-dimensional 

flock of birds randomly over the K-dimensional search space. In other word, of a K-

dimensional search space, the ith particle, can be represented by an K-dimensional vector, 

Xi=[xi1,xi2,…,xik]
T, and the velocity Ui=[ui1,ui2,…,uik]

T. Therefore, the total size of each 

population is a k×N matrix. In PSO, the best position that the particle “i” visited so far is 

referred to as Pi=[pi1,…,pis, …]T, and the best position of the best particle in the swarm is 

referred to as G=[g1,…,gs,…]T. Therefore, each particle “i” adjusts its position in the next 

iteration s+1 with respect to equations (4-19) and (4-20) [190]: 

0
1 1 2 2( 1 ) ( ) ( ) ( ( ) ( ) ) ( ( ) ( ) )ii k i k i k i kv s s v s C r P s x s C r G s x sω+ = + − + −           

(4-19) 
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( 1) ( ) . ( 1)ik ik ikx s x s u sχ+ = + +                                                                               (4-20) 

where ω°(t) is the inertia coefficient, which is employed to control the effect of the 

previous history of velocities on the current velocity. Here, χ is a constriction factor, 

which is used to limit the velocity. Also, C1 and C2 denote the cognitive and social 

parameters, while r1 and r2 are random real numbers drawn from the uniformly 

distributed interval [0, 1]. The ω°(t) was initialized as a large value (here we used 1) . 

Parameters C1 and C2 adjust dynamically [191]. 

In order to prevent premature convergence to suboptimal solutions, Raymond R. Tan 

augmented a binary PSO with a GA-based mutation operator and achieved significant 

improvement in the rate of successful convergence [191]. Therefore, in the current study, 

we incorporated mutation operator into our continuous-space PSO algorithm. This 

mutation operator reinitiates the value of each continuous variable into its feasible range 

by a predefined probability (e.g. 5%).  

In this study, the number of the population is set to 7, and for preventing explosion of 

swarm, the maximum allowable velocity along each dimension is set to half of its 

feasible range. The results show that, in this application, for different number of 

switching angles, the algorithm converges within 100 to 150 iterations. Hence, in a 

conservative manner, the number of iterations is set to 30. Also, for enhancing the PSO’s 

ability in escaping from local minima, a mutation operator is incorporated into the 

algorithm. The results indicate that, it is better to utilize this operator in discrete iteration 

intervals, with different probability. In this study, the mutation probabilities for iteration 
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intervals of {5, 7} and {7, 30} are 1% and 3%, respectively. Other iteration intervals are 

not influenced by mutation. 

The objective function of the optimization process can be defined into two categories 

of electric fields or magnetic fields.  

4.4.1 Magnetic field as the objective function 

First, the magnetic field densities of the three components are considered as the 

objective function: 

(| | | | | | |  | | | |  |)motor cube motor cube motor cubeobj mean Bx Bx By By Bz Bz= − + − + −                (4-21) 

where , , and	  represent the normal magnetic field density along a line in x, y, and 

z directions. The indices, motor and cube stands for the actual 3D motor model, and its 

corresponding cube current loop model (see fig. 4.15 (a) and (b)). 

For simulation purposes, the same motor is used with the same setup to compare with 

the initial equivalent source modeling methods.  The magnetic field along three lines in 

the x, y, z directions are calculated, and then the optimization process is implemented. 

Table 4.1 The calculated currents for the cube branches 
ix1 ix2 ix3 ix4 

67.95 -30.4 -24.2 14.4 

iy1 iy2 iy3 iy4 

82.25 -32.23 44.42 -80.4 

iz1 iz2 iz3 iz4 

62.9 -73.5 -1.26 -64.5 

Within the optimization process, the cube length were calculated as (A= 0.1009 (m), 

B= 0.125 (m), C= 0.1282(m)). Table 4.1 shows the calculated current for the cube 

branches after the optimization process. The comparison between the normal magnetic 
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field of the actual 3D model and the cube model for one motor case is illustrated in fig. 

4.16.  

 

  (a)                                                                           (b)  

Fig. 4.16 (a) the lines and coordinates on which the field is measured (b) Comparison 

between magnetic flux density in real and cubic model for one motor (simulation time of 

full 3D is 1 hour whereas the simulation time of cube model is 1.5 minutes),  

As can be seen from fig. 4.16(b), the equivalent source model shows good accuracy at 

the center of the lines. However, the accuracy in the two ends of the lines is not as good. 

simulation time of the full 3D is 6 hours, whereas the simulation time of the cube model 

is 1.5 minutes. 

For validation of the calculated cube model from one motor case, the model is 

compared with the two motors, fig. 4-17 (a), while the current in the branches of the cube 

remains the same as the first cube. The centers of the coordinate of the two cubes are 

exactly the same as the 3D motor’s model. Fig. 4-17 (b) shows the comparison between 

the magnetic field in the actual and cube model for the two motor cases. As can be seen, 

the magnetic fields again follow the same patterns with an acceptable accuracy. The 
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comparison between the simulation time shows that, this approach makes the simulation 

time at least 100 times faster than full 3D model. Moreover, it was observed that in case 

of evaluation of the field in just two directions, more accurate results can be calculated. 

 

     (a)                                                                     (b)  

Fig. 4.17 (a) Two motor case of study for validation of the model (b) Comparison 

between electric field in real and cubic model for two motor 

However, there is still a problem with the currents of legs mentioned above in Table 

4.1 only the magnetic field of the cubic model has a similar result compared with the 

actual model of the electric machine, but the electric field doesn’t have similar results at 

all. Therefore, the electric field as the objective function is also studied. 

4.4.2 Electric field as the objective function 

To find good results for the electric field, another optimization is performed based on 

the electric field objective function. The objective function of the optimization process 

for this case is the main index for evaluating the values of the model. This is because in 

the initial and the later one in the process, the modified values are just compared by 
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means of the objective function. The objective function of the optimization process is 

defined as: 

(| | | | | | |  | | | |  |)motor cube motor cube motor cubeobj mean Ex Ex Ey Ey Ez Ez= − + − + −                (4-22) 

where , , and	  represent the normal magnetic field density along a line in x, y, and 

z directions.  

Following the optimization process, the cube or actually the rectangular prism length 

are calculated as (A= 0.1009 (m), B= 0.125 (m), C= 0.1282(m)). Table 4.1 shows the 

calculated current for the rectangular prism branches following the optimization process 

in one case. The optimized currents of the cube based on the equation (4-22) as the 

objective function are achieved and shown in Table 4.2. 

The comparison between the normal electric field of the actual 3D model and the 

cube model for one motor case is illustrated in various circumstances. For brevity, only 

some indices, including field spectrum, arrow-line and stream-line, are selected for the 

study. For instance, electric field spectrum radiated from the actual machine and the 

equivalent source models are compared, as shown in fig. 4.18. 

Table 4.2 The calculated current for cube legs 
ix1 ix2 ix3 ix4 

-61.18 528.12 -267.44 -107.82 

iy1 iy2 iy3 iy4 

-115.25 -251.54 36.107 424.1 

iz1 iz2 iz3 iz4 

-150.03 -99.84 4.46 -135.6 
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     (a)                                                                     (b)  

Fig. 4.18 (a) The lines and coordinates on which the field is measured (b) Comparison of 

electric field between actual and cubic model for one motor 

Considering fig. 4.18, the accuracy of the E-fields in all coordinates are better than 

the case in which the magnetic field was the objective function. The E-field in the Y 

direction has great accuracy, but in the other two legs, the peaks are shifted to right.  

The main goal of this modeling is to study the electromagnetic signature of a multi-

component system. For validation of the calculated equivalent source model (rectangular 

prism) from one motor case, the model is compared in a case containing two motors, as 

shown in fig. 4.19(a), while the current in the branches of the rectangular prism model 

remains the same as the first case. The centers of the coordinates of the two rectangular 

prisms are exactly the same as the 3D motor model. The figure shows a comparison 

between the electric field spectrum in the actual and cube model for two motor cases. As 

can be seen from fig. 4.19(b), the accuracy is the same as the one motor case. 
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     (a)                                                                     (b)  

Fig. 4.19 (a) Two motor case of study for validation of the model (b) Comparison 

between electric field in real and cubic model for two motor 

The problem with  this model is that the currents in Table 2.2 is totally different from 

the current in table 4.1; therefore, simultaneous obtaining of electric and magnetic fields 

from the cube model similar to the actual model is not possible by using the current cube 

model. Consequently, the new model is designed. 

4.5 Voltage-current rectangular prism model 

As mentioned before, in the static magnetic field domain, the far field definition 

defines the fact that the normal magnetic flux density of a magnetic dipole is always 

coincident with the definition of the far field at any distance. Where a magnetic dipole 

can be simply created from a simple current loop, for simulation of the far field of multi-

conductor components, such as electrical machines, fig 4.3 shows that the whole multi-

conductive component can be replaced by a simple current loop. This simple idea allows 

E in X direction E in Y direction
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the simplification of the complex machine structure to one or several loops, resulting in a 

more numerically simple model for radiated fields in all directions.  Although 

substitution of the complex machine structure with several current loops evaluate the 

normal magnetic flux density close to the results of the detailed model of the machine, 

the electric field cannot be accurately predicted at the same time. This was the problem of 

the current cube model. Similar ideas for the magnetic field evaluation can be used for 

the recreation of far electric fields emitted by the equivalent loop model.  

In the static electric field domain, an electric dipole with a finite length is what helps 

to revise the electric field. The electric dipole can be created by two points with different 

potentials along a finite line. Similar to magnetic field, several electric dipoles can be 

used for the recreation of the electric field in all directions. 

In several simulation studies, it was observed that the path and direction of current 

and the value of current density of the electric machine and its winding potential have 

direct influence on establishing magnetic and electric stray fields at a far distances. A 

large number trial and error process may be needed to guess the optimal shape of the 

equivalent source model from the complicated structure of the machine. Nevertheless, the 

symmetry of the far field, calculated by the detailed geometrical model, along the axial 

direction of the machine in any X=a, Y=b planes, and the symmetry of the far field, 

calculated by the detailed geometrical model in the radial direction in any Z=c plane, are 

the main factors of the choice of the equivalent cuboid (rectangular prism) shape, 

illustrated in fig. 4.20. The variables of this equivalent rectangular prism model are: 

• The currents in its branches: (ix0 … ix3, iy0 … iy3, iz0 … iz3) 

• The voltages at its nodes: (V1, V2), 
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• The size of the rectangular prism: (A, B, C) 

 

     (a)                                                                     (b)  

Fig. 4.20 (a) Prototype of the detailed geometrical model (b) and the equivalent 

rectangular prism model  

In order to evaluate these variables properly, an optimization problem was defined. 

The multi-objective function, equation (4-23), was defined as the difference between the 

far magnetic plus electric fields of the equivalent source model and the detailed machine 

3D FE model. In this model, the voltage on nodes, as well as the current of the legs are 

used as variables. Therefore, as shown in fig. 4.20, there are 12 current variables, 8 

voltage variables. There are 3 variables as dimensions of the prism. Using this model, the 

variables for the optimization are more than previous model, therefore the possibility of 

obtaining accurate results is better. Also, the voltage parameter which has a great impact 

on the electric field is available. The optimization process sets the objective function to a 

minimum by changing the variables of the equivalent source model. This process was 

performed utilizing an evolutionary-based optimization algorithm. 

( ) ( ) ( ) ( )
3 3

i i i i3DFE Eq.model 3DFE Eq.model
i=1 i=1

obj=mean X,Y,Z - X,Y,Z + X,Y,Z - X,Y,Z
 
 
 
 B B E E   (4-23) 
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where Bi(X, Y, Z)3DFE, and Ei(X, Y, Z)3DFE, are normal magnetic flux densities and 

normal electric fields calculated along three finite lines for the detailed geometrical 

models, fig. 4.18 (a). Here, Bi(X, Y, Z)Eq.model, and electric field, Ei(X, Y, Z)Eq.model are 

the corresponding measurements from the equivalent cube model. The B and E are each 

3×N matrix, with N standing for the number of samples. 

A snapshot of the normal magnetic flux densities, Bi(X, Y, Z)3DFE, and electric fields, 

Ei(X, Y, Z)3DFE, along three straight lines in the X, Y, and Z directions, were calculated 

and stored. The optimization process runs iteratively to minimize the objective function. 

Following the optimization process, the cube side lengths were computed as (A= 0.279 

(m), B= 0.2 (m), C= 0.31(m)). The comparison between the normal magnetic flux 

densities of the full 3DFE model and the proposed cube model with one motor case is 

illustrated in fig. 4.21 and 4.22.  

 

     (a)                                                                     (b)  
Fig. 4.21 Comparison between magnetic flux density calculated by 3DFE analysis for 

equivalent cubic model and real detail machine model, the one motor case of study 
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Fig. 4.22  Normal Magnetic flux density in the X-Y plane (a) for the equivalent source 

model, (b) for the detailed model, Normal electric field in the X-Y plane (c) for the 

equivalent source model, (d) for the detailed model 

As long as the environment is assumed to have linear properties, the superposition of 

the far fields of a set of cube models will be equal to the superposition of the far fields of 

detailed geometrical models. This is the case when the observation point and the centers 

of machines and cubes are the same. In order to validate this, another case study 

including two motors, shown in fig. 4.23(a), was investigated. Figures 4.23(b) and 4.24, 

respectively show a comparison between the normal magnetic flux density and the 

electric field of the detailed geometrical model and the equivalent cube model for the two 

machine environment. The magnetic flux densities and electric fields again follow similar 

patterns with an acceptable accuracy. 
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     (a)                                                                     (b)  

Fig. 4.23 (a) Two machine case of study for validation of the model (b) Comparison 

between normal magnetic flux density computed by 3DFE analysis for the equivalent 

cubic model and the real detail machine model, the two motor case of study 

 

Fig. 4.24 Comparison between Electric fields computed by 3DFE for the equivalent cubic 

model and the real detail machine model, the two motor case of study 

The comparison between the average of various simulation times shows that using the 

proposed approach makes the simulation time at least 216 times faster than using the full 
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3DFE model with an acceptable minor difference. The comparison between the 

simulations time in cases of one motor, two motor, as well as the optimization time, are 

shown in Table 4.3. The computation time of the optimization process is four times that 

of the computation time elapsed of the detail geometrical model. However, it is only done 

one time for one motor case study.  

Table 4.3 Computation time Comparisons 
Case of Studies One Machine case Two Machines case 

3DFE model 6(Hours) 11(Hours) 

Equivalent Cube model 100(Sec.) 160(Sec.) 

Revised model 250(Sec.) 400(Sec.) 

Optimization Process 23(Hours) ---------- 

 

4.5.1 Revised model 

The comparison of fig. 4.21 and 4.22 reveals the special location and the magnitude 

of the maximum field. This is predicted accurately by the equivalent source model. 

However, the magnetic field pattern typically in the X-Y plane does not match precisely 

with that of the detailed geometrical model. Although, the equivalent source model seems 

to be the minimalist model for this kind of geometry simplifications, the studies have 

shown that without revision of the model by adding additional current loops or curving 

the current flowing in each side, the improvement of the accuracy of the magnetic field in 

all directions is impossible. This is because based on the presented theory in the previous 

section, for each direction, an independent current loop is needed, while the current loops 
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of the cube model are dependent. Fig. 4.25 (a) demonstrates a revised version of the cube 

model. The magnetic and electric fields of this model, figs. 4.25 (b) and 4.25 (d), are very 

close to that of the 3DFE model in figs. 4.25 (c) and 4.25 (e).  

 

Fig. 4.25 Revised version of the cube model (a), Normal Magnetic flux density 

throughout X-Y plane for the equivalent source model (b), for the detail model (c), 

Normal electric field throughout XY plane for the equivalent source model (d), for the 

detail model (e), all for the one motor case of study 

Fig. 4.26 shows the comparison between the far magnetic field of the revised model 

and detailed geometrical model for one and two motor case of study. It is observed that 

this kind of model revision may lead to more accurate results. However, it increases the 

number of model variable to twice the cube model and the computation time by 2.5 times 

of that of the cube model. Indeed, the cube model is a tradeoff between several factors, 

including accuracy, simulation times, simplicity, and generality. Fig. 4.27 shows the 

comparison of the near magnetic fields of the revised and the detailed model of the 

machines. Interestingly, the revised model could also predict a very similar pattern to that 

of the detailed model, thought it was not a direct objective.  
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Fig. 4.26 Comparison between magnetic flux density calculated by 3DFE analysis for 

revised equivalent source model and detail machine model, (a) the one machine (b) and 

two machine case of studies 

 

Fig. 4.27 Comparison of the near fields, 0.25 meter from machines, Normal Magnetic 

flux density in the X-Y plane for (a) the revised model, (b) for the detailed geometrical 

model  

Since the assumption of quasi static fields in this problem is valid, the iron core 

saturation is ignored, there is a linear relationship among the magnetic field and the 

actual phase current of the machine, and the current in sides of the equivalent source 

model. There is also a linear relationship among the electric field and the terminal voltage 
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of the machine, and the voltage nodes (V1 and V2) of the equivalent source model. 

Therefore, the equivalent source models can be simply recreated when the phase current, 

terminal voltage or the frequency of the machine changes over the time. 

 

4.6 Conclusion 

Since there is a considerable necessity for analyzing the radiated electromagnetic 

field around electrical machines and also considering that simulating multi-machine 

environment with actual models requires significant time and computing resources, 

designing an equivalent source model was studied in this chapter. Several models are 

investigated in this study and the voltage current cube model has the best result between 

these proposed models. The GA-based PSO method is used for evaluating currents of 

cube branches, as well as voltages of nodes.  The finite element analysis was used for the 

simulation. The results show that it is possible to replace actual model of the electrical 

machines with the equivalent rectangular cube model. The simulation time of the cube 

model is approximately 100 times less than the actual model, enabling the numerical 

simulation of multiple cases. The model was validated based upon the simulation of two 

similar induction machine with two cube models with the same center of coordinates.  

However, the final model has great accuracy in resembling the stray fields; it can only 

be used in one particular occasion. In other words, by changing the voltage, power or 

construction the machine, such as the number of poles and size, the model should be re-

optimized. Therefore, a new type of modeling is designed, which is discussed with the 

experimental verification in chapter 6. 
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5. Instruction for the Low Frequency Electromagnetic Signature Experimental 

Measurement 

5.1 Overview 

Based on the organization of the dissertation, the study from chapter 7 consists of 

many experimental tests. Therefore, the instruction for the low-frequency 

electromagnetic experimental measurement is collected from several standards (MIL, 

IEEE, ANSI and ASTM standards) [192-200].  

This instruction establishes the interface and associated verification requirements for 

the control of the electromagnetic interference (emission and susceptibility) 

characteristics of electric power equipment and subsystems in design and 

implementation. Such equipment and subsystems may be used independently or as an 

integral part of other subsystems or systems. In the following, first the general 

requirements are mentioned, then detail requirements for the control for the conducted 

and radiated emission in low frequencies are explained. 

5.2 General requirement 

Electronic, electrical, and electromechanical equipment and subsystems should 

comply with the applicable general interface requirements in section 5.2.1. General 

requirements for verification should be in accordance with section 5.2.2. These general 

requirements are in addition to the applicable detailed emission and susceptibility 

requirements, and associated test procedures defined in 5.3. 
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5.2.1 Filtering 

The use of line-to-ground filters for the EMI control should be minimized. Such 

filters establish low impedance paths for structure (common-mode) currents through the 

ground plane and can be a major cause of interference in systems, platforms, or 

installations because the currents can couple into other equipment using the same ground 

plane. If such a filter must be employed, the line-to-ground capacitance for each line 

should not exceed 0.1 microfarads (µF) for 60 Hertz (Hz) equipment or 0.02 µF for 400 

Hz equipment. For submarine DC-powered equipment and aircraft DC-powered 

equipment, the filter capacitance from each line-to-ground at the user interface should not 

exceed 0.075 µF/kW of connected load. For DC loads less than 0.5 kW, the filter 

capacitance should not exceed 0.03 µF. The filtering employed should be fully described 

in the equipment or subsystem technical manual and the Electromagnetic Interference 

Control Procedures (EMICP). 

5.2.2 Measurement tolerances 

Unless otherwise stated for a particular measurement, the tolerance should be as 

follows: 

a. Distance: ±5% 

b. Frequency: ±2% 

c. Amplitude, measurement receiver: ±2 dB 

d. Amplitude, measurement system (includes measurement receivers, transducers, 

cables, and so forth): ±3 dB 

e. Time (waveforms): ±5% 
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f. Resistors: ±5% 

e. Capacitors: ±20% 

5.2.3 Ambient electromagnetic level 

The ambient electromagnetic level measured with the EUT de-energized and all 

auxiliary equipment turned on during tests, must be at least 6 dB below the permissible 

specified limits when the tests are performed in a shielded enclosure. Ambient conducted 

levels on power leads should be measured with the leads disconnected from the EUT and 

connected to a resistive load, which pulls the same rated current as the EUT. At what 

time tests are performed in a shielded enclosure and the EUT is in compliance with 

required limits, the ambient profile doesn’t require to be recorded in the EMITR. When 

measurements are made outside a shielded enclosure, the tests should be performed 

during times and conditions when the ambient is at its lowest level. The ambient should 

be recorded in the EMITR and should not compromise the test results [192]. 

5.2.4 Ground plane  

The EUT should be installed on a ground plane that simulates the actual installation. 

If the actual installation is unidentified or multiple installations are expected, then a 

metallic ground plane should be used. Unless otherwise specified below, ground planes 

should be 2.25 square meters or larger in space with the smaller side no less than 76 

centimeters. When a ground plane is not present in the EUT installation, the EUT should 

be placed on a non-conductive table. 
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Fig. 5.1 General test setup [200] 

5.2.5 Metallic ground plane 

When the EUT is installed on a metallic ground plane, the ground plane should have 

a surface resistance no greater than 0.1 milliohms per square. The DC resistance between 

metallic ground planes and the shielded enclosure should be 2.5 milliohms or less. The 

metallic ground planes shown in fig. 5.1 through 5.4 should be electrically bonded to the 

floor or wall of the basic shielded room structure at least once every 1 meter. The 

metallic bond straps should be solid and maintain a five-to-one ratio or less in length to 
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width. Metallic ground planes used outside a shielded enclosure should extend at least 1.5 

meters beyond the test setup boundary in each direction. 

 

 

Fig. 5.2 Test setup for non-conductive surface mounted EUT 
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Fig. 5.3 Test setup for free standing EUT in shielded enclosure 

 

Fig. 5.4 Test setup for free standing EUT [192], [200] 
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5.2.6 Power source impedance 

The impedance of power sources providing input power to the EUT should be 

controlled by Line Impedance Stabilization Networks (LISNs) for all measurement 

procedures of this document unless otherwise stated in a particular test procedure. LISNs 

should not be used on output power leads. The LISNs should be located at the power 

source end of the exposed length of power leads specified in paragraph 4.3.8.6.2 of [200]. 

The LISN circuit should be in accordance with the schematic shown in fig. 5.5. The LISN 

impedance characteristics should be in accordance with fig. 5.5.  The LISN impedance 

should be measured at least annually under the following conditions:  

a. The impedance should be measured between the power output lead on the load side 

of the LISN and the metal enclosure of the LISN. 

b. The signal output port of the LISN should be terminated in fifty ohms. 

c. The power input terminal on the power source side of the LISN should be 

unterminated. 

The impedance measurement results should be provided in the EMITR. 

 

Fig. 5.5 LISN Schematic and impedance characteristics 
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5.2.7 Overload precautions 

Measurement receivers and transducers are subject to overload, especially receivers 

without pre-selectors and active transducers. Periodic checks should be performed to 

assure that an overload condition does not exist. Instrumentation changes should be 

implemented to correct any overload condition. 

5.2.8 Construction and arrangement of Interconnecting leads and cables 

Individual leads should be grouped into cables in the same manner as in the actual 

installation.  Total interconnecting cable lengths in the setup should be the same as in the 

actual platform installation. If a cable is longer than 10 meters, at least 10 meters should 

be included. When cable lengths are not specified for the installation, cables should be 

sufficiently long to satisfy the conditions specified below. At least the first 2 meters 

(except for cables which are shorter in the actual installation) of each interconnecting 

cable associated with each enclosure of the EUT should be run parallel to the front 

boundary of the setup. Remaining cable lengths should be routed to the back of the setup 

and should be placed in a zig-zagged arrangement. When the setup includes more than 

one cable, individual cables should be separated by 2 centimeters measured from their 

outer circumference. For bench top setups using ground planes, the cable closest to the 

front boundary should be placed 10 centimeters from the front edge of the ground plane. 

All cables should be supported 5 centimeters above the ground plane. 
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5.2.9 Construction and arrangement of Input power leads 

Two meters of input power leads (including neutrals and returns) should be routed 

parallel to the front edge of the setup in the same manner as the interconnecting leads. 

Each input power lead, including neutrals and returns, should be connected to a LISN 

(see fig. 5.5). Power leads that are bundled as part of an interconnecting cable in the 

actual installation should be configured in the same fashion for the 2 meter exposed 

length and then should be separated from the bundle and routed to the LISNs. After the 2 

meter exposed length, the power leads should be terminated at the LISNs in as short a 

distance as possible. The total length of power lead from the EUT electrical connector to 

the LISNs should not exceed 2.5 meters. All power leads should be supported 5 

centimeters above the ground plane. If the power leads are twisted in the actual 

installation, they should be twisted up to the LISNs. 

5.2.10 Operation of EUT 

During emission measurements, the EUT should be placed in an operating mode 

which produces maximum emissions. During susceptibility testing, the EUT should be 

placed in its most susceptible operating mode. For EUTs with several available modes 

(including software controlled operational modes), a sufficient number of modes should 

be tested for emissions and susceptibility such that all circuitry is evaluated. The rationale 

for modes selected should be included in the EMITP. 
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5.3 Use of measurement equipment 

Any frequency selective measurement receiver may be used for performing the 

testing described in this standard provided that the receiver characteristics (that is, 

sensitivity, selection of bandwidths, detector functions, dynamic range, and frequency of 

operation) meet the constraints specified in this standard and are sufficient to demonstrate 

compliance with the applicable limits. Typical instrumentation characteristics may be 

found in ANSI C63.2. 

5.3.1 Detector 

A peak detector should be used for all frequency domain emission and susceptibility 

measurements. This device detects the peak value of the modulation envelope in the 

receiver bandpass. Measurement receivers are calibrated in terms of an equivalent Root 

Mean Square (RMS) value of a sine wave that produces the same peak value. When other 

measurement devices, such as oscilloscopes, non-selective voltmeters, or broadband field 

strength sensors are used for susceptibility testing, correction factors should be applied 

for test signals to adjust the reading to equivalent RMS values under the peak of the 

modulation envelope. 

5.3.2 Computer-controlled receivers 

A description of the operations being directed by software for computer-controlled 

receivers should be included in the EMITP. Verification techniques used to demonstrate 

proper performance of the software should also be included. 
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5.3.3 Emission testing 

5.3.3.1 Bandwidth 

The measurement receiver bandwidths listed in Table 5.1 should be used for 

emission testing. These bandwidths are specified at the 6 dB down points for the overall 

selectivity curve of the receivers. The video filtering should not be used to bandwidth 

limit the receiver response. If a controlled video bandwidth is available on the 

measurement receiver, it should be set to its greatest value. Larger receiver bandwidths 

may be used; however, they may result in higher measured emission levels. No 

bandwidth correction factors should be applied to test data due to the use of larger 

bandwidths. 

Table 5-1 Bandwidth and measurement time 

Frequency Range 6 dB Bandwidth Dwell time 
Minimum 

Measurement Time 

30 Hz – 1 kHz 10 Hz 0.15 sec 0.015 sec/Hz 

1 kHz – 10 kHz 100 Hz 0.015 sec 0.15 sec/kHz 

10 kHz – 150 kHz 1 kHz 0.015 sec 0.015 sec/kHz 

150 kHz – 30 MHz 10 kHz 0.015 sec 1.5 sec/MHz 

30 MHz – 1 GHz 100 kHz 0.015 sec 0.15 sec/MHz 

Above 1 GHz 1 MHz 0.015 sec 15 sec/GHz 

5.3.3.2 Emission identification  

All emissions regardless of characteristics should be measured with the measurement 

receiver bandwidths specified in Table 5.1 and compared against the applicable limits. 
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Identification of emissions with regard to a narrowband or broadband categorization is 

not applicable. 

5.3.3.3 Frequency scanning  

For emission measurements, the entire frequency range for each applicable test 

should be scanned. Minimum measurement time for analog measurement receivers 

during emission testing should be as specified in Table 5.2. Synthesized measurement 

receivers should step in one-half bandwidth increments or less, and the measurement 

dwell time should be as specified in Table 5.2. For equipment that operates such that 

potential emissions are produced at only infrequent intervals, times for frequency 

scanning should be increased as necessary to capture any emissions.  

                 Table 5-2 Susceptibility scanning 
Frequency Range 6 dB Bandwidth Dwell time 

30 Hz – 1 MHz 0.0333 f0/sec 0.05 f0 

1 MHz – 30 MHz 0.00667 f0/sec 0.01 f0 

30 MHz – 1 GHz 0.00333 f0/sec 0.005 f0 

1 GHz – 40 GHz 0.00167 f0/sec 0.0025 f0 

5.3.3.4 Emission data presentation 

Amplitude versus frequency profiles of emission data should be automatically 

generated and displayed at the time of test and should be continuous. The displayed 

information should account for all applicable correction factors (transducers, attenuators, 

cable loss, and the like) and should include the applicable limit. Manually gathered data 

is not acceptable except for verification of the validity of the output. Plots of the 

displayed data should provide a minimum frequency resolution of 1% or twice the 

measurement receiver bandwidth, whichever is less stringent, and minimum amplitude 
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resolution of 1 dB. The above resolution requirements should be maintained in the 

reported results of the EMITR. 

5.4 Susceptibility testing 

5.4.1 Frequency scanning  

For susceptibility measurements, the entire frequency range for each applicable test 

should be scanned. For swept frequency susceptibility testing, frequency scan rates and 

frequency step sizes of signal sources should not exceed the values listed in Table 5.2. 

The rates and step sizes are specified in terms of a multiplier of the tuned frequency (fo) 

of the signal source. Analog scans refer to signal sources, which are continuously tuned. 

Stepped scans refer to signal sources, which are sequentially tuned to discrete 

frequencies. Stepped scans should dwell at each tuned frequency for the greater of 3 

seconds or the EUT response time. Scan rates and step sizes should be decreased when 

necessary to permit observation of a response.  

5.4.2 Thresholds of susceptibility 

Susceptibilities and anomalies that are not in conformance with contractual 

requirements are not acceptable. However, all susceptibilities and anomalies observed 

during conduct of the test should be documented. When susceptibility indications are 

noted in EUT operation, a threshold level should be determined, where the susceptible 

condition is no longer present. Thresholds of susceptibility should be determined as 

follows and described in the EMITR:  

a. When a susceptibility condition is detected, the interference signal should be 

reduce until the EUT recovers.  
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b. The interference signal should be reduce by an additional 6 dB.  

c. The interference signal should gradually increase until the susceptibility condition 

reoccurs. The resulting level is the threshold of susceptibility.  

d. The level, frequency range of occurrence, frequency and level of greatest 

susceptibility, and other test parameters, as applicable must be record. 

5.4.3 Calibration of measuring equipment 

Test equipment and accessories required for measurement in accordance with this 

standard should be calibrated in accordance with ANSI/NCSL Z540-1 or ISO 10012 or 

under an approved calibration program traceable to the National Institute for Standards 

and Technology. In particular, measurement antennas, current probes, field sensors, 

LISNs (see fig. 5.5 for required impedance), and other devices used in the measurement 

loop should be calibrated at least every 2 years unless otherwise specified by the 

procuring activity, or when damage is apparent.  

5.5 Detailed requirements and procedure of the experiments 

This section specifies detailed emissions requirements and the associated test 

procedures. General test procedures are included in this section. Specific test procedures 

are implemented by the Government approved EMITP. All results of tests performed to 

demonstrate compliance with the requirements are to be documented in the EMITR and 

forwarded to the Command or agency concerned for evaluation prior to acceptance of the 

equipment or subsystem. Design procedures and techniques for the control of EMI should 

be described in the EMICP. Approval of design procedures and techniques described in 
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the EMICP does not relieve the supplier of the responsibility of meeting the contractual 

emission, susceptibility, and design requirements. 

5.5.1 Conducted emissions, power leads, 30 Hz to 10 kHz 

5.5.1.1 Applicability 

This requirement is applicable for power leads, including returns that obtain power 

from other sources not part of the EUT for surface ships, submarines, Army aircraft 

(including flight line) and Navy aircraft 

* For equipment intended to be installed on Navy aircraft, this requirement is 

applicable only for aircraft with Anti-Submarine Warfare (ASW) capability.  

* For AC applications, this requirement is applicable starting at the second harmonic 

of the EUT power frequency. 

5.5.1.2 Limits 

Conducted emissions on power leads should not exceed the applicable values shown 

on fig. 5.6 through 5.8, as appropriate, for low frequency applications. 

5.5.1.3 Test procedure 

5.5.1.3.1 Setup and requirements 

This test procedure is used to verify that electromagnetic emissions from the EUT and 

do not exceed the specified requirements for power input leads including returns.  
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Fig. 5.6 Limit for Conducted emission – submarine application [200] 

 

Fig. 5.7 Limit for Conducted emission – surface ship application (60Hz) [200] 
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Fig. 5.8 Limit for Conducted emission – surface ship and submarine application (400Hz) 

[200] 

The test equipment should be as follows:  

a. Measurement receivers  

b. Current probes  

c. Signal generator  

d. Data recording device  

e. Oscilloscope  

f. Resistor (R)  

g. LISNs  

The test setup should be as follows:  
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a. Maintain a basic test setup for the EUT as shown and described in fig. 5.1 through 

5.4. The LISN may be removed or replaced with an alternative stabilization device when 

approved by the procuring activity.  

b. Calibration. Configure the test setup for the measurement system check as shown 

in fig. 5.9.  

c. EUT testing.  

(1) Configure the test setup for compliance testing of the EUT as shown in fig. 5.10.  

(2) Position the current probe 5 cm from the LISN 

         

Fig. 5.9 Measurement System check                    Fig. 5.10 Measurement setup 
 

5.5.1.3.2 Procedure 

The test procedures should be as follows:  

a. Turn on the measurement equipment and allow a sufficient time for stabilization.  
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b. Calibration. Evaluate the overall measurement system from the current probe to the 

data output device.  

(1) Apply a calibrated signal level, which is at least 6 dB below the applicable limit at 

1 kHz, 3 kHz, and 10 kHz, to the current probe.  

(2) Verify the current level, using the oscilloscope and load resistor; also, verify that 

the current waveform is sinusoidal.  

(3) Scan the measurement receiver for each frequency in the same manner as a 

normal data scan. Verify that the data recording device indicates a level within ±3 dB of 

the injected level.  

(4) If readings are obtained which deviate by more than ±3 dB, locate the source of 

the error and correct the deficiency prior to proceeding with the testing.  

c. EUT testing. Determine the conducted emissions from the EUT input power leads, 

including returns.  

(1) Turn on the EUT and allow sufficient time for stabilization.  

(2) Select an appropriate lead for testing and clamp the current probe into position.  

(3) Scan the measurement receiver over the applicable frequency range, using the 

bandwidths and minimum measurement times specified in Table 5.1.  

(4) Repeat 3.2.3.4c (3) for each power lead.  

5.5.1.3.3 Data presentation 

Data presentation should be as follows:  

a. Continuously and automatically plot amplitude versus frequency profiles on X-Y 

axis outputs. Manually gathered data is not acceptable except for plot verification.  
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b. Display the applicable limit on each plot.  

c. Provide a minimum frequency resolution of 1% or twice the measurement receiver 

bandwidth, whichever is less stringent, and a minimum amplitude resolution of 1 dB for 

each plot.  

d. Provide plots for both the measurement and system check portions of the 

procedure. 

5.5.2 Radiated Emissions, magnetic field 30 Hz – 100 kHz 

5.5.2.1 Applicability  

This requirement is applicable for radiated emissions from equipment and subsystem 

enclosures, including electrical cable interfaces. The requirement does not apply to 

radiation from antennas.  

5.5.2.2  Limits  

Magnetic field emissions should not be radiated in excess of the levels shown in 

figures 5.11 and 5.12 at a distance of 7 cm.  
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Fig. 5.11 Radiation emission limit for all Army applications 

 

Fig. 5.12 Radiation emission limit for all Navy applications 

5.5.2.3 Test procedures 

This test procedure is used to verify that the magnetic field emissions from the EUT 

and its associated electrical interfaces do not exceed specified requirements.  
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5.5.2.3.1 Test equipment and setup 

The test equipment should be as follows:  

a. Measurement receivers  

b. Data recording device  

c. Loop sensor having the following specifications:  

(1) Diameter: 13.3 cm  

(2) Number of turns: 36  

(3) Wire: DC resistance between 5 and 10 ohms (7-41 litz (7strand, No. 41 AWG)) 

(4) Shielding: Electrostatic  

(5) Correction factor: To convert measurement receiver readings expressed in 

decibels above one microvolts (dBuV) to decibels above one picotesla (dBpT), add the 

factor shown in fig. 5.11.  

d. LISNs  

e. Ohmmeter  

f. Signal generator  

The test setup should be as follows:  

a. Maintain a basic test setup for the EUT as shown and described in figures 5.1 

through 5.4.  

b. Calibration. Configure the measurement setup as shown in fig. 5.13.  

c. EUT Testing. Configure the measurement receiving loop and EUT as shown in fig. 

5.14.  
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Fig. 5.13 Calibration configuration 

 

Fig. 5.14 Basic Test setup 

5.5.2.3.2 Procedures  

The test procedures should be as follows:  

a. Turn on the measurement equipment and allow sufficient time for stabilization.  

b. Calibration.  

(1) Apply a calibrated signal level, which is at least 6 dB below the limit (limit minus 

the loop sensor correction factor), at a frequency of 50 kHz. Tune the measurement 

receiver to a center frequency of 50 kHz. Record the measured level.  

(2) Verify that the measurement receiver indicates a level within ±3 dB of the injected 

signal level.  

(3) If readings are obtained which deviate by more than ±3 dB, locate the source of 

the error and correct the deficiency prior to proceeding with the testing.  
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(4) Using an ohmmeter, verify that the resistance of the loop sensor winding is 

approximately 10 ohms.  

c. EUT Testing.  

(1) Turn on the EUT and allow sufficient time for stabilization.  

(2) Locate the loop sensor 7 cm from the EUT face or electrical interface connector 

being probed. Orient the plane of the loop sensor parallel to the EUT faces and parallel to 

the axis of connectors.  

(3) Scan the measurement receiver over the applicable frequency range to locate the 

frequencies of maximum radiation, using the bandwidths and minimum measurement 

times of Table 5.2.  

(4) Tune the measurement receiver to one of the frequencies or band of frequencies 

identified in c of (3) above.  

(5) Monitor the output of the measurement receiver while moving the loop sensor 

(maintaining the 7 cm spacing) over the face of the EUT or around the connector. Note 

the point of maximum radiation for each frequency identified in step c (4).  

(6) At 7 cm from the point of maximum radiation, orient the plane of the loop sensor 

to give a maximum reading on the measurement receiver and record the reading. If the 

measured emission exceeds the limit at the 7 cm distance, increase the measurement 

distance until the emission falls within the specified limit. Record the emissions and the 

measurement distance for assessment by the procuring activity. NOTE: The EUT should 

comply with the applicable radiated emission (30Hz-10 kHz) limit at 7 cm.  
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(7) Repeat step c (4) through step c (6) for at least two frequencies of maximum 

radiation per octave of frequencies below 200 Hz and for at least three frequencies of 

maximum radiation per octave above 200 Hz.  

(8) Repeat step c (2) through step c (7) for each face of the EUT and for each EUT 

electrical connector.  

5.5.2.3.3 Data presentation 

Data presentation should be as follows:  

Provide graphs of scans and tabular listings of each measurement frequency, mode of 

operation, measured magnetic field, and magnetic field limit level. 

5.6 Conclusion 

In this chapter, the requirement and procedure of electromagnetic compatibility 

testing were explained. The procedure for the measurement of radiated emission, as well 

as conducted emission, was described in details; however, the conducted emission is not 

the purposed of this dissertation.  

All the details were related to the low frequency analysis. Note that the requirements 

for high frequency analysis are different for both emission and susceptibility studies.    
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6. Wire Modeling and Experimental Verification 

6.1 Overview 

The 3D full finite element modeling was described in chapter 3 and 4. Also, the 

equivalent source modeling using initial dipole models and cube models were explained 

in chapter 4. The final model, which was voltage-current rectangular prism model, has a 

good accuracy for the magnetic and electric stray fields. However, there is an issue that 

this model is designed based on optimization processes, which means that the model is 

applicable for one particular voltage or specific amount of power. If sizes of the 

component change, the model should be optimized again to find new parameters of 

branches and new dimensions. Therefore, the new model is proposed based on the 

structure and operation of the components to be applicable for all parameter sets without 

any need to be modeled or simulated again. 

Consequently, the principle of the model is explained in the next section. Then, 

modeling strategies of each component with the simulation results are demonstrated. 

Afterward, the whole setup is modeled and verified experimentally. Finally, the 

procedure of generalization of the model is explained in detail along with the simulation 

results. 

 

6.2 Wire-modeling approach 

As explained in chapter 4, the electromagnetic signature study of an electric machine 

can be estimated at a far distance based on (4-14) through (4-18).  



 

140 
 

The path and direction of currents, as well as the value of the current density, of the 

electric machine winding have a very important role in establishing magnetic stray fields 

at far distances. The magnetic field’s waveform at a far distance is under the influence of 

direction of wires in winding arrangements.  Therefore, a line-shape model is proposed 

instead of the actual model and the related current based on the current density of the 

actual machine is applied to the lines. The model of the proposed actual machine 

(Squirrel Cage Induction Motor, SCIM) and the proposed model are shown in fig. 6.1. 

 

                                             (a)                                                   (b) 

Fig. 6.1 Prototype of the proposed machine (SCIM) in Finite Element Analysis (a) actual 

model, (b) An equivalent line-shape model for EMI and electromagnetic signature 

studies. 

The wire model of the system is designed and created based on the current directions. 

The path of the winding arrangement for the machine and other components, including 

the position of voltage terminals, should be identified. As shown in this figure, the wire 

model consists of numerous lines with specific currents flowing and voltages established 

at nodes of these wires. Currents of the wire model are calculated based on equalizing the 
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magnetic field densities. Using the Biot-Savart law, the radiated magnetic field density of 

a line at an R distance away from the line is as follows: 

0
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μ
π

×=                                                                                                          (6-1) 

Where the l is the length of the line and Il is the carrying current of the line and R̂a  is the 

distance vector between dl and the observation point. Similarly, for a volume current, the 

radiated magnetic field density at an R distance is as follows: 
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The idea of this model is to have the same field, while the model is a line and doesn’t 

have a cross-section. Hence, by equalizing two above equations and considering J, R, ds 

and dl as known parameters, then, the Il, the current amplitude of the line, can be 

calculated. The voltage of nodes are similarly calculated by equalizing the electric field 

due to the charge distribution of the line and volume. Each component has some 

parameters which should be considered about this modeling and explained in their 

section. More details about basics of the model are mentioned in [201]. 

6.3 Models of the components with simulation and experimental results 

A typical power setup consists of electrical generators, such as synchronous 

generator, electrical motors, such as induction and DC motors, and connection cables and 

power converters. All of these components except the converter are modeled using the 

wire model and some of them are verified experimentally. The converter has some 

consideration and its modeling for stray field analysis is explained in the next chapter. In 
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addition to the study of each component, their coupling is also studied. Finally, the whole 

setup is investigated. 

6.3.1 Induction motor 

6.3.1.1 The modeling concept 

Before investigating complete wire model, the combination of wire model for 

magnetic field and cube model for the electric field are investigated and introduced in this 

part. The procedure for designing the wire model is explained in 6.2. Since the modeling 

is based on the electric current, it gives good results just for the magnetic field, so the 

model doesn’t show logical results for the electric field. In order to have the electric field 

of the actual machine at a far distance, a cube model is proposed, which is shown in fig 

6.2. The details of making this cube are explained in chapter 4. 

As shown in fig. 6.2, eight voltages are applied to the nodes at the corners of the 

cube. The value of these voltages are based on the maximum electric potential difference 

and also the electric displacement field in the winding. 

 

Fig. 6.2 Prototype of the proposed cube model for replicating electric field of the actual 
machine 
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Consequently, to have both the magnetic and electric field of the model 

simultaneously, these two models (fig. 6.1(b) and fig. 6.2) are combined together. The 

combined model propagates similar electric and magnetic fields at far distances. This 

model is shown in fig. 6.3. 

 

Fig. 6.3 The equivalent cylinder-cube model for reproducing radiated electric and 

magnetic fields of the actual machine 

For simulation purposes, a 3-phase, 380 V, 5 A, 120 turn/phase induction machine 

with a stack length of 0.15 m and outer diameter of 0.175 m is simulated in the 3D 

electromagnetic finite element domain for a specific time. The meshed final model is 

shown in fig. 6.4. The number of degrees of freedom of the source model is considered as 

large as possible, in order to have accurate results of the propagation in measured areas. 

In addition, appropriate element growth rate is applied to the model and the tolerance of 

analysis is considered at 1e-6. 

Using the optimization process, the cube lengths were calculated as (A= 0.1009 m, 

B= 0.125 m and C= 0.1282 m). Moreover, as mentioned earlier, the size of the cylinder is 

based on the size of the actual machine. Although the analysis is implemented for a 



 

144 
 

typical machine, this equivalent source model can be used for similar types of machines 

(induction machine) with slight modification, for example, the size of the model. This 

modification in size can be based on the ratio of the size of any actual machine to a basic 

actual machine model. This basic model can be the machine studied in this section. Other 

parameters, such as the voltage and current values can be considered as well. Although 

the optimization is used for the design of the cube model for having the correct electric 

field, the new model, which eliminates the cube and optimization process, is employed 

and explained in 6.3.3. 

 

Fig. 6.4 Mesh of the equivalent source model 

6.3.1.2 Simulation results 

In order to verify the accuracy of the model, propagated electric and magnetic fields 

from the proposed model and the actual machine along three lines in the x, y, and z 

directions at a far distance, fig. 6.5(a), were calculated and compared. This comparison is 

shown in fig. 6.5(b). The position of the reference lines from which propagated electric 

and magnetic fields are measured is also shown in fig. 6.5(a). As shown in fig. 6.5(b) and 

6.6, the model propagates similar electric and magnetic fields in comparison with actual 
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model at far distances. Because of the adjacency of the radiated electric fields in the x 

and y lines, a magnified view depicting details is shown in fig. 6.6.  

 

 (a)                                           (b) 

Fig. 6.5 (a) Reference lines from which propagated electric and magnetic field are 
measured, (b) Propagated magnetic field from actual and proposed model in all three axes 

 

Fig. 6.6 Propagated electric field from actual and proposed model in all three axes 

As shown in fig. 6.5(a), radiated magnetic flux densities along different axes are 

different in various planes and even in the same plane. For example, the measured 
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magnetic flux density along the Z axis shows the lower amplitude compared with the one 

along the Y axis. Since the structure of winding in which the shaft of the motor and 

windings are along the Z axis, the current flows mostly along the same axis and 

subsequently doesn’t change significantly. Consequently, the field doesn’t change 

considerably along the axis. 

Following the investigation of far fields, the checking of fields at closer distances to 

the model was conducted. The propagated magnetic field along the X axis is obtained and 

shown in fig. 6.7. This figure shows the propagated magnetic field density at one meter 

closer to the model. The difference between the propagated magnetic field density in the 

X axis direction, shown in figs. 6.5 and 6.7, is because of the butterfly effect of magnetic 

field density in farther distances [108]. Furthermore, fig. 6.7 shows that there are some 

ripples in the fields. These ripples are related to the high frequency response. Therefore, 

since the result of the equivalent source model in rippled parts follows the actual one, it 

can be inferred that the model can also be used in the high frequency analysis. 

 
Fig. 6.7 Radiated magnetic field from actual and proposed model in X axis at1 meter 

distance to the models 
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Figures 6.5(b) to 6.7 show the fields at one line in the planes, which are shown in fig. 

6.5(a). This analysis is essential but not sufficient for investigating the accuracy, because 

one may think that the fields may resemble each other just in the center line due to 

symmetry. For further investigation and to assure that the fields propagated from the 

actual machine and equivalent source models resemble each other at all positions in the 

study area, the propagated magnetic and electric fields spectrum throughout the whole 

XY plane were obtained and shown in fig. 6.8. 

 
                                      (a)                                           (b) 

 
                                     (c)                                            (d) 

Fig. 6.8 Magnetic and electric field spectrum throughout XY plane propagated from 

actual machine and model 
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Comparing figs 6.8 (a) and (b), it can be seen that, not only so the wave-shapes of the 

magnetic field density of the two models match, but also their amplitude is almost the 

same in all points of the plane. Also, the electric fields of both models, which are shown 

in figs. 6.8 (c) and (d), are the same at almost all points. This is also valid for all other 

planes around the model. In conclusion, it is verified that the equivalent source model can 

replace the actual model for the electromagnetic signature study analysis of one case 

machine. 

Since the final goal of this research is to use this model in multi-component systems, 

the model is studied for the two-motor case. This can also be considered as validation of 

the obtained cylinder-cube model from one motor case, and inserted into the model to 

investigate a multi-machine drive, while the currents in the branches of the cylinder and 

voltages at the nodes of the cube remain the same as in the first case (single case model). 

The centers of the coordinates of the two cubes and cylinders are exactly the same as the 

actual machine model. Figures 6.9 and 6.10 show the comparison between magnetic and 

electric fields propagated from the actual and proposed models for the two-motor case. 

Note that the proposed planes and lines for measuring the fields are the same as the single 

machine case (fig. 6.5(a)). As can be seen, magnetic and electric fields, like the single 

machine case, follow the same patterns with good accuracy.  

The shift in the electric field signatures measured along the Z axis (fig. 6.10) is 

because of the size of the equivalent source model. As discussed before, an optimization 

method can be used for fitting the size of the model. If parameters of the optimization 

varies for example mutation factor are modified to bigger values, this shift would be 

decreased. This becomes true for the magnetic field as well. 
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Fig. 6.9 Propagated magnetic field from actual and proposed model for two motor in all 

three axes 

 

Fig. 6.10 Propagated electric field from actual and proposed model for two motor in all 

three axes 

One of the achievements of this research is the simulation time reduction. The 

comparison between the simulation time shows that, this approach makes the simulation 
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time of the model at least 100 times faster than a full 3D model. More details of the 

comparison are illustrated in Table 6.1. 

Table 6.1 computation time Comparisons 

Case of Studies One Machine case Two Machines case 

3DFE model 6(Hours) 11(Hours) 

Equivalent  model 100(Sec.) 160(Sec.) 

 

In addition to the importance of the accuracy of the field spectrums, the direction of 

the flowing fields is significant because the field spatial figures, fig. 6.8(a)-(d), don’t 

show the direction of the fields. Hence, the arrow line of the magnetic field density of the 

actual and equivalent machines are compared and shown in fig. 6.11. As displayed in this 

figure, the magnetic field in the actual case around the motor is denser in comparison to 

the equivalent source model case. However, the radiated magnetic field at further 

distance is almost the same in these two models. This is more important because the 

model is designed for far distances. While the arrow plot in fig. 6.11 shows the magnetic 

field density, this can be classified as discrete streamline of this field. A continuous 

stream-line of the H-Field (magnetic field intensity) of the two models (actual and 

equivalent source models) is obtained as shown in fig. 6.12. The H-Field streamline also 

shows that the equivalent source model has very similar results to the actual model. It 

also shows that the dipoles establish around the equivalent source model also in near 

distance. It should be noted that the purpose of this model was to obtain resembling fields 

at far distances. 
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                                                (a)                                            (b)  

Fig. 6.11 Arrow plot of magnetic field density (T) of (a) actual machine (b) equivalent 

source model in xy-plane 

 

                                               (a)                                             (b)  

Fig. 6.12 Stream-line of H-Field of (a) actual machine model xy-plane (A/m) (b) 

equivalent source model in xy-plane (A/m) 

6.3.1.3 Frequency response analysis - Multi-Resolution Analysis (MRA) 

Frequency analysis helps to extract the waveform’s information that is not readily 

available in time domain. On the other hand, it determines how the field’s waveforms, 

from real and equivalent source models, are comparable at all of the various frequencies 

within a certain bandwidth. Multi-Resolution Analysis (MRA) offers a way for analysis 

of non-stationary waveforms bounded in both frequency and time durations.  
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This method breaks up the signal into hierarchical levels of different resolutions, 

which are matched to different frequency bands as shown in fig. 6.13(b) [202]. The MRA 

consists of two general successive processes of decomposition and reconstruction. In the 

orthogonal wavelet decomposition procedure, the decomposition is started with the 

original signal and it is repeated by consecutive approximations down into coefficient 

vectors with lower resolution as shown schematically in fig. 6.13 (a). The employed 

mathematical manipulation for the decomposition step is called discrete WT (DWT). As 

shown in fig. 6.13(a), along with the decomposition process, low and high pass 

decomposition filters (L and H) and down sampling of the PD signals are applied at each 

level. The wavelet coefficient vectors may be modified before the reconstruction 

procedure is commenced. Various types of modifications of the wavelet coefficient 

vectors with many known applications were employed; de-noising and compression are 

more drastic and well known among them. All of the detail coefficient vectors and only 

the final approximations coefficient vector at level G are applied to reconstruct the 

original signal, but after some modifications, such as de-noising and compression, if 

required. This reconstruction is performed by up-sampling and another low and high pass 

reconstruction filters shown in fig. 6.13(a) by L’ and H’, respectively. The reconstruction 

procedure is originated from the inverse discrete Wavelet Transform (IDWT) concept. 

The reversed coefficient vectors, which are calculated by the equal number of 

reconstruction and decomposition levels, are termed as reconstructed details and 

approximation [202, 203]. Here, The Nyquist frequency is defined as the half of the 

sampling frequency. The sampling frequency is calculated by the division of the 

displacement by the unit speed of 1(m/s). 



 

153 
 

 

Fig. 6.13 Decomposition and reconstruction by MRA at two levels (a), bandwidth of sub-

signals (b) [203] 

 

Fig. 6.14 Normal magnetic (left)  and electric field (right) comparisons at different 

frequency band, equivalent (solid blue) real machine (dash line), one machine case of 

study 
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Fig. 6.14 show the reconstructed magnetic and electric fields in the Y direction at 

different frequency bands for one machine, respectively. It can be observed that an 

acceptable matching at different frequency bands exists between the equivalent and real 

machines almost in the entire frequency band.   

 

Fig. 6.15 Normal magnetic (left) and electric field (right) comparisons at different 

frequency bands, equivalent (solid ) real machine ( dash line), two machine case of study 

Fig. 6.15 is the reproduction of fig. 6.14 for the two-machine case study. As can be 

observed, there is an acceptable agreement between the equivalent and real model. 
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Moreover, comparison of figs. 6.14 and 6.15 proves that the linear relationship between 

one machine and two machine case of studies exist in all of the frequency bands. 

However, the found relationship between one and two machine case of studies depends 

on the explicit geometrical arrangement of two machine cases. 

6.3.1.4 Time and rotation study 

6.3.1.4.1 Time-based analysis 

Since the actual induction machine carries AC current, the time-based analysis is 

more useful. In the previous sections, the analysis was time-based; however, the figures 

are just depicted in one typical moment of time. In this section, the radiated 

electromagnetic fields of different instances of time in one cycle are studied. For brevity, 

four time instances are selected (0.0025s, 0.005s, 0.0075 and 0.0125s). The voltage 

amplitude of the terminal of the model during one time cycle is shown in fig. 6.16. 

 

Fig. 6.16 Voltage amplitude of the terminal of the model during one time cycle 

First, the radiated magnetic field in the near distance (0.5m) from the machine is 

studied. The magnetic field density measured in four time instants is shown in fig. 6.17. 
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position of the maximum field point remained unchanged. It can be inferred from this 

result that the model resembles the machine and can be used instead of that, at all-time 

instants, not just one time instant, in which the model is designed. Next, the radiated 

magnetic field at a far distance (~10m) from the machine is studied. In this distance, the 

rule of the magnetic dipoles for these distances causes the field to become similar to a 

dipole, as shown in fig. 6.17 [204]. As shown in this figure, the dipoles are sensitive to 

time changes and they rotate when the time changes. Consequently, the equivalent source 

model can be used for the time-based analysis at near and far distances. 

         

                                     (a) t=0.0025                                   (b) t=0.005 

                            
                                     (c) t=0.0075                                   (d) t=0.0125 

Fig. 6.17 Magnetic field density (B) of equivalent source model in four different 

moments of time at near distance 
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6.3.1.4.2 The effect of rotation 

Another condition that should be studied for the induction machine is testing various 

positions of the machine. In many cases, the location of the motor with respect to the 

measured points will change. Therefore, the electromagnetic signatures are expected to 

be changed. Hence, a specific change of the motor is studied here. The whole machine 

was rotated around an axis and the results were obtained and illustrated in fig. 6.18. The 

magnetic field in this figure is plotted at a far distance. 

   

                                     (a) t=0.0025                                   (b) t=0.005 

   

                                  (c) t=0.0075                                   (d) t=0.0125 

 
Fig. 6.18 Magnetic field density (B) of equivalent source model at the four different 

intendances of time at far distance 
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Fig. 6.19 Deviation of magnetic field density (B) of the equivalent source model due to 

the rotation of the whole machine around z-axis 

As shown in fig. 6.19, by rotating the rotor of the induction machine around z-axis, 

the magnetic field moves along the perpendicular coordinates (x, y) from right to left. 

When plotting other angles ranging from 90 to 180 degrees, the results are exactly 

symmetrical with respect to the changes from 0 to 90 degrees. The magnetic field density 

of 180 degree change is exactly the same as the one with 0 degree change. This study is 

useful in identifying the situation of the source machine by looking at the electromagnetic 

signatures at far distances. All of these studies can be imported to an optimization 

program, such as genetic algorithm or neural network. Therefore, the machine in any 

situation can be recognized. 

6.3.1.5 Experimental verification 

The procedure and standard of the experimental measurement of the low frequency 

stray fields are explained in chapter 5. The details of the setup, which are shown in fig. 

6.20, are as follows: 
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The coil antenna and the real-time spectrum analyzer, which are used in the 

measurement, are specifically for low frequency analysis with high precision. The 

frequency range is between 20 Hz – 500 kHz. The winding of the antenna is 36 turns of 

7-41 litz wire shielded with 10-Ohms resistance and 340 µH inductance. The antenna and 

the setup are located based on the standards (MIL-461-STD [200], MIL-462-STD). The 

spectrum analyzer also covers 1Hz-3GHz with ±0.5 dB absolute amplitude accuracy to 

3 GHz. The details of the components are mentioned in Table 6.2. 

Table 6.2 the characteristics of the components 
Components Description 

EMI 
receiver/spectrum 
analyzer* 

Coverage between 1Hz-3GHz, absolute amplitude accuracy: 
±0.5 dB to 3 GHz, displayed average noise level: –142 dBm/Hz 
at 26.5 GHz, –155 dBm/Hz at 2 GHz and –150 dBm/Hz at 
10 kHz. 

Electric rod antenna* 
Active monopole antenna, Coverage between 30Hz-50 MHz, 
impedance: 50Ω. 

Magnetic coil 
antenna* 

Coverage between 20Hz-500 kHz, 36 turns of 7-41 litz wire 
shielded with 10-Ohms resistance and 340 µH inductance. 

Induction motor 
(IM1) 

7.5-HP, 208-V, 1765-RPM, PF: 0.82, 60Hz, EFF: 89.5%. 

* Measurement components are MIL-STD 461F standard compliant [200]. 

 
Fig. 6.20 The studied experimental setup including the machine and measurement tools 
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The nominal voltage is applied to the machine and the stray magnetic field is obtained 

at various distances. The result of measurement, the full 3DFE model and the wire model 

at 60 Hz are obtained and shown in fig. 6.21. The magnetic field intensity, as the standard 

index of electromagnetic signature studies, is used with dBµA/m as the unit of 

comparative measure. 

         

                                       (a)                                                               (b) 

Fig. 6.21 (a) The magnetic field intensity at 55cm away from the setup in Y axis while all 

components except IM were off at 60Hz (dBµA/m), (b) the region of the model (the 

model is in center, and the measured line is shown in read) 

As illustrated in fig. 6.21, the electromagnetic signatures from the two simulation 

models match the measurement. The reason that the measurement results in the figure 

don’t show distortions is the low number of patterns of the measured results in 

comparison with the simulation result, especially the wire model. The number of patterns 

along the line in the Y axis, which is used as the measured line, for the wire model are 

260 points, while it is about 10 points for the measurements. The measured line is also 

shown in fig. 6.21. 
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6.3.2 DC motor 

6.3.2.1 The modeling approach 

The induction motor which is discussed in 6.3.1 had armature and field windings and 

in terms of winding, it is known as the simplest machine. In contrary, the dc machine 

which has four types of winding, including armature, field, compensation and 

commutating windings. Therefore, their equivalent source modeling and merging as 

implemented in 6.3.1 is not easy. Each of these windings has specific design which 

causes specific types of electromagnetic signature. Since each winding has different 

shapes of the radiated field at far distances, so each of them are simulated and modeled 

individually and finally all of them are combined as one model. 

On the other hand, the second part of the modeling is finding the appropriate size of 

the model, which is very important in far field and also near field computation.  

Basically, dimensions of the model are based on the size of the machine, but for 

better and precise results, an optimization method is used. The proposed optimization 

process is (GA-based PSO) which was explained in chapter 4 and 6.3.1. 

In this method, objective functions are dimensions of the model including the number 

of dimensions and their length. In addition to the length of dimensions, also the number 

of dimensions can be considered as objectives of the model, whereas the number of 

dimensions can vary from a cone and cube to polyhedral. Typical schematic of this aspect 

of modeling is shown in fig. 6.22. 
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Finally by collecting previously mentioned methods and strategies, the equivalent 

source model is achieved. For better investigation and generating a more accurate model, 

the equivalent source model of each winding is achieved and shown in fig. 6.23 (a) – (e). 

                                           

Fig. 6.22 Typical Schematic of the equivalent source model (optimization aspect) 

                      

                                  (a)                                                          (b) 

                          

                                  (c)                                                          (d) 

Fig. 6.23 Equivalent source models of (a) armature winding (b) commutation winding (c) 

compensation winding (d) field winding in equivalent dc machine 

A
B

C
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Final Equivalent source model consists of hundreds of currents with different 

amplitudes and direction and tens of different voltages, which is illustrated in fig. 6.24. 

As discussed before, in order to have comprehensive study, appropriate switches are 

considered for each winding.  

 

Fig. 6.24 Final Equivalent source model of the Propulsion DC Machine 

6.3.2.2 Results and discussion 

For simulation purposes, a 800 HP, 750V, 8 poles and 185RPM propulsion DC 

machine with the length of about 3 (m) and outer diameter of 1.7 (m) is simulated in a 3D 

electromagnetic finite element domain for one time instance. The actual model and the 

mesh structure of this machine in FE domain is shown in fig. 6.25 (a) and (b).  

 

(a)                                            (b) 
Fig. 6.25 Schematic of (a) the detailed model of the dc machine and (b) the mesh in FE 
domain 
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The analysis for the model of the actual machine requires about 7 million degrees of 

freedom in FE analysis. This causes the simulation time to be about 43000 seconds 

(~12hours).  However, the equivalent source model with less than one million degrees of 

freedom takes about 300 seconds (~6minutes).  

The analysis method, which is used in this analysis, is the generalized minimal 

residual method (usually abbreviated GMRES) with SOR pre and post smothers, which 

was explained in chapter 3 and 4.  

After implementing simulation of both actual and equivalent source models, the 

propagated electric and magnetic fields are measured in different locations at a distance 

from the source. fig. 6.26 shows propagated magnetic fields from both models along 

different lines.  

Fig. 6.26 show that magnetic field propagated from the actual machines has different 

wave-shapes in various measured lines; so, it can be inferred that it is not possible to use 

a single dipole as an equivalent source model because a single dipole shows similar 

results in all planes. In addition to the wave-shape of fields, also their amplitudes in 

various measured lines are different, which can be another reason to use an embedded 

equivalent source model. This point can also be seen in radiated electric fields’ wave-

shapes (fig. 6.27), although the difference of electric fields’ wave-shapes measured along 

various lines is shallow and can hardly be recognized. For example, comparing electric 

fields in case (a) and (b) in fig. 6.27 and 6.28, it can be seen near the peak that both actual 

and equivalent source models’ results are different. 
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(A) 

                               
                    case (a)                             case  (b)                             case  (c) 

(B) 
Fig. 6.26 (A). Radiated magnetic field density in (case a): XZ plane when X varies 

between -20 to 20 (case b): XY plane when X varies between -20 to 20 (case c): YZ 

plane when Z varies between -20 to 20, (B) geometry of the three cases 

 

Fig. 6.27 Radiated electric field of in (case b): XY plane when X varies between -20 to 

20 (case c): YZ plane when Z varies between -20 to 20 
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Fig. 6.28 Radiated magnetic field density in (case a): XZ plane when X varies between -

20 to 20  

 

In fig. 6.26, 6.27 and 6.28, magnetic and electric fields of two models along a single 

line are compared that show a reasonable similarity. However, one may say there might 

be dissimilarities if the fields are measured in other lines of a plane. In other words, the 

measured lines are in the middle of planes, so symmetric dipole of propagated field is 

more likely to occur in the equivalent source model, but other lines may not have this 

type of result. Hence, for further investigation, the measurement is implemented in planes 

and the results are depicted in fig. 6.29 and fig. 6.30.  

Comparing fig. 6.29 (a) with fig. 6.29 (b) and also fig. 6.30 (a) with fig. 6.30 (b), it 

can be seen that propagated fields from the equivalent source model have very similar 

result to the actual model on not just one line but also on whole slice.  
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                                         (a)                                                   (b) 

Fig. 6.29 Magnetic field density of (a) the actual machine (b) the equivalent source model 
(T) 

 

                                          (a)                                               (b) 

Fig. 6.30 Electric field of (a) the actual machine (b) the equivalent source model 
(mV/m) 

As mentioned in the previous case (6.3.1), the main goal of this research is to study 

the electromagnetic signature of multi machine system. Therefore, for more validation of 

the proposed equivalent source model, a two-machine system is designed. The two 

equivalent source models of the studied DC machine are located in a close distance to 

each other and then the analysis is applied. The applied current of branches and voltages 

of nodes of equivalents model in multi-machine study are exactly the same as the data, 
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which are used for the single machine system, so there is no need for further analysis 

except final simulation, which takes about 18minutes for two machine systems.  

Figs. 6.31 and 6.32 show the comparison between magnetic and electric fields 

propagated from the actual and proposed model along several lines for two motor cases. 

As can be seen, the magnetic and electric fields follow the same patterns with excellent 

accuracy. For brevity, only some planes and lines from measured planes are considered, 

which are illustrated in fig. 6.31 (B). All other lines and planes show similar accuracy. 

 

(A) 

                                  
                    case (a)                                    case  (b)                                 case  (c) 

(B) 
Fig. 6.31 (A). Radiated magnetic field density of two machine case in (case a): XZ plane 

when X varies between -20 to 20 (case b): XY plane when X varies between -20 to 20 

(case c): YZ plane when Z varies between -20 to 20, (B) geometry of the three cases 
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For the situation that different rate of power is applied to the machine, some variables 

are considered in this model. In this case, variation coefficient of voltages and currents of 

each actual machine can be applied to the respective equivalent source model.  

Also, for other sizes of similar types of machines, an appropriate coefficient can be 

applied. This coefficient can be obtained based on the size of the studied machine, 

whereas the coefficient for the studied machine can be considered as basic values, and for 

other machines any deviation can be proportional to the basic values. Similar factors, 

which are obtained from the study of the actual machine, can be applied to equivalent 

machine models. 

 

Fig. 6.32 Radiated electric field of two machine case in (case b): XY plane when X varies 

between -20 to 20 (case c): YZ plane when Z varies between -20 to 20 

Similar to single machine case, electromagnetic field spectrums of two-machine cases 

are measured and illustrated in fig. 6.33 and 6.34. The result shows that the similarly in 

two-machine (multi machine) case of the actual machine model can be replaced by the 

equivalent source model. 
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                                        (a)                                                      (b) 

Fig. 6.33 Magnetic field density of (a) the actual machine (b) the equivalent source 
model 

       

                                        (a)                                                     (b) 

Fig. 6.34 Electric field of (a) the actual machine (b) the equivalent source model 

6.3.3 Synchronous generator 

6.3.3.1 The modeling approach 

The electromagnetic signature study of the synchronous generator as the main 

generator in most types of power plants can be estimated at a far distance based on 

equations (4-14) - (4-18). However, as mentioned earlier, estimating the radiated field 

from electrical machines at a far distance requires significant time, especially for multi-

component studies using physics-based simulations. Therefore, a logical simplification 
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used here is utilizing the edge modeling in finite element analysis. In addition, the 

synchronous machine has an excitation part in the rotor, which is connected to power 

electronic components, producing the electromagnetic interference.   

The procedure of the design of wire model for resembling magnetic field stray is 

similar to the two previous cases. The difference is the design of the wire model for 

resembling the propagated electric fields. In this model, the voltages at the nodes are 

considered at terminal ends of the windings. The values of voltages are based on the 

electric field displacement of the actual machine. Consequently, the model consists of 

many loops with various currents and node voltages as shown in fig. 6.35. 

    

              (a)                                                    (b)                                            (c) 
Fig. 6.35 prototype of synchronous machine (a) actual machine (b) equivalent source 

model (c) terminal voltage of the equivalent source model 

Comparing fig. 6.35 (a) with fig. 6.35 (b), the model is replaced by a collection of 

lines located in the position of windings in the actual machine. Since the model doesn’t 

have a cross section, it is not possible to apply similar current to the model. Hence, the 

current value of the lines will be based on the current density of the machine in each 

phase. Thus, the amount of current density of each phase of the winding is estimated and 

applied to the lines in the proposed model. Although the mentioned method would be 



 

172 
 

helpful, the types of windings are different in synchronous machine. The field winding 

carrying DC current and the armature winding has AC currents. Hence, individual models 

should be made for each of these windings. The equivalent source models of the armature 

and field windings are shown in fig. 6.36 (a) and (b). The effect of each winding in the 

total electromagnetic signature is investigated next.  

           
(a)                                                       (b) 

Fig. 6.36 Equivalent source model of individual windings (a) armature winding (b) field 

winding 

6.3.3.2  Simulation and discussion 

After defining the final equivalent source model, the simulation is implemented in FE 

domain. The 3D electromagnetic finite element method is used as an acceptable method 

for physics-based simulation. For implementation purposes, a 3-phase, 600-kW, 600-V, 

1200-rpm synchronous generator was simulated in a 3D electromagnetic finite element 

domain for one time instant.  The analysis for the model of the actual machine required 

about 5.5 million degrees of freedom in the FE analysis. This caused the simulation time 

to be about 38000 seconds (~10.5hours).  However, the equivalent source model 

contained less than one million degrees of freedom and takes about 270 seconds (4.5 

minutes). 
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After solving the problem by the finite element model, the magnetic field density 

propagated from the machine with and without the armature winding in two conditions 

were evaluated as shown in fig. 6.37.  

 

                                      (a)                                                                        (b) 

Fig. 6.37 Magnetic field density propagated with and without the armature winding along 

(a) X axis in XZ plane (b) X axis in XY plane 

As shown in fig. 6.37, the armature winding has a direct effect in increasing the fields 

with the same ratio at all points. Thus, for conciseness, the armature winding can be 

ignored and the linear effect of it, which can be a ratio, may be considered in the current 

values of the field winding in the equivalent current. As a result, the simulation time will 

decrease dramatically, while the accuracy doesn’t change. After considering this 

simplification, in the simulation of the equivalent source model, the propagated electric 

and magnetic fields are measured in different distances from the source. Fig. 6.38 shows 

the propagated electric and magnetic fields from both actual and equivalent source 

models along different lines. As can be easily seen, both radiated electric and magnetic 

fields from the equivalent source model (fig. 6.38 (b), (d)) accurately match the radiated 
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fields from the actual model (fig. 6.38 (a), (c)) in all three shown planes. The electric 

field of the two other planes is negligible compared with the one of the XY plane, 

therefore they are not shown in fig. 6.38 (c) and (d). 

Considering the accuracy and speed of simulation of the proposed model, this model 

can also be replaced in the multi-machine case. It should be considered that there are 

several machines and other power components in a typical powertrain. Consequently, 

simulating original model of all of them together is almost impossible, even by using 

very fast processor. The experimental verification of this component is explained in 6.3.5, 

while coupled with the induction motor. 

 

    (a)                                 (b)                             (c)                               (d) 

Fig. 6.38 Electromagnetic field comparisons in 3 planes: (a) Magnetic field density of 

actual machine (T), (b) Magnetic field density of equivalent source model (T), (c) 

Electric field of actual machine (V/m), (d) Electric field of equivalent source model 

(V/m) 

6.3.4 Cable sets 

6.3.4.1 Modeling approach 

The basics of the modeling of cables are similar to the previous cases. However, since 

this component is not electrical machine, some consideration should be employed. 
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The actual physical modeling of cables for electromagnetic signature studies requires 

all the details to be considered, even in a large region. The XPLE cables similar to all 

electromagnetic sources propagate dipoles at a far distance. However, the interaction of 

several components such as electrical machines, and power converters modify the shape 

and the amplitude of dipoles. Therefore, each model should be designed and studied 

independently. Nevertheless, there is a problem which is the modeling of the relatively 

small layers of a multi-core XLPE cables. The studied region could be about 20000 times 

bigger. This causes the deformation of the cable’s model during meshing in numerical 

modeling methods, such as finite element method. The present study is performed on the 

XLPE insulated and armored PVC sheathed cable (0.6/1 kV).  

Fig. 6.39 shows the typical model, as well as the original and deformed models of the 

studied cable in finite element analysis environment. In order to solve this issue, a 

specific modeling including multi-dipoles with several line currents and node voltages 

are designed, which resembles the actual model of the cable for electromagnetic signature 

studies.  

 

  (a)                             (b)                     (c) 
Fig. 6.39 models of the proposed cable in finite element design (a) typical model (b) 

original FE model (c) deformed FE model 
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The multi-dipole model of the studied cable is shown in fig. 6.40. A typical node 

voltage and line current are displayed in the figure. 

 
Fig. 6.40 Prototype of the multi-dipole models of the studied cable 

6.3.4.2 Case studies with simulation results 

For simulation purposes, first a unit length of the actual XLPE and the model cables 

are simulated and compared using the finite element method. Afterward, various 

directions of the cable are studied. The cable is then analyzed in multi-permittivity areas 

such as undersea. As mentioned earlier, the XLPE insulated and armored PVC sheathed 

cable (0.6/1 kV) is the proposed cable. 

6.3.4.2.1 Unit length of the cable 

Initially, the radiated electromagnetic fields of the proposed model and the full model 

of the cable are evaluated and compared. In order to avoid deformation, the actual model 

is simulated by considering a large number of elements, which is only applicable in 

simple situations, such as a unit length of a cable. This case is studied by applying two 

different voltages to the ends of the cable. The field spectrums radiated from the actual 

and the proposed model are shown in fig. 6.41 (a) and fig. 6.41 (b), respectively. 

Comparing the results in fig. 6.41 (a) and fig. 6.41 (b) shows that the proposed model has 

a very good accuracy. 
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                (a)                                                           (b)                          

Fig. 6.41 Radiated magnetic field density of (a) actual model (b) equivalent source model 

in tesla (T). Note that the cable is very small compared to the region 

Since cables are symmetrical, the radiated fields are the same in all planes of the 

region similar to a simple dipole. Nevertheless, the radiated fields in two planes are 

measured, and as the result shows the proposed multi-dipole model propagates similar 

radiated fields as the actual model. A similar study is implemented for the radiated 

electric field and the result is shown in fig. 6.42. As shown in the figure, the radiated 

electric field of the proposed model equals the actual one. Therefore, both indices of the 

electromagnetic signature study of the proposed model represent accurate results, while 

the simulation time of this model is about 100 times less.  

 
                           (a)                                                  (b) 

Fig. 6.42 Radiated electric field of unit length of the cable (a) actual model (b) equivalent 

source model (mV/m) 
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6.3.4.2.2 Multi-directional cables 

The XLPE cables in connection between two components may have many curves or 

torsions; therefore, various magnetic dipoles would be established and consequently 

radiated fields would become different. In multi-direction cable analysis, the simulation 

time increases significantly, or in the cases of coupling with other components, the 

simulation may become impossible due to the increase of the number of tiny spaces 

between fragments of each component, while the region is huge. As an initial case of 

multi-directional cable, perpendicular cables are located in the same region and the 

radiated electromagnetic fields are measured at a far distance, which is displayed in fig. 

6.43 and fig. 6.44. Similar to the single cable case, the proposed model shows great 

accuracy. Additionally, the difference of simulation time between the actual model and 

the equivalent source model increases. 

    
                                      (a)                                               (b)                          
Fig. 6.43 Radiated magnetic field density of perpendicular cables case (a) actual model 

(b) equivalent source model in tesla (T) 

Comparing fig. 6.43 and fig. 6.41, the maximum point of the radiated magnetic field 

density in the lateral plane is moved to the corner. This is because of the interaction of 

dipoles of two perpendicular cables. Since the source of electromagnetic signature is not 

symmetrical anymore, the radiated fields in the two shown planes are different.  
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                                     (a)                                                         (b)                          

Fig. 6.44 Radiated electric field of perpendicular cables case (a) actual model (b) 

equivalent source model (mV/m) 

Moreover, in order to verify the model and have the study in all dimensions, a more 

complex multi-directional cable is analyzed. To do so, four discontinuous units of the 

cable are located arbitrarily in different angles (see fig. 6.45).   

 
Fig. 6.45 A sample of multi-directional discontinuous cables 

Similar to previous cases, magnetic and electric fields radiated from the cables are 

obtained and shown in fig. 6.46 and 6.47. Comparing the result of multi cable case with 

single case, they are not similar at all which is because of the presence of cables at 

various angles. The proposed model equals the actual model in this case, as well as in 

previous cases. Note that the lines around the region are for increasing the number of 

meshes in measured planes to have more accurate radiated fields. 
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                           (a)                                                         (b)                          

Fig. 6.46 Radiated magnetic field of multi-directional cables case (a) actual model (b) 

equivalent source model (T) 

 

                                 (a)                                                        (b)                          

Fig. 6.47 Radiated electric field of multi-directional cables case (a) actual model (b) 

equivalent source model (mV/m) 

6.3.4.2.3 The cables in multi permittivity area 

As mentioned in the introduction, one of the main applications of low-frequency 

EMC study is for analyzing buried, underground, and undersea cables. Since there is the 

area with two or more permittivity, such as soil and air or water and air, the radiated 

electric field at a far distance in this occasion would be different. For brevity, only the 

radiated electric field of the undersea cable is studied. As shown in fig. 6.48, the surface 

of water is illustrated, so that the region includes water, air and permittivity of the cable 
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and its insulation. As expected, the radiated fields are different in the area with various 

permtivities. A similar area condition is applied to the equivalent source model and, as 

shown, the radiated field is the same as the actual model. Consequently, this model is 

applicable in various environmental conditions. 

 
                       (a)                                                            (b)                          

Fig. 6.48 Radiated electric field of the cables in multi permittivity area (a) actual model 

(b) equivalent source model (V/m) 

6.3.4.2.4 Coupling of the cable with synchronous machine  

For further verification and studying the application of this type of modeling, the 

proposed model is analyzed in connection with a power component. A synchronous 

generator is coupled with a multi-core XLPE cable. The modeling of synchronous 

generator was explained in 6.3.3. The actual and equivalent source models of the cable 

connected to the machine are shown in fig. 6.49. 

         
                                    (a)                                              (b)                          

Fig. 6.49 Schematic of the synchronous machine connected to the cable (a) the detailed 

model (b) the equivalent source model 

Water 

surface
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The rated voltage is applied to the cable, which is connected to the machine and the 

radiated field, which is measured at a far distance from the sources. The current and 

voltage values of the equivalent source model are calculated based on the individual 

actual model of the machine and cable.  Fig. 6.50 shows the propagated field of both 

models along the X axis in the XY plane. The proposed line is also shown in the figure. 

The difference of the amplitude between these two models is because of the superposition 

of materials. Since the cables and machine are so close together, there is a superposition 

effect in the magnetic field. The radiated magnetic field from the cable is induced into the 

machine and creates an induced current which radiates an additional field from the 

machine. This situation cannot be simulated perfectly in the proposed multi-dipole 

modeling, which results a difference in the curves. In order to clarify the effect fields of 

each component on the total radiated fields in fig. 6.50, the radiated field of each 

component is calculated and shown in fig. 6.51. As shown in the figure, the effect of the 

cable’s radiated field is less than the machine’s. This is because of the volume of the 

machine and the effect of that on the current density, which builds the magnetic field. 

 

Fig. 6.50 Radiated Magnetic field density along X axis in XY plane 

-20 -16 -12 -8 -4 0 4 8 12 16 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

-9

coordinates (m)

M
a

g
n

et
ic

 F
ie

ld
 D

e
n

s
ity

 (T
)

 

 

actual model

equivalent model



 

183 
 

 

Fig. 6.51 Radiated Magnetic field density along X axis in XY plane 

6.3.5 Coupling of machines 

The studied synchronous generator in 6.3.3 is coupled to the induction motor, which 

was studied in 6.3.1. The system which is implemented in finite element domain, is 

shown in fig. 6.52. As mentioned, the switches of other components are turned on and off 

for evaluating the radiated field of each component or two or several components 

together. 

           

    (a)                                                            (b) 

Fig. 6.52 Schematic of the power setup (a) the full FE model (b) the equivalent source 

model 
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The synchronous generator and induction motor are switched on and off to see their 

effect separately and verify the wire model. In the following, the synchronous generator 

is turned on while other components are switched off.  

 

                   (a)                                                         (b) 

Fig. 6.53 Radiated electric field of (a) actual model (b) equivalent source model in tesla 

(T) while the synchronous generator is turned ON and other components are off 

 

                         (a)                                                             (b) 

Fig. 6.54 Radiated magnetic field density of (a) actual model (b) equivalent source model 

in tesla (T) while the synchronous generator is turned ON and other components are off 

 
As shown in the two above figures, the electric and magnetic fields radiated from the 

wire-model of the synchronous generator matches the fields radiated from the actual 

machine. The electric fields of the fig. 6.53 match the Maxwell radiation theory, since the 
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electric field is in the direction of the poles of the terminal voltage. That’s why the 

propagated field in fig. 6.53 is more in frontal plane compared to the lateral planes. 

Inversely, the magnetic fields establishes in perpendicular to the direction of currents; 

thus, the field in lateral planes is more than frontal plane in fig. 6.54.  

After testing the fields of each machine specifically, the fields of coupled motor-

generator is measured and shown in the following figures. 

 

                    (a)                                                                 (b) 

Fig. 6.55 Radiated electric field of (a) actual model (b) equivalent source model in tesla 

(T) while the coupling of machines (generator-motor) is turned ON and others are off 

 
                         (a)                                                               (b) 

Fig. 6.56 magnetic stray field density of (a) actual model (b) equivalent source model in 

tesla (T) while the coupling of machines (generator-motor) is turned ON and others are 

off 
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Comparing fig. 6.56 with fig. 6.54, the amplitude of the electric field is decreased, 

while the induction motor is connected to the generator. This is because the polarity of 

terminal voltage in motor is against generator; so, the electric field is not cumulative. 

However, the direction of the current of the motor is in the direction of generator. By the 

way, the radiated field of the equivalent source model matches the radiated field of the 

actual model. 

6.3.6 Whole system setup 

6.3.6.1 Model design  

Finally, all the components are gathered and the excitation is applied to the generator 

and motor, pulse load and the connection cable get connected to them. The details of the 

components are mentioned in Table 6-3. The model is analyzed in full details in finite 

element domain. In addition, the wire model is used to model all these components. 

Table 6.3 The details of the components in the tested setup 
component characteristics 

Synchronous generator 

13.8 kW, PF: 0.8, length: 25cm, diameter: 28-30cm, pole: 4, 

rpm: 1800, nominal voltage: 230V, amp: 39.5A, exc. voltage: 

37V, exc. amp: 1.9A  

Induction machine 5.5 kW, PF:0.85, length: 30cm, diameter: 25cm, pole:4 

Electric Load 3kW AC load 

Connection cable 
XLPE, Diameter: 5cm, insulated and armored PVC sheathed 

cable 

The models are shown in fig. 6.57(a), (b). As shown in this figure, the wire model 

consists of numerous lines with specific currents flowing and voltages established at 

nodes of these wires. 
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                                 (a)                                                                     (b)                          

Fig. 6.57 Schematic of the power setup (a) full FE model (b) equivalent source model 

The described wire models have some issues in multi-component system. The radiated 

electric and magnetic fields are affected not only from the voltage and current 

magnitudes but also from the permittivity and permeability of the materials [205]. In 

addition, the radiated field of one component induces fields into the other components 

which cause induced voltage. Consequently, additional radiated electric and magnetic 

fields are created. For example, the induced field of the induction motor in the vicinity of 

the cable is obtained as shown in fig. 6.58. This field is obtained while other components 

are turned off and only the induction motor is ON. On the other hand, the wire model 

may not have this phenomenon, since the lines in the model doesn’t have the volume. 

Therefore, the induced voltage and consequently the additional radiated field are not 

produced in the wire model. In order to resolve this issue, another optimization should be 

applied to the wire model. The issue of superposition exists, since there are no 

components’ cases and insulation in the wire model. Hence, each component in the 

embedded wire model is enclosed from the other components with a casing. The casing 
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should have optimized value of permeability to avoid superposition between components. 

The value of permeability must be less than 1 and close to zero; however, very small 

value of permeability increases the simulation time dramatically. Therefore, both 

mentioned parameter should be considered. Less permeability of the casing reduces the 

amount of radiated magnetic field entering into the imposed casing; while, the magnetic 

field getting out of the imposed casing doesn’t get affected seriously.  Therefore, the 

superposition between the components would decrease; while, the radiated field in the 

area around, air, doesn’t change considerably.  

 

Fig. 6.58 Radiated magnetic field of the induction machine on the cable, while only the 

induction motor is turned on 

The magnetic fluxes radiated from the actual and the wire models are derived from the 

simulation at 7 m away from the arrangement and shown in fig. 6.59 (a), (b), 

respectively. As illustrated in the figure, the magnetic flux radiated from the wire model 

is similar to the actual model. The small difference between the maximum values of 
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magnetic flux densities of two models is due to the issue of the superposition of the 

components. 

 The optimized result is shown in fig. 6.60. As can be seen, the magnitude of the 

radiated magnetic field of the optimized wire model is almost the same as the actual 

model. 

 

                (a)                                                                  (b) 

Fig. 6.59 Radiated magnetic flux density of (a) actual model (b) wire model in tesla (T) 

 

Fig. 6.60 Radiated Magnetic flux density of the optimized wire model (T) 
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6.3.6.2 Simulation and experimental results  

In addition to the superposition, another application of the model is using turning on 

and off switches for each of the components. By implementing the switches, the effect of 

each component could be identified and analyzed. The benefit of studying each 

component separately is monitoring their behavior, detecting failures and fault 

conditions. This can be done using both simulation and experimental methods. Various 

cases of the studied setup, shown in fig. 6.61, are conducted and added to the figures, 

obtained from the simulation and measurement results. Note that the connection cables to 

the loads are outside the fig. 6.61. Moreover, there is a controller connected to the drive 

shown in fig. 6.61 which is out of the system. The system is started up manually. Details 

of the measurement elements are mentioned before in 6.3.1 

 

Fig. 6.61 The studied setup including machines, measurement stuff and control drive (for 

switching) 

For the experimental test, all components including the synchronous generator, the 

induction motor and the electric load are turned on. The cables are passing currents, so 

they also can be considered ON. The same test as in the previous case is studied here. All 

switches are turned on and the H-field is measured experimentally and also obtained from 

the simulation models. The machines are tested at their nominal voltages. The magnetic 
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field intensity (H-field) of the measurement and simulation models is shown in fig. 6.62. 

As shown in this figure, the full finite element model and the wire model have similar 

radiated H-field compared to the measurement. The small differences of the amplitudes 

are because of the effect of the body of the other components around the system.  

 

Fig. 6.62 The measured magnetic field intensity at 55cm far from the setup in Y axis 

while all components were turned on at 60Hz (dBµA/m) 

The application of this study is in the system monitoring and fault diagnosis, which is 

studied in chapter 7. 

6.4 Generalization of the wire model 

6.4.1 Study approach 

All designed models were suitable for only one typical situation, including terminal 

voltage rates and physical geometry conditions of the machines. The model proposed 

here is optimized in a way such that it can be utilized for various types of machine sizes 

and operating voltages.  

The procedure involves measuring (numerically evaluating) radiated fields of an 

actual AC machine model with a basic size. If the model of the proposed size is not 
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available, the fields can be estimated using related equations, based on the fields 

measured for basic size [175]. Optimization factors are then applied as follows:    

 / ,   /  BS iSnew base ES iSnew baseK B B K E E= =                                                                        (6-3) 

where Bbase and Ebase are the magnetic field density and electric field of the basic case and 

BiSnew and EiSnew are magnetic field density and electric field of any machine size. These 

parameters could be measured at any random points around the component e.g. maximum 

B in a plane at a distance from the component. The KBS and KES factors in eq. (6.3) are 

applied respectively to the currents and voltages of the wire model to optimize the model 

for a new machine with a different size. These factors are applied due to the fact that the 

magnetic field density, which is used in these equations, show strong correlation with the 

magnitude of the current of the lines in non-volumetric models (Biot-Savart Law). 

Similarly, the electric field has the same relation with the voltage at the nodes [175].  A 

similar procedure can be applied for variations of the terminal voltage. In this case, the 

factors are as follows: 

 / ,  /BV iVnew base EV iVnew baseK B B K E E= =                                                                          (6-4) 

where BiVnew and EiVnew are the magnetic field density and electric field of any proposed 

sizes. Also, KBV and KEV factors in eq. (6.4) are applied respectively to the currents and 

voltages of the wire model to optimize the new case with a different terminal voltage. If 

there is a case with both voltage and size variations, both factors will be multiplied by the 

current and voltage values of the basic equivalent source model.  

Since some material properties of machines, such as the permeability are nonlinear, it 

is not possible to utilize the currents and voltages instead of B and E in eq. (6.3), for all 
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working conditions. However, it might be possible to replace the magnetic field density 

(B) with the current or other parameters for specific range of currents. Hence, the most 

reliable parameter is magnetic field density and electric field, which are being used in 

(6.3) and (6.4). However, in order to avoid modeling the actual machine in each different 

case to obtain BiSnew, EiSnew, BiVnew, and EiVnew in (6.3) and (6.4), the related curves of the 

four factors (KBS, KES, KBV, KEV) for both AC machines are obtained. Random examples 

for different cases (size and voltage variation) are measured and the related factors are 

obtained. These are shown in Tables 6.4 and 6.5 and based on the points in Table 6.4 and 

curve fitting procedure, the curves were established.   

As shown in Table 6.4, the factors due to the geometrical size changes are not just 

based on size ratios, but many other parameters have effect on the values of these factors. 

A curve fitting technique was used to find an equation to obtain these factors based on 

size ratio as a variable. For example, the equation for KBS of synchronous generator is as 

follow: 

3 2 0.06805·   0.80653·   0.28031· 0.0028016KBS R R R= − + + +                                 (6-5) 

where R is the size ratio. 

The factor due to the terminal voltage changes, as illustrated in Table 6.5, are mostly 

related to the terminal voltage ratios. Here, there is no need for any kind of curves for the 

terminal voltage variation case and the ratios that can be directly used as factors. The 

curves for size variation case, which is established based on Table 6.4, are shown in figs. 

6.63 and 6.64.  



 

194 
 

Table 6.4 Some patterns of size variation of induction motor and synchronous (syn) 

generator 

Rati
o 

KBS of 
SYN Machine 

KES of 
SYN Machine 

KBS of 
Induction Machine 

KES of Induction 
Machine 

0.6 0.460081 0.558676 0.53685 0.560039 
0.8 0.704005 0.773821 0.75928 0.782211 
0.9 0.872369 0.88666 0.92806 0.928058 
1.0 1.0 1.0 1.0 1.0 
1.3 1.5689 1.34052 1.46037 1.36037 
1.7 2.49898 1.81896 2.12283 1.92283 
2.0 3.23557 2.16098 2.59692 2.29693 
 

 
Table 6.5 Some patterns of terminal voltage variation of induction motor and 

synchronous (syn) generator 

Ratio 
KBV of SYN 

Machine 

KEV of SYN 

Machine 

KBV of 

Induction Machine 

KEV of 

Induction Machine 

0.6 0.5998 0.6003 0.60002 0.60001 

0.8 0.7997 0.8004 0.800066 0.79998 

0.9 0.8995 0.9002 0.90001 0.90001 

1.0 1.0 1.0 1.0 1.0 

1.3 1.2994 1.3004 1.30001 1.30002 

1.7 1.6993 1.7001 1.7000 1.70001 

2.0 1.9993 2.005 2.0000 2.00002 
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Fig. 6.63 KB due to size variation of synchronous generator and induction motor 

 
Fig. 6.64 KE due to change of size of synchronous generator and induction motor 

6.4.2 Case studies 

To verify the generalized model, both AC machines (induction and synchronous) 

were analyzed in different cases: 

An induction machine case with 1.2 times the basic size (R: 1.2) is simulated in a 

large region. A comparison between the equivalent source and actual detailed numerical 

models is shown in fig. 6.65 (a)-(d). Radiated magnetic field density and electric field 

spectrums were used as indices. An induction machine case with 0.6 times of the original 

terminal voltage (R: 0.6) is simulated and the comparison between the new equivalent 

source model and actual numerical models are shown in fig. 6.66 (a)-(d).   

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

size ratio (S
new

 / S
base

 )
K

B

 

 
synchronous generator

induction motor

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

size ratio (S
new

 / S
base

 )

K
E

 

 
synchronous generator

induction motor



 

196 
 

This case considered both variation of geometrical size and terminal voltage. The 

results are shown in fig. 6.67 (a)-(d) for both the equivalent source model and the detailed 

numerical model. 

 
(a)                                                        (b) 

 
(c)                                                        (d) 

Fig. 6.65 Field spectrum of induction motor while the geometric size increased 20%  (a) 
B of actual model (b) B of equivalent source model (c) E of actual model (d) E of 
equivalent source model 

 
                                      (a)                                        (b) 

 
                                            (c)                                       (d) 
Fig. 6.66 Field spectrum of induction motor while the terminal voltage decreased 40% (a) 
B of actual model (b) B of equivalent source model (c) E of actual model (d) E of 
equivalent source model 
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According to the amplitudes and spectrums in these figures, the field propagated from 

the equivalent source models show the significant accuracy when compared with the 

actual numerical models. The region in this study was (8x8 m) region, while the diameter 

of the induction motor was 1.2 m. 

 
(a)                                                        (b) 

 
(c)                                                        (d) 

Fig. 6.67 Field spectrum of induction motor while the terminal voltage decreased 40% 

and geometric size increased 20% (a) B of actual model (b) B of equivalent source model 

(c) E of actual model (d) E of equivalent source model 

The same procedure was implemented for a synchronous generators case. In order to 

check the propagated fields and validate them at far distances, the machine was placed in 

a large region (50×50 m).  Only the similar case to the third case of induction machine is 

shown in this part. Hence, the variation of geometrical size with the ratio equal to 1.7 and 

terminal voltage with the ratio equal to 0.8 is considered. According to the Tables 6.4 and 

6.5, the factors are as follow: KBS=2.49898, KES=1.81896, KBV=0.8 and KEV=0.8. 

Therefore the two applied factors to the equivalent source model will be KB=KBS×KBV 

and KE=KES×KEV. These two factors were applied to the branch currents and node 
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voltages of the equivalent source model, respectively. For verification, the actual and 

optimized equivalent source models were compared and are shown in fig 6.68 (a)-(d).  

 
(a)                                                        (b) 

 
(c)                                                        (d) 

Fig. 6.68 Field spectrum of synchronous generator while the terminal voltage decreased 

20% and geometric size increased 70% (a) B of the actual model (b) B of equivalent 

source model (c) E of actual model (d) E of equivalent source model 

Comparing the amplitudes and spectrums in fig. 6.68 (a) with fig. 6.68 (b) and fig. 

6.68 (c) with fig. 6.68 (d), the propagated fields from equivalent source model accurately 

matches in both planes around the machines at a distance of about 20-25 m. It should be 

noted that unlike the induction motor cases in the previous study, the generators are 

located horizontally. Locating induction machine vertically is necessary in some 

applications [206]. As shown in fig. 6.68, the actual models are much larger than the 

equivalent source one, because they are tested with a new size, while the equivalent 
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source model is in the same size and shape. The optimization factors were applied and the 

results match very accurately. 

The final test case, both AC machine types are located in a region (50×50 m) with a 

different test is implemented on both. The size ratio of the synchronous generator is 

chosen equal to 1.4, while this ratio for the induction motor is chosen as 0.85. In addition, 

the voltage ratios for the synchronous generator and the induction motor are selected as 

1.2 and 0.7, respectively. Using Tables 6-4 and 6-5 and the curves derived earlier, the 

desired factors were estimated. A diagram for calculating these factors is shown in fig. 

6.69. The two factors for each machine were estimated based on the four factors. The 

field spectrums of this test are demonstrated in fig. 6.70 (a)-(d). 

 

Fig. 6.69 Calculation diagram of optimization factors for the two AC machines. SYN G 
and IM stand for synchronous generator and induction motor 

This test case shows that even with the change of all the conditions simultaneously, 

the equivalent source model results match the actual one. In addition to the verification of 

the equivalent source model, other aspects in the area of EMC evaluation can be 

recognized. For example, comparing fig. 6.70 with fig. 6.68 and 6.66, it is obvious that 

the field spectrum of fig. 6.70 is similar to fig. 6.68. This means that coupled AC 

machine systems radiate similar electromagnetic signatures to the synchronous machine. 

This is because of the large difference between the nominal power of the synchronous 
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generator and induction motor (857-kVA vs. 33- kVA). Therefore, radiated fields of 

induction motor only increase the amplitude of overall fields of the studied system. 

 
                                (a)                                          (b) 

 
                              (c)                                               (d) 

Fig. 6.70 Radiated field spectrums from both synchronous generator and induction motor 

(a) B of actual model (b) B of equivalent source model (c) E of actual model (d) E of 

equivalent source model 

In order to increase the accuracy of the equivalent source model, switches were 

considered for each machine to turn them on and off to study the superposition concept. 

Finally by comparing simulation time of the two models, the actual model of the 

machines implemented by full finite element model and the generalized equivalent source 

model, the results demonstrated in Table 6.6 are obtained.  

Table 6.6 Simulation characteristics comparison 

Type of model Number of degrees Analys
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of freedom (million) is time (s) 

Induction motor (actual) 3.5 6200 

Induction motor (equivalent source) 0.9 140 

synchronous generator (actual) 4.2 6800 

synchronous generator (equivalent source) 1.1 170 

Coupled machine model (actual) 6.0 11000 

Coupled machine model (equivalent source) 1.5 188 

6.5 Conclusion 

In order to study electromagnetic fields strayed from a typical electric power system 

train, the embedded equivalent source models have been designed and investigated. A 

new method termed wire modeling is used for designing this equivalent source model. It 

was created from representative cylinder loops carrying a set of currents in the cylinder 

branches, as well as voltages at the nodes. Since power components have several types of 

elements, individual equivalent source model was designed for each of them and several 

switches were considered for turning on and off windings. The data for the parameters in 

the model are based on the current density and potential difference of the actual machine. 

Also the GA-based PSO method was used for evaluating the dimension of the model. 

For the analysis, electric and magnetic-interfaced finite element method is used. The 

results show that it is possible to replace actual model of electrical machines with 

equivalent the equivalent source model. The simulation time of the proposed equivalent 

source model is approximately 80-100 times lower than using the actual model. This 

enables the numerical simulation of multiple sources in a reasonable time allowing the 

practical study of EMC issues during electric drive development stages. The 
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superposition and suppression of the fields in coupling the components were also studied 

and verified. 
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7. Modified 3D Finite Element Modeling of Converters for System Monitoring 

7.1 Overview 

In this chapter, detailed physics-based modeling of a power converter drive is 

proposed. The 3D finite element (FE) modeling of a power inverter was developed and 

analyzed. An approach in physical modeling of the switching activity of the inverter in 

FE is proposed. In addition, the solver was modified and implemented for analyzing 

nonlinear materials in time-harmonic study to achieve faster computation. The frequency 

response analysis was also implemented in the simulation and measurements at various 

locations from the source. To consider the modeling of the power converter-drive under 

different operating modes, the inverter was located in two different setups including a 

drive connected to an AC load and a drive connected to an induction motor. Each of these 

cases was studied via simulation and experimental tests and their related applications 

were investigated. The importance of this work is to facilitate the ability to evaluate the 

stray electromagnetic field levels used for evaluating EMC compliance at the design 

stage. In addition, the recognition of a failure condition inside each component of the 

system by observing the fields is another important contribution of this work. The 

optimum operation of the system components for lower EMI and the optimum design of 

related shielding for EMC evaluation studies are added benefit of this work.  

The equivalent circuit modeling of power electronic drives is not applicable for 

studying the radiated emission in the three dimensional areas around the drive. Therefore, 

the physics based modeling is proposed in this chapter to evaluate the stray field in the 

three dimensional space around the devices. In addition, the material properties of the 
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devices and shape representation were investigated in this modeling process. On the other 

hand, time-varying electric and magnetic fields generate MMFs and EMFs that can 

sustain the fields, which compromise the flux. Also, currents and voltages in electric 

power systems are time-varying, which causes stray electromagnetic fields. Therefore, 

there is a need to model the EMI generated by these systems to develop designs meeting 

EMC standards. 

Several studies were performed in the area of radiated low-frequency electromagnetic 

field (EMF) analysis of power electronic devices [61], [207]-[210]. In [61], some general 

principles on how to allocate responsibilities between the power grid and connected 

equipment were investigated with the aim to achieve electromagnetic compatibility in 

electric power systems. It was shown, in this research, that in medium and high voltage 

systems, in the absence of comprehensive equipment emission and immunity standards, it 

is suggested provides that the grid responsible party relevant data, such as on voltage dips 

to the party responsible for connecting equipment to the grid. Some studies have dealt 

with the impact of stray EMFs on the environment including humans and the operation of 

devices [207]. This test is implemented from very low frequencies 5Hz to medium 

frequencies 300 kHz. Both magnetic and electric fields are tested using gauss meters and 

electric field meters. On the other side, other studies were conducted to implement 

attenuators and shielding of the conducted and field bound EMI [208], [209]. H. Akagi et 

al focuses on a line EMI filter and its combination with a motor EMI filter, along with 

their effects on attenuation of conducted emission voltage. Furthermore, the effectiveness 

of an EMI filter configuration when the filter is applied to the motor was discussed [208]. 

In [209], EMI noises generated in the power converter and diffused on the surface of 
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conductors are targeted to be controlled. Consequently, a new approach based on the 

distributed constant circuit theory along with multilayer power printed circuit technology 

was used. 

For developing a model, the equivalent source representations, as well as the physics 

based modeling, were studied. O. Aouine et al designed high and low frequency models 

of the converter for magnetic near field by using modeling switching parts by circular 

magnetic dipoles [210]. Moreover, the physics based modeling of the power electronic 

drives in low-frequency EMF was studied in [201], [211]-[213]. In [201], the optimum 

equivalent source modeling along with the physics based modeling of an AC motor was 

analyzed. The idea of loops was enhanced based on optimization methods. In addition to 

the implementation of the physics based modeling to machines, this type of modeling was 

also utilized for the power converter switches for the study of the conducted EMI [213]. 

Since the conducted EMI mostly exist on printed circuit boards (PCB), the FE model of 

the PCB was studied. Also, the optimization of EMI performance was accomplished in 

terms of component placement on the PCB [213].  

There is a need to have a physics based model, with all details, for the various system 

components to include the physical effects of stray fields, such as superposition and 

shielding. However, this model has some issues such as the problem of fast switching of 

the IGBTs and nonlinear commutation curves. Hence, in this chapter, the three- 

dimensional full finite element modeling of a typical power electronic drive at low 

frequencies is analyzed. The identified issues with the proposed resolutions are 

explained. The frequency response analysis of the power converter drive was 

implemented in the simulation, as well as in the experimental setup in two cases of setup, 
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one with an AC load and the other with an induction motor, as a dynamic load. The 

results of these two cases were compared and their application in EMC study was 

discussed. 

7.2 Modeling approach 

The stray field of a complex model with thousands of dipoles, such as the proposed 

drive, needs the calculation of the field of each of these dipoles using equations (4-14) - 

(4-18), as well as a vigorous field calculated by using a numerical technique, such as the 

FE method. The proposed model was accurately built in FE in which the mentioned 

equations are calculated by modifying the default equations for obtaining electric and 

magnetic fields. 

The proposed full finite element model is shown in fig. 7.1. This electronic drive 

consists of an inverter, AC load and the armored connection cable. The detail of the 

devices are identified in Table 7.1. 

 
Fig. 7.1 The prototype of the inverter, load and the connection cable 

The schematic of the inverter’s circuit is shown in fig.7.2. In this simulation, the 

IGBT module was operated for a relatively low switching frequency to illustrate the 
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behavior of the circuit. In the PWM inverter of fig. 7.3, the duty cycle ratio of the input 

signal to the IGBT gate drivers is varied using the space vector PWM technique to 

produce a 60-Hz sinusoidal variation of the RL load current [214]. 

Table 7-1 The details of the components in the tested setup 

Component Characteristics 

Inverter 

Three-phase, 5.5 kW, Switching frequency: 5-kHz, Switching 

algorithm: SVM, Length: 30-cm, Width: 30-cm, Height: 25-cm, 

Nominal voltage: 320-V, Amp: 20-A 

Electric Load 3-kW AC load 

Connection 

cable 

XLPE, Diameters: Cross-sectional area: 1000mm2, Thickness of 

insulation: 2.8mm, Nominal thickness of pvc sheath: 2.4mm, Overall 

diameter: 51mm, insulated and armored PVC sheathed cable 

 

 

Fig. 7.2 Schematic of six switch inverter circuit, [214] 

The operation of the inverter was divided into six sections. During the first π/3 rad of 

60-Hz inverter operation, IGBTs Sap, Sbn and Scn are switched on, while the others are in 

the off state. This process changes in a way to track the reference voltage as [214]: 
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The inverter operation during other sequences of the 60-Hz reference sine wave is 

similar to the aforementioned sequence, except that the opposite phase of the bridge is 

switched on and off. The sinusoidal variations of the duty cycle ratios for each phase 

were specified by comparing triangular waveforms to the magnitude of the sinusoidal 

reference signal. When the value of the reference sine wave is larger than the value of the 

upper triangle wave, Sap is switched on; otherwise, it must be off. The same procedure 

goes within the other IGBTs as well. Fig. 7.3 shows the simulated load current for the 

space vector PWM (SV-PWM) operation 

 
Fig. 7.3 Line Current and Voltage in the case of SVPWM 

To model the IGBT switches of the inverter for electromagnetic signature studies, the 

switches must be considered OFF for a moment of time and then it must be considered 

ON for the next time instant.  This shift occurs based on the switching frequency of the 

converter. In order to do this in the FE simulation, the plate between the load and the 

positive bus, shown in fig. 7.4, is considered a conductive plate for the switch-ON case. 
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Subsequently, this plate is considered a non-conductive plate for the switch-OFF case. 

This alteration of the conductivity of the plate occurs 5000 times in a second due to the 

switching frequency (5 kHz).  

 

Fig. 7.4 Physical model of the inverter switches 

7.3 Simulation and experiment 

The proposed setup consists of an inverter, an induction machine, connecting cables 

and an AC load. The study was divided into two cases for further investigation.  The 

converter connected to an AC load as the case 1 (7.3.1) and converter connected to an 

induction motor as case 2 (7.3.2). Each study was discussed along with its application as 

follows: 

7.3.1 Case 1: converter connected to the load 

The schematic of the converter shown in fig. 7.1 is implemented based on the above 

procedure and modification. The simulation was computed in six hours with about one 

million elements including face, line and node meshes in the model with six million 

degrees of freedom. The large number of elements is necessary because of the very small 

surfaces, edges and lines of the critical part of inverter and cable, as shown in fig. 7.5. 
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The details of FE modeling is reflected in [215]-[217]. The simulation was implemented 

in a fast computer with 192GB ram and 16 core Intel Xeon 3.47GHz CPU. 

 

Fig. 7.5 Mesh pattern of the modeled inverter 

Since there are two cases in this study, it was decided to define two types of results. 

In case 1, generated fields of the system on three different surfaces at a distance in space 

are considered as the result, and in the case 2, the harmonics of the fields and the 

frequency responses are investigated. Hence, in this case, the generated stray magnetic 

and electric fields are obtained in three dimensions at a given distance in both switching 

circumstances. Fig. 7.6 (a) and (b) show that, turning on and off the switches have the 

effect only on the amplitude of the magnetic field density, and the spatial distribution of 

the stray magnetic field on the slices doesn’t change significantly. This is due to the 

presence of the AC load, which is discussed further. On the other hand, the electric field, 

which is shown in fig. 7.7, illustrates that when the switches turn on, the electric field in 

two lateral planes, the XY-plane and YZ-plane, increases while the field in the XZ-plane 

decreases. The increase of the electric field, in these planes, is due to the flow of current 
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in the switches. It is also due to the creation of a current loop and its reduction is because 

of the superposition, which is suppression in this case. The suppression occurs due to the 

propagation of fields into the other conductive parts of the devices in vicinity; therefore, 

the stray field induced from the imposed conductive parts decreases. The reason of the 

suppression is the inverse direction of the induced field due to Lenz’s law [218]. 

Therefore, the induced stray field is subtracted from the main stray field and the total 

field decreases as in fig. 7.7 (a).  

 
                                 (a)                                                        (b) 

Fig. 7.6 Stray magnetic field density of the system: (a) IGBT switched on (b) IGBT 

switched off (µT) 

 
                                      (a)                                                        (b) 

Fig. 7.7 Stray electric field of the system: (a) IGBT switched on (b) IGBT switched off 

(µV/m) 

To recognize which element of the setup has more effect on the total field, the stray 

magnetic fields of each component in this setup were analyzed individually to observe 
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their spectrum and compare it with the overall fields. The results are shown in fig. 7.8 (a) 

- (d). Comparing fig. 7.8 (c) with fig. 7.8 (a) and fig. 7.8 (b), while only the load is 

switched ON, the stray magnetic fields have a higher value in comparison with fig. 7.8 

(a), (b) and the total field were affected by it (compare fig. 7.8 (c) with fig. 7.8 (d)). The 

reason is that the AC load has bigger conductive elements including iron and copper 

materials, compared to the other elements in the setup.  

 
                                        (a)                                 (b) 

 
                                             (c)                                 (d) 

Fig. 7.8 Stray magnetic field density of the system (µT): (a) only the cable is switched on, 

(b) only the inverter is switched on, (c) only the load is switched on, (d) the whole system 

is switched on 

In order to investigate the effect of superposition, the generated field of a random 

point (p) of the figures, shown in fig. 7.8 (c), can be used. For instance, the values of a 

point of the three cases (0, 5m, 0) of fig. 9, fig. 7.8 (a) - fig. 7.8 (c), are aggregated. The 
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result is 1.31e-3 (µT) while the overall maximum point is 1.10e-3 (µT) as shown in fig. 7.8 

(d). This can be due to the dissimilarity of permeabilities and conductivities of the 

elements of the model. If the resistance of an element is less than another element in the 

vicinity while there is no shield between them, the EMF will be induced from the 

component with less conductivity into the one with higher conductivity [219]. As 

mentioned above, due to Lenz’s law, the field radiated from the induced EMF will be the 

opposite of the main field. Therefore, the overall field will be less than the aggregation of 

the fields. 

7.3.2 Case 2: converter connected to the motor 

In this case, the inverter is connected to an induction motor. The aim of this case is 

investigating the radiation of harmonic fields from the inverter while the distance and the 

speed of the motor change. The parameters of the induction motor are: 5.5-kW, 3-phase, 

208-V, PF: 0.85, length: 30-cm, diameter: 25-cm, number of poles: 4. This case was 

simulated using FE shown in fig. 7.9 (a).  



 

214 
 

 

                               (a)                                                                   (b) 

Fig. 7.9 The scheme of the setup of case 2 (a) FE simulation (b) measurement 

The simulation was computed in six hours with 950000 elements and 5.7 million 

degrees of freedom. Since the case includes very small elements and also nonlinear 

materials, e.g. the core of the machine, the simulation of the inverter connected to the 

load or motor may take 8 hours or more for only one time instant. 

Generally, linear or non-linear solvers are being used the FE simulations. In this case, 

since there are several materials with nonlinear characteristics, the linear solver cannot be 

used. On the other hand, using nonlinear material rises the simulation time dramatically. 

Hence, a modification in choosing the solver and the associated iterative technique was 

employed. Instead of having linear or curved commutation curve, the ramp of the curve 

in several zones was calculated (µr1, µr2 …) and used instead of the commutation curve in 

this part as shown fig. 7.10.  
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Fig. 7.10 commutation curve of some material used in the simulation 

The benefit of this modification is that the magnetic flux density of a component 

changes in a very small period due to the steady state condition of the system. For 

example, the magnetic flux density of the stator core of the induction motor is about 1.5-2 

T in power frequency analysis, 50-60 Hz. For higher frequencies, it goes down to under 

1T. Therefore, in this case, a specific zone of the permeability can be chosen for this 

component. Similarly, the permeability of other components of the system can be chosen 

based on the working frequency. Therefore, having the idle parts of the commutation 

curves of the elements would be avoided, and the simulation time decreases. This 

algorithm can be defined in the material properties part of the FE simulation. 

In addition to the modification in defining the material properties, some modification 

needs to be performed for the solver to have a flexible solution. Hence, as the iterative 

solver, the fast generalized minimal residual technique, GMRES, with the krylov as the 

pre-conditioner was used. The fast GMRES is a variant of the GMRES method with 

flexible preconditioning that enables the use of a different pre-conditioner at each step of 

the Arnoldi process. The krylov subspace is a linear subspace which enables multi-
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preconditioning [220]. In particular, a few steps of GMRES can be used as a pre-

conditioner for fast GMRES. The flexibility of this solution method is beneficial for the 

problem with nonlinear material characteristics, such as the motor’s core. Therefore, the 

simulation time decreases from about 8-9 hours to about 20 minutes. More explanation is 

given in [221].  

In addition to the simulation, the experimental setup was implemented in a chamber, 

which isolates the setup from the outside environment, shown in fig. 7.9 (b). The coil 

antenna was located at 10 cm away from the inverter to obtain the stray magnetic field. 

The fields were transferred to an EMI receiver, real-time spectrum analyzer, with a cable 

of 50-Ω impedance. 

The magnetic field intensity (H-field) generated from the setup in simulation is shown 

in fig. 7.11. The H-field at 5-kHz frequency is shown on a slice at 10 cm away from the 

setup, the same as experimental setup. As illustrated in this figure, the amplitude of the 

stray field around the inverter box is higher than other places. The reason is that the 

switching frequency of the inverter is 5 kHz, the same as the frequency depicted from the 

simulation figure. The simulation was implemented at several other frequencies but only 

the switching frequency of the inverter, which is 5-kHz, is shown here.   
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Fig. 7.11 Stray magnetic field intensity of the setup case2 at 5 kHz simulated in FE 

(µA/m) 

 

Fig. 7.12 Measured frequency response of the stray magnetic field intensity of the setup 

case2 from DC to 20 kHz (dBµA/m) 

The setup was also implemented experimentally. The frequency response from DC to 

20-kHz was obtained and shown in fig. 7.12. 

The unit of the simulation result is µA/m, while the unit of the experimental results is 

dBµA/m. The µA/m can be converted to dBµA/m by using eq. (7-2). Using this equation, 

the peak of the stray magnetic field at 5-kHz at the given distance is -4.37 dBµA/m 
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experimentally, would be 0.61 µA/m, which is very close to the value in simulation, see 

fig. 7.11. 

2010

dB A
mA

m

μ

μ =                                                                                                             (7-2) 

7.4 Applications of the frequency response analysis of the stray field 

Following the experimental verification of the simulation results, related applications, 

such as monitoring of components for the diagnosis of failures and shielding were 

investigated: 

As shown in fig. 7.12, the first peak located at very low frequency is generated from 

the induction motor, since the motor is working at the power frequency, 60Hz. As the 

working frequencies of the components in the system are different, the behavior of each 

component can be investigated individually. This can be a very useful hint in monitoring 

the conditions, as well as detecting the faults of the motor and the inverter. For example 

in case 2, fig. 7.12, if a failure occurs in the motor, the peak at the power frequency and 

the related higher harmonic orders will shift along the frequency band or the amplitudes 

would change. Similarly, failures to the inverter may cause the same type of changes in 

switching frequency and the related higher harmonic orders. Note that, the peaks at 10-

kHz and 15-kHz in fig. 7.12 are due to the second and the third harmonics of the inverter. 

The frequency responses in between the harmonics are noises and sub-harmonics. 

As another application of this case, the shielding in the vicinity of the switch, 5 cm, 

was tested. Fig. 7.13 shows the frequency response of the stray H-field with and without 

the shield between the switches and the antenna by means of simulation and 

measurement. Using a steel shield, Steel 1018 as an example in this test, it can be seen 
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that the noises, sub-harmonics between the main harmonic orders, decrease dramatically. 

The experimental results show a wider band of frequency, DC – 20 kHz, as shown in fig. 

7.14 to illustrate the effect of shielding on the other harmonic orders. 

 
Fig. 7.13 Stray magnetic field intensity of the setup case2 from DC to 7.5 kHz (dBµA/m) 

at 5 cm away from the inverter with and without shield by means of simulation and 

measurement 

Consequently, considering this test, the main harmonics and the related sub-

harmonics can help in selecting a shield with proper characteristics including the 

permittivity and permeability. Comparing the curves of fig. 7.13, the simulation result is 

similar to the experimental one. Hence, the proposed shield can be studied and optimized 

using the physics based simulation. The permittivity, permeability, conductivity and other 

physical characteristics of the shield can be altered and optimized for the best 

electromagnetic compliance or any other purposes using the simulation and experimental 

design. 
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(a) Without shield 

 
(b) With shield 

Fig. 7.14 Stray magnetic field intensity of the setup at case2 from DC to 20 kHz 

(dBµA/m) at 5 cm away from the inverter (a) without shield and (b) with shield 

7.5 Conclusion 

In this chapter, the 3D full finite element modeling for the radiated EMI study of a 

typical power electronic drive was implemented. The physical approach for applying the 

switching activity was utilized. In order to have the detailed simulation of the model and 

simultaneously consider the non-linearity of commutation curve in the frequency 

analysis, the fast GMRES methods with proper conditioners were used as the solution 

method, which increases the simulation speed. The measurement was also applied for 

verification of the numerical results, as well as for investigating the stray fields under 

different operating conditions. The results show that the FE model has a good accuracy 
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for evaluating the stray fields. Two cases of using the inverter in the system were studied 

and their applications were explained. The results show that the frequency response of the 

field can be used for assessing shielding arrangements, as well as for monitoring the 

conditions of the drive. 
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8.  Fault Type Diagnosis of Induction Motor Using Magnetic Stray Field 

8.1 Overview 

After explaining the modeling of the components for the study of electromagnetic 

stray field, the application will be implemented and discussed in the rest of the 

dissertation. This chapter presents a method for the identification of the failures in 

winding of the induction motors, such as unbalanced currents flowing into the motor and 

the winding short-circuit. The stray magnetic field of a typical induction motor was 

studied while various types of failures applied to the machine. Different types of 

unbalanced currents flow into the machine and the fields were obtained from both 

numerical finite element simulation, as well as experimental results. Correspondingly, the 

turn-to-terminal and interturn short-circuit of the motor’s winding was studied. The 

frequency response of the three dimensional finite element (3D FE) model of the motor 

was implemented up to high order frequencies and they were compared with the 

measurement results. The fields with unbalanced currents, as well as short-circuit, were 

identified by studying the harmonic orders of the radiated magnetic field. This was also 

implemented using artificial neural networks (ANN).  

Due to the vast applications of induction motors in the electromechanical energy 

conversion, mainly because of their low cost, roughness, low maintenance, and operation 

with an easily available power supply, these motors are the main workhorse of industrial 

prime movers. 

Although induction machines are reliable, they are subjected to some undesirable 

stresses, causing them some faults resulting in failures. Researchers have studied a 
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variety of machine- faults as winding faults, unbalanced stator and rotor, broken rotor 

bars, eccentricity, and bearing faults [222], [223]. The need for condition monitoring has 

increased recently because of the widespread use of the automation and consequent 

reduction in the direct man-machine interface to supervise the system operation. The 

condition monitoring is the graphical trend of the machine parameters for the purpose of 

detection, analysis, and correction of the machine problems before the failure takes place. 

It is used for increasing machine availability and performance, reducing consequential 

damage, increasing machine life, reducing spare parts inventories, and reducing 

breakdown maintenance. 

Several studies have shown that more than 40% of induction motor failures are due to 

the stator winding breakdown, which can be because of short-circuits and unbalanced 

currents of the windings [224]. 

Early detection of inter turn short-circuit during the faulty operation of motor would 

eliminate substantial damage to the adjacent coils and the stator core reducing repair 

costs and motor outage time.  In addition to the benefits gained from early detection of 

turn insulation breakdown, significant advantages would occur by locating the faulted 

coil within the stator winding. Fault locating would not only increase the speed of the 

repair, but also would allow optimal timing of the repair outage. 

Based on the severity of the short-circuits, several monitoring techniques are 

implemented, which can be categorized into magnetic flux [225], vibration [226], 

instantaneous angular speed [227], noise [228], air-gap torque [229], flowing current 

[230], induced voltage [231], partial discharge [232], surge testing and many other 

methods [233]. 
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In addition to the effect of short-circuit, the unbalanced current would damage the 

winding of the machine gradually. The proliferation of unbalanced loads on power 

distribution systems has resulted in increased power quality issues in a substantial 

manner. These unbalanced currents cause the unbalanced supply for the components such 

as machines [234]. Moreover, the presence of power electronic components in the system 

will increase the chance of having the unbalanced current. On the other hand, due to the 

faults inside the machine, such as grounding faults, winding malfunction and etc., the 

flowing currents may get unbalance.  

There are several papers dealing with the reduction or elimination of the unbalanced 

current in the electrical network [234]-[237]. In [234], the active filter was used to reduce 

the effect of unbalanced currents. The symmetrical component theory was used as the 

proposed method. The detection of unbalanced voltages and their effect on induction 

motor’s electromagnetic signatures as investigated in [235]. In this work [235], Mirabbasi 

et al also investigated the line current, power factor and efficiency, while unbalanced 

currents were flowing in the input lines. The Torque and speed were the index term in 

this study. Nabeta [236] worked on the modeling of the machines under unbalanced 

conditions. He used finite element as the modeling method. The analytical method was 

also used for validation. The modeling of the machine under unbalanced condition was 

also implemented using another methods involving Simulink/Matlab in [237]. The 

control and improvement of fault-ride capability of a doubly fed induction generator 

(DFIG)-based wind turbine system under both unbalanced and distorted grid voltage 

conditions were investigated with experimental validation [237]. 
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All of the above studies explained along with several others represent valuable 

investigations. The methods require voltage and current of the system to detect the 

unbalanced current, while it’s not possible to have the flowing current of all lines, such as 

the winding inside the machines in many applications. Hence, recently magnetic stray 

field is being used as another monitoring technique in fault diagnosis especially short-

circuits. In [120], medium-range frequencies are taken into consideration to determine 

electrical faults, when the machine is supplied through the grid. The broken bar fault and 

the inter-turn short-circuit is studied in this paper. Similarly, Chadebec et al [121] showed 

the trustworthiness of fault detection on electrical machines by analysis of the low 

frequency magnetic stray field. A  simple  model  of  the  stray  magnetic  field  of  a 

synchronous  machine is used to predict the generated stray magnetic field in the case of 

different rotor faults (short-circuit rotor windings and dynamic mechanical eccentricity). 

The other advantage of using stray field in fault diagnosis, such as fault in lamination, 

broken bars, are explained in several publications such as [122]- [126]. 

This chapter presents the idea of using electromagnetic signatures of the machine as 

the index of detecting unbalanced current and identification of the inter-turn and turn-

terminal short-circuits of the winding. It is proposed to obtain the radiated magnetic field 

through magnetic antenna and identify the effect of the mentioned faults on the amplitude 

of harmonics within the frequency band. This would lead to detect the specific unbalance 

or short-circuit types. The numerical simulations and experimental tests were 

implemented for this investigation. It’s possible to use the experimental study to detect 

insignificant unbalanced currents or short-circuits; however, testing unbalanced currents 

or short-circuits for significant cases experimentally is dangerous for the machine. 
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Therefore, the simulation is proposed for the later condition. The numerical simulation 

utilized here is the three-dimensional finite element method, which was explained in 

chapter 7. This is followed by numerical and experimental studies of a case with 

unbalanced current and several examples of short-circuits, and the results are discussed. 

Moreover, the identification of the unbalanced condition throughout the machine 

environment is investigated using artificial neural networks. 

8.2 Modeling details 

In order to apply the inter-turn and turn-terminal short-circuits and unbalanced current, 

the FE model (see fig. 8.1) requires to be coupled with the circuit-based software. To 

emulate the unbalanced current, the circuit is designed, which is displayed in fig. 8.2. The 

setup consists of a set of three phase series resistance, 2.13 ohm each, between the power 

supply and the machine, as shown in fig. 8.2. The switches are opened or closed to put or 

take the resistors in the circuit. 

 

Fig. 8.1 Finite element model of the studied induction motor 
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Fig. 8.2 Schematic of the circuit connected to the model for the unbalanced current study 

On the other hand, to apply the inter-turn short-circuit, the proposed turns of the coil 

would be paralleled with a rheostat to have various levels of short-circuit, as shown in 

fig. 8.3. The motor and the selected terminals are illustrated in fig. 8.4. The rheostat is 

connected to S1 and S2 for inter-turn cases and between TB and S1 for turn-terminal cases. 

Note that there are 37 turn wires in each slot and just one of them are soldered to the S1 

and S2 and taken out of the casing. Similarly, the turn-terminal short-circuit is applied 

between terminal of the phase B (TB) and S1. 

 

Fig. 8.3 Schematic of the circuit connected to the model for the inter-turn short-circuit 

study 
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Since the purpose of this research is to build a model to be able to study tiny and 

incipient faults, details of the motor must be considered. Hence, all the details such as the 

slot shape, winding types and the other physical details and their magnetic characteristics, 

are reflected in our model. The frequency response analysis of such a detailed model 

connected to a circuit-based software takes a very large time to be solved for even one 

harmonic order, while the accurate study requires considering high orders of harmonics. 

Consequently, a modification in solution process is applied. We used the fast generalized 

minimal residual technique, GMRES, as the iterative solver with the krylov as the pre-

conditioner. The fast GMRES is a variant of the GMRES method with flexible 

preconditioning that enables the use of a different pre-conditioner at each step of the 

Arnoldi process. In particular, a few steps of GMRES can be used as a pre-conditioner 

for fast GMRES. The flexibility of this solution method is beneficial for the problem with 

nonlinear material characteristics, such as the core of the motor. As a result, the 

simulation time decreases from 8-9 hours to 20 minutes. More explanation about the fast 

GMRES is available in [221].  

 
Fig. 8.4 Location of the selected turn for inter-turn and turn-terminal short-circuits (TB: 

terminal of phase B, S1 and S2: selected turns of phase B) 
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After providing the basic circumstances of simulations and experiments, the machine 

is studied for the two main test cases, unbalanced current and short-circuits of the 

winding, which are explained in the following sections. 

8.3 Unbalanced current study, experiment and simulation 

The finite element analysis was implemented simultaneously with the circuit-based 

software. The radiated magnetic field density of the machine in normal condition is 

presented in fig. 8.5. The simulation time for solving the model in 60Hz was 20 minutes. 

To have the reliable accuracy, the mesh is defined finely for the model with 5.7 degrees 

of freedom. 

 

Fig. 8.5 Finite element (FE) model of the studied induction motor with the radiated 

magnetic field density at 30 cm (T). The arrows show the propagated field 

In order to have the unbalanced currents, various states of the resistances shown in 

circuit model (fig. 8.3), were tested. The states are shown in table 8.1. 
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Table 8.1 The unbalanced states applied to the system 

States Description 

Normal (N) All switches are ON 

Phase A (PHA) The switch parallel to the phase A is open 

Phase B (PHB) The switch parallel to the phase B is open 

Phase C (PHC) The switch parallel to the phase C is open 

Phase AB (PHAB) The switches parallel to the phase A and B are open 

Phase BC (PHBC) The switches parallel to the phase B and C are open 

Phase CA (PHCA) The switches parallel to the phase C and A are open 

These states were tested experimentally, as well as using numerical simulation. As 

mentioned earlier, the radiated magnetic field was observed at a distance around the 

machine and the unbalanced phase(s) would be detected. In order to obtain the magnetic 

field radiated only from the machine, the machine was located in a chamber, which 

isolates the machine from any components outside in terms of fields. The other 

components, such as the resistance box and the power supply, were located outside the 

chamber. The setup is shown in fig. 8.6.  

 

Fig. 8.6 Experimental test setup 
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The radiated magnetic field intensity is measured by the low-frequency coil antenna 

and the results are transmitted to the EMI receiver, a real-time spectrum analyzer, which 

is located outside the chamber. The EMI receiver can show the field in frequency or time-

domain. The coil antenna and the real-time spectrum analyzer, which is used in the 

measurement, are practically for low frequency analysis with high precision. The 

frequency range of the antenna is between 20 Hz to 500 kHz. The antenna and the setup 

are located based on the mentioned standards in chapter 5. 

At first, the setup was tested under normal conditions and the results of both 

simulation and experiment were obtained and shown in fig. 8.7 (a). In addition, a random 

unbalanced type, phase A, was selected for verification of the model under the 

unbalanced condition and the comparison of the simulation and experiment under this 

condition is depicted in fig. 8.7 (b). Note that the coil antenna, for measuring the 

magnetic field, was located at 30cm distance from the motor, see fig. 8.6.  

As it can be seen in the figures, the model has an excellent accuracy under both 

normal and unbalanced conditions. The small differences between the results in high 

order of harmonics are due to the many small bends of winding in the actual machine, 

which cannot be considered completely in simulation. The presence of even order 

harmonics and high level of their amplitudes are because of observing radiated fields 

rather than flowing currents in this study. Even order harmonics, as well as the third 

harmonic can be mitigated in the flowing current into the machine using several 

techniques [238]. The harmonics are still available in the radiated fields, which is a good 

point for the detection of abnormal conditions. However, the harmonics badly affects the 

efficiency of the power components. 



 

232 
 

    

(a) 

 

(b) 

Fig. 8.7 The radiated magnetic field intensity at the given distance captured by 

experimental and simulation tests. (a) The normal case along a line in Y axis (b) 

frequency response of the case phase A 

Subsequently, the setup was tested in various unbalanced states based on the cases of 

Table 8.1. The frequency responses of the seven mentioned states of Table 8.1 were 
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obtained and are shown in fig. 8.8. Some harmonics were selected based on the severity 

of changes due to the unbalanced states. Comparing the bars in the fig. 8.8 (a)-(f), a 

simple algorithm can be inferred. For example, in fig. 8.8 (b), the third harmonic in case 

PHBC decreases, while it increases in the other cases. Hence, it can be concluded that 

while the third harmonic decreases, the unbalance at phases B and C may occur. 

Similarly, the sixth harmonic in case PHA, PHB and PHAB decreases; therefore, there are 

three possibilities. Considering this with the eighth harmonic in case PHB that the 

amplitude decreases considerably, it can be inferred that the unbalanced current is 

flowing in phase B. In the same way, unbalance at phase A can be detected by looking at 

the ninth harmonic, and case PHC and PHBC can be identified by considering the eleventh 

harmonic. For more clear detection, higher harmonics should be analyzed. In addition to 

detecting the states manually, a well-known pattern recognition method, the artificial 

neural network, was used for accurate and reliable detection of abnormal conditions. 

 
(a) (b) 

Fig. 8.8 Harmonic orders of the magnetic field radiated from the motor in the various 
unbalanced states. (a) first harmonic, (b) third harmonic (c) sixth harmonic, (d) eighth 
harmonic, (e) ninth harmonic, (f) eleventh harmonic 

N          
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Unbalance Type

H
 F

IE
L

D
 (

d
B

u
A

/m
)

First Harmonic Radiated H Field at 30 cm

PHA PHB PHC PHAB PHBC PHCA N          
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Unbalance Type

H
 F

IE
L

D
 (

d
B

u
A

/m
)

Third Harmonic Radiated H Field at 30 cm

PHA PHB PHC
PHAB PHBC PHCA



 

234 
 

 

                         (c)                                                                    (d) 

  

                         (e)                                                                    (f) 

Fig. 8.9 Harmonic orders of the magnetic field radiated from the motor in the various 

unbalanced states. (a) first harmonic, (b) third harmonic (c) sixth harmonic, (d) eighth 

harmonic, (e) ninth harmonic, (f) eleventh harmonic 

8.4 Identification of unbalanced current phase through artificial neural network 

In order to have comprehensive failure identification method, the above unbalanced 

states were tested in various conditions, such as different levels of power and voltages in 
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addition to the locations of antenna and motors. Finally, seventy cases were tested and 

used as the input of the artificial neural network.  

 

Fig. 8.10 The diagram of the neural network 

The above network was implemented in MATLAB with scaled Conjugate Gradient 

algorithm for training the patterns. The input is a 10×70 matrix including the main 10 

sensitive order of harmonics of the radiated magnetic field obtained in 70 tests. The target 

of the network is 7×70 matrix including the 7 mentioned states assigned for 70 cases. The 

diagram is shown in fig. 8.9. The 70 samples were distributed randomly for training, 

validating and testing, while 85% was being used for training, 10% for validating and 5% 

for testing. For double checking the network, the setup was tested again with different 

voltages, which were not tested before, while the phase B had unbalanced current. As a 

result, the unbalanced state identified with 0% error. Details of the training process of 

ANN including the performance and the training states are presented in fig. 8.10. 

8.5 Short-circuit study, experiment and simulation 

For the second case study, which is the fault in the stator winding, the short-circuit 

tests are implemented on one of the two coils of the phase B based on the circuit 

schematic in fig. 8.3. Since the short-circuit faults are more severe than the unbalanced 

currents, analyzing only three selected harmonic orders are enough to identify the short-
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circuit. However, for detecting very tiny short-circuits, study of higher order harmonics is 

suggested. 

 
(a) 

 
(b) 

Fig. 8.11 The details of the training process of ANN (a) performance (b) training state 
 

Similar to the unbalanced current study, some selected states of short-circuit based on 

the circuit of fig.8.3 and the location of short-circuited winding of fig. 8.4 are 

investigated and categorized in Table 8.2. 

Considering Table 8.2, the short-circuit types are selected in a way to have different 

levels of short-circuit from the least sever, SH1.2, which had the resistance of 1.2Ω, to the 

state SH140V, which has no resistance and the selected turns are totally short-circuited at 

140V of the terminal voltage. 
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In order to identify short-circuit condition, the radiated field of the motor at 30cm 

distance from the motor is obtained by the magnetic coil antenna. The field is plotted at 

the same distance through the simulation. The complete short-circuit between terminal TB 

and the turn S1 (SH100V), which is implemented through the measurement and the 

simulation, is shown in fig. 8.11 (a) and (b) respectively. The 37 turns of the coil are 

shorted in this case. To avoid damaging the winding, the terminal voltage of the motor is 

reduced to 100V. 

Table 8.2 The short-circuit states applied to the system 
States Description 

Normal at 100V (N100V) No short-circuit, Terminal Voltage = 100V 

Normal at 140V (N140V) No short-circuit, Terminal Voltage = 140V 

Short-circuit between TB 

and S1 at 100V (SH100V) 

The rheostat is totally shorted between terminal and 

S1, Terminal Voltage = 100V 

Short-circuit between TB 

and S1  at 140V (SH140V) 

The rheostat is totally shorted between terminal and 

S1, Terminal Voltage = 140V 

Short-circuit between TB 

and S1 at 100V with R=0.4 

Ω (SH0.4) 

The rheostat is set to  0.4Ω between terminal and S1,  

Terminal Voltage = 100V 

Short-circuit between TB 

and S1 at 100V with R=0.53 

Ω (SH0.53) 

The rheostat is set to 0.53Ω between terminal and S1,  

Terminal Voltage = 100V 

Short-circuit between TB 

and S1 at 100V with R=1.2 

Ω (SH1.2) 

The rheostat is set to  1.2Ω between terminal and S1,  

Terminal Voltage = 100V 

Short-circuit between S1 

and S2 at 100V with R=1.2 

Ω (SH1.2TT) 

The rheostat is set to  1.2Ω between turn S1 and S2,  

Terminal Voltage = 100V.  
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Since the FE simulation is analyzed in the frequency domain, the harmonic orders are 

plotted separately as shown in fig. 8.11 (b). Comparing fig. 8.11 (b) with fig. 8.11 (a) at 

the Y=0 (exactly at the middle of the motor) shows that the simulation result matches the 

measurement with a good accuracy. To study and recognize the short-circuit types, the 

states based on the Table 8.2 are compared in fig. 8.12 through both simulation and 

experiment. 

 

(a) 

   

(b) 
Fig. 8.12 Radiated H field of the motor, while there is a complete short-circuit between 

terminal TB and the turn S1 (SH100V) (a) measurement (frequency response with the span 

of 1 kHz), (b) simulation with the plot at x= 30cm along the Y axis 
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The short-circuit types can be inferred through comparing their harmonic orders. 

Considering the first harmonic at fig. 8.12(b), it can be easily seen that, the short-circuit 

states with rheostats have lower amplitude of the H field (magnetic field intensity). This 

is because of the resistance of the rheostat that allows less current to pass the rheostat in 

comparison with the states that there is no resistance, SH100V, SH140V. Hence, the 

amplitude of the short-circuit current and consequently the radiated H field decreases. 

Therefore, this helps finding the intensity of the short-circuit condition. On the other 

hand, obviously if the terminal voltage increases, state SH140V, the higher amplitude of 

the current passes through the winding; therefore, the H field increases. Similarly 

comparing the first harmonic of the short-circuit states, it can be perceived that the motor 

at inter-turn short-circuit radiates more magnetic intensity (H) field. For better 

investigation, the third and the fifth harmonics should be used. It should be noted that 

because of some technical reasons, the effect of some states would not be recognized 

through an individual harmonic order. For example, the third harmonic order of the 

flowing current into the rheostat doesn’t change by varying the resistance of the rheostat. 

However, the fifth harmonic order clarifies this problem. Considering the fifth harmonic 

orders of the mentioned states, the radiated H-field decreases, while the resistance of the 

rheostat increases. This is helpful to determine the intensity of the short-circuit condition. 

For analyzing the insignificant types of short-circuit, the higher order harmonics along 

with the artificial neural network, similar to the unbalanced current case, should be 

considered. Building the neural network for short-circuit cases needs testing numerous 

cases, similar to the unbalanced current cases. The numerous experimental testing of the 
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cases would damage the machine. Therefore, using the mentioned simulation procedure 

is advised. 

 

       (a)                                                                     (b) 
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(c) 

Fig. 8.13 Several harmonic orders of the magnetic field radiated from the motor in the 

various short-circuit states. (a) first harmonic, (b) third harmonic (c) fifth  harmonic 

8.6 Conclusion 

The identification of various unbalanced input condition of flowing current, as well as 

the short-circuit of the stator winding of an induction motor, was developed and 

implemented in this chapter using 3D FE simulations and ANN. The developed process 

was verified through measurements. Various types of unbalanced currents and short-

circuit were analyzed. The 3D FE analysis was coupled with circuit-based software to 

implement the fault states. The fast generalized minimal residual technique was used for 

expediting the numerical analysis, while high order harmonics was proposed to be 

observed in frequency domain study. Various types of unbalanced currents passed into 

the machine’s terminal lines and the harmonic orders of the radiated magnetic field were 

obtained and studied. The identification was implemented manually and by using ANN 

for seventy various cases. Similar scenario was implemented for the various types of the 

short-circuit condition. The final results show that any types of unbalanced current or 

short-circuit states under various levels of terminal voltage and different locations of the 

antenna can be detected by analyzing the frequency response of the radiated magnetic 

field. 
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9. Identification Of Short-Circuit Location in the Stator Windings of Induction 

Motors Using Radiated Electromagnetic Field Electromagnetic Signatures 

9.1 Overview 

Locating partial short-circuits in electrical machines is an important issue in industry. 

This enables the user to fix specific winding segment before expanding into a larger fault. 

This chapter investigates the identification process for locating this type of fault in the 

winding of an induction motor through radiated electromagnetic field signatures. It’s 

firstly proposed to recognize the short-circuit type, such as interturn, intercoil, or 

terminal-turn. Then, the location of short-circuit can be identified. The frequency 

response of the radiated magnetic field of the motor is used for the fault location. The 

responses are compared based on the variations of the amplitudes of the harmonic orders. 

In order to be able to use this method for various industrial circumstances, two different 

approaches are used for the short-circuit location, the singular optimum location and the 

multi-optimum location. The experimental study of short-circuit conditions, especially 

the major and semi-major cases which could damage the winding. Instead, the full three-

dimensional finite element (3DFE) method is utilized in a few cases and verified 

experimentally. Finding the locations of the small short-circuit helps the engineers in 

fixing the specific wire of the winding before the major damage occurs.  

Formerly, fault detection in machines involved simple techniques, such as overcurrent 

or overvoltage detection. After detection, it was required to bring the machine offline to 

clear the fault. In safety-critical applications, however, a shutdown of the motor may not 

be acceptable. This demands better fault-detection approaches. The first step in dealing 
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with a fault in the drive is being able to detect it quickly and determine its location and 

severity accurately. This is particularly critical in stator short-circuit faults, which can 

cause catastrophic damage to the machine in a very short time making any fault 

compensation impossible thereafter [239]. Especially, most of the failures in the 

induction machines (IM) are basically due to short-circuits in the stator winding [240]. It 

has been reported that most short-circuit faults begin as inter-turn faults [241]. Finding 

the location of the partial short circuit is to prevent short-circuit conditions from 

spreading the fault to a serious damage in the windings. It has been shown in [240] that it 

takes less than 2 seconds for a single inter-turn fault to progress into a serious fault in a 

typical 15-kW induction motor. However, following the recognition that the partial short-

circuit occurred, it’s hard to find the location of the partial short-circuit among hundreds 

of wires in the machine. Therefore, advanced methods should be used to detect the 

interturn short-circuit. 

The testing and monitoring methods can be generally divided into two different 

categories (online and offline). The offline techniques need the motor to be removed from 

the service [242]-[246], while the latter can be implemented, while the machine is 

working [247]-[255]. Based on the severity of the fault and also the application in which 

the motor is being used, these two mentioned methods can be selected. 

The offline method has a great disadvantage to the online method, which is the 

disconnection of the machine from service. However, it has an advantage of online 

monitoring that meaningful tests can be performed after fabrication of the motor and that 

a test device can be used for several different machines, which saves costs. There are 

many methods in the category of offline tests such as DC connectivity test [242], AC/DC 
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potential tests [243], insulation resistance (IR) [244], offline partial discharge [245], 

impedance [246], surge test [246], and some more methods which are discussed in [247]. 

They can be used based on the type of machines. For example, the PD test is not 

applicable to low-voltage machines.   

On the other hand, online methods use different parameters of the machine, such as 

magnetic field, stator current and voltage, input power and temperature for the 

monitoring purpose. The well-known online methods include temperature monitoring 

[248], condition monitoring [248], online partial discharge [248], AI-based [250], current 

signature analysis [251], HF impedance [252], pendulous oscillation phenomenon [253], 

vibration signature analysis [254], axial leakage flux [255] and many other methods 

which are discussed in [247], [248]. Almost all of the mentioned methods are applicable 

for the interturn short-circuit; however, any of them have some advantages and some 

disadvantages based on the situation they are intended to be used. For example, 

temperature monitoring requires a lot of data and additional information like ambient 

temperature, which is a drawback. However, it can detect deterioration in phase-to-

ground and faults in interturn insulation. Also, the leakage current technique is non-

invasive, but it’s weak to detect interturn short-circuits for low-voltage motors. All in all, 

the major advantage of these methods as mentioned before is that the machine does not 

have to be taken out of service. Therefore, the normal condition, while the motor is 

operating, can be evaluated. Since the machine is under constant monitoring, the 

predictive maintenance is made easier, an incipient failure can immediately be detected, 

and actions can be scheduled to avoid more severe process downtime. A disadvantage is 

that the mentioned online-monitoring techniques often require the installation of 
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additional equipment, which has to be installed on every machine. Therefore, in this 

research, it’s trying to use an online technique, which doesn’t have this drawback.  

The Airgap flux signature technique measures the rotating field of the machine by 

utilizing the sensor installed in the machine. Using this method, the interturn short-circuit 

can be detected. Valuable researches were presented about this technique [119]-[128], 

[256]. In [119], a program was developed in LabVIEW to perform the data acquisition 

and analysis is presented. Data is read in real-time form of the working induction motor, 

and the program provides three fault indicators were found: rotor bar failure, rotor end 

ring failure and stator winding interturn short circuit. With these three indicators failure 

location, the state and the cause was determined. The system was validated in a 

laboratory with motors with known faults. In [120], medium-range frequencies are taken 

into consideration to determine electrical faults, when the machine is supplied through 

the grid. The broken bar fault and the interturn short-circuit are studied in this paper. 

Similarly, Chadebec et al [121] showed the trustworthiness of the fault detection on 

electrical machines by analysis of the low-frequency magnetic field signature. A  simple  

model  of  the  stray  magnetic  field  of  a synchronous  machine is used to predict the 

generated stray magnetic field in the case of different rotor faults (short-circuit rotor 

windings and dynamic mechanical eccentricity). The other advantage of using stray field 

in the fault diagnosis, such as the fault in lamination and broken bars, are explained in 

several publications such as [122]- [126]. The magnetic signature is also being used in 

offline method. A technique that uses motor, the electromagnetic signature analysis of the 

terminal voltage immediately after switch-off to diagnose turn faults, is introduced in 

[127].  
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The Air gap magnetic flux has good results in detecting interturn short-circuit; 

however, installing and maintaining the sensor are the drawback of this method. Hence, 

in this research, it’s trying to measure the radiated magnetic field outside the motor using 

the magnetic antenna and use the frequency response analysis for interturn fault 

detection. Since it’s possible to locate the field antenna close to the machine, the 

magnetic behavior of only the faulty machine would be evaluated. This is useful while 

there are some other machines around the faulty one.   

In this chapter, the radiated field of the machine is observed while short-circuit 

occurred in different locations of a coil and winding. The changes of the harmonic orders 

of the radiated field help in the identification of short-circuit conditions.  The test setup 

details along with the procedure of monitoring the system, using magnetic field is 

explained in 9.2. As the first case study, the intercoil short-circuit, as well as terminal-to-

turn short-circuit are investigated in 9.3. Since these fault may be hazardous for the 

winding, the full 3D finite element modeling connecting with the circuit-based software 

is used for the modeling of short-circuit. The simulation results were verified by the 

experimental tests. Furthermore, short-circuit between two adjacent wires, the interturn 

short-circuit, changes the magnitude of the higher harmonic orders of the radiated field. 

Identifying the location of short-circuit requires finding the optimum location of the 

magnetic coil antenna for the machine. Two different types of the optimization of the 

antenna’s position along with the interturn fault location are investigated and discussed in 

section 9.4. Finally, analyzing the harmonic orders of the frequency response for the 

purpose of identifying the interturn short-circuits is employed. 
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9.2 Magnetic stray field monitoring of the short-circuit in the winding 

9.2.1 Motor setup 

Fig. 9.1 shows the block diagram of the test setup implemented to characterize the 

fault detection under controlled conditions in the laboratory experiment. The 

characteristics of the equipment used in the test are: 

Induction motor: 7.5HP, 208V, 1800RPM, PF 0.82, 60Hz 

Adjustable power resistor: 3.0 Ω, Max. Power 225W, with 58 adjustable points. 

The Magnetic coil antenna and EMI receiver were the same as chapter 8. 

 

Fig. 9.1 The schematic of the test setup 

The radiated magnetic field intensity can be observed at given distances close to the 

machine by using the magnetic coil antenna. The data is sent through the BNC cable to 

the EMI receiver. Then, the frequency response or time domain response of the radiated 

field can be seen and investigated. The radiated fields show the behavior of the machine 

and the changes in the windings or other components of the motor. Hence, it’s a valuable 

parameter for monitoring the condition of the machine. Since the load may have a 
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significant effect on the fields and may be variable in different application, the machine 

in this research is investigated at no-load to have a general and valuable result. 

The laboratory setup is shown in the fig. 9.2. In order to avoid possible noises around 

the setup, the motor is located inside a chamber which isolates the setup from the other 

electric nearby components. Therefore, the components of this setup including power 

supply and EMI receiver are located outside the chamber and connected through an 

isolated duct into the chamber. In order to have the maximum invulnerability of the 

motor from undesirable fields, the table, on which the machine in located, is made up of 

wood. The antenna and the setup are located based on the standards explained in chapter 

5. 

 

Fig. 9.2 The studied setup including machines, measurement stuff 

9.2.2 Monitoring the radiated magnetic field 

After preparing the components, the machine is started and the magnetic antenna 

captured the field and sent to the EMI receiver. The EMI receiver is set in the frequency 

domain mode. The frequency-domain analysis is based on the transformed signal in the 



 

249 
 

frequency domain. The advantage of the frequency-domain analysis over the time-

domain analysis is its ability to easily identify and isolate certain frequency components 

of interest. In other words, the main idea of the spectrum analysis is to either look at the 

whole spectrum or look closely at certain frequency components of interest and thus 

extract features from the signal. Since the proposed motor is working at 60Hz, the 

frequency components of interest which help in the detection process are between power 

frequency (60Hz) and 3 kHz. The bandwidth based on the severity of the fault can be 

shortened or expanded. This is explained in the next section. 

In order to have comprehensive analysis of the frequency response of the system, the 

harmonics of the machine should be explained. 

The harmonic order is directly related to the slot number per 2 times the polar step, 

and its magnitude depends on the distribution winding factor [128]. Every stator 

harmonic creates synchronous torques and requires special attention on the teeth wave. 

These kinds of harmonics are in the order 

[ 1]slot s

m
f f k

p
= ±                                                                                                           (9-1) 

where k is an integer, m is the stator slots number, and p is the number of pairs of poles. 

The stator h harmonic turns at fh=±fs/h from main harmonic fs and the harmonic slip 

could be expressed as: 

1 (1 )h r
h

h

f f
S s h

f

−= = ± −                                                                                                (9-2) 

where Sh is the harmonic’s h slip and fr is the rotor frequency. The induced rotor current 

frequency of the h harmonic magnetic field is determined by: 
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2 [1 (1 ) ]h sf f s h= ± −                                                                                                       (9-3) 

The harmonic orders of the stator and rotor, as wells as synchronous harmonics, which 

appears for mutual action between stator and rotor are affected by the occurrence of faults 

including broken bar, bearing damage, air-gap eccentricity [256], as well as short-circuit 

in the machine. In an induction machine, the frequencies produced by interturn shorts in 

the stator current around the base frequency are given by: 

1
[1 ( )]sth s

s
f f km

p

−= ±                                                                                                    (9-4) 

The harmonic orders can be analyzed using much frequency-domain signal-processing 

technique in order to extract the fault information. Due to the presence of voltage 

unbalances and other asymmetries, only frequencies corresponding to specific 

combinations of k and m in (4) can be used for the short-circuit fault diagnosis. Based on 

the severity of short-circuit, the higher or lower order of harmonics get affected. That is 

to say, when short-circuit occurs between only two turns, the amplitude of higher order of 

harmonics (9th-31th) changes. Inversely, short-circuit between more number of turns can 

easily be recognized by analyzing lower order of harmonics (3th-7th). This is shown and 

discussed in the following two sections. 

9.3 Intercoil short-circuit study, experimental and simulation 

After explaining the basics and procedure of the study, the explained setup is 

implemented for different short-circuit types. The major goal of this study as mentioned 

before is to detect the location of the short-circuit. Hence, the minor goal of each part of 

this section is set to obtain a way to find out the proper harmonic orders for studying the 
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different levels of short-circuits. This needs to attain the proper distance of the antenna 

from the machine and the proper location of the antenna around the machine, while 

faulted with the interturn short-circuits 

First, short-circuit between the coils are studied. The short-circuit tests are 

implemented on one of the two coils of the phase B, by setting the terminals shown in fig. 

9.2 and fig. 9.3. The part of the coil selected to be shorted has 37 turns. Therefore, the 

terminals are connected to the variable resistance to avoid damages.  

 

Fig. 9.3 Location of the selected turn for inter-turn and turn-terminal short-circuits (TB: 

terminal of phase B, S1 and S2: selected turns of phase B) 

The short-circuit is implemented for the terminal-to-turn case (TB-S1) and the 

interturn (S1-S2) case with and without variable resistance in different voltages. Fig. 9.4 

and fig. 9.5 show the radiated magnetic field intensity (H-field), while short-circuit was 

between TB-S1. The fig. 9.4 is without variable resistance (rheostat) and the fig. 9.5 is 

with variable resistance set to 0.4 Ω. Both tests are implemented at 100V. As illustrated 

in the figures, the short-circuit affects the radiated field measured at 30 cm away from the 
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shaft of the motor. Since the short-circuit is significant, the changes at the important 

harmonic orders such as 2nd, 3rd, 5th, and 7th are easily noticeable, especially in the case 

without rheostat.  

 
Fig. 9.4 Radiated H-field of the motor, while there is a complete short-circuit between 

terminal TB and the turn S1 

 
Fig. 9.5 Radiated H-field of the motor, while there is a short-circuit between terminal TB 

and the turn S1 while the rheostat is set to 0.4Ω 
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The experimental testing of the coils to find out the difference of terminal-to-turn 

short-circuit and intercoil short-circuit is damageable for the winding. Therefore, for 

these cases, which have significant short-circuit, the setup is simulated by means of the 

full three-dimensional finite element (3DFE) method and verified experimentally.  

All the details of the machine are considered in this model, which is shown in fig. 9.6. 

In order to apply the interturn short-circuit, the proposed turns of the coil would be 

paralleled with a rheostat to have various levels of short-circuit as shown in fig. 9.7. The 

motor and the selected terminals were illustrated in fig. 9.3. The rheostat is connected to 

S1 and S2 for interturn cases and between TB and S1 for turn-terminal cases. Note that 

there are 37 turn wires in each slot and just one of them is soldered to the S1 and S2 and 

taken out of the casing. Similarly, the turn-terminal short-circuit is applied between 

terminals of the phase B (TB) and S1. 

The simulation time for solving the model in 60Hz was 20 minutes with the modified 

solution settings. To have the reliable accuracy, the model is meshed finely with 5.7 

degrees of freedom. 

 

Fig. 9.6 Finite element model of the studied induction motor 
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Fig. 9.7 Schematic of the circuit connected to the model for the short-circuit study 

Since the important harmonics can be enough to recognize this type of short-circuit, 

the other harmonics and noises are cleared out for easier evaluation. The comparison of 

the intercoil and terminal-turn short-circuit is shown in fig. 9.8. 

 
Fig. 9.8 Radiated H-field in various cases of the significant short-circuits in the induction 

motor’s stator winding (dBµA/m).  Note that the terminal-turn short-circuit is between 
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TB-S1 of fig. 9.3 and the intercoil short-circuit is between S1-S2. The R is the re resistance 

of the rheostat 

Fig. 9.8 verifies the accuracy of the 3DFE model, since the simulation results 

substantially equal the experimental ones. As illustrated in the figure, the first harmonics 

of the cases don’t get affected significantly from the proposed short-circuit. However, the 

2nd, 3rd, and 5th orders of the harmonics change.  Based on the types of the fault, 

specific harmonic orders should be used to identify the type of short-circuit. For example, 

for identifying the intercoil short-circuit from the terminal-turn short-circuit, the 5th 

harmonic is applicable. Comparing the 5th harmonic order of the SH2 case with SH3 case 

in fig. 9.8, it can be perceived that the current loop produced due to short-circuit in 

between S1 and S2 is inverse the main current loop. Therefore, it decreases the aggregate 

amount of the radiated H-field at 5th harmonic. In reverse, the loop due to short-circuit 

between TB and S1 increases the aggregate amount of the radiated H-field. By decreasing 

the resistance of the rheostat, the field increases more. Therefore, this harmonic order can 

be used for identifying the severity of short-circuit between SH1 and SH2 as well. 

Besides, higher harmonic orders may be useful for this purpose. The 2nd and 3rd 

harmonics can be used for identifying the short-circuit cases from the healthy case but 

they are not useful for identifying the type of short-circuits. 

9.4 Interturn short-circuit 

The proposed machine has 48 coils and in each coil it has 37 turns, which totally 

becomes 1776 turns. Detecting short-circuit between two turns between 1776 turns is not 

possible by observing the low harmonic orders as explained above.  



 

256 
 

Firstly, it needs to be mentioned that the location of the antenna is very important, 

since the radiated magnetic fields of the coils are closed loop, up to a distance based on 

the passing current through the wires as shown in fig. 9.9. After this distance, the radiated 

fields will not establish the loops. Therefore, the appropriate location of the antenna to 

capture the major part of the radiated field is concerned.  

 

 

Fig. 9.9 The coil of the winding and the necessity of the appropriate location of antenna 

 

As illustrated in the figure, one parameter of this optimized location is the angle vs. 

machine’s shaft in which the antenna should be located to capture the specific field of the 

shorted turns. This is termed the angle index in the rest of the chapter. The other 

parameter is the distance of the antenna from the motor. This is termed the distance index 

in the rest of the chapter. In order to have the proper location of the antenna, the 

optimization with these two parameters as the indices should be implemented. However, 

the optimum angle for each turn is unique. In other words, if it’s intended to find out the 

optimized location of antenna for whole winding, the angle index could not be obtained; 
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because, each turn of the 1776 turn has the appropriate location of the radiated field in the 

area around to be captured. Therefore, the optimum angle index could be for a particular 

group of the winding such as each phase. Namely, it can be expressed that the optimum 

location of antenna in terms of angle for the interturn short-circuits in phase A can be 

obtained. On the other hand, the distance index can be optimized based on the level of the 

passing current through the winding. For example in the cases in section 9.3, the distance 

of the antenna from the shaft of the motor was 30cm, which is 16cm from the casing. 

Locating the antenna at a closer distance from the machine causes the presence of many 

sub-harmonics in the frequency response, which makes the investigation complex. Also, 

locating farther than 30cm would not show the radiated field properly. This is more 

critical in the interturn case due to the weaker effect of this fault in the frequency 

response. 

 

Six turns in three coils of the winding of phase A are selected to be tested for interturn 

short-circuit. The selected turns are depicted in fig. 9.10. The turns S25-1 and S25-2 are 

located next to each other, as well as S27-1 and S27-2 and in the same manner S28-1 and S28-2.  

To verify the equality of these three interturn short-circuits, the resistance in between two 

selected adjacent turns of this three short-circuits are tested by multi-meter and 

confirmed.  
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Fig. 9.10 The selected six points in the winding of phase A for the interturn short-circuit. 

Note that the displayed terms such as S25-1 means the turn number 1 in the 25th slot 

Based on the optimization types of the antenna, the interturn short-circuit study is 

classified into two types. This classification is due to the constraints of the particular 

applications in which the detection may be used. This is explained in 9.4.1 and 9.4.2. 

9.4.1 Singular-optimum location of antenna 

In this section, the mentioned three interturn short-circuits in phase A are compared 

with each other in different possible situations of antenna to find the optimum location 

with the hints to detect the location of the short-circuit. 

It’s not possible in some of the industrial applications to get near to the motor to place 

the antenna in variable angles versus the motor shaft. In other words, it’s just possible to 

have the antenna(s) at a fixed location. Hence, a particular optimum location of the 

antenna can be obtained, which at least should be attained for each phase.  

The radiated H-field is perpendicular to the passing current. Therefore, the antenna 

shows the maximum sensitivity of the position where is perpendicular to the short-circuit 

coil. This is a good hint to find out the short-circuited turn; however the turns of each coil 
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are so tightened together, so it's not possible to detect the short-circuited turns just by 

using this hint. Therefore, the optimum location of antenna is used here for detecting to 

the level of faulty coil. For detecting more precisely, the frequency response at the higher 

harmonic orders around 0.5-2 kHz should be investigated. 

The index in finding the most sensitive location of the antenna is the number of 

harmonic orders, which varies compared with the normal case. The location of antenna 

with more changes in the frequency response is considered as the most sensitive or 

optimum location. When the optimum location of the antenna is identified, the frequency 

response would be investigated.  

In order to find the main hint in identifying the location of the fault, the physical 

theory of short-circuit is studied. By implementing interturn short-circuit, a new loop of 

current is created, which radiates a new field. This leads to the appearance of a new peak 

at a specific frequency and/or change of the amplitude of an existed peak. This change 

can be a decrease or an increase based on the direction of the passing current in the short-

circuited turns. If it is in the same direction as the main coil, the change would be an 

increase. Otherwise, it would be a decrease. This is a very helpful hint in finding the 

location of the fault. More details about the theory of the interturn short-circuit is 

explained in [256].  

The short-circuit at the three mentioned locations of the fig. 9.10 is implemented from 

zero to 180 degrees of α around the machine as shown in the fig. 9.11.  
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Fig. 9.11 The rotation angle of the magnetic antenna around the machine 

Fig. 9.12 shows the radiated H-field of the motor while interturn short-circuit 

implemented between S28-1 and S28-2 and compared with the healthy condition at α=90°. 

The distance of the antenna from the motor is 7cm from the casing. Since the differences 

in the figure is not so recognizable for comparing the faulty cases, the ΔH = HShort-circuit-

HHealthy is obtained. For brevity, only the results of two selected α are shown in fig. 9.13 

(α=90°) and fig. 9.14 (α=60°). 

        

Fig. 9.12 Radiated H-field of the interturn short-circuit between S28-1 - S28-2  and 

normal case at α=90° (dBµA/m) 
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Fig. 9.13 Difference of the Radiated H-field of the 3 interturn short-circuit cases and 
normal case at α=90° (dBµA/m), (a): interturn short-circuit between S28-1-S28-2, (b): 
interturn short-circuit between S27-1-S27-2, (c): interturn short-circuit between S25-1-S 

                             

Fig. 9.14 Comparison of the Radiated H-field of the 3 interturn short-circuit cases at 

α=60° (dBµA/m), (a): interturn short-circuit between S28-1-S28-2, (b): interturn short-

circuit between S27-1-S27-2, (c): interturn short-circuit between S25-1-S25-2 
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Comparing these two figures, the number of peaks in fig. 9.14 (α=60) is more than the 

other one for all cases; however, the results at α=90° is also helpful in fault location. By 

measuring all α angles, the most sensitive α for all three mentioned faults is 60°. The 

most sensitive α for each particular case could be slightly different, but the singular angle 

for the applications in which it’s not possible to have the several antennas around the 

machine is more applicable.  

The next step is finding the faulty coil in which the short-circuit occurred, based on 

the α angle. Considering the schematic of the stator winding in fig. 9.15, the 

perpendicular passing current to the H- field at α=60° is through winding A2 of phase A, 

which is correct.  

 

Fig. 9.15 The schematic of the stator winding 

After identifying the faulty coil, the location of short-circuit can be detected by 

investigating the peaks of fig. 9.14 (a) -(c). Comparing fig. 9.14 (b) with (a) and (c), the 
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number of peaks is more when short-circuit is between S27-1 and S27-2. This means that the 

impact of short-circuit, occurred in the middle of the winding, is more than the two ends. 

Furthermore, the number of peaks when short-circuit is between S25-1 and S25-2 is more 

than the one at the terminal end (S28-1 and S28-2). Therefore, the effect of the interturn 

short-circuit in the other end of the winding is more than the terminal end. In all three 

cases, some peaks are created in about 1400Hz and some peaks are diminished in about 

1000Hz. However, the number of peaks created or diminished in this area is different in 

these cases. Considering all of these hints, the location of short-circuits can be identified.  

As the conclusion for the related application of this section, it’s suggested to locate 

three antennas with 120° difference to be able to monitor the three phases of the winding 

continuously. Certainly, the fixed location of the antenna is more sensitive for some 

faults and less for some others, based on the angle of antenna perpendicular to the fault 

location. For these cases, it’s possible to find the location of fault by focusing on the 

location of the peaks along the frequency. 

9.4.2 Multi-optimum locations of antenna 

In opposite to the previous section, there is no limit in many applications for changing 

the location of antennas around the machine. Therefore, it’s possible to have the optimum 

location of the antenna for each individual interturn short-circuit. Consequently, the 

location of the fault can be identified more precisely. 

The same faults as part 9.4.1 are tested in this section. However, each of the three 

interturn short-circuits are tested from α=0° to α=180°. As the result, optimum location of 

the antenna is obtained for each case demonstrated in fig. 9.16 (a) -(c). The optimum 
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distance of the antenna from the casing is 7cm, similar to the previous part. The optimum 

α for the fault at S28-1-S28-2 obtained 45°, while the ideal α for the faults at S28-1-S28-2 and 

S28-2-S28-3 are achieved 40° and 30°, respectively. Note that, this situation of antenna is 

more sensitive than the others, therefore the numerous numbers of peaks shows up which 

makes the study hard. Accordingly, the small peaks are cancelled. 

 

                       

Fig. 9.16 Comparison of the Radiated H-field of the 3 interturn short-circuit cases 

(dBµA/m), (a): interturn short-circuit between S28-1-S28-2 at α=45° (b): interturn short-

circuit between S27-1-S27-2 at α=40° (c): interturn short-circuit between S25-1-S25-2 at 

α 

Comparing fig. 9.16 (b) with (a) and (c), short-circuit between S27-1 and S27-2, which is 

in the middle of the coil, has more effect on the frequency response due to the number of 

creation and dissipation of the peaks. Also, short-circuit near to the other end (S25-1-S25-2) 

has more peaks in the frequency response comparing with the one near to the terminal 
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end (S28-1-S28-2). Consequently, the inferences of the section 9.4.1 are proven. To detect 

the location of the interturn short-circuit, unique changes of each response should be 

considered. As mentioned in section 9.4.1, by occurring the interturn short-circuit, a new 

current pass and subsequently a new radiated H-field are generated. Therefore, new peaks 

in the frequency response appear. The location of the peak along the frequency response 

helps in finding the location of the fault. For example, for the fault at S28-1-S28-2, the peaks 

at 11th harmonic order (660Hz) and 17th harmonic order (1020Hz) arise. These peaks 

didn’t appear in the two other faults. On the other hand, for the fault at S27-1-S27-2, some 

sub-harmonics between 11th and 13th harmonic orders (660Hz-780Hz) come out. Also 

some others showed up between 23th and 31th harmonic orders (1380Hz-1860Hz). For 

the fault at S25-1-S25-2, dissimilar to the other two faults, the peaks appeared between 15th 

and 21th harmonic orders (900Hz-1260Hz). These hints are helpful in finding out the 

location of the fault. Note that appearing these peaks has also the effect on the low 

harmonic orders (3th-7th), but theses impacts are small; therefore, they cannot be helpful 

in finding out the location of faults and cancelled out. 

9.5 Conclusion 

Identification of the type and location of short-circuits are implemented in this chapter. 

Hence, the analysis of radiated magnetic field intensity was achieved to differentiate the 

major faults, such as intercoil short-circuit, from the minor ones, such as interturn short-

circuit. An experimental setup was devised for testing and verifying the developed 

condition monitoring process using the magnetic field signature. The intercoil short-

circuit was implemented and studied experimentally. Since the intercoil short-circuit 
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might damage the winding, a F3DFE model was developed and connected to the circuit-

based software. The simulation results were verified experimentally. For the interturn 

short-circuit, two different optimizations for finding the most sensitive location of the 

antenna were considered, based on industrial constraint. The optimum rotation angle of 

the antenna (α), as well as the distance to the machine’s casing, were obtained and used 

for identifying fault location. The number of peaks in the field signature was used as part 

of the information for distinguishing the faults. The location of the created or diminished 

harmonic or sub-harmonic orders along the frequency were considered as the final 

information in locating the interturn short-circuits. This type of fault diagnosis is 

nondestructive and has the ability to be applied, while the motor is running. Moreover, it 

has excellent accuracy without a need to add any sensor inside the motor. 
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10. Power Source Condition Monitoring Based On the Electromagnetic Signatures 

10.1 Overview 

The monitoring and fault detection of typical power components through the stray 

fields are proposed in this chapter. The frequency response of stray electromagnetic field 

from the components is measured through low-frequency antennas and signal analyzer. 

The proper algorithms are developed for the identification of the components, as well as 

the detection of some faults and failures. These algorithms are designed based on the 

active performance of the components including induction, DC and synchronous 

machines and converter. More than 170 tests of various combinations of the components 

and their conditions are implemented to fulfill this identification. The results show that 

the propose technique performs a reliable monitoring the components. Since there is no 

need to dismantle the components to detect the faults in this method, it can be considered 

nondestructive for the industry. Moreover, this method can be used for the applications in 

which it's impossible to access the parameters of the components for online monitoring.  

Modern technology promotes using power electronics in the power system, which has 

become more and more popular in recent years. Their electrical systems are becoming 

increasingly complex, as they are composed of microprocessor circuits, power delivery 

networks, safety control circuits, communication circuits, snubber circuits, sensors, 

drives, motors, electronic ignitions, and more. These components, which many of them 

are nonlinear, could create numerous harmonic currents to downgrade the power quality. 

Harmonic distortions cause problems, such as equipment overheating, motor failures, 

mis-operation of protective equipment, inaccurate metering, and sometimes interference 
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with communication circuits. To ensure the power quality now and in a future 

deregulated industry, the harmonic source detection is important [117]. In addition to 

harmful harmonics, the inter-harmonics sources are more troublesome and harmful than 

harmonics. Moreover, the typical problems caused by harmonics, such as overheating and 

useful life reduction, inter-harmonics create some new problems, such as sub-

synchronous oscillations, voltage fluctuations, and light flicker, even for low-amplitude 

levels [111]. Inter-harmonics can be observed in an increasing number of components, 

such as static frequency converters, cycloconverters, sub-synchronous converter 

cascades, adjustable speed drives for induction or synchronous machines, arc furnaces, 

and all loads not pulsating synchronously with the fundamental power system frequency. 

In addition to all these components, the partial failures, such as inter-turn short-circuits, 

cause the presence of inter-harmonics. The detection of the inter-harmonic polluters has 

also become a concern, as a utility company has the responsibility to provide customers 

with a power supply of a fixed quality. Identifying the inter-harmonic sources leads to the 

illustration of the power quality problem, and further mitigation process can be applied. 

To accelerate the mitigation process, practical and reliable methods for identifying the 

harmonic and inter-harmonic polluters are required. Many researches have been 

implemented in characterization and detection of the source of harmonics and inter-

harmonics [111]-[115]. In [111], the principle of the harmonic and inter-harmonic is 

discussed and the proposed model is suggested. Then, the inter-harmonic assessment is 

considered with particular attention to the problem of the frequency resolution and of the 

computational burden associated with the analysis of periodic steady-state waveforms. 

Finally, the modeling of different kinds of inter-harmonic sources and the extension of 
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the classical models developed for power system harmonic analysis to include inter-

harmonics are discussed. The modeling for assessment of the sources is discussed more 

in [112]. A new algorithm termed hybrid blind source separation is used for the 

localization. Although, the application of this localization is for high frequency 

components, identifying and locating the sources on the basis of predicted measures, 

which are used in this research, can be inferred and used for the low-frequency 

components. Some literature, such as [113], [114], focused on the improving the 

measurement and extraction techniques to enhance the investigation of harmonics and 

inter-harmonics. The enhancements are in about higher degree of accuracy, 

structural/performance robustness, and frequency adaptivity. In [115], simulation and 

experimental study of the identification of the inter-harmonic source location in power 

systems are implemented. The method is based on the inter-harmonic impedances 

measuring at the metering points and comparing them with the harmonics of the utility 

system. The main idea behind this method is that the inter-harmonic impedance of the 

system is much smaller than that of an inter-harmonic-generating load. 

In addition to the inter-harmonic, some other methods are used for source 

identification. In [116], an approximate technique is proposed for the reconstruction of 

magnetic-field distribution in the proximity of unknown sources based on two nested 

optimization algorithm. Moreover, in [117], the cascade correlation network is used for 

the harmonic source detection. The current-injection-based harmonic power flow was 

used to calculate bus voltages and total harmonic distortion. D. Srinivasan et al [118] 

proposes a neural-network (NN)-based approach to the nonintrusive harmonic source 

identification. In this approach, NNs are trained to extract important features from the 
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input current waveform to uniquely identify various types of devices using their distinct 

harmonic “signatures.” The identification is particularly implemented, based on the 

measurement of current at the incoming supply point and comparing the magnitude of 

different components from home appliances to computer apparatuses and power 

components. 

In this chapter, the identification of the power components, such as induction motor, 

DC motor, synchronous generator and power converter is proposed. The magnetic and 

electric signatures are observed in several distances in different conditions. The 

components are monitored in healthy and faulty conditions. Several cases of short-circuit 

in the machine’s winding as well as the unbalanced currents to the system, are applied to 

the machines and converter to differentiate the healthy and faulty components. Moreover, 

many other conditions are studied. The procedure of the identification method is 

discussed in section 10.2. The test procedure and different case studies are mentioned in 

section 10.3. Finally, the fault diagnosis and detection of converter requires specific 

strategies which are investigated in 10.4. 

10.2 Power component monitoring procedure 

The recognition is based on nonintrusive electromagnetic signature identification, 

without human intervention. The harmonic components of the stray electric and magnetic 

fields are measured as the sources of valuable information for electromagnetic signature 

identification. Then, a processing network was trained to identify the devices from which 

the harmonics strayed. The overall typical scheme of the studied system with the 

procedure of the recognition is shown in fig. 10.1. As shown, the proposed components 
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consist of the power converter and typical rotating machines such as DC motor, induction 

motor and synchronous generator. 

 

Fig. 10.1 Scheme of the system and identification procedure 

The monitoring process is implemented in the following steps. The procedure of these 

processes is explained in details in the following sections. 

10.2.1 Data acquisition and preliminary processing unit 

In order to analyze the electromagnetic signatures, which show the characteristics of 

the components, the strayed magnetic or electric fields are measured using the magnetic 

coil and the electric rod antennas. These specific antennas can capture low-frequencies 

down to 30Hz, so the power frequencies are covered. The electric rod antenna is used for 

the most component identifications and healthy and faulty components detection, because 

it can capture the electric stray fields at far distances. On the other hand, the magnetic 

antenna doesn’t capture the magnetic stray further than 30-40cm, which is because of the 
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weakness of the stray fields in far distances. Therefore, the magnetic coil antenna is used 

for more specific investigation, such as inter-turn short-circuits.  

After capturing the fields with the antennas, the data are sent to the EMI receiver. The 

technical details of the measurement devices are mentioned in the next section. The 

frequency responses of the stray fields are monitored through the EMI receiver. Then, 

these data are sent to the data acquisition unit for further processing. 

The acquired frequency response consists of the main harmonic orders of the stray 

fields and the inter-harmonics in between the main harmonics. The main harmonics and 

critical sub-harmonic orders are picked up for the comparison between cases. The 

attained data are used in the trained processing unit. 

10.2.2 Trained processing unit 

In order to investigate the stray harmonic and sub-harmonic orders, the physics of 

them in the machines and converters should be investigated. The comprehensive study 

about the origin and details of the harmonic sources including machines, transformer, 

converters and other components are explained in [257], [258]. The related discussion of 

the harmonics produced by the components is expressed in the following. 

The speed of the synchronous rotating field of the stator of an induction motor is the 

fundamental frequency times the wavelength, i.e. f1λ. For a slip s, the rotor speed is thus 

f1λ(1−s) and the frequency of the rotor currents sf1. 

Time harmonics are produced by induction motors as a result of the harmonic content 

of the field and m.m.f. distribution and are speed dependent. 
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A harmonic of order n in the rotor m.m.f. (i) has a wavelength λ/n; (ii) travels at a 

speed ±(sf)λ/n with respect to the rotor; and (iii) travels at a speed fλ(1−s)±(sf)λ/n with 

respect to the stator. 

The harmonic respect to the stator induces an e.m.f. in the stator at a frequency equal 

to the ratio speed/wavelength, i.e. 

(1 ) ( / )
( ( 1))

/
n

iii

f s sf n
f f n s n

n

λ λ
λ

− ±= = − ±                                                         (10-1) 

The positive sign of the harmonic is due to the opposite direction of the rotor m.m.f to 

the fundamental. If the electrical asymmetry due to the fault or unbalanced current or any 

other abnormal reasons occur, the positive and negative phase sequence currents will 

flow, giving field forward and reverse directions. The induced field due to these 

asymmetry travels at speed ±sfλ with respect to the asymmetric part, which can be stator 

or rotor. The induced frequencies by these fields could be f and (1-2s)f. These are the 

indices in the investigation of the frequency response to detect the faults or abnormal 

conditions of the induction machines. 

The harmonic behavior of the power converter as the purpose of speed drive, pulse 

width modulation-adjustable speed drives (PWM-ASD), is different in the DC - link, 

supply side, and output side [259]. Therefore, each of them should be considered for the 

diagnosis purpose. For the DC link, the harmonic is: 

( , , ) ( , , )i
hdc f dc f o f of m j r h m j r f m j r f= ⋅ = ± ⋅                                                            (10-2) 

where j is corresponds to the harmonic orders of the inverter; while, j and r integers 

depend on the modulation ratio [259]. The fo is the output frequency. The dependency 
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from modulation ratio (mf) is related to the switching strategy. For the supply side, the 

harmonic is: 

s ( ) ( ) ( 1) 1 1,2,3,...i
h s s s sf h f q fν ν ν ν= ⋅ = − ± ⋅ =                                     (10-3) 

where hs is the order of the supply side harmonic and ν corresponds to the harmonic order 

of the rectifier. The fo is the output frequency. The qs is the rectifier number of pulses. 

Finally, the harmonic for the output side is: 

( , , ) ( , , )i
ho f o f o f of m j k h m j k f m j k f= ⋅ = ± ⋅                                                            (10-4) 

where hs is the order of the supply side harmonic and k corresponds to the harmonic 

order of the output side [260]. 

The harmonics in DC machines, as well as synchronous generators are characteristics. 

The harmonics radiated from the DC motors are mainly from the winding of the 

commutation side, which creates high frequency harmonics due to the presence of the 

brushes. As the current to the rotor coils is frequently connected and disconnected to the 

DC source through the commutator segments, arcing at the brushes is produced as a 

result of the periodic interruption of the current in the rotor coils (inductors). This arcing 

has a spectral content [219]. Similarly, the excitation part of the synchronous generator 

produces the harmonic orders in addition to the harmonic orders of the power frequency. 

The harmonic contents of the synchronous generator are studied in [261]. 

All of the aforementioned hints help in the differentiation of the components, as well 

as the recognition of their normal or faulty condition. This process is considered as the 

detection unit, which is discussed in the next part. 
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10.2.3 Detecting and monitoring unit 

After importing the radiated field and extracting the harmonic orders, the harmonics 

are investigated based on the physics of the components as discussed in section 10.2.2 

and the identification of the type of component is implemented. The flowchart of this unit 

is shown in fig. 10.2.  
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Fig. 10.2 Flowchart of the component identification 

The processing unit of each decision block in fig. 10.2 was trained based on the 

characteristics of the mentioned component. The fa frequencies, in which the harmonic 

orders of the DC motor (hi) appear, can be considered from the first to the higher orders 

(31th). Similarly fb for the induction motor, fc for the converter and the other frequencies 
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for synchronous generator and other components can be considered. It is mentioned in the 

main decision blocks, shown in colors, that if more than 80~85% of the harmonic orders 

were located in the right (expected) frequencies; then, the component would be identified. 

The mentioned percentage (P) is because of the possible failures or abnormal condition of 

the proposed components. That is to say, the occurrence of short-circuits or unbalanced 

current may lead to the appearance of a new harmonic order or disappearance of an usual 

harmonic order. Therefore, some harmonic order may be missed and 100% of the 

harmonic orders may not match the expectance. The 80-85% number is obtained based 

on the experience. The percentage (P) varies between 80 and 85 due to the power level of 

the machine and the distance of the antenna to the machine. 

Since the converter can consist of the DC-link, inverter, and rectifier, further 

identification of the specific part can be employed by considering the related equations 

(10-2)-(10-4). Identifying the other components is also possible by locating their charts in 

the continuation of the main flowchart. So the extension of main flowchart is based on 

the number of available components in the system.  

After detecting the type of the components, the condition monitoring in order to find 

out any failures or faults was also considered. The related flowchart is shown in fig. 10.3. 

As shown in the figure, two symptoms are considered for diagnosing the faults. The first 

one is the percentage of “the harmonic orders located in the expected frequencies” (P) 

and the second one is the difference of the amplitude of harmonic orders in comparison 

with the healthy one (Ahi). Both indices are defined based on the characteristics of the 

components. If any component meets both indices, the component is healthy; otherwise, 

it’s faulty. The type and severity of the fault can be identified by further analysis by 
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looking at the level of deviation from the healthy condition. This can be achieved by 

analyzing the data using signal processing techniques. 

 

Fig. 10.3 Flowchart of the component identification 

10.3 Test implementation and case studies 

Following the explanation of the basics and procedure of the study, the setups were 

implemented through various case studies.  

The characteristics of the equipment used in the test through the different case studies 

are mentioned in Table 10.1. 

 

Table 10.1 The characteristic of the components 

Components Description 
EMI Receiver Coverage between 1Hz-3GHz, absolute amplitude 
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/spectrum analyzer* accuracy: ±0.5 dB to 3 GHz, displayed average noise level: –
142 dBm/Hz at 26.5 GHz, –155 dBm/Hz at 2 GHz and –
150 dBm/Hz at 10 kHz. 

Electric rod antenna* 
Active monopole antenna, Coverage between 30Hz-50 

MHz, impedance: 50Ω. 

Magnetic coil antenna* 
Coverage between 20Hz-500 kHz, 36 turns of 7-41 litz 

wire shielded with 10-Ohms resistance and 340 µH 
inductance. 

Synchronous  
Generator (GEN) 

13.8 kVA, 3phase, 60 Hz, 208-V, 1750-RPM, Vexc: 37-
V, Iexc: 1.9-A. 

Induction motor (IM1) 7.5-HP, 208-V, 1765-RPM, PF: 0.82, 60Hz, EFF: 89.5%. 
Induction motor (IM2) 10-HP, 208-V, 1760-RPM, PF: 0.83, 60Hz, EFF: 91.7%. 
Induction motor (IM3) 3-HP, 208-V, 1740-RPM, PF 0.76, 60Hz, EFF: 87.5%. 
DC motor (DC) 2-HP, 208-V, 1750-RPM, Varm: 180-V, Vf: 200/100-V. 
Multifunctional 
Converter 

B6CI, with IGBT switches, Switching algorithm: SVM, I: 
20~1500-A, VCES: 600, 1200, 1700-V 

* Measurement components are MIL-STD 461F standard compliant. 

The case studies are designed in a way to monitor various examples of power system 

setups and they are set from the simplest setup to the setup with the most components. 

The case studies are implemented in the following six steps: 

Step1: IM2 (10-HP induction motor) with and without mechanical load 

Step2: IM1 (7.5-HP induction motor) and IM2 (10-HP induction motor) at different 

locations of antenna 

Step3:  IM1 (faulty: intercoil short-circuit), IM2 (healthy) at different locations of 

antenna 

Step4:  IM1 (unbalanced current, healthy), IM2 (unbalanced current, healthy) at 

different locations of antenna 

Step5: Converter connected to the IM1 at different switching frequencies at different 

locations of antenna with and without fault 
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Step6: Synchronous Generator connected to the DC motor and IM3 (3-HP induction 

motor) at different locations of antenna 

10.3.1 Step 1: IM2 with and without mechanical load 

As the first case, the 10-HP induction motor is tested with and without load to figure 

out the effect of mechanical load on the electromagnetic signatures. The purpose of this 

step is to investigate the effect of the mechanical load on the harmonic orders. 

The test is employed at 180V with three different loads (0-NM, 3-NM, 10-NM). 

As mentioned in the procedure, the harmonic and inter-harmonic orders of these three 

cases are extracted and shown in fig. 10.4 and fig. 10.5, respectively. 

 

Fig. 10.4 Electric stray field of the step1 in dBμV/m (main harmonic orders) 

As shown in the fig. 10.4, the harmonic orders of the electric stray field (E-field) 

slightly increase, while the load is connected. However, the harmonic orders don’t 

change orderly by increasing the amount of load. Therefore, for identifying the motor 

with load from the motor without load, the study of inter-harmonics is essential. 
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The inter-harmonics of the setup of step1 are shown in fig. 10.5. The main frequency 

of the setup is 60Hz and the machine (IM2) is 4pole. Based on the fact that the 

mechanical frequency is (2/number of Pole) times the electrical frequency, the 

mechanical frequency is 30Hz. Hence, the convolution of the mechanical frequency and 

electrical frequency yields the inter-harmonics at 90Hz, 210Hz and so forth, which are 

the 1.5th, 3.5th harmonic orders of the main frequency, respectively. As shown in fig. 

10.5, the inter-harmonic orders show more changes by applying the mechanical load. 

Therefore, the algorithm for monitoring the machine with load can be designed in a way 

that the inter-harmonics compare with and without load. The amplitude of inter-harmonic 

orders of the machine with load is more than the one without load. Identifying the 

machine with load helps in the monitoring of the system with several machines to 

diagnose the faults. 

 

Fig. 10.5 Electric stray field of the step1 in dBμV/m (inter-harmonic orders) 
Note that amplitudes of harmonic or inter-harmonic orders don’t decrease based on the 

theory of harmonic orders of current/voltage, which is because of the effect of the 
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previous harmonics, see fig. 10.4, 10.5. In other words, the previous harmonic orders of a 

specific harmonic order produce sub-harmonic orders themselves. Therefore, these sub-

harmonic orders are being convolved with harmonic orders of the main frequency and 

build a higher magnitude than it was expected.  

10.3.2 Step 2: IM1 and IM2 on and off  

After recognizing the effect of the mechanical load on the electric signature, the load 

is removed from the setup and another motor is added. Adding another induction motor 

with the same number of poles but different power level was for the reason of the 

identification of the components with similar operational mechanism but different power 

level. This is the required step before studying the detection of the faulty machine, which 

is explained the next step. 

This test is implemented while the two IM motors were fed with 180V. The location 

of the antenna is changed from A to F, as shown in fig. 10.6.  

The machines are tested in all six positions to recognize the effect of each of them at 

different locations. In addition, the optimum location of antenna for better investigation is 

the other reason for testing at different locations and height of the antenna. In addition, 

the machines are switched on and off and located at different locations, as shown on the 

bottom side of the fig. 10.6. Consequently, the setup was tested in 38 circumstances. The 

results are applied to the algorithm and the identification is fulfilled. As an example, the 

comparison of some of the results, in which the antenna was located at point A, is shown 

in fig. 10.7. 
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Fig. 10.6 The locations of the antennas and motor in the tests of step2, 3, 4 
 

As illustrated in fig. 10.7, the amplitudes of more than 90 percent of the harmonic 

orders of the case, in which IM2 is switched on and IM1 is switched off, is more than the 

case, in which IM1 is switched on and IM2 is switched off. The reason is that the 

horsepower of IM2 is more than IM1. Therefore, higher current passes through the 

winding of IM2 and consequently the induced voltage is higher. This fact leads to the 

generation of more electric stray field. Accordingly, the amplitudes of the harmonic 

orders of the case in which both motors are switched on is higher than the two other 

cases. 
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This case along with the other 36 tested cases built an algorithm to identify the larger 

machine in different locations. 

 

Fig. 10.7 Electric stray field of the step2 in dBμV/m (the antenna is located at point A) 

10.3.3 Step 3: IM1 faulty: short-circuited) and IM2 (healthy)  

Following the identification of the machine in terms of the power level, the 

recognition of the faulty machine is investigated, while a healthy machine is located very 

close to the faulty one, see fig. 10.6. 

The inter-coil and the turn-terminal short-circuits are implemented into IM1. The 

locations of the short-circuited turns are shown in fig. 10.8. The TB is connected to S1 for 

the turn-terminal and S1 to S2 for the inter-coil short-circuit. The leads of these points are 

connected through a rheostat to avoid damages. This test is also done, while the two IM 

motors were fed with 180V. The location of the antenna is changed from A to F.  
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Fig. 10.8 Location of the selected turn for inter-coil and turn-terminal short-circuits (TB: 

terminal of phase B, S1 and S2: selected turns of phase B) 

The test cases in this step are implemented similar to the cases in step 2 and the 

algorithm, which is shown in fig. 10.3 is used for fault detection. For instance, the 

antenna is located at point B and the two mentioned types of short-circuits are 

implemented. The harmonic orders of the stray E-field are shown in fig. 10.9. 

As demonstrated in fig. 10.9, the harmonic orders of the faulty cases have higher 

amplitude compared to the healthy one. As the result, Ahi of fig. 10.3 is not equal to Ah-

base. Accordingly, the faulty system can be identified. In addition to the identification of 

faulty component, the type of fault can be detected. Comparing the harmonic orders of 

the two faulty cases, the harmonic orders of the turn-terminal short-circuit have higher 

amplitude.  

To identify which of the placed machines are faulty, the level of harmonic order 

variations (ΔAh=Ahi-Ah-base) can be compared. Perceiving from the step2 and 3, the ΔAh 
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is larger while the fault is placed in the larger machine. This is discussed more in the next 

step. 

 

Fig. 10.9 Electric stray field of the step3 in dBμV/m (the antenna is located at point B and 

both machines are switched on) 

10.3.4 Step 4: IM1 (unbalanced current, healthy) and IM2 (unbalanced current, 

healthy)  

The other abnormal condition of the electrical machine, which is tested here, is 

passing unbalanced currents into the phases of the windings. A resistor box is located in 

the way of the cables to the machines and each three phases of both motors are 

unbalanced individually. The results are measured similar to the two previous cases, as 

shown in fig. 10.6. 

Since this step is alike faulty step, the procedure of detecting the faulty component is 

similar to the previous one. The Pcomponent and Ahi of each case are compared with the 

healthy case, and the faulty component would be identified. To identify which machine 
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of the system is faulty, the unbalanced current at the phase A of the IM1 and IM2 are 

compared with each other, and the healthy case and displayed in fig. 10.10. The result 

shows that the harmonic orders of both machines cases increase, which is due to the 

increase of current in the machines. Note that the unbalanced current in IM2 has more 

effect in comparison with IM1. As mentioned before, the reason is the level of the IM2’s 

power that is larger than IM1. Accordingly by comparing the level of changes ΔAh, the 

machine, which carries the unbalanced current, can be detected.  

The figure shows that, some harmonic orders may decrease or do not change. For 

these kinds of cases and especially for the cases with insignificant faults, the other 

locations of antenna, such as points B and E, should be tested.  

 

Fig. 10.10 Electric stray field of the step4 in dBμV/m (the antenna is located at point B, 

both machines are switched on while there is an unbalance current in phase A) 

1 3 5 7 9 11 13 15 17 19 21 23
0

10

20

30

40

50

60

70

80

Harmonic Orders

E
 F

IE
L
D

 (
d
B

u
V

/m
)

 

 

both healthy

IM1:unbalanced, IM2:healthy
IM1:healthy , IM2:unbalanced



 

288 
 

10.3.5 Step 5: Converter connected to the IM1 at different switching frequencies 

with and without fault 

Following the fault and abnormal conditions monitoring, the healthy and faulty 

conditions of the IM1 motor connected to a multifunctional converter is studied in this 

case. The converter is controlled through a dSpace, connected to the 

MATLAB/SIMULINK control blocks. Through this, the switching frequency of the 

converter, as well as the frequency of the machine, is adjusted. The locations and 

distances of the components in this step are shown in fig. 10.11. 

 

Fig. 10.11 The locations of the antennas and components in the tests of step5 

The converter is tested in three switching frequencies (2, 2.5, and 3 kHz) to see the 

effect of changing the switches in the stray E-field. Moreover, the frequency of motor is 

altered from 60Hz to 59Hz and 58Hz.  

Fig. 10.12 displays the stray E-field from the setup, while the three switching 

frequencies (2, 2.5, and 3 kHz) are applied. Since the frequency band is expanded due to 

the presence of the converter, it’s impossible to demonstrate the comparison of all 
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harmonic orders, as shown in previous sections. Therefore, the continuous frequency 

response is used. As data tips of the figure show, the main frequencies are the power 

frequency of the machine (60Hz) and the switching frequency and its harmonics. 

Therefore, the type of components can be identified. Through this, not only the type of 

components can be identified, but also the failures or fault can be monitored. For 

example, if there is any problem in the switches, the peaks at the switching frequency 

may shift along the frequency band. Moreover, if the slip of the induction motor changes, 

the harmonic orders of the machine may not be located at the expected frequencies. 

 

Fig. 10.12 Electric stray field of the step5 in dBμV/m (the antenna is located at point B) 

The short-circuit, which is employed in step 3, is applied again to the IM1 and the 

effect of the faults on the stray E-fields at the switching frequencies are shown in fig. 

10.13. It is shown that the fault in one component, IM1 in this case, may not affect the 

other components significantly; however, the peaks at the switching frequency and its 

harmonics are changed marginally. Consequently, the faults of the inverter can be 

investigated without significant interference of the other components. 
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Fig. 10.13 Electric stray field of the step5 in dBμV/m while the IM1 is faulty (the antenna 

is located at point B) 

10.3.6 Step 6: Synchronous Generator connected to the DC motor and IM3 (3-HP 

induction motor) 

As the last case study, the synchronous generator is connected to a DC and induction 

motors to identify the different type of machines. The purpose of this step is to identify 

the different type of machines. The situation of the machines and antenna is shown in fig. 

10.14. 

 

Fig. 10.14 The locations of the antennas and components in the tests of step6 

As demonstrated in the fig. 10.14, the generator and motors are not at the same height. 

Similar to the previous cases, the stray fields are measured with several combinations of 

these components. Three cases are selected among numerous tests to be shown in fig. 

3000 6000 9000
60

70

80

90

100

110

120

Frequency (Hz)

E
 F

IE
LD

 (
d
B

u
V

/m
)

 

 
healthy

intercoil short-circuit

turn-terminal short-circuit



 

291 
 

10.15. As displayed, the harmonic orders of the case, in which the generator is connected 

to the DC machine (GEN+DC), are considerably different from the other two cases in 

terms of amplitude. This is due to the difference between the structures of the DC motor 

from the induction motor. The presence of four types of winding in DC motor, such as 

field, armature, compensation and commutation winding, creates different amplitude of 

the stray E-field. It is also shown that the presence of all machines in one of the test cases 

would lead to the highest amplitudes of the harmonic orders. However, the difference 

between the case GEN+IM3 and GEN+IM3+DC is less, which is due to the existence of 

two similar machines, generator and induction motor, in terms of working frequency. 

 

Fig. 10.15 Electric stray field of the step6 in dBμV/m (the antenna is located at point A) 

In addition to the difference of amplitudes between the above cases, the location of the 

harmonic orders along the frequency band should be compared, as mentioned in the main 

flowchart. Fig. 10.16 shows the frequency response of the above cases measured at point 
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B. The amplitudes of the 12th harmonic order in the three cases are shown in the data 

tips. As revealed, the harmonics of the first two cases appeared at 727.5Hz instead of 

720Hz, which is because of the presence of the induction motor in these two cases that 

have slip frequency. The slip frequency shifts the rotors frequency, which yields to the 

shift of the harmonic orders along the frequencies. This is one of the main hints in 

identifying the type of machines. 

 

Fig. 10.16 Electric stray field of the step6 in dBμV/m (the antenna is located at point B) 

10.4 Fault diagnosis and monitoring of power converter 

The stray magnetic and electric fields of a multifunctional power converter operation, 

while connected to a system involving an induction motor is investigated in this part. The 

impacts of the switching techniques on the radiated fields of the converter were studied 

for the purpose of evaluating EMI and for fault detection. This was achieved through the 

inspection of the magnetic and electric fields. Two of the most commonly used switching 

techniques were implemented through a hardware-in-the-loop system (HIL), studied in 
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terms of the stray. Various fault and failure conditions were applied to the converter to 

monitor the converter condition through the stray field observations. A coil and a rod 

antenna were connected to an EMI receiver to capture the fields. The fields were 

employed in further analyses. The harmonics and inter-harmonic of the stray fields were 

studied in details for system monitoring purposes. The importance of this study is 

enabling the evaluation of the optimum switching pattern for lower EMI field levels from 

the converter and for condition monitoring and fault diagnosis purposes 

10.4.1 Harmonic and Inter-Harmonic Study of the Radiated Fields 

By increasing the speed of switches, the switching loss will be lower and the 

controllability of the system increases. However, the increase of dv/dt is accompanied by 

an increase in the EMI level. Therefore, more inter-harmonics appear in the frequency 

response of the stray fields. Consequently, for a comprehensive electromagnetic stray 

field study of the drive, the harmonics and inter-harmonics of the drive are studied.   

The schematic of the proposed converter connected to the machine is shown in Fig. 

10.17. The common feature of such a double energy conversion system is that it contains 

an ac-dc rectifier and a dc-ac inverter. The rectifier and inverter are coupled through a dc 

link filter, which is either capacitor or a reactor. If the reactor or the capacitor has infinite 

value, there will be no ripples on the dc side, and consequently the ideal rectifier will 

only generate the characteristic harmonics (fh-R): 

( 1)h Rf kn f− = ±                                                                                                            (10-5) 

where k is the pulse number of the rectifier, n is an integer, and f is the power frequency. 

However, the reactor or the capacitor values are finite in practice and the ripples at the dc 
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side are inevitable. As a consequence of not having a flat dc link current, its ac side will 

be modulated by the dc ripple and the inter-harmonics could be produced. 

 

Fig. 10.17 Schematic of the test setup (PWM VSI drive) 

For example, for a 6-pulse rectifier, based on (10-5), its characteristic frequencies are 

the 1st, 5th, 7th, 11th, 13th, and so on harmonic orders. But if the dc side has a ripple of 

for example 165Hz, the ac side current will be modulated as (1st, 5th, 7th, 11th, 13th …) 

±175Hz. These are inter-harmonic components. 

In voltage source converters (VSC), in comparison with current source converters 

(CSC), more complex formulas are required to determine the dc ripple generated by the 

inverter [111]. In the case of synchronous PWM modulation technique (SPWM), the 

harmonic frequencies generated by the inverter are evaluated as: 

( , , )ripple f f outputf m i j m i j f= ± ⋅                                                                             (10-6) 

where mf is the modulation ratio with i and j as the integers depending on the modulation 

ratio. The foutput is the output frequency. The dependency of mf is related to the switching 

strategy adopted. The value of i and j for the various mf is shown in table 10.2 [111]. 
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Table 10.2 value of i and j for the various mf [111] 

mf i j 

Non triple & odd 
Even  Even  

Odd  Odd  

Non triple & even 
Even  

Even or Odd 
Odd  

Triple & odd 
Even  Even triple  

Odd  Odd triple  

Triple & even 
Even  

Triple even or odd 
Odd  

Note that the frequencies generated by inverters as shown in (10-6), will modulate 

with the rectifier’s characteristic harmonic of (10-5) and subsequently the supply-side 

frequencies will be generated: 

ss h R ripplef f f−= ±                                                                                                      (10-7) 

The supply-side frequencies (fss) are actually the inter-harmonics of the power 

frequency as long as the fripple is not synchronous with f. 

The discussed, the harmonics and inter-harmonics appear in the frequency response of 

the radiated electric and magnetic fields. Since the location of the peaks along the 

frequency band is related to the setting parameters and characteristic of the converter, the 

behavior of the converter or the malfunction of the switches would be recognized. In 

order to do so, the two common switching patterns are briefly explained. 
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10.4.2 Switching Patterns (SPWM, SVPWM) 

Amongst the most commonly used, PWM techniques are the sinusoidal PWM 

(SPWM) and the Space Vector PWM (SVPWM). A schematic diagram of the inverter 

circuit is shown in fig. 10.18 (a). 

In the SPWM technique, the control signal is simply compared to a high-frequency 

triangular waveform. The high-frequency signal represents a carrier to the control signal, 

which results in shifting the harmonic content of the output voltage to higher frequencies. 

The later can be suppressed by the high-frequency impedance of the machine. Using a 

higher switching frequency theoretically leads to a cleaner output voltage. However, the 

switching losses in the converter impose a limitation on the switching frequency that can 

be used. The aforementioned limitation is actually imposed on all PWM techniques not 

only SPWM. In terms of harmonic study, the modulation index (ma) plays an essential 

role in the harmonic content of the output voltage. This ratio does not exceed 1 in the 

SPWM technique and therefore this method does not provide full utilization of the DC 

supply voltage. The SPWM is commonly used, and further details about its 

implementation can be found in the reference [262]. 

 

Fig. 10.18 The drive system schematic diagram: (a) the inverter circuit; (b) A vector 

representation of the SVPWM technique and the margins of SPWM versus SVPWM 



 

297 
 

The output in SVPWM is represented by eight switching vectors [V0-V7] as shown in 

fig. 10.18 (b). Each of these vectors represents a switching state for the six switches. The 

control signal can be looked as a vector that is rotating in the α-β plane at the 

fundamental frequency with a length that corresponds to the desired fundamental 

amplitude. As the control vector rotates within any of the sectors, the two switching 

vectors bounding this sector along with the zero vectors are used to develop the desired 

voltage. The time is shared among the switching vectors according to the projection of 

the control vector over the switching ones (time averaging). The equations, used to 

calculate the duty cycles, are well-developed in the literature [262].The SVPWM 

generates less harmonic distortion as compared to the SPWM technique [263]. Moreover, 

it provides a more efficient utilization of the supply voltage, since the locus of the 

reference voltage in SVPWM is greater than that of the SPWM. The latter is depicted in 

fig. 10.18 (b). The locus of the reference for the SPWM technique is the inner circle with 

a radius of Vdc/2, whereas the locus of the reference for the SVPWM is the outer circle 

with a radius of Vdc/√3. The drawback of the SVPWM technique is that it requires more 

computational power than the SPWM. 

10.4.3 Experimental Result and Discussion 

The electromagnetic signature study of the proposed setup was performed 

experimentally while the converter was controlled by simulation 

(MATLAB/SIMULINK). The proposed test setup consists of a multifunctional converter 

connected to an induction motor controlled by a dSpace 1104 controller development 

environment. For measurement, the proper electric and magnetic field antennas for low- 
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frequencies were used. The data were transferred from the antennas to the EMI receiver 

based on the MIL-STD 461F standard. To eliminate any extra noises, the converter and 

the motor were located inside an isolated chamber. The controller, isolation circuit and 

transducers were all located outside the chamber to avoid any unwanted signatures. The 

details of the devices are identified in Table 10.1. 

The study was divided into three case studies. The first one was proposed to find the 

optimum switching algorithm for lower stray field production and the optimum algorithm 

for fault diagnoses. An open circuit fault was applied to one of the switches and the 

converter was tested with both SPWM and SVPWM switching algorithms with two 

different switching frequencies. Finally, an unbalanced voltage was generated by 

decreasing the voltage of one of the inverter legs. 

10.4.3.1 Optimum switching algorithm 

As mentioned in the previous paragraph, there are two reasons for optimum switching 

algorithm; lower EMI and fault detection. Fig. 10.17 shows the stray electric field (E-

field) for the SPWM and SVPWM switching algorithms with switching frequencies of 

1380 Hz and 1740 Hz. Comparing figures 10.19 and 10.20, the first inference is that the 

amplitudes of the harmonic orders of the switching frequencies have significant 

amplitude in fig. 10.19, which corresponds to the SPWM switching technique. The 

significant harmonic orders help considerably in diagnosing the faults of the converter. 

Applying the faults, the amplitudes or frequencies of the harmonic orders change. 

Considering fig. 10.20, the amplitude of the harmonic orders is not obvious. Therefore, 
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the space vector technique may not be helpful and consequently, the SPWM technique is 

optimum for fault diagnosis. 

 

Fig. 10.19 The radiated electric field from the setup with SPWM pattern in two different 

switching frequencies (fs), (a) fs:1380Hz, (b) fs:1740Hz 

 

Fig. 10.20 The radiated electric field from the setup with SVPWM pattern in two 

different switching frequencies (fs), (a) fs:1380Hz, (b) fs:1740Hz 

On the other hand, the same point is a hint for the other purpose but in an inverse 

fashion. Comparing fig. 10.20(a) with fig. 10.19(a) and also fig. 10.20(b) with fig. 
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10.19(b), the amplitude of the harmonic orders and inter harmonics are lower when the 

SVPWM is used. This is due to the lower distortion produced by this method, which was 

explained in section 10.4.2.  The data tips are located at the amplitudes of harmonic 

orders to facilitate the comparison. As can be seen, the difference between the amplitudes 

is increasing by an increase of the harmonic orders. Note that the deviation of the 

harmonic orders from the switching frequency (1380 to 1375) is because of the fripple, as 

mentioned in section 10.4.1. Consequently, the SVPWM produces lower stray fields. 

This makes this strategy an optimum choice for the application in which lower EMI is 

essential. The stray magnetic field (H-field) shows the same notes. For brevity, they are 

not mentioned in this part. 

10.4.3.2 Open-circuit fault 

An open-circuit fault was applied to the bottom switch at phase C and the effects of 

this fault on the stray fields were analyzed. The results with the SPWM technique are 

studied here, since this method was found to be optimum.  

The stray E-field and H-field of the faulty state was compared with the healthy state, 

as shown in fig. 10.21. 

Inspecting fig. 10.21(a), it can be noticed that the variation in the radiated fields at 

different switching frequencies has an observable trend. For instance, there is a repeated 

decrease in the range from 7-20 dBμV/m in at several harmonic orders with the switching 

frequency (1380 Hz). The reduction is because the applied open-circuit condition 

decreases the overall stray electric field. The analysis of the H-field spectrum is slightly 

more complex. The ripples due to the DC link, mentioned in section 10.4.1, which is 
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about triple the fundamental frequency (~175) convolves with the switching frequency. 

Therefore, the harmonic orders would be observed around 1380±175Hz. This was 

verified in fig. 10.21(b) by having the peaks at about 1200 and 1550Hz and their 

harmonic orders. Due to the occurrence of the fault, the H-field increases in an inverse 

fashion to the E-field. This is due to the DC current component when the switch is open-

circuited that flows through the faulty phase and creates magnetic field in the rotor. 

 

Fig. 10.21 The radiated (a) E-field and (b) H-field from the setup with SPWM strategy 

with fs=1380Hz in healthy and faulty states 

10.4.3.3 Unbalanced voltage fault 

The second type of fault that was applied is the loss of one of the phases (the upper 

and lower switches of one of the legs). This fault creates an unbalanced voltage, which 

has an impact on the stray filed spectrum that was measured. As shown in fig. 10.22(a), it 
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can be noticed that significant changes occur at the fifth harmonic order around 7 kHz. 

The shift of the inter-harmonics is the other symptom in this figure. Decreasing specific 

harmonic order, 5th in this case, helps in distinguishing this fault from the other faults. 

Observing the H-field in fig. 10.22(b), the main harmonic orders do not change 

dramatically, while the significant amounts of inter-harmonics appear. The reason is that 

the unbalanced voltage generates unbalanced current in the inverter and motor, which 

makes non sinusoidal m.m.f. Therefore, the unwanted harmonics and accordingly inter-

harmonics appear.  

 

Fig. 10.22 The radiated E-field from the setup with SPWM strategy with fs=1380Hz in 

healthy and unbalanced voltage faulty states 

10.5 Conclusion 

The identification of the types of power system components was implemented in this 

chapter. The electromagnetic stray field of the component was used for the study. An 
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algorithm was designed for the identification and monitoring. More than 170 

circumstances of the combinations of the typical power components were tested 

experimentally and the identification was explained. The application of the identification, 

the fault and failure detections were also experimented and studied. 

The results show that, it’s possible to identify the type of components, as well as the 

faulty components by comparing the amplitudes of their harmonic orders, as well as the 

location of the location of harmonic orders along the frequency band. This comparison 

can be processed through the explained flowcharts. The identification using the stray 

fields is nondestructive and can be used for the setups that cannot go offline and 

dismantled. 
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11. Conclusions and Future Work 

11.1 Conclusions 

This dissertation presented research and results on the study of low-frequency 

electromagnetic signature of power components. The physics based modeling of the 

power components through the computational techniques were implemented. Numerical 

modelling applications, including fault diagnosis and system condition monitoring, were 

investigated. 

Electromagnetic compatibility of power components was studied with the review of 

electromagnetic computational models and the applications, including system monitoring 

and fault, failure diagnosis. In detail, the advances in modeling electromagnetic 

compatibility were studied by classifying the various EMC models. Analytical and 

numerical modeling were compared. Details are presented for numerical modeling and 

the reason for selecting the finite element for physics based modeling of low-frequency 

EMC and electromagnetic signature studies. 

A method for frequency response model of the converter’s components was presented 

using coupled FE-transmission line method computations. FE analysis was performed to 

obtain the frequency behavioral model of the converter. The natural frequencies 

computed from the proposed s-domain model were used to analyze the circuit's electrical 

behavior and operation. The results showed that the s-domain model of the converter has 

the ability to reveal the behavior of parasitic elements, as well as higher resonances, 

which has critical impact in studying the EMI problems. This model can also be 

implemented for other types of converters, making it practical for the evaluation on 
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EMI/EMC issues at the design and development stages. The power converter is not a 

representative component of all power converter designs, but it can show the value of 

considering the effects of parasitic components on operation of the power converters, 

especially when their switching frequencies are increased. By considering the effects of 

parasitic components, one can modify the converter’s circuit design in a way to reduce 

the effects of parasitic components and set the operating condition so it satisfies the 

converter’s behavioral characteristics.  

Since there is considerable necessity for analyzing the radiated electromagnetic field 

around electrical machines and also considering that simulating multi-machine 

environment with actual models require significant time and computing resources, 

designing an equivalent source model was studied in chapter 4. Several models were 

investigated in this study and the voltage-current cube model was shown to have the best 

result among these proposed models. The GA-based PSO method was used for evaluating 

currents of the cube branches as well as voltages at the nodes.  The finite element 

analysis was used for simulation. The results show that it is possible to replace actual 

model of electrical machines with equivalent rectangular cube model. The simulation 

time of the cube model was approximately 100 times less than the actual model. This 

enables numerical simulation of multiple cases. The model was validated based upon the 

simulation of two similar induction machine with two cube models with the same center 

of coordinates.  

Although the final model has great accuracy in resembling the stray fields, it can only 

be used in one particular occasion. In other words, by changing the voltage, power or 

construction of the machine, such as number of poles and size, the model should be re-
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optimized. Therefore, a new type of modeling was designed, which was discussed with 

experimental verification as was given in chapter 6. 

The requirements and procedure of electromagnetic compatibility testing was 

explained before the use of experimental studies. The procedure for the measurement of 

radiated emission, as well as conducted emissions, was described. All the details were 

related to the low-frequency analysis. Note that the requirements for high frequency 

analysis are different for both emission and susceptibility studies. 

Considering the pros and cons of the voltage-current cube models, in order to study 

electromagnetic fields radiated from a typical connected electric power system, the 

embedded equivalent source models were designed and investigated. A new method 

termed wire modeling was used for designing this equivalent source model. It was 

created from representative cylindrical loops carrying a set of currents in the branches, as 

well as voltages at the nodes. Since power components have several types of elements, 

individual equivalent source model was designed for each of them. Several switches were 

considered for turning on and off windings. The data for the model parameters are based 

on the current density and potential difference of the actual machine. Also, the GA-based 

PSO method was used for evaluating the dimension of the model. For the analysis, 

electric and magnetic interfaced finite element method is used. The results show that it is 

possible to replace actual model of electrical machines with the equivalent source model. 

The simulation time of the proposed equivalent source model was approximately 80-100 

times lower than using the actual model. This enables the numerical simulation of 

multiple sources in a reasonable time, allowing the practical study of EMC issues during 
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electric drive development stages. The superposition and suppression of the fields in 

coupling the components were also studied and verified. 

The full 3D finite element modeling for the radiated EMI study of a typical power 

electronic drive was implemented. The physical approach for applying the switching 

activity was utilized. In order to have the detailed simulation of the model and 

simultaneously consider the non-linearity of commutation curve in the frequency 

analysis, the fast GMRES methods with proper conditioners were used as the solution 

method, which increases the simulation speed. The laboratory measurements was also 

utilized for verification of the numerical results, as well as for investigating the stray 

fields under different operating conditions. The results show that the FE model has a 

good accuracy for evaluating the stray fields. Two cases of using the inverter in the 

system were studied and their applications were explained. The results show that the 

frequency response of the field can be used for assessing shielding arrangements, as well 

as for monitoring the conditions of the drive. 

The application of EMC and electromagnetic signature studies were investigated. The 

identification of various unbalanced input condition of flowing current, as well as short-

circuit condition in the stator winding of an induction motor was developed and 

implemented in chapter 8 using the 3D FE simulations and ANN. The developed process 

was verified through measurements. Various types of unbalanced currents and short-

circuits were analyzed. The 3D FE analysis was coupled with circuit-based software to 

implement the fault states. The fast generalized minimal residual technique was used for 

expediting the numerical analysis, while high order harmonics were observed in 

frequency domain study. Various types of unbalanced currents passed into the machine’s 
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terminals, and the harmonic orders of the radiated magnetic field were obtained and 

studied. The identification was implemented manually and by using ANN for seventy 

various cases. The similar scenario was implemented for the various types of short-

circuit. The final results show that any types of unbalanced current or short-circuit states 

under various levels of terminal voltage and different locations of antenna can be 

detected by analyzing the frequency response of the radiated magnetic field. 

The identification of the type and location of short-circuits were implemented in 

chapter 9. The analysis of radiated magnetic field intensity was achieved to differentiate 

the major faults, such as intercoil short-circuit from the minor cases which could be an 

interturn short-circuit. An experimental setup was devised for testing and verifying the 

developed condition monitoring process using the magnetic field signature. The intercoil 

short-circuit was implemented and studied experimentally. Since the intercoil short-

circuit might damage the winding, a F3DFE model was developed and connected to the 

circuit-based software. The simulation results were verified experimentally. For the 

interturn short-circuit, two different optimizations for finding the most sensitive location 

of the antenna were considered, based on industrial constraint. The optimum rotation 

angle of the antenna (α), as well as the distance to the machine’s casing were obtained 

and used for identifying the fault location. The number of peaks in the field signature was 

used as part of the information for distinguishing the faults. The location of the created or 

diminished harmonic or sub-harmonic orders along the frequency were considered as the 

final information in locating the interturn short-circuits. This type of fault diagnosis is 

nondestructive and has the ability to be applied, while the motor is running. Moreover, it 

has excellent accuracy without the need to add any sensor inside the motor. 
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Finally, the identification of the types of power system components was implemented 

in chapter 10. The electromagnetic stray field of the component was used for the study. 

An algorithm was designed for the identification and monitoring. More than 170 

circumstances of the combinations of the typical power components were tested 

experimentally and the identification was explained. The application of fault 

identification for fault and failure detections were also experimented and studied.  

The results show that, it’s possible to identify the type of components as well as the 

faulty components, by comparing the amplitudes of their harmonic orders, and the 

location of harmonic orders along the frequency band. This comparison can be processed 

through the explained flowcharts. The identification using the stray fields is 

nondestructive and can be used for practical cases that cannot go offline or get 

dismantled. 

11.2 Future works 

The equivalent source modeling of the power components enables the investigation of 

electromagnetic signature studies of the power system, such as fault diagnosis, system 

condition monitoring and improvement to the performance of the system. The typical 

power setup, including synchronous generator, induction motors, DC motors and power 

converter, were modeled and the above applications were studied. It is suggested to 

expand this modeling for various power setups, such as electric vehicles, sustainable grid 

and dc grids. The fault diagnosis and condition monitoring of the mentioned setups with 

such a method would be nondestructive and reliable. 
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The fault type detection could be implemented using 3-D full finite modeling; 

however, the fault location could not be implemented because of the need to model all 

turns of winding. That is to say, the stator of one of the studied machine has 1776 turns, 

which is impossible to be simulated using full finite element method. On the other hand, 

since the detection is based on the harmonic and inter-harmonic study, the turns of 

windings must be simulated. It’s suggested to extend the wire-model for the machines to 

simulate the full structure of the winding to enable fault location using the simulation. 

Moreover, modified 3-D FE model was designed for the electromagnetic signature study 

of the converter. However, the model was successful; the combination of this model with 

many other components can be implemented in full finite element. Therefore, the wire 

model of the converter is advised to be designed, even though the wire modeling of 

switching activities through the wire modeling method would be complex. 
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