2,733 research outputs found

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Get PDF
    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications

    A visual conflict hypothesis for global-local visual deficits in Williams Syndrome: simulations and data

    Get PDF
    Individuals with Williams Syndrome demonstrate impairments in visuospatial cognition. This has been ascribed to a local processing bias. More specifically, it has been proposed that the deficit arises from a problem in disengaging attention from local features. We present preliminary data from an integrated empirical and computational exploration of this phenomenon. Using a connectionist model, we first clarify and formalize the proposal that visuospatial deficits arise from an inability to locally disengage. We then introduce two empirical studies using Navon-style stimuli. The first explored sensitivity to local vs. global features in a perception task, evaluating the effect of a manipulation that raised the salience of global organization. Thirteen children with WS exhibited the same sensitivity to this manipulation as CA-matched controls, suggesting no local bias in perception. The second study focused on image reproduction and demonstrated that in contrast to controls, the children with WS were distracted in their drawings by having the target in front of them rather than drawing from memory. We discuss the results in terms of an inability to disengage during the planning stage of reproduction due to over-focusing on local elements of the current visual stimulus

    Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures

    No full text
    Here, using an integrative experimental and computational approach, Imle et al. show how cell motility and density affect HIV cell-associated transmission in a three-dimensional tissue-like culture system of CD4+ T cells and collagen, and how different collagen matrices restrict infection by cell-free virions

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case

    Tight and simple Web graph compression

    Full text link
    Analysing Web graphs has applications in determining page ranks, fighting Web spam, detecting communities and mirror sites, and more. This study is however hampered by the necessity of storing a major part of huge graphs in the external memory, which prevents efficient random access to edge (hyperlink) lists. A number of algorithms involving compression techniques have thus been presented, to represent Web graphs succinctly but also providing random access. Those techniques are usually based on differential encodings of the adjacency lists, finding repeating nodes or node regions in the successive lists, more general grammar-based transformations or 2-dimensional representations of the binary matrix of the graph. In this paper we present two Web graph compression algorithms. The first can be seen as engineering of the Boldi and Vigna (2004) method. We extend the notion of similarity between link lists, and use a more compact encoding of residuals. The algorithm works on blocks of varying size (in the number of input lines) and sacrifices access time for better compression ratio, achieving more succinct graph representation than other algorithms reported in the literature. The second algorithm works on blocks of the same size, in the number of input lines, and its key mechanism is merging the block into a single ordered list. This method achieves much more attractive space-time tradeoffs.Comment: 15 page

    A likelihood ratio analysis of digital phase modulation

    Get PDF
    Bibliography: p. 180-188.Although the likelihood ratio forms the theoretical basis for maximum likelihood (ML) detection in coherent digital communication systems, it has not been applied directly to the problem of designing good trellis-coded modulation (TOM) schemes. The remarkably simple optimal receiver of minimum shift keying (MSK) has been shown to result from the mathematical simplification of its likelihood ratio into a single term. The log-likelihood ratio then becomes a linear sum of metrics which can be implemented as a so-called simplified receiver, comprising only a few adders and delay elements. This thesis project investigated the possible existence of coded modulation schemes with similarly simplifying likelihood ratios, which would have almost trivially simple receivers compared to the Viterbi decoders which are typically required for maximum likelihood sequence estimation (MLSE). A useful notation, called the likelihood transform, was presented to aid the analysis of likelihood ratios. The work concentrated initially on computer-aided searches, first for trellis codes which may give rise to simplifying likelihood ratios for continuous phase modulation (CPM), and then for mathematical identities which may aid in the simplification of generic likelihood ratios for equal-energy modulation. The first search yielded no simplified receivers, and all the identities produced by the second search had structures similar to the likelihood ratio of MSK. These observations prompted a formal proof of the non-existence of simplified receivers which use information from more than two symbols in their observation period. This result strictly bounds the error performance that is possible with a simplified receiver. It was also proved that simplified receivers are only optimal for modulation schemes which use no more than two pairs of antipodal signals, and that only binary modulation schemes can have simplified receivers which use information from all the symbols in their observation period

    Policy Warning and Forecast Report: Romania in 2005

    Get PDF
    corecore