121 research outputs found

    Differential Coding for MIMO and Cooperative Communications

    Get PDF
    Multiple-input multiple-output (MIMO) wireless communication systems have been studied a lot in the last ten years. They have many promising features like array gain, diversity gain, spatial multiplexing gain, interference reduction, and improved capacity as compared to a single-input single-output (SISO) systems. However, the increasing demand of high data-rate in current wireless communications systems motivated us to investigate new rate-efficient channel coding techniques. In this dissertation, we study differential modulation for MIMO systems. Differential modulation is useful since it avoids the need of channel estimation by the receiver and saves valuable bandwidth with a slight symbol error-rate (SER) performance loss. The effect of channel correlation over differential MIMO system has not been studied in detail so far. It has been shown in the literature that a linear memoryless precoder can be used to improve the performance of coherent MIMO system over correlated channels. In this work, we implement precoded differential modulation for non-orthogonal and orthogonal space-time blocks codes (STBCs) over arbitrarily correlated channels. We design precoders based on pair-wise error probability (PEP) and approximate SER for differential MIMO system. The carrier offsets, which result because of the movement of the receiver or transmitter and/or scatterers, and mismatch between the transmit and receive oscillators, are a big challenge for the differential MIMO system. The carrier offsets make the flat fading channel behave as a time-varying channel. Hence, the channel does not remain constant over two consecutive STBC block transmission time-intervals, which is a basic assumption for differential systems and the differential systems break down. Double-differential coding is a key technique which could be used to avoid the need of both carrier offset and channel estimation. In this work, we propose a double-differential coding for full-rank and square orthogonal space-time block codes (OSTBC) with M-PSK constellation. A suboptimal decoder for the double-differentially encoded OSTBC is obtained. We also derive a simple PEP upper bound for the double-differential OSTBC. A precoder is also designed based on the PEP upper bound for the double-differential OSTBC to make it more robust against arbitrary MIMO channel correlations. Cooperative communication has several promising features to become a main technology in future wireless communications systems. It has been shown in the literature that the cooperative communication can avoid the difficulties of implementing actual antenna array and convert the SISO system into a virtual MIMO system. In this way, cooperation between the users allows them to exploit the diversity gain and other advantages of MIMO system at a SISO wireless network. A cooperative communication system is difficult to implement in practice because it generally requires that all cooperating nodes must have the perfect knowledge of the channel gains of all the links in the network. This is infeasible in a large wireless network like cellular system. If the users are moving and there is mismatch between the transmit and receive oscillators, the resulting carrier offset may further degrade the performance of a cooperative system. In practice, it is very difficult to estimate the carrier offset perfectly over SISO links. A very small residual offset error in the data may degrade the system performance substantially. Hence, to exploit the diversity in a cooperative system in the presence of carrier offsets is a big challenge. In this dissertation, we propose double-differential modulation for cooperative communication systems to avoid the need of the knowledge of carrier offset and channel gain at the cooperating nodes (relays) and the destination. We derive few useful SER/bit error rate (BER) expressions for double-differential cooperative communication systems using decode-and-forward and amplify-and-forward protocols. Based on these SER/BER expressions, power allocations are also proposed to further improve the performance of these systems. List of papers included in the dissertation This dissertation is based on the following five papers, referred to in the text by letters (A-E)

    Precoded DOSTBC over Rayleigh Channels

    Get PDF
    Differential orthogonal space-time block codes (DOSTBC) sent over correlated Rayleigh fading channels are considered in this paper. Approximate expressions for the symbol error rate (SER) are derived for DOSTBC with M-PSK, M-PAM, and M-QAM constellations assuming arbitrary correlation between the transmit and receive antennas. A full memoryless precoder is designed to improve the performance of the DOSTBC over correlated Rayleigh MIMO channels. The proposed precoder design differs from the previous work: (1) our precoder design considers arbitrary correlation in the channels, whereas the previously proposed precoder design considers only transmit correlations in the Kronecker correlation model; (2) the proposed precoder is based on minimizing proposed SER, whereas the previously proposed precoder is based on minimizing the Chernoff bound of approximate SER; (3) we propose precoder design for DOSTBC with M-PSK, M-PAM, and M-QAM constellations, whereas the previously proposed precoder works for DOSTBC with M-PSK only. Additionally, the proposed precoded DOSTBC outperforms the conventional eigenbeamforming-based precoded DOSTBC for the Kronecker model with only transmit correlation

    Distributed Double Differential Space-Time Coding with Amplify-and-Forward Relaying

    Get PDF
    This paper provides the double differentially modulated distributed space-time coding for amplify-andforward (AF) relaying cooperative communications system under time-varying fading channels. In many wireless systems, the communication terminals are mobile. In such case, frequency offsets arise subjected to Doppler’s effect and frequency mismatch amongst the terminals’ local oscillators. The double differential coding is proposed to overcome the problem of frequency offsets that present in the channel due to the rapidly fast moving nodes. The advantage of the double differential is that the scheme requires neither channel nor frequency offset knowledge for decoding process at the desired destination. However, the conventional two-codeword approach fails to perform and leads to error floor, a region where the error probability performance curve flattens for high signal-to-noise ratio (SNR) regime in fast fading environment. Hence, a low complexity multiple-codeword double differential sphere decoding (MCDDSD) is proposed. The simulation results show that the proposed MCDDSD significantly improve the system performance in time-varying environment

    Soft-decision multiple-symbol differential sphere detection and decision-feedback differential detection for differential QAM dispensing with channel estimation in the face of rapidly fading channels

    No full text
    Turbo detection performed by exchanging extrinsic information between the soft-decision QAM detector and the channel decoder is beneficial for the sake of exploring the bit dependency imposed both by modulation and by channel coding. However, when the soft-decision coherent QAM detectors are provided with imperfect channel estimates in rapidly fading channels, they tend to produce potentially unreliable LLRs that deviate from the true probabilities, which degrades the turbo detection performance. Against this background, in this paper, we propose a range of new soft-decision multiple-symbol differential sphere detection (MSDSD) and decision-feedback differential detection (DFDD) solutions for differential QAM (DQAM), which dispense with channel estimation in the face of rapidly fading channels. Our proposed design aims for solving the two inherent problems in soft-decision DQAM detection design, which have also been the most substantial obstacle in the way of offering a solution for turbo detected MSDSD aided differential MIMO schemes using QAM: 1) how to facilitate the soft-decision detection of the DQAM's amplitudes, which-in contrast to the DPSK phases-do not form a unitary matrix, and 2) how to separate and streamline the DQAM's soft-decision amplitude and phase detectors. Our simulation results demonstrate that our proposed MSDSD aided DQAM solution is capable of substantially outperforming its MSDSD aided DPSK counterpart in coded systems without imposing a higher complexity. Moreover, our proposed DFDD aided DQAM solution is shown to outperform the conventional solutions in literature. Our discussions on the important subject of coherent versus noncoherent schemes suggest that compared to coherent square QAM relying on realistic imperfect channel estimation, MSDSD aided DQAM may be deemed as a better candidate for turbo detection assisted coded systems operating at high Doppler frequencie

    Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization

    Get PDF
    A class of computationally efficient linear precoders for space-time block coded multiple-input multiple-output wireless systems is derived based on the minimization of the exact symbol error rate (SER) and its upper bound. Both correlations at the transmitter and receiver are assumed to be present, and only statistical channel state information in the form of the transmit and receive correlation matrices is assumed to be available at the transmitter. The convexity of the design based on SER minimization is established and exploited. The advantage of the developed technique is its low complexity. We also find various relationships of the proposed designs to the existing precoding techniques, and derive very simple closed-form precoders for special cases such as two or three receive antennas and constant receive correlation. The numerical simulations illustrate the excellent SER performance of the proposed precoders

    Design and performance analysis of quadratic-form receivers for fading channels

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Performance analysis of space-time block coded systems with channel estimation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore