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Abstract

Quadratic-form receivers (QFRs), which have quadratic-form decision met-

rics, are commonly used in various detections for fading channels.

As one important type of QFRs, quadratic receivers (QRs) are usually em-

ployed when sending additional training signals to acquire channel state informa-

tion (CSI) at the receiver is infeasible. In multiple-input-multiple-output (MIMO)

systems, such a QR is used to perform maximum-likelihood detection for unitary

space–time modulation (USTM) which has been widely accepted as a bandwidth-

efficient approach to achieving the high capacity promised by MIMO systems. In

this dissertation, we first derive some tight bounds on the pairwise error proba-

bility (PEP) of the QR for USTM over the Rayleigh block-fading channel, and

discuss their implications to constellation design. Then to realize the large per-

formance improvement potential of USTM offered by having perfect CSI at the

receiver, we design three generalized quadratic receivers (GQRs) to incorporate

channel estimation in detecting various unitary space–time constellations without

the help of additional training signals. These GQRs acquire CSI based on the

received data signals themselves, and thus conserve bandwidth resources. Their

PEP reduces from that of the QR to that of the coherent receiver as the channel

memory span exploited in channel estimation increases. A closed-form expression

of the PEP is derived for two of the GQRs under certain conditions.

We next turn our attention to the performance analysis of QFRs in general.

It is well known that the first-order and the generalized Marcum Q-functions

arise very often in such performance analyses. Thus, we study these Marcum

vii



ABSTRACT

Q-functions in detail by using a geometric approach. For the first-order Mar-

cum Q-function, some finite-integral representations are first derived. Then some

closed-form generic bounds and simple bounds are proposed, which involve only

exponential functions and/or complementary error functions. Some generic and

simple single-integral bounds are also developed. The generic bounds involve an

arbitrarily large number of terms, and approach the exact value of the first-order

Marcum Q-function as the number of terms involved increases. The simple bounds

involve only a few terms, and are tighter than the existing exponential bounds for

a wide range of values of the arguments. For the mth-order Marcum Q-function,

some closed-form representations are derived for the case of the order m being

an odd multiple of 0.5, and some finite-integral representations and closed-form

generic bounds are derived for the case of m being an integer. In addition, we

prove that this function is an increasing function of its order. Thus, the Marcum

Q-function of integer order m can be upper and lower bounded by the Marcum

Q-function of orders (m + 0.5) and (m− 0.5), respectively, and these bounds can

be evaluated by using our new closed-form representation.

Based on the new representations and bounds for the first-order Marcum Q-

function, we obtain a new single-finite-integral expression and some closed-form

bounds for the average bit error probability of QFRs over fading channels for a

variety of single-channel, differentially coherent and quadratic detections.

viii
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Chapter 1

Introduction

High data rate communications through wireless channels have become more

and more popular during the last two decades. This requires a corresponding

improvement in the transmission rate and reliability of wireless communication

systems. In single-antenna systems, an obstacle to achieve reliable wireless com-

munications is multipath fading. Multipath fading refers to the random amplitude

and phase variations of the received signal, which arise from constructive or de-

structive additions of multiple delayed and attenuated versions of the transmitted

signal received from different paths due to reflection, diffraction and scattering of

radio waves by surrounding objects. When destructive addition occurs, the re-

ceived signal strength is diminished, and this attenuated signal is hard to detect.

An effective method to mitigate the negative effect of fading is to use diversity

techniques [1]. Diversity techniques provide multiple replicas of the information-

bearing signal received from multiple, independent fading channels. Since these

fading channels are statistically independent, the probability of all these replicas

suffering deep fades at the same time is small. Thus, at each time instant, there

is at least one replica whose strength is high enough for the receiver to detect.

Diversity can be provided in different domains. In the frequency domain, fre-

quency diversity can be obtained by using multiple carriers or wideband signals.

In the temporal domain, time diversity can be obtained by using channel cod-
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ing and interleaving. In the spatial domain, space diversity can be obtained by

using multiple antennas separated by a few wavelengths. These three types of

diversity techniques can be exploited separately or jointly. In a system exploiting

space diversity, multiple antennas can be used either at the transmitter, or at the

receiver, or both. These various configurations are referred to as multiple-input-

single-output (MISO), single-input-multiple-output (SIMO), and multiple-input-

multiple-output (MIMO) systems, respectively. It has been shown that MIMO

systems have a potential to offer a significant increase in the theoretical channel

capacity [2–4].

At the receiver side, various receiver structures can be used to detect the

received faded signals. A brief overview of receivers commonly used for fading

channels is given in the following section.

1.1 Overview of Receivers for Fading Channels

In a fading environment, the received signals are detected at the receiver

according to the modulation scheme used in transmission and the availability of

knowledge on channel state information (CSI).

In digital communication systems, digital information data can be transmit-

ted by modulating one or more of the amplitude, phase and frequency of the

carrier. The modulation schemes with only one of the carrier attributes being

modulated at M levels are called M -ary amplitude-shift keying (ASK), M -ary

frequency-shift keying (FSK), and M -ary phase-shift keying (PSK).

In the simpler case that the received signal is only corrupted by additive

white Gaussian noise (AWGN), the type of detection techniques used depends

on the availability of knowledge of the carrier phase at the receiver [1, 5]. If

the receiver has perfect knowledge on the carrier phase as well as the carrier

frequency, it can reconstruct the carrier accurately and use this carrier to perform

a complex conjugate demodulation of the received signal. Thus, coherent detection
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is performed by this coherent receiver (CR). If the receiver has partial knowledge

of the carrier phase, and only can reconstruct the carrier with phase errors, then

partially coherent detection can be performed. If the receiver has no knowledge of

the carrier phase and also makes no attempt to estimate it, the received signals can

be demodulated by using a zero-phase carrier reference. Then quadratic detection

(also referred to as square-law detection) can be performed by using a quadratic

receiver (QR) (also referred to as square-law receiver) to detect only the squared

envelopes of the outputs of the matched filters corresponding to all the possible

transmitted signals. Envelope detection can also be used, which is performed by

using a matched-filter-envelope-detector, and is equivalent to quadratic detection.

These energy detections cannot be employed with M -ary PSK modulation, since

for M -ary PSK, the information is carried by the carrier phase.

In the case that the received signal is corrupted by channel fading as well

as AWGN, the effect of the channel gains should also be taken into account in

detections. In this case, the carrier phase can be regarded as a part of the random

phase introduced by the channel fading [1, 5]. If the channel gains are perfectly

known to the receiver, a CR can be used, in which the channel gains are employed

as a coherent reference in data detections [6, 7]. However, the channel gains

are in practice not known to the receiver. One solution to this problem is to

send training signals, and to estimate the channel gains at the receiver [8, 9].

The estimate of the channel gains can be used as a partially coherent reference,

and partially coherent detection can be performed [10–12]. This solution requires

additional bandwidth resources for sending training signals. To save bandwidth

resources, we can send training signals only at the beginning of a data frame, and

then use the decision-feedback method to estimate the channel gains during the

rest of the data frame [13–16]. This decision-feedback method has a shortcoming,

i.e., undesired error propagation may occur. An alternative solution is to use some

detection techniques which do not require channel estimation at the receiver. If the

channel fading is slow enough and the channel gains over two successive intervals
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are approximately the same, differential transmission and detection can be used

[1, 5, 17–19]. The information data to be communicated in the current interval are

carried by the transmitted signals in the previous and current intervals, and the

receiver takes the received signal in the previous interval as a reference to arrive

at the decision on the current information data. When the channel fades rapidly,

the performance of differential detection may degrade substantially. Quadratic

detection is another common technique, which uses a QR to detect signals without

extracting CSI. Since a QR yields decisions based on the squared envelopes, the

decision metric of a QR is usually given in terms of the norm squares of complex

Gaussian random variables [1, 5, 20, 21].

In addition to quadratic detection, decision metrics of many receivers in coher-

ent, partially coherent and differentially coherent detections can also be cast into

a quadratic form of complex Gaussian random variables, and all these receivers

can be classified as quadratic-form receivers (QFRs). The concept of the QFR is

obviously more general than the QR, because in addition to the norm squares of

random variables, a quadratic-form decision metric may also include cross terms.

Since QFRs have such wide applications, it is worth putting some effort into the

design and performance analysis of QFRs. In the following, a literature review of

QFRs and some related topics will be given.

1.2 Review of Quadratic-Form Receivers and

Related Topics

The quadratic-form receiver is one of the most common receiver structures

used in various detections. In this section, we will first review some important

results presented in the literature for general forms of QFRs. Then among all kinds

of QFRs, we put emphasis on the QR and its generalization, i.e., the generalized

quadratic receiver (GQR), in SIMO systems. Since this GQR has shown some

great properties in improving the error performance of the QR, it is desirable to
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extend this technique to other systems. To investigate the possibility of extending

the idea of the GQR to MIMO systems, we will review some popular schemes

used in MIMO systems to determine which scheme can profit from this technique

and deserves further study. In addition to extending the GQR concept to MIMO

systems, we are also interested in the performance analysis of QFRs in general.

Since the Marcum Q-functions are often involved in this performance analysis, it

is helpful to learn more about their behavior. We will review some results on the

Marcum Q-functions in the last part of this section.

1.2.1 Quadratic-Form Receivers

For single-channel detections, a unified performance analysis for both FSK

with quadratic detection and PSK with differentially coherent detection was first

given in [22] and presented later in [20]. In the PSK case, a transformation

corresponding to a 45◦ rotation in the coordinate system was used to obtain a

decision metric similar to that in quadratic detection. Thus, the decision rule

for both the cases was formulated as a comparison between the squared norms

of two independent, nonzero-mean, complex Gaussian random variables. The

corresponding error probability was given in terms of the first-order Marcum Q-

function. A pair of tight upper and lower bounds on this error probability was

given in [23].

For multi-channel detections, there are two types of general quadratic-form

decision metrics in complex Gaussian variables discussed in the literature. The

first type is given by a sum of independent random variables, each of which cor-

responds to a channel and is a weighted sum of norm squares and cross terms of

two correlated, complex Gaussian random variables [24–29]. It applies to various

detections if different values are set for the three sets of weights, two sets of real

weights for norm squares and one set of complex weights for cross terms. In [24],

a simpler case was first considered, in which the values of the weights are indepen-

dent of the channel index, and the Gaussian random variables have zero means and
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channel-independent variances and covariances. The probability density function

(PDF) and the characteristic function (CF) of this simpler quadratic form, as well

as its probability of being positive or negative, were given in closed form. In [25],

the discussion was extended to the nonzero mean case. The CF of the quadratic

form was given in closed form, and the probability of the quadratic form being neg-

ative was evaluated by using the results in [30]. An alternative expression for this

probability was derived similarly in [26]. Compared to these two results, Proakis’

result for the same probability derived in [27] and presented in [1, Appendix B]

is much more well-known. Proakis’ result was given in terms of the first-order

Marcum Q-function and the modified Bessel functions of the first kind, and was

further rewritten in terms of the generalized Marcum Q-function in [31]. In [28],

the PDF and the cumulative distribution function (CDF) of the above quadratic

form were given in terms of infinite series. It was also shown in [26, 28] that the

above quadratic form in nonzero-mean complex Gaussian variables is equivalent

to a weighted sum of two independent, normalized, noncentral chi-square random

variables which have the same number of degrees of freedom, i.e., twice the num-

ber of independent channels, and different noncentrality parameters. Thus, it is

clear that to evaluate the CDF of the above quadratic form at an argument value

of zero is equivalent to evaluating the probability of one noncentral chi-square

random variable exceeding another with the same number of degrees of freedom.

The latter probability was evaluated in [32] as a generalization of the case in [22],

but only a two-fold infinite series result was obtained, not as simple as those in

[25–28]. In [33], the discussion was further extended to the case of a weighted

sum of two independent, noncentral chi-square variables with different numbers

of degrees of freedom. The CDF of this quadratic form evaluated at an argument

value of zero was given in a form similar to that in [1, Appendix B] or in [31], i.e.,

given in terms of the generalized Marcum Q-function. In [29], the quadratic form

in [24] was extended in the sense that the weights, variances and covariances of

zero-mean complex Gaussian variables can be nonidentical for different channels.
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The CF of this quadratic form was given in closed form, and the CDF was given

in terms of residues.

The second type of general quadratic-form decision metric in complex Gaus-

sian variables is written in terms of an indefinite Hermitian quadratic form of a

complex Gaussian random vector [20, 34–38]. This general form applies to various

detections by using different definitions for the Gaussian random vector and the

Hermitian matrix. The closed-form CF of this quadratic form was first given in

[34] for the case that the complex Gaussian random vector has a nonzero mean

vector and a nonsingular covariance matrix. Some alternative expressions for this

CF were given in [20, Appendix B] and [38]. For the case that the complex Gaus-

sian random vector has a zero mean vector, the CDF of the central quadratic form

was evaluated at an argument value of zero in [35] with a closed-form result, and

evaluated at an argument value of arbitrary real number in [37] with residue-form

results. For the case that the complex Gaussian random vector has a nonzero mean

vector, the PDF and the CDF of the noncentral quadratic form were given in [36]

in terms of infinite series expansions. In [36] and [20, Appendix B], the indefinite

quadratic form of a complex Gaussian random vector with nonzero-mean and cor-

related elements was shown to be equivalent to a weighted sum of norm squares

of independent complex Gaussian random variables with different nonzero means

and identical variances. This was further shown in [36] to be a weighted sum of

independent, normalized chi-square random variables with different numbers of

degrees of freedom and different noncentrality parameters. In [39], an indefinite

quadratic form in a real Gaussian random vector was also shown to be equivalent

to a weighted sum of independent, normalized chi-square random variables with

different numbers of degrees of freedom and different noncentrality parameters.

Hence, all the results in [39] and its references for indefinite quadratic forms, or

for linear combinations of noncentral chi-square variables can be applied directly

to the complex quadratic form.

From the above literature review, we can see that QFRs have a wide range
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of usage, and are involved in various detections. Although a lot of work has been

done for evaluating the distributions of the general quadratic forms, only for some

special cases have the PDF and the CDF been given explicitly in finite closed-form

expressions. In the explicit, closed-form expressions of the CDF evaluated at an

argument value of zero, the Marcum Q-functions are often involved, which will be

discussed later in this section.

Having given a review of the general forms of the QFR, we next concentrate

on its special cases, i.e., the QR and the GQR in SIMO systems.

1.2.2 Quadratic Receiver and Generalized Quadratic Re-

ceiver in SIMO Systems

In SIMO systems, if the channel gains are unknown to the receiver, the opti-

mal receiver for binary orthogonal signals is a QR [40, ch. 7]. This QR compares

the norm squares of the two received signal vectors. Each of these vectors consists

of the outputs of the filters matched to one possible transmitted signal for multi-

ple, independent Rayleigh fading channels. In [41], Kam proposed that this QR is

identical to a detector–estimator receiver. This is because in the new coordinate

system obtained by rotating the original coordinate system counterclockwise 45◦,

the binary orthogonal signal structure can be considered as the combination of an

antipodal signal set and an unmodulated component. The unmodulated compo-

nent of the received signal can be used as a channel measurement in the estimator

to obtain an estimate of the channel gains. This channel estimate then provides

a partially coherent reference for the detector in detecting the data carried by the

antipodal signaling component of the received signal. Thus, the QR is actually not

a noncoherent receiver, and there is no receiver which is completely noncoherent.

An immediate benefit of this new interpretation for the QR is that it shows

clearly the possibility of obtaining an error performance much better than that

of the QR by improving the accuracy of the channel estimate without consuming

any additional bandwidth resource. This possibility was extensively investigated
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in [42] by introducing a new concept, i.e., the generalized quadratic receiver. The

main idea of the GQR was to exploit the correlation or the memory of the channel

between signaling intervals by using also the received signals over the adjacent

intervals in the channel estimation. The channel estimation accuracy can thus be

improved, and this leads to an improvement in the error performance. Thus, when

the channel estimation is just based on the CSI contained in the received signal

in the current interval, the GQR shows the same error performance as the QR.

When the channel estimation also exploits the CSI contained in the received sig-

nals over the adjacent intervals, the GQR will provide a better error performance

than the QR. If the channel fading is slow enough, the error performance of the

GQR asymptotically approaches that of the CR as the number of signal intervals

involved in the channel estimation increases. Since this GQR only extracts the

CSI contained in the data signals themselves, it does not require additional band-

width for sending additional training signals, and in this sense is superior to other

partially coherent detections.

Although the GQR has been shown to have many good properties in dealing

with binary orthogonal signals in SIMO systems, its extension to MIMO systems

has not been investigated in the literature. To extend the GQR concept to MIMO

systems, we need to first examine some popular schemes designed for MIMO

systems, and determine schemes for which it is possible to design a GQR.

1.2.3 Space–Time Coding and Unitary Space–Time Mod-

ulation

Space–time coding (STC) is a technique designed to provide diversity,

multiplexing and coding gains and to achieve the capacity of MIMO systems

[4, 6, 7, 21, 43–50]. The theoretical capacity of MIMO systems over flat Rayleigh

fading channels has been shown to increase linearly with the smaller of the num-

ber of transmit and the number of receive antennas in high signal-to-noise ratio

(SNR) regime, provided that the channel gains between all pairs of transmit and
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receive antennas are statistically independent and known to the receiver [2–4].

To achieve this capacity, Tarokh et al. first introduced space–time trellis codes

(STTC) in [6], which offer transmit diversity and coding gains without bandwidth

expansion. The performance of STTC with or without channel estimation errors,

mobility, and multiple paths was investigated in [6, 44]. The famous rank and

determinant code design criteria were proposed therein for Rayleigh and Rician

channels. Although STTC can simultaneously offer a substantial coding gain,

spectral efficiency, and diversity improvement for flat fading channels, this scheme

has a potential drawback that the maximum-likelihood (ML) decoding complex-

ity grows exponentially with transmission rate and the required diversity order.

Thus, the realizable transmission rate may be limited by the available decoder

complexity.

To solve this problem, Alamouti first proposed a much simpler scheme to

provide full transmit diversity for systems with two transmit antennas in [43], but

this scheme suffers a performance loss compared to STTC. Alamouti’s scheme

requires no bandwidth expansion and only needs linear decoding because of the

orthogonality of the transmitted matrix. Inspired by Alamouti’s scheme, Tarokh

et al. introduced the term space–time block codes (STBC) in [7], and applied

the theory of generalized orthogonal designs to the construction of STBC with

the maximum diversity order for an arbitrary number of transmit antennas. Like

Alamouti’s scheme, the orthogonal structure of STBC makes it possible to use

a ML decoding algorithm based only on linear processing at the receiver. A

shortcoming of STBC is that the coding gain provided by STBC is very limited.

Besides, non-full rate STBC will introduce bandwidth expansion.

The good performance of the above space–time schemes is based on the as-

sumption that perfect CSI is available to the receiver and coherent detection is

performed. CSI can be obtained at the receiver by performing channel estimation.

When channel estimation is imperfect, the performance of STTC and STBC will

degrade [4, 44, 51–53]. Since neither coherent detection nor partially coherent
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detection employs QRs in data detections, we cannot extend the GQR concept to

the schemes STTC and STBC.

In some scenarios, sending training signals to acquire CSI at the receiver is not

desirable or feasible, due to the limited bandwidth resources or rapid changes in

the channel characteristics. For such scenarios, Hochwald and Marzetta proposed

in [21, 45, 54] a scheme called unitary space–time modulation (USTM) which does

not require either the receiver or the transmitter to know the channel gains. In

the USTM scheme, transmitted signal matrices are orthonormal in time across

the antennas. They are selected from unitary space–time constellations (USTC)

according to the input information bits, and are transmitted through multiple

transmit antennas in a time-block which is composed of a number of coherent

symbol periods. The USTM scheme can achieve full channel capacity at high

SNR either when combined with channel coding over multiple independent fading

intervals [21, 45, 54], or when the length of the coherence interval and the number

of transmit antennas are sufficiently large (called autocoding) [55–58]. It was

shown in [21] that a QR is required for ML detection in USTM over the flat

Rayleigh block-fading channel. This QR seeks to maximize the squared length

of the projection of the received matrix onto the complex subspaces spanned by

the possible transmitted matrices. Since USTM has been widely accepted as an

important, capacity-achieving space–time coding scheme, it is worth investigating

the performance of the QR and developing some GQRs for USTM to improve its

error performance.

In [21], Hochwald and Marzetta analyzed the error performance of the QR

for USTM. The pairwise error probability (PEP) of the QR was given in terms

of residues for arbitrary USTC. For the special case that the product of the two

unitary signal matrices concerned has equal singular values, this PEP expression

can be reduced to a simple closed form. However, for the general case of unequal

singular values, this PEP expression requires one to compute residues, and thus

cannot give much insight on the performance of USTM. An alternative closed-form
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expression was derived in [59] for both the cases of equal and unequal singular val-

ues by using Craig’s formula for the Gaussian probability integral [60]. However,

this PEP expression involves the computation of high-order derivatives, and is not

so straightforward and desirable in analytical applications.

Since there is no simple, explicit, closed-form expression for the exact PEP of

the QR for USTM available so far, to meet the demands for rapid evaluation of the

USTM performance in analytical applications such as signal design, researchers

have to resort to bounds on the exact PEP. Hochwald and Marzetta derived in

[21] a Chernoff upper bound (CUB) in closed form. From this CUB, two signal

design criteria have been developed. The first one is called diversity sum crite-

rion [54, 61, 62], which is valid for low SNR or small singular values. The second

one is called diversity product criterion [19, 62], which is valid for high SNR.

However, the diversity sum criterion cannot guarantee full diversity, and both of

these two criteria cannot guarantee a low symbol error rate (SER). To solve this

problem, McCloud et al. proposed in [63] an asymptotic union bound (AUB)

design criterion for high SNR and correlated channels, based on the asymptotic

error probability analysis of QFRs in [37]. Compared with the diversity product

and diversity sum criteria, this AUB design criterion can provide signal constella-

tions with a better SER performance, but its form is more complicated and will

consume more computation time. Since designing new optimal USTC to provide

better error performance with simple encoding and decoding complexity is of great

interest [21, 54–59, 61–72], it is still desirable to develop some new, simple and

tight bounds on the PEP of the QR for USTM to facilitate signal design.

In addition to the receiver design and error performance analysis for the

scenario where CSI is unknown to the receiver, Hochwald and Marzetta also gave

in [21] the results for the scenario where CSI is perfectly known to the receiver.

The performance advantage for knowing perfect CSI was shown to be a 2 to 4

dB gain in SNR [21, 54]. Although the scheme of USTM was designed mainly

for the scenario where neither the transmitter nor the receiver knows the channel
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gains, the large performance potential offered by the channel knowledge provides a

great motivation to incorporate channel estimation and perform partially coherent

detection in USTM. To estimate the channel, sending training signals is a method

commonly used [9, 10, 38, 64, 73]. However, this method will reduce the bandwidth

efficiency. In the literature, little work has been done in designing and analyzing

partially coherent receivers for USTM [10, 38, 73]. No attempt has been made to

develop a channel estimation method for USTM, which does not require the help

of additional training signals, and which exploits the channel memory to improve

the USTM performance. Thus, if it is possible to extend the GQR concept to

USTM, we may improve the error performance of USTM significantly without

sacrificing bandwidth efficiency.

Another well-known technique used when neither the receiver nor the trans-

mitter has knowledge of CSI is differential transmission and detection. This tech-

nique was also extended to MIMO systems employing space–time coding. Differen-

tial unitary space–time modulation (DUSTM) was proposed in [18, 19] under the

assumption that the channel gains were approximately constant over two consecu-

tive time-blocks. This scheme can be seen as an extension of standard differential

PSK to MIMO systems, and has attracted great interest from many researchers

[18, 19, 38, 73–97]. In addition to USTM, STBC was also combined with differ-

ential technique in [17, 98–102]. Since these differential schemes do not use QRs

in their data detections, we cannot extend the GQR concept to them. Thus, we

will not discuss them further in this dissertation.

In addition to the performance analysis of QRs and design of GQRs in MIMO

systems, we are also interested in the error performance analysis of a general QFR,

which takes the general quadratic form in complex Gaussian random variables

as the decision metric and is a general form of many QFRs of interest. From

the literature review on QFRs in Section 1.2.1, we can see that the first-order

Marcum Q-function and the generalized Marcum Q-function are often involved in

the expressions of the error performance of the general QFR. Thus, we next review
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some important results in the literature for these two Marcum Q-functions.

1.2.4 Marcum Q-Functions

The first-order Marcum Q-function, Q(·, ·), was first introduced in [103, 104].

It is the tail probability of a normalized Rician random variable. Similarly, the

generalized Marcum Q-function, Qm(·, ·), is the tail probability of a generalized

normalized Rician random variable, or equivalently the tail probability of a nor-

malized noncentral chi-square random variable with 2m degrees of freedom [1, 5].

The canonical forms of these two functions were given in terms of an infinite in-

tegral with an integrand involving the modified Bessel function of the first kind,

over an argument-dependent range. While a lot of work has been done for the nu-

merical computation of these Marcum Q-functions [105–112], it is often desirable

to have a further analytical handle by which a more detailed evaluation of the

system performance can be carried out, providing one with, for instance, insights

into optimization of system performance with respect to system parameters. In

problems involving transmission over fading channels especially, one often would

also need to do statistical averaging over the arguments of the functions, and thus

need to evaluate infinite integrals involving the Marcum Q-functions numerically

and analytically. In these scenarios, using the canonical forms of the Marcum

Q-functions may be unsuitable. Some alternative representations for the Mar-

cum Q-functions were developed in [113–115], which involve only a finite integral

over one or two exponential integrands. Another alternative representation was

given in [116], which involves the zeroth-order modified Bessel function of the

first kind and a finite integral over an integrand involving the exponential func-

tion and the complementary error function. The alternative representations in

[113, 114] have been used to deal with many performance analysis problems in

[5, 31, 117–119]. They can help to reduce some numerical computation problems

involving the Marcum Q-functions, and even can lead to some closed-form results

in further analytical manipulations of the Marcum Q-functions in some cases.
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However, not all problems can be solved by using these alternative representa-

tions. Thus, bounding the Marcum Q-functions using some simpler closed-form

functions, such as the exponential function, the complementary error function,

and the modified Bessel function of the first kind, may be needed to facilitate an-

alytical work involving the Marcum Q-functions. Some exponential bounds were

derived in [23, 114, 120, 121]. Some more complicated bounds, which involve the

modified Bessel function together with the exponential function and/or the com-

plementary error function, were given in [116, 121, 122]. All the approaches used

so far in the references mentioned to obtain representations and bounds for the

Marcum Q-functions have been purely mathematical, usually resorting to alterna-

tive representations and bounds on the functions involved in defining the Marcum

Q-functions. The bounds obtained either are simple enough but not sufficiently

tight, or are complicated and not easy to use in theoretical analyses. Thus, bounds

which are tight and defined in terms of simple functions, such as the exponential

function and the complementary error function, are still of interest. In addition

to the closed-form bounds, it may also be helpful to derive some bounds which

involve finite integrals but can lead to closed-form results in the further analytical

manipulations of the Marcum Q-functions.

1.3 Research Objectives

As addressed in the above section, QFRs have great significance in com-

munication systems. In our study on QFRs, we begin by evaluating the error

performance of the QR for USTM. As mentioned in Section 1.2.3, although the

USTM scheme is one of important STC techniques and has attracted a great deal

of attention, the exact PEP expressions of the QR for USTM over the flat Rayleigh

block-fading channel were still given in implicit forms, involving the computation

of either residues or high-order derivatives. Thus, one of our objectives here is to

develop some new, simple, tight, upper and lower bounds on the PEP of the QR
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for USTM, which can be used as better approximations to the PEP and can give

some insights into the signal design criteria.

In addition to deriving new bounds on the PEP of the QR, we are also

interested in designing new receivers for USTM to improve its error performance

further. As mentioned in Section 1.2.3, the error performance of USTM can

be significantly improved by learning and using perfect CSI at the receiver. The

studies in the literature have all resorted to sending training signals to acquire CSI,

and thus require additional bandwidth resources. This motivates us to extend the

GQR concept reviewed in Section 1.2.2 to USTM so that the large performance

gap between the QR and the CR can be bridged, and at the same time the merit

of USTM, i.e., not wasting bandwidth resources for additional training signals,

can be kept.

After designing and analyzing the GQRs for USTM, we will extend our work

to the performance analysis of QFRs in general. As mentioned in Section 1.2.4,

the first-order Marcum Q-function and the generalized Marcum Q-function are

frequently involved in the performance analysis of QFRs. All the alternative

representations and bounds available in the literature were developed by using

mathematical approaches, and these bounds may be either not tight enough in

some applications or too complicated to use in further analytical manipulations.

Our work here is to use a geometric approach to derive some new, simpler rep-

resentations and tighter bounds for the first-order and the generalized Marcum

Q-functions, which can be used to facilitate the evaluation of the error performance

of QFRs.

Furthermore, it is also within our research interests to use newly derived

representations and bounds for the first-order Marcum Q-function to derive some

new representations and bounds for the average bit error probability of QFRs over

fading channels in a variety of single-channel, differentially coherent and quadratic

detections.
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1.4 Research Contributions

We propose in Chapter 2 two upper bounds and one lower bound on the PEP

of the QR for USTM over the flat Rayleigh block-fading channel. Our first upper

bound is tighter than the CUB in the literature at high SNR. Our second upper

bound is much tighter than the CUB over the entire SNR range. Our lower bound

is tighter than the lower bound in the literature at low SNR. Our second upper

bound and our lower bound are very close to each other. In some cases, they

are even equal, and give the exact expression for the PEP. Implications of these

two bounds for the USTM constellation design are discussed. These implications

can improve the existing design criteria, and may help in designing some new

constellations which have a better error performance than those available in the

literature.

To further improve the error performance of USTM, we extend the idea of

the GQR to the USTM scheme over the flat Rayleigh block-fading channel in

Chapter 3. Three GQRs are designed for various USTC in which signal matrices

may or may not contain explicit, inherent training blocks, and may or may not

be orthogonal to one another. The newly derived GQRs incorporate a linear

minimum mean-square error (MMSE) channel estimator. They extract the CSI

inherent in the received data signals themselves, and thus conserve bandwidth

resources. They can provide a substantial improvement in error performance over

the QR, and in fact, their error performance approaches that of the CR as the

channel memory span exploited in channel estimation increases. A closed-form

expression of the PEP is derived for two of the GQRs with USTC satisfying

certain conditions. This PEP expression is given in terms of the mean-square

error of the channel estimate, and thus shows clearly the dependence of the error

performance on the channel estimation accuracy. Our simulation results agree well

with these theoretical analyses on the error performance. In addition, the GQR

designed for a certain class of USTC is simplified, and its complexity for large-

sized constellations can be even less than that of the QR or that of the simplified
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form of the QR.

To facilitate the error performance analysis of QFRs, we evaluate the first-

order Marcum Q-function in Chapter 4 by using a geometric approach. Based on

the geometric view of the first-order Marcum Q-function, some new finite-integral

representations and some closed-form or single-integral bounds are derived. The

new finite-integral representations are simpler than those in the literature. The

new bounds include the generic and simple exponential bounds which involve only

exponential functions, the generic and simple erfc bounds which involve only com-

plementary error functions, together with exponential functions in some cases, and

the generic and simple single-integral bounds which involve finite, single integrals

with simple exponential integrands. The generic bounds involve an arbitrarily

large number of terms, and approach the exact value of the first-order Marcum

Q-function as the number of terms involved increases. The simple exponential

bounds and erfc bounds are tighter than the exponential bounds in the literature

over a wide range of values of the arguments.

Extensions to the generalized Marcum Q-function are presented in Chap-

ter 5. For the case of the order m being an odd multiple of one half, a new

closed-form representation is obtained for Qm(·, ·), which involves only simple

exponential functions and simple complementary error functions. For the case

of integer order m, some new finite-integral representations, generic exponential

bounds and generic erfc bounds are obtained. In addition, we prove that the gen-

eralized Marcum Q-function is an increasing function of the order m. Thus, the

new closed-form representation for m being an odd multiple of one half can be

used to evaluate the upper bound Qm+0.5(·, ·) and the lower bound Qm−0.5(·, ·) on

Qm(·, ·) of integer order m, and the average of these upper and lower bounds is

also a good approximation of Qm(·, ·).

By using our new representations, generic exponential bounds and simple

erfc bounds for the first-order Marcum Q-function, we also obtain in Chapter 6 a

new finite-integral expression and some new, closed-form, upper and lower bounds
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for the average bit error probability of a general QFR over fading channels. This

general QFR is a general form of QFRs in a variety of single-channel, differentially

coherent and quadratic detections. Our new upper performance bounds are tighter

than those in the literature for some cases of interest. Although there may be some

lower bounds derived in the literature for some special cases of this general QFR,

our new lower performance bounds are the first lower bounds available on the

average bit error probability of this general QFR, and they are shown to be tight.

1.5 Organization of the Dissertation

In Chapter 2, we first present some background material on STC and USTM.

Then we propose some new, tight, upper and lower bounds on the PEP of the QR

for USTM over the flat Rayleigh block-fading channel, and discuss the implications

of these bounds for the USTM constellation design.

In Chapter 3, we first review the basic idea of the GQR for binary orthogonal

signals in the SIMO system. Then we investigate the design and performance

analysis of GQRs for USTM over the flat Rayleigh block-fading channel.

In Chapter 4, we present the geometric view of the first-order Marcum Q-

function. Then based on this view, we derive some new finite-integral representa-

tions and some new upper and lower bounds on the first-order Marcum Q-function.

In Chapter 5, we extend the geometric view to the generalized Marcum Q-

function. Based on this view, we give some new, closed-form or finite-integral

representations and some new upper and lower bounds on the generalized Marcum

Q-function.

In Chapter 6, we illustrate some applications of the new representations and

bounds for the first-order Marcum Q-function to the error performance analy-

sis of QFRs in a variety of single-channel, differentially coherent and quadratic

detections.

In Chapter 7, we give the conclusions for the current work, and a plan for
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our future work.
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Chapter 2

Unitary Space–Time Modulation

Space–time coding is a technique designed for approaching the information

theoretic capacity limit of MIMO channels. It introduces joint correlation in trans-

mitted signals in both the space and time domains, and has been well documented

as an attractive means of achieving high data rate transmissions with diversity

and coding gains over spatially uncoded systems. For the scenarios where perfect

CSI or the channel estimate is available to the receiver, STTC and STBC were

proposed as the coding schemes [6, 7, 43, 44]. For the scenarios where sending

additional training signals to extract CSI is infeasible or impractical, Marzetta

and Hochwald analyzed the capacity of multiple-antenna links without knowl-

edge of channel gains at both transmitters and receivers [45]. For a flat Rayleigh

block-fading channel, they suggested a signal constellation comprising complex-

valued unitary signal matrices that are orthonormal with respect to time among

the transmit antennas, called USTM. Then they gave further explanations about

some issues of USTM in [21, 54] such as modulation, demodulation, error perfor-

mance and signal design. Interestingly, USTM has been justified not only for the

case that the channel is unknown to the receiver, but also for the case that the

channel is known to the receiver [21, 74]. Hochwald and Marzetta argued in [21]

that when the channel is known to the receiver and the length of coherence inter-

val is sufficiently large, USTM is nearly optimal in the sense of achieving capacity.
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Hughes also showed in [74] that when applying the rank and determinant signal

design criteria in coherent detection, all optimal full-rank space–time group codes

are unitary. These results suggest that USTM may also play an important role

when the channel is known. This makes it more meaningful to focus on study on

USTM.

In this chapter, a space–time coded system model is first given in Section 2.1.

Then some important results in the literature for USTM over flat Rayleigh block-

fading channels are summarized in Sections 2.2–2.5 on the issues of capacity-

achieving signal structure, ML receiver design, error performance analysis, and

signal design. For each issue, the case where the channel is unknown and the

case where the channel is known to the receiver are both considered. Finally, in

Section 2.6, some new, tight, upper and lower bounds on the PEP of the ML

receiver for USTM are derived for the case that the channel is unknown.

2.1 Space–Time Coded System Model

In this section, we present a general STC system model which applies to

STTC [6], STBC [7, 43], and USTM [21]. Consider a baseband space–time coded

system with NT transmit antennas and NR receive antennas over fading channels,

as shown in Fig. 2.1. In each time-block which consists of T symbol periods

t = 1, · · · , T , a block of information bits is fed into the space–time encoder and

mapped into a T × NT modulated symbol matrix S. The NT signals of each

row of S are simultaneously transmitted by NT different antennas in a symbol

period. These NT parallel signals are denoted by {sm(t),m = 1, . . . , NT}, and

their expected powers obey the power constraint

1

NT

NT∑
m=1

E
[|sm (t)|2] = 1, t = 1, · · · , T. (2.1)

Here, E[·] is the expectation operation, and | · | denotes the absolute value of the

quantity inside. The expectation in (2.1) is over the input information bits.
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Fig. 2.1: The general baseband space–time coded system model.

The multiple antennas at both transmitter and receiver create a MIMO chan-

nel, denoted by an NT × NR matrix H. The channel coherence bandwidth is

assumed to be large in comparison with the transmitted signal bandwidth, and

the channel gains are assumed to remain constant during one time-block. Thus,

H is a flat block-fading MIMO channel. The element hmn of H denotes the com-

plex channel gain from transmit antenna m to receive antenna n. In one time

block, all the channel gains {hmn,m = 1, · · · , NT , n = 1, · · · , NR} are assumed to

be independent, identically distributed (i.i.d.) random variables with the circu-

larly symmetric, complex Gaussian distribution CN (µ, σ2) with mean µ = 0 and

variance σ2 = 1.

The received signal at time t and receive antenna n is given by

xn (t) =
√

ρ/NT

NT∑
m=1

hmnsm (t) + wn (t) , t = 1, · · · , T, n = 1, · · · , NR. (2.2)

Here, wn (t) is the additive receiver noise for receiver antenna n at time t. All

the noises {wn(t), n = 1, · · · , NR, t = 1, · · · , T} are modeled as independent,

zero-mean, complex, Gaussian random variables with unit variances, i.e., i.i.d.

CN (0, 1) distributed. Thus, it is clear that the quantity ρ is the expected SNR at

each receive antenna. To express the received signals in one time-block compactly,
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(2.2) can be written in matrix form as

X =
√

ρ/NTSH + W. (2.3)

Here, X is the T × NR complex received signal matrix, and W is the T × NR

additive receiver complex noise matrix. Alternatively, the received signals in (2.2)

can also be written in matrix-vector form as

x =
√

ρ/NT S̄h + w. (2.4)

Here, we have x = vec(X), S̄ = INR
⊗ S, h = vec(H), and w = vec(W).

The operation vec(A) denotes the vectorization of the matrix A formed by

stacking the columns of A into a single column vector. For example, we have

x = [x>1 x>2 · · · x>NR
]>, where (·)> denotes the transpose operation, and xn is the

nth column of X, i.e., the received signal column vector at receive antenna n in

one time-block. Thus, h is CN (0, INT NR
) distributed, and w is CN (0, ITNR

) dis-

tributed, where 0 is a zero vector, and IN is the identity matrix of size N . In

addition, A⊗B denotes the Kronecker product of the matrices A and B, where

each element of A is multiplied by the matrix B.

For STTC, in the tth symbol period of a time-block, a block of R information

bits is fed into a space–time trellis encoder [4, 6]. This encoder maps the R

information bits into NT modulated signals chosen from a signal constellation

composed of 2R points. These NT modulated signals constitute the tth row of the

signal matrix S, and are transmitted simultaneously through NT antennas. Then

in one time-block, a block of TR information bits are mapped into the T × NT

signal matrix S, and S is transmitted. Thus, the data rate for STTC is R bits per

channel use.

For STBC, in each time-block, a block of T1R information bits are first

mapped into T1 modulated signals chosen from a signal constellation composed of

2R points. These T1 modulated signals are then used as the elements of a T ×NT
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space–time block encoding matrix to generate the signal matrix S [7, 43]. Thus,

the data rate for STBC is T1R/T bits per channel use. It has been shown that

for a space–time block code with full transmit diversity, the rate T1/T is less than

or equal to one [4, 7]. If a full rate is achieved, i.e., T1/T = 1, no bandwidth

expansion is required. However, if a full rate is not achieved, i.e., T1/T < 1, a

bandwidth expansion of T/T1 is required.

For USTM, in each time-block, a block of TR information bits are mapped

into a T×NT signal matrix S, and this matrix is chosen from a signal constellation

composed of 2TR unitary signal matrices. Thus, the data rate for USTM is R bits

per channel use. The rest of this chapter concentrates only on USTM.

2.2 Capacity-Achieving Signal Structure

For the MIMO system with NT transmit antennas and NR receive antennas

given in (2.4), Marzetta and Hochwald justified USTM in [21, 45] for the scenario

where the channel is unknown to both the transmitter and the receiver by arriving

at the following theorems.

Theorem 2.1 (Limit on Number of Transmit Antennas) For any coher-

ence interval T and any fixed number NR of receive antennas, the capacity ob-

tained with NT > T transmit antennas equals the capacity obtained with NT = T

transmit antennas. That means there is no benefit obtained by making the number

of transmit antennas greater than the length of the coherence interval.

Theorem 2.2 (Structure of Signal that Achieves Capacity) A capacity-

achieving random signal matrix may be constructed as a product S = ΦV, where

Φ is an isotropically distributed T × NT matrix whose columns are orthonormal,

and V = diag (v1, v2, · · · , vNT
) is an NT ×NT real, nonnegative, diagonal matrix

independent of Φ. Furthermore, we can choose the joint density of the diagonal

elements of V to be unchanged by rearrangements of its arguments.
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An isotropically distributed T ×NT matrix Φ satisfies Φ†Φ = INT
where (·)†

denotes the transpose conjugate operation, and it has the same PDF as UΦ for

any T × T unitary matrix U. That means that its PDF is invariant to all unitary

transformations. Thus, Φ can be regarded as the matrix counterpart of a complex

scalar having unit magnitude and uniformly distributed phase.

Theorem 2.3 (Capacity, Asymptotically in T ) When the length of the co-

herence interval is significantly greater than the number of transmit antennas,

i.e., T À NT , setting v1 = v2 = · · · = vNT
=
√

T attains capacity.

Theorem 2.4 (Capacity, Asymptotically in ρ) When the SNR approaches

infinity, i.e., ρ → ∞, and the length of the coherence interval is greater than the

number of transmit antennas, i.e., T > NT , setting v1 = v2 = · · · = vNT
=
√

T

attains capacity.

Hence, for the case that the channel is unknown to the receiver, the structure

of signals that achieve capacity can be defined as S =
√

TΦ with Φ†Φ = INT
,

which is called unitary space–time modulation. Hughes further proved in [18] that

to guarantee full diversity, we must choose T ≥ 2NT . According to information

theory, if one combines USTM with channel coding over multiple independent

fading intervals, it is theoretically possible to transmit information reliably at a

rate that is bounded by the channel capacity [21, 45].

For the case that the channel is known to the receiver, Hochwald and Marzetta

argued in [21] that when the length of coherence interval T is sufficiently large,

USTM is also nearly optimal in the sense of achieving capacity. This is because

the channel capacity with perfect CSI at the receiver is achieved by a transmitted

signal matrix whose elements are i.i.d. CN (0, 1). Since as T → ∞, the distribu-

tions of the elements of S =
√

TΦ approach i.i.d. CN (0, 1), USTM also nearly

achieves capacity for this case.
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2.3 Maximum-Likelihood Receivers for USTM

As mentioned in Section 2.1, in the USTM scheme, at each time-block, a

sequence of TR binary information bits is mapped into a T × NT signal matrix

S =
√

TΦ, where Φ is selected from an L = 2TR unitary space–time constellation{
Φl

∣∣∣Φ†
lΦl = INT

, l = 1, · · · , L
}

. The received signal vector is given by (2.4)

except that S̄ is replaced by
√

TΨ, i.e.,

x =
√

ρT/NTΨh + w, (2.5)

where

Ψ = INR
⊗Φ. (2.6)

It is easy to see that we have Ψ†Ψ = INT NR
. Now, we present the ML receivers

for USTM. The ML decision rule leads to a QR for the case of channel unknown

to the receiver, and leads to a CR for the case of channel known to the receiver.

2.3.1 Quadratic Receiver

If the channel h is unknown to the receiver, the received signal vector x is a

zero-mean, circularly symmetric, complex Gaussian vector with covariance matrix

Λ = E
[
xx†

]
= ITNR

+
ρT

NT

ΨΨ†. (2.7)

Then the received signal vector has the conditional PDF

p (x |Ψl ) =
exp

{−x†Λ−1x
}

πTNR det (Λ)
=

exp

{
−‖x‖2 +

ρT/NT

ρT/NT + 1

∥∥∥Ψ†
lx

∥∥∥
2
}

πTNR (1 + ρT/NT )NT NR
, (2.8)
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where det(A) denotes the determinant of matrix A, and ‖·‖ denotes the Frobenius

norm. Then ML detection leads to a QR, given by [21, eq. (15)]

Ψ̂QR = arg max
Ψl∈{Ψ1,...,ΨL}

p {x |Ψl} = arg max
Ψl∈{Ψ1,...,ΨL}

∥∥∥Ψ†
lx

∥∥∥
2

. (2.9)

Here, the decision Ψ̂QR on Ψ is equivalent to the decision Φ̂QR on Φ, since Ψl

has a one-to-one correspondence with Φl. We can see that this ML receiver seeks

to maximize the squared length of the orthogonal projection of the received signal

onto the complex subspace spanned by each of the possible transmitted signals.

2.3.2 Coherent Receiver

If the channel h is known to the receiver, the received signal vector x is a

circularly symmetric, complex Gaussian vector with mean vector
√

ρT/NTΨlh

and covariance matrix ITNR
. The conditional PDF of the received signal vector is

therefore given by

p (x |Ψl,h) =
1

πTNR
exp

{
−

∥∥∥x−
√

ρT/NTΨlh
∥∥∥

2
}

. (2.10)

Thus, the CR for ML detection is given by [21, pg. 549]

Ψ̂CR = arg max
Ψl∈{Ψ1,...,ΨL}

p {x |Ψl,h} = arg min
Ψl∈{Ψ1,...,ΨL}

∥∥∥x−
√

ρT/NTΨlh
∥∥∥

2

.

(2.11)

2.4 Error Performance Analysis for USTM

After arriving at the QR and the CR for USTM, Hochwald and Marzetta

derived in [21] the expressions of PEP and CUB for both the receivers. For the

special case that the singular values of a certain matrix (i.e., Ψ†
jΨl for the QR

and (Ψj −Ψl) for the CR) are identical, their PEP expressions were given in an

explicit closed form. For a more general case where the singular values may be
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distinct, their closed-form PEP expressions require one to compute residues. For

such a general case, Lu et al. also derived a general, closed-form PEP expression

in [59] for both the QR and the CR, by using Craig’s formula for the Gaussian

probability integral [60]. In this section, we first present the expressions of PEP

and CUB for the QR and the CR derived by Hochwald and Marzetta in [21]. Then

we give the alternative expressions for the PEPs derived by Lu et al. in [59].

2.4.1 PEP and CUB of the Quadratic Receiver

We assume that the unitary signal matrices {Ψl, l = 1, · · · , L} are transmit-

ted with equal probabilities. For the QR in (2.9), the PEP of mistaking Ψl for Ψj

when Ψl was sent, or vice versa can be obtained by first deriving the CF of the

decision variable, and then integrating over the inversion of the CF. The resultant

contour integral can be solved in terms of residues, given by [21, eqs. (B.10) and

(17)]

Pe (Ψl,Ψj)

= Pr

{∥∥∥Ψ†
lx

∥∥∥
2

−
∥∥∥Ψ†

jx
∥∥∥

2

< 0 |Ψl

}

=
1

4π

∫ ∞

−∞
dω

1

ω2 + 1/4

NT∏
m=1

[
1 +

(ρT/NT )2 (
1− d2

m,lj

)
(ω2 + 1/4)

1 + ρT/NT

]−NR

=
∑

n

Resω=αn,lj




− 1

ω + /2

NT∏
m=1

dm,lj<1

[
1 + ρT/NT

(ρT/NT )2 (
1− d2

m,lj

) (
ω2 + α2

m,lj

)
]NR





.

(2.12)

Here, Pr(·) denotes the probability of the event in the brackets; 1 ≥ d1,lj ≥ · · · ≥
dNT ,lj ≥ 0 are the singular values of the matrix Φ†

jΦl,  =
√−1, and

αm,lj =

√
1

4
+

1 + ρT/NT

(ρT/NT )2 (
1− d2

m,lj

) . (2.13)

The PEP in (2.12) decreases as any dm,lj decreases.

29



CHAPTER 2. UNITARY SPACE–TIME MODULATION

The CUB on the PEP in (2.12) can be obtained by setting ω inside the square

brackets in the second equation in (2.12) to zero, i.e., [21, eq. (18)]

Pe (Ψl,Ψj) ≤ 1

2

NT∏
m=1

[
1 +

(ρT/NT )2 (
1− d2

m,lj

)

4 (1 + ρT/NT )

]−NR

. (2.14)

For the special case that the singular values {dm,lj}NT
m=1 of the matrix Φ†

jΦl

satisfy

0 ≤ d1,lj = · · · = dNT ,lj = dlj ≤ 1, (2.15)

the PEP in (2.12) can be simplified as [21, eq. at bottom of pg. 562]

Pe (Ψl,Ψj) =

(
1− λlj,QR

2

)NT NR NT NR−1∑
i=0

(
NT NR − 1 + i

i

)(
1 + λlj,QR

2

)i

,

(2.16)

where

λlj,QR =
ρT

NT

√
1− d2

lj

(2 + ρT/NT )2 − (dljρT/NT )2
. (2.17)

From the above results, we can see that orthogonal unitary space–time con-

stellations (OUSTC), in which signal matrices are orthogonal to one another, i.e.,

given by {Φl

∣∣Φ†
lΦl = INT

,Φ†
lΦj = 0NT

, l, j = 1, . . . , L, l 6= j}, are optimal for

the case that the channel is unknown to the receiver. This is because the singular

values for any pair of Φl and Φj of OUSTC are equal to zero, and thus Pe (Ψl,Ψj)

is minimized.

2.4.2 PEP and CUB of the Coherent Receiver

For the CR in (2.11), the PEP of mistaking Ψl for Ψj when Ψl was sent,

or vice versa can also be obtained by integrating over the inversion of the CF of

the decision variable. The resultant contour integral can be solved in terms of
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residues, given by [21, eqs. (C.3) and (19)]

Pe (Ψl,Ψj)

= Pr

{∥∥∥x−
√

ρT/NTΨjh
∥∥∥

2

−
∥∥∥x−

√
ρT/NTΨlh

∥∥∥
2

< 0 |Ψl

}

=
1

4π

∫ ∞

−∞
dω

1

ω2 + 1/4

NT∏
m=1

[
1 + (ρT/NT ) δ2

m,lj

(
ω2 + 1/4

)]−NR

=
∑

n

Resω=βn,lj




− 1

ω + /2

NT∏
m=1

δm,lj>0

[
(ρT/NT ) δ2

m,lj

(
ω2 + β2

m,lj

)]−NR





.(2.18)

Here, 2 ≥ δ1,lj ≥ · · · ≥ δNT ,lj ≥ 0 are the singular values of the matrix (Φj −Φl),

and βm,lj is given by

βm,lj =

√
1

4
+

1

(ρT/NT ) δ2
m,lj

. (2.19)

The PEP in (2.18) decreases as any δm,lj increases.

The CUB on the PEP in (2.18) can be obtained by setting ω inside the square

brackets in the second equation in (2.18) to zero, i.e., [21, eq. (20)]

Pe (Ψl,Ψj) ≤ 1

2

NT∏
m=1

[
1 +

ρT

4NT

δ2
m,lj

]−NR

. (2.20)

For the special case that the singular values {δm,lj}NT
m=1 of the matrix (Φj−Φl)

satisfy

δ1,lj = · · · = δNT ,lj = δlj, (2.21)

the PEP in (2.18) can be simplified as [21, eq. at bottom of pg. 563]

Pe (Ψl,Ψj) =

(
1− λlj,CR

2

)NT NR NT NR−1∑
i=0

(
NT NR − 1 + i

i

)(
1 + λlj,CR

2

)i

,

(2.22)
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where

λlj,CR =

√
δ2
ljρT/NT

4 + δ2
ljρT/NT

. (2.23)

For OUSTC, we have

d1,lj = · · · = dNT ,lj = d = 0, (2.24)

and

δ1,lj = · · · = δNT ,lj = δ =
√

2. (2.25)

At high SNR, the CUB in (2.14) for the QR approximates to [21]

Pe (Ψl,Ψj) . 1

2

(
4NT

ρT

)NT NR

, (2.26)

and the CUB in (2.20) for the CR approximates to [21]

Pe (Ψl,Ψj) . 1

2

(
2NT

ρT

)NT NR

. (2.27)

We can see that knowledge of perfect CSI at the receiver yields a 3-dB gain in SNR

for OUSTC. For nonorthogonal unitary space–time constellations (NOUSTC) in

which signal matrices may not be orthogonal to one another, Hochwald et al. have

shown that when we use 1 to 3 transmit antennas, we can obtain a 2 to 4 dB gain

in SNR by using the CR instead of the QR.

2.4.3 Alternative Expressions of the PEPs

In the second equations in (2.12) and (2.18), if we use the coordinate trans-

formation

ω =
1

2
tan θ,
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the PEPs for the QR and the CR can be rewritten in a unified form, given by [59,

eqs. (5)–(9)]

Pe (Ψl,Ψj) =
1

π

∫ π/2

0

NT∏
i=1

(
cos2 θ

cos2 θ + ηζi

)NR

dθ

=
1

π

∫ π/2

0

NT∏
i=1

(
sin2 θ

sin2 θ + ηζi

)NR

dθ

=
1

π

∫ π/2

0

f−NR

( η

sin2 θ

)
dθ. (2.28)

Here, we have

η =





(ρT/NT )2

4 (1 + ρT/NT )
, for the QR,

ρT

4NT

, for the CR,

(2.29)

and

ζi =





1− d2
i , for the QR,

δ2
i , for the CR.

(2.30)

The function f (x) is defined as

f (x) =

Nd∏
i=1

(1 + ζix)ei , (2.31)

where Nd is the number of distinct nonzero ζi’s, i.e., {ζi}Nd
i=1 are distinct and

nonzero, and ei denotes the multiplicity of (1 + ζix) as a factor of f (x). Thus, we

have
∑Nd

i=1 ei ≤ NT . By using the partial-fraction expansion

f−NR (x) =

Nd∏
i=1

(1 + ζix)−mi =

Nd∑
i=1

mi∑
n=1

κni

(1 + ζix)n , (2.32)

where

mi = NRei,

33



CHAPTER 2. UNITARY SPACE–TIME MODULATION

κni =

{
dmi−n

dxmi−n (1 + ζix)mi f−NR (x)
} ∣∣∣x=−ζ−1

i

(mi − n)!ζmi−n
i

.

Using (2.32) in (2.28) gives [59, eq. (16)]

Pe (Ψl,Ψj) =
1

2

{
1−

Nd∑
i=1

µi

mi∑
n=1

κni

n−1∑
q=0

(
2q

q

)(
1− µ2

i

4

)q
}

, (2.33)

where

µi =

√
ηζi

1 + ηζi

.

We can see that (2.33) still requires one to compute high-order derivatives.

2.5 Signal Design for USTM

Given expressions of the PEP and CUB, researchers have put a lot of efforts

to design optimal constellations which minimize the error probability of USTM.

Signal design usually requires a design criterion and a constellation construction.

Constellations with this construction are optimized to satisfy the criterion. In

this section, we will give some important signal design criteria and constellation

constructions proposed in the literature for USTM.

2.5.1 Design Criteria

As we mentioned in Section 2.2, the USTM scheme has been justified for the

case that CSI is known to the receiver and the CR is used, and also for the case

that CSI is unknown to the receiver and the QR is used. Therefore, we list signal

design criteria for both the CR and the QR here.
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2.5.1.1 Design Criteria for the CR

The design criteria for the CR were given by Tarokh et al. in [6] for STTC.

These design criteria also apply to USTM when the CR is used in detecting USTC,

as presented in the following. The CUB on the PEP of the CR in (2.20) can be

rewritten as

Pe (Ψl,Ψj) ≤ 1

2

Nd∏
m=1

[
1 +

ρT

4NT

δ2
m,lj

]−NR

, (2.34)

where Nd is the rank of C (Φl,Φj) = (Φj −Φl)
† (Φj −Φl), i.e., the number of

nonzero singular values δm,lj of (Φj −Φl). At high SNR, the CUB in (2.34)

approximates to

Pe (Ψl,Ψj) . 1

2

(
Nd∏

m=1

δ2
m,lj

)−NR (
ρT

4NT

)−NdNR

. (2.35)

In (2.35), the diversity gain is defined as the absolute value of the power of SNR,

i.e., NdNR [4, 6, 18, 74]. It represents the gain in SNR obtained by the system

with space diversity over the system without diversity at the same error probabil-

ity. The coding gain is defined as
Nd∏

m=1

δ2
m,lj/d

2
uncoded where d2

uncoded is the squared

Euclidian distance of the reference uncoded system [4, 6, 18, 74]. It represents

the gain in SNR obtained by the coded system over an uncoded system operating

with the same diversity at the same error probability. Thus, in a plot of the error

probability versus SNR, the slope of the curve is determined by the diversity gain,

and the horizontal shift of the curve for the uncoded system to the curve for the

coded system with the same diversity is determined by the coding gain.

From (2.35), the signal design criteria for the CR can be given by [6]:

The Rank Criterion: To achieve the maximum diversity NT NR, the matrix

C (Φl,Φj) has to be of full rank for any pair of codewords Φl and Φj. If C (Φl,Φj)

has minimum rank Nd over the set of two distinct codewords, then a diversity of

NdNR is achieved.
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The Determinant Criterion: The minimum of the determinant of

C (Φl,Φj),
Nd∏

m=1

δ2
m,lj, taken over all possible pairs of distinct codewords needs to

be maximized. This measures the coding advantage.

The above design criteria were proposed for the case that perfect CSI was

available at the receiver. In a practical scenario, we have to estimate the channel

gains at the receiver, and channel estimation errors exist. Tarokh et al. studied

the effect of channel estimation errors in [44]. Based on the assumption that

the constellations have constant energy, they proved that in the absence of ideal

CSI, the above design criteria are still valid, and standard channel estimation

techniques can be used in conjunction with space–time codes provided that the

number of transmit antennas is small.

2.5.1.2 Design Criteria for the QR

Design Criterion for Low SNR or Small Singular Values (Diversity Sum Cri-

terion): From the CUB expression in (2.14) for the QR in (2.9), Hochwald et al.

found that the sum of the squares of the singular values can be used as a simple

error performance indicator [54]. Independently, Agrawal et al. also found that

either for small singular values or for a low SNR, the CUB on the PEP was domi-

nated by the sum of the squares of the singular values [61]. Hence, a signal design

criterion was proposed to minimize the diversity sum, i.e., to minimize

ξ = max
1≤l<j≤L

√√√√ 1

NT

NT∑
m=1

d2
m,lj = max

1≤l<j≤L

√
1

NT

tr
(
Φ†

lΦjΦ
†
jΦl

)
. (2.36)

Here, tr(A) denotes the trace of A. However, this design criterion does not guar-

antee that full transmit diversity is achieved.

Design Criterion for High SNR (Diversity Product Criterion): From the CUB

expression in (2.14) for the QR, Hochwald et al. also defined the diversity product
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as [19, eq. (9)],[54]

ξ = min
1<l<j≤L

[
NT∏

m=1

(
1− d2

m,lj

)
] 1

2NT

= min
1<l<j≤L

det
(
INT

−Φ†
lΦjΦ

†
jΦl

) 1
2NT . (2.37)

This signal design criterion is to maximize ξ. Full transmit diversity is achieved

if ξ is nonzero. We can see that this design criterion can also be interpreted

as a rank-determinant criterion, but with different definitions of the rank and

the determinant [18]. Here, the rank Nd is defined as the rank of C (Φl,Φj) =

INT
−Φ†

lΦjΦ
†
jΦl, and the determinant is defined as

Nd∏
m=1

(
1− d2

m,lj

)
. Only when

Nd = NT , can full transmit diversity be achieved. For the case of small {dm,lj}NT
m=1,

it has been shown in [54] that the diversity product criterion is roughly the same

as the diversity sum criterion, since we have
∏NT

m=1

(
1− d2

m,lj

) ≈ 1−∑NT

m=1 d2
m,lj.

Design Criterion Based on the Asymptotic Union Bound (AUB Criterion) :

Since the diversity sum criterion in [54, 61] cannot guarantee a full diversity order,

and optimizing the worst case cannot promise a good performance in the SEP,

McCloud et al. proposed in [63] a design criterion based on the asymptotic value

of the union bound at high SNR. This criterion is to minimize

ξ =
L∑

l=1

∑

j 6=l

1

det
(
INT

−Φ†
lΦjΦ

†
jΦl

)NR
. (2.38)

This design criterion guarantees the full diversity order, minimizes the SEP, and

is independent of the correlation structure of the fading channel.

From above three design criteria, we can also see that OUSTC are optimal

for the QR. This is because OUSTC provide the maximum value 1 for (2.37), the

minimum value 0 for (2.36), and the minimum value L (L− 1) for (2.38).

2.5.2 Constellation Constructions

Constellations with Block-Circulant Structure: Hochwald et al. proposed a

systematic method for creating constellations of USTM in [54]. Constellations
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obtained have a block-circulant correlation structure, namely,[54, eq. (19)]

Φ†
lΦj = P(j−l) mod L, l, j = 1, · · · , L, (2.39)

which means that for a given constellation, the value of Φ†
lΦj only depends on

(j − l). Here, “mod” denotes the modulo operation with n mod n = 0; Pl’s are

NT × NT matrices, and are different from constellations to constellations. It is

clear we have P0 = INT
and P−l = P†

l . This correlation structure implies that the

conditional error probability Pe|Φl
when Φl was transmitted is the same for any

l ∈ [1, L]. In this construction, signal matrices are constructed as [54, eq. (25)]

Φl = Θl−1Φ1, l = 2, · · · , L, (2.40)

where Θ = diag
(
ej2πu1/L · · · ej2πuT /L

)
and 0 ≤ u1, · · · , uT ≤ L − 1, and Φ1

consists of NT different columns of the T × T discrete Fourier transform matrix.

For NT = 1, Φ1 is 1/
√

T times a vector of all ones. For NT = 2, Φ1 is given by

Φ1 =
1√
T


 1 1 · · · 1

1 e 2π
T · · · e

2π(T−1)
T



>

. (2.41)

The optimum value of u = [1 u′] = [1 u2 · · · uT ] is determined by computer search

to satisfy the design criteria.

This construction was also extended to have a multiple index block-circulant

structure, namely,

Φ†
l1···lKΦl′1···l′K = P(l′1−l1) mod L1···(l′K−lK) mod LK

, li, l
′
i = 1, · · · , Li, i = 1, · · · , K.

(2.42)

A K-indexed constellation of size L =
∏K

i=1 Li is given by [54, eq. (29)]

Φl1···lK = Θl1−1
1 Θl2−1

2 · · ·ΘlK−1
K Φ1, li = 1, · · · , Li, i = 1, · · · , K, (2.43)

where Θi is a diagonal unitary matrix that is the Lith root of IT , with arguments
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0 ≤ ui1, · · · , uiT ≤ Li − 1. Thus, the K × T argument matrix U, whose elements

are uit, i = 1, · · · , K, t = 1, · · · , T , needs to be optimized. This matrix can be

restricted to U = [IK U′], and only K×(T −K) matrix U′ needs to be optimized.

Constellations with Orthogonal Design: Another class of important and use-

ful signal constellations, unitary space–time constellations with orthogonal design

(USTC-OD), was designed by Zhao et al. in [66, 67] by using an algebraic method.

This construction was inspired by Alamouti’s scheme [43], and provides full di-

versity. For the case of NT = 2 and L = q2, q ∈ N where N denotes the set of all

natural numbers, their constellations are given by Ca =
{
Φi,l

∣∣i, l ∈ {0, . . . , q−1}},

where

Φi,l =
1

2


 1 −1 ri −r−l

1 1 rl r−i



>

, (2.44)

and where r = e2π/q. Constellations of size L = 22n−1, n ∈ N can be obtained by

extracting the subsets of the constellations of size L = 22n [66]. For the case of

NT = 4 and L = q3, q ∈ N, their constellations are given by Ca =
{
Φi,l,j

∣∣i, l, j ∈
{0, . . . , q − 1}}, where

Φi,l,j =
1√
6




1 −1 −1 0 ri −r−l −r−j 0

1 1 0 1 rl r−i 0 r−j

1 0 1 −1 rj 0 r−i −r−l

0 −1 1 1 0 −rj rl ri




>

. (2.45)

Constellations with NT = 3 can be obtained by deleting one column from the

design of NT = 4. We can see that these signal matrices consist of a training

block and a data block, and this data block is a complex orthogonal design for

STBC [7]. This class of constellations has some good properties. For example,

the inner product and the difference of any two signal matrices for NT = 2 and

4 have equal singular values. For the USTC-OD in (2.44) with NT = 2, it was

shown that all the singular values of Φ†
i,lΦi′,l′ , ∀Φi,l,Φi′,l′ ∈ Ca are identical, given
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by [67]

di,l;i′,l′ =
1

2

√
2 + cos

2π

q
(i− i′) + cos

2π

q
(l − l′). (2.46)

Similarly, since we have

(Φi,l −Φi′,l′)
†(Φi,l −Φi′,l′) =

[
1− 1

2

(
cos

2π

q
(i− i′) + cos

2π

q
(l − l′)

)]
I2,

we can also show that all the singular values of (Φi,l − Φi′,l′) are identical, and

given by

δi,l;i′,l′ =

√
1− 1

2

(
cos

2π

q
(i− i′) + cos

2π

q
(l − l′)

)
. (2.47)

It can easily be shown that similar results hold for the case of NT = 4. Thus, the

PEPs of the USTC-OD with NT = 2 or 4 for the QR (2.9) and the CR (2.11) can

be given, respectively, in explicit, closed forms in (2.16) and (2.22). In addition,

the orthogonal design of the signal matrices in USTC-OD allows for detecting

on the indexes of the signal matrices separately [67, pgs. 1321–1322], and thus,

the QR in (2.9) can be reduced to have a much lower complexity. The error

performance of USTC-OD has been shown in [66, 67] to be comparable to that of

constellations with block-circulant structure in (2.40).

Tarokh et al. also presented two constellation constructions in [65]. One

construction is based on a generalization of PSK constellations, and the other is

similar to that given in [66, 67], i.e, it is a concatenation of a training block and a

real or complex orthogonal design block. Both of these two constructions do not

require any computer search, and enable simple encoding and decoding algorithms

with complexity independent of their transmission rates.

Other Constructions : In [61, 63], the Grassmanian manifold, the space of

all NT -dimensional subspaces of the complex T -dimensional vector space CT , was

used to be a USTC construction, with no extra structure imposed. Optimization

was performed by using a cumbersome computer search.
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A more promising constellation design method was proposed by Jing et al. in

[64] based on the Cayley transform. These Cayley codes, designed for any number

of transmit and receive antennas, are simple to encode, and can be decoded in a

variety of ways, including simple polynomial-time linear-algebraic techniques such

as successive nulling and cancelling, or sphere decoding.

2.6 New Tight Bounds on the PEP of the QR

In [123], Byun and Lee proposed some tight bounds on the PEP of the CR

in (2.11) for STC. In this section, we use similar techniques to derive some new

bounds on the PEP of the QR in (2.9) for USTM. The two new upper bounds are

the tightest available so far, and the new lower bound is the tightest at low SNR.

Some implications for USTM constellation design are also pointed out.

2.6.1 New Bounds on the PEP

As given in (2.28), by letting ω = tan(θ)/2, the PEP expression in (2.12) for

the QR in (2.9) can be rewritten as

Pe (Ψl,Ψj) =
1

π

∫ π/2

0

Nd∏
m=1

[
1 +

%
(
1− d2

m, lj

)

4 sin2 θ

]−NR

dθ, (2.48)

where 0 < Nd ≤ NT is the number of non-unity singular values, and % =

(ρT/NT )2 / (1 + ρT/NT ). This expression leads to the following new bounds on

the PEP.

2.6.1.1 Tight Upper Bound-1 (TUB1)

Applying the inequality (1 + x)−1 ≤ x−1, x > 0 to the integrand in (2.48), we

can upper bound the PEP by

Pe (Ψl,Ψj) ≤ 1

π

∫ π/2

0

Nd∏
m=1

[
%

(
1− d2

m, lj

)

4 sin2 θ

]−NR

dθ. (2.49)
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Using the integral formula in [124, eq. 2.513 1], i.e.,

∫
sin2n xdx =

1

22n

(
2n

n

)
x +

(−1)n

22n−1

n−1∑

k=0

(−1)k

(
2n

k

)
sin 2(n− k)x

2(n− k)
, (2.50)

the upper bound in (2.49) can be reduced to

Pe (Ψl,Ψj) ≤ (%dgm, lj)
−NdNR

(
2NdNR − 1

NdNR

)
. (2.51)

Here, dgm, lj is the geometric mean of the singular values, defined as

dgm, lj =

[
Nd∏

m=1

(
1− d2

m, lj

)
]1/Nd

. (2.52)

The right-hand side (RHS) of (2.51) is our new, tight, upper bound-1, abbrevi-

ated as TUB1, on the PEP of the QR. Since {dm, lj}NT

m=1 are the singular val-

ues of Φ†
jΦl, it is clear that

{(
1− d2

m, lj

)}NT

m=1
are the eigenvalues of the matrix(

I−Φ†
lΦjΦ

†
jΦl

)
, and their product equals the determinant of this matrix [125].

Thus, when we have full diversity, i.e., Nd = NT , dgm, lj can be obtained by

dgm, lj =
[
det

(
I−Φ†

lΦjΦ
†
jΦl

)]1/NT

, (2.53)

which does not require one to compute singular values. For this special case,

[63] has shown that the RHS of (2.51) is an approximation of the PEP at high

SNR, i.e., ρ → ∞, by applying the asymptotic error probability analysis in [37].

However, our simpler derivation here shows that (2.51) is actually an upper bound

on the PEP for all SNR, irrespective of whether or not the diversity order is full.

At high SNR, ρ À 1, which implies % À 1, the CUB in (2.14) can be approx-

imated by

Pe (Ψl,Ψj) . 1

2

Nd∏
m=1

[
%

(
1− d2

m, lj

)
/4

]−NR

=
(
%dgm, lj

)−NdNR
22NdNR−1. (2.54)
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It can easily be shown that [124, eqs. (0.151 2) and (0.151 3)]

(
2NdNR − 1

NdNR

)
<

2NdNR−1∑
i=0

(
2NdNR − 1

i

)
= 22NdNR−1, (2.55)

and thus, from (2.51), (2.54), and (2.55), we can see that our bound in (2.51) is

tighter than the CUB in (2.14) at high SNR.

2.6.1.2 Tight Upper Bound-2 (TUB2)

Using the well-known arithmetic mean-geometric mean inequality, Byun and

Lee obtained in [123] the following inequality:

Nd∏
i=1

(1 + xi) ≥ (1 + xgm)Nd (2.56)

where xi > 0,∀i, and xgm =
(∏Nd

i=1 xi

)1/Nd

is the geometric mean of the xi’s. We

apply this inequality to (2.48), and obtain

Pe (Ψl,Ψj) ≤ 1

π

∫ π/2

0

(
1 +

%dgm, lj

4 sin2 θ

)−NdNR

dθ. (2.57)

The RHS of (2.57) can be regarded as an equal-singular-value case of the PEP

expression in (2.48), whose closed-form result for this case is given in (2.16) and

(2.17). Therefore, a closed-form expression for the upper bound in (2.57) can be

obtained by replacing (1− d2
lj) in (2.16) and (2.17) with dgm, lj, and thus is given

by

Pe (Ψl,Ψj) ≤
(

1− µlj

2

)NdNR NdNR−1∑
n=0

(
NdNR − 1 + n

n

)(
1 + µlj

2

)n

(2.58)

where

µlj =
√

%dgm, lj/
(
%dgm, lj + 4

)
.
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This is our new, tight, upper bound-2, abbreviated as TUB2. Equality in (2.58)

holds when all non-unity singular values are equal. The more distinct the singular

values are from one another, the looser the upper bound becomes. For a given

Nd, this bound is a decreasing function of dgm, lj.

Applying the formula [124, eq. 0.151 1], i.e.,

(
n + m + 1

n + 1

)
=

m∑

k=0

(
n + k

n

)
=

m∑

k=0

(
n + k

k

)
, (2.59)

the upper bound in (2.51) can be rewritten as

Pe (Ψl,Ψj) ≤
NdNR−1∑

n=0

(
NdNR − 1 + n

n

) (
%dgm, lj

)−NdNR
. (2.60)

Since %dgm, lj ≥ 0 and 0 ≤ µlj ≤ 1, it can easily be shown that

(
1− µlj

2

)NdNR
(

1 + µlj

2

)n

≤
(

1− µlj

2

)NdNR

<
(
%dgm, lj

)−NdNR
. (2.61)

Therefore, from (2.58), (2.60) and (2.61), we can see that the bound (2.58) is

always tighter than the bound (2.51). From our numerical results in Section 2.6.2,

we will see that the upper bound (2.58) is actually the tightest upper bound so

far for all SNR.

2.6.1.3 Tight Lower Bound-1 (TLB1)

By applying Jensen’s inequality to log(1+x), Byun and Lee obtained in [123]

the following inequality

Nd∏
i=1

(1 + xi) ≤ (1 + xam)Nd , (2.62)
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where xi > 0,∀i, and xam =
∑Nd

i=1 xi/Nd is the arithmetic mean of the xi’s.

Applying this result to (2.48), we obtain the lower bound

Pe (Ψl,Ψj) ≥ 1

π

∫ π/2

0

(
1 +

%dam, lj

4 sin2 θ

)−NdNR

dθ. (2.63)

The RHS of (2.63) can also be solved in closed form by using dam, lj to replace

(1 − d2
lj) in the PEP expression in (2.16) and (2.17) for the equal-singular-value

case. Thus, a closed-form expression for (2.63) is given by

Pe (Ψl,Ψj) ≥
(

1− νlj

2

)NdNR NdNR−1∑
n=0

(
NdNR − 1 + n

n

)(
1 + νlj

2

)n

(2.64)

where

νlj =
√

%dam, lj/
(
%dam, lj + 4

)
,

and dam, lj is the arithmetic mean of the singular values, defined as

dam, lj =
1

Nd

[
Nd∑

m=1

(
1− d2

m, lj

)
]

=
1

Nd

tr
(
I−Φ†

lΦjΦ
†
jΦl

)
. (2.65)

The second equality in (2.65) follows the fact that the trace of a matrix equals

the sum of its eigenvalues [125, eq. (7.1.7)]. The RHS of (2.64) is our new, tight,

lower bound-1, abbreviated as TLB1, which is a decreasing function of dam, lj.

Equality in (2.64) holds when all non-unity singular values are equal. This new

lower bound will be seen in Section 2.6.2 to be the tightest at low SNR.

When ρ is sufficiently large and thus %dam, lj À 4, we can obtain an ap-

proximation of the RHS of (2.64) by using the approximations used in [1,

eq. (14.4–18)], that is, we can use the approximations (1 + νlj)/2 ≈ 1 and

(1− νlj)/2 ≈ 1/
(
%dam, lj

)
and the equality [1, eq. (14.4–17)]

NdNR−1∑
n=0

(
NdNR − 1 + n

n

)
=

(
2NdNR − 1

NdNR

)
(2.66)
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in (2.64), and obtain

PATLB
e (Ψl,Ψj) =

(
%dam, lj

)−NdNR

(
2NdNR − 1

NdNR

)
. (2.67)

This approximation to the RHS of (2.64) is easier to compute.

2.6.1.4 Tight Lower Bound-2 (TLB2)

For comparison, we also include here another tight lower bound, abbreviated

as TLB2, given in [59, eq. (20)], i.e.,

Pe (Ψl,Ψj) ≥
(

2NdNR − 1

NdNR − 1

) Nd∏
m=1

[
4 + %

(
1− d2

m, lj

)]−NR . (2.68)

This bound was obtained by applying the inequality 1 ≤ sin−2 θ to the integrand

in (2.48). We can see that the TLB2 in the RHS of (2.68) equals the CUB in the

RHS of (2.14) times the constant
(
2NdNR

NdNR

)
/4NdNR [59]. The TLB2 can be tighter

than the TLB1 in (2.64) at high SNR if the singular values are sufficiently distinct.

2.6.2 Numerical Results

Here we provide some comparisons among the CUB in (2.14), TUB1 in (2.51),

TUB2 in (2.58), TLB1 in (2.64), its approximation at high SNR in (2.67), and

TLB2 in (2.68), on the PEP of the QR. Figs. 2.2 and 2.3 give the numerical results

for the constellation of size seventeen in [54, Table II] which has unequal singular

values. At low SNR as shown in Fig. 2.2, the TUB2 in (2.58) and TLB1 in (2.64)

on the PEP are the tightest, and they are very close to each other. Hence, they

can provide a very good prediction for the PEP. The TUB1 in (2.51) is tighter

than the CUB in (2.14) for SNR above 3.8 dB. At high SNR as shown in Fig. 2.3,

the TUB1 in (2.51), TUB2 in (2.58) and TLB2 in (2.68) are very close. They can

be seen to be a very good approximation to the PEP. We can also see that at high

SNR, the expression in (2.67) is a good approximation to both the lower bounds

in (2.64) and (2.68).
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Fig. 2.2: Bounds on the PEP of the QR for the constellation in [54, Table II] at low SNR,
NT = 2, NR = 1, T = 8, L = 17, d1, 12 = 0.6366, d2, 12 = 0.1628.

2.6.3 Implications for Signal Design

The TUB2 in (2.58) on the PEP provides a refinement to the diversity product

criterion in (2.37) for USTM constellation design. The diversity product criterion,

which is valid for high SNR [19, 54, 62], seeks to minimize the worst PEP by

maximizing the minimum of the geometric means dgm, lj over all pairs of signal

matrices. Thus, we first choose constellations with full diversity, i.e., Nd = NT ,

and then pick from among them the one whose minimum geometric mean dgm, lj

over all pairs of l and j is maximum. This ensures that the value of the RHS

of (2.58) for the pair of signal matrices with the minimum geometric mean is
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Fig. 2.3: Bounds on the PEP of the QR for the constellation in [54, Table II] at high SNR,
NT = 2, NR = 1, T = 8, L = 17, d1, 12 = 0.6366, d2, 12 = 0.1628.

minimized, since the RHS of (2.58) is a decreasing function of dgm, lj. The above

step gives a result similar to the original diversity product criterion in (2.37). Our

new finding is that if from the above step, we obtain more than one constellation,

then from these constellations obtained, we should choose the one whose singular

values for any pair of signal matrices are as distinct from one another as possible,

because this ensures that the PEPs are furthest away from the values of the RHS

of (2.58), thus minimizing the PEPs and improving the SEP. Similarly, the AUB

criterion in (2.38) can also be refined, since it is also determined only by the

geometric means of singular values. From the constellations obtained by using
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the AUB criterion, we should choose those whose singular values are as distinct

from one another as possible. This is because for the constellations with the same

geometric means, those with distinct singular values give lower PEPs than those

with similar singular values.

The TLB1 in (2.64) also provides a refinement to the diversity sum criterion

in (2.36). The diversity sum criterion in (2.36), which is valid for low SNR or

small singular values [54, 61, 62], is equivalent to maximizing the minimum of the

arithmetic means dam, lj over all pairs of signal matrices. It does not guarantee

full diversity, as was shown in [19, 63]. In our proposed approach, we first choose

constellations for which Nd = NT , so that we already have full diversity. Then

from these constellations, we pick the one whose minimum arithmetic mean dam, lj

is maximum, since it gives the minimum value of the RHS of (2.64) for the pair

of signal matrices with the minimum arithmetic mean. If we obtain more than

one constellation, then from the constellations obtained, we finally choose the one

whose non-unity singular values for any pair of signal matrices are the closest

together. This is because for a given value of the RHS of (2.64), the PEP attains

this lower bound only when non-unity singular values are equal.

2.7 Summary

In this chapter, we have presented a general space–time coded system model.

Based on this model, some important results for USTM in the literature have been

reviewed, concentrating in particular on the issues of capacity-achieving signal

structure, ML receiver design, performance analysis, and signal design. Both the

case where the channel is unknown to the receiver and the case where the channel

is known to the receiver have been discussed. From these results, we can see

that in the sense of achieving capacity, the USTM scheme has been shown to be

optimal when the receiver does not know the channel, and nearly optimal when

the receiver knows the channel perfectly. We can also see that ML detection leads
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to a QR for the case that the channel is unknown, and a CR for the case that the

channel is known. For both the QR and the CR, expressions for the PEP have

been given in terms of residues or high-order derivatives. Only for the special

case that singular values are identical can the expressions for the PEP be given

explicitly in a simple closed form. The performance gain for having perfect CSI

and using the CR has been shown to be 2–4 dB in SNR over using the QR. Based

on the CUBs, some popular signal design criteria and constellation constructions

have been given.

In addition to these existing results, we have also proposed and examined

some simple, tight, upper and lower bounds on the PEP of the QR for USTM

over the Rayleigh block-fading channel. Our analytical and numerical results

have shown that these simple bounds can provide a very accurate prediction for

the error performance. They have also led to some refinements for the USTM

constellation design criteria.

50



Chapter 3

Generalized Quadratic Receivers

for Unitary Space–Time

Modulation

In this chapter, we propose the generalized quadratic receivers for USTM

over the flat Rayleigh block-fading channel. The GQRs realize the performance

improvement potential, known to be approximately 2–4 dB in SNR, between the

QR and the CR, by performing channel estimation without the help of additional

training signals that consume additional bandwidth. They are designed for various

USTC in which signal matrices may or may not contain explicit inherent training

blocks, and may or may not be orthogonal to one another. As the channel memory

span exploited for channel estimation increases, the error probability of the GQRs

reduces from that of the QR to that of the CR. The GQRs work well for both

slow and fast fading channels, and the performance improvement increases as the

channel fade rate decreases. For a class of USTC with the orthogonal design

structure, the GQR can be simplified to a form whose complexity can be less than

the complexity of the QR or even that of the simplified form of the QR.
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3.1 Introduction

For the scenarios where sending training signals to acquire CSI at the re-

ceiver is undesirable or infeasible, due to the limited bandwidth resources or rapid

changes in the channel characteristics, the USTM scheme has been proposed in

[21, 45, 54] to enable data detection to be done by using a QR without CSI at the

receiver. However, a notable result therein is that a CR with perfect CSI can bring

about a 2 to 4 dB gain in SNR over a QR [21, 54]. This result carries the exciting

implication that for the scenarios where we have to employ the USTM scheme

to avoid sending additional training signals, if there exist some robust channel

estimation methods for USTM, which require no additional training signals and

which give accurate channel estimates, the error performance of USTM can be sig-

nificantly improved without consuming additional bandwidth. This motivates us

to develop the concept of GQR for USTM, which incorporates channel estimation

without the help of additional training signals and which bridges the performance

gap between the QR and the CR.

The concept of GQR was originally proposed for binary orthogonal signaling

in [42], based on a new detector–estimator interpretation of the original optimum

QR [41]. This GQR exploits the implicit, but extractable pilot components inher-

ent in the binary orthogonal data signals to estimate the channel. It guarantees

an error performance at least as good as that of the QR, and leads to a substantial

performance improvement over the QR when the channel memory is exploited to

improve the channel estimation accuracy.

We generalize the idea of the GQR to USTM. We first derive the GQR for a

class of USTC-OD proposed in [65–67], and reviewed in Section 2.5.2. Each signal

matrix in USTC-OD consists of a training block and a real or complex orthogonal

design block for STBC [7]. We only focus on the complex orthogonal design case,

and this class of constellations has been designed and fully justified in [67] for two

to four transmit antennas. For the case of two or four transmit antennas, simply

using the inherent training blocks to estimate the channel can already achieve our
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aim given above, but this is not true for the case of three antennas. Thus, we

start with the former simpler case to build up the concepts and to facilitate the

derivations of the GQRs for the more complicated cases. The case of three trans-

mit antennas will be discussed later. The GQR for the USTC-OD with two or

four transmit antennas can be simplified to have a complexity less than that of the

QR in [21] and that of the simplified form of the QR in [67]. This simplified GQR

can also be interpreted as a mismatched receiver1 for the corresponding STBC,

with channel estimation based on additional training signals, and the latter was

discussed in [10–12, 126]. However, our GQR improves the error performance by

exploiting the channel memory in channel estimation, not by varying the training

signal power as was done in [10–12, 126]. Next, we derive the GQR for OUSTC in

which the signal matrices are orthogonal to one another, such as some constella-

tions designed in [54]. Since signal matrices in OUSTC contain no explicit training

blocks, similar to the binary orthogonal signaling case in [42], we have to exploit

their implicit, but extractable pilot components to estimate the channel. An ex-

plicit, exact, closed-form expression for the PEP of the GQRs for the USTC-OD

with two or four transmit antennas and for OUSTC is derived in terms of the chan-

nel estimation accuracy. Finally, we consider the most difficult case, i.e., deriving

the GQR for general NOUSTC in which signal matrices may be nonorthogonal

to one another. This GQR uses a novel approach to estimate the channel. It

applies to constellations which contain no explicit or implicit extractable pilot

components, such as most of the constellations in [54]. It also applies to constella-

tions which contain training blocks, but whose conventional mismatched receiver

is suboptimal and gives an error performance worse than that of the QR when

only the current received training block is used in channel estimation, such as the

USTC-OD for three transmit antennas in [67]. Our theoretical and simulation

results show that the error performance of the three GQRs improves from that

1In [12], the term “mismatched receiver” was used to refer to the receiver which uses the
channel estimate to replace the true value of the channel in the CR. Here, we follow this usage.
This mismatched receiver was also called an estimator–detector receiver in [10].
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of the QR to that of the CR when a wider channel memory span is exploited in

channel estimation. Compared to the trained modulation for USTM in [73] which

used additional training signals, and which did not exploit the channel memory to

improve the channel estimation accuracy, our GQRs use less bandwidth, and can

provide a better error performance with a small increase in receiver complexity.

We first review the concept of the GQR for binary orthogonal signals over the

flat Rayleigh fading channel in SIMO systems in Section 3.2. Then in Section 3.3,

we derive the GQRs and their performance for the USTC-OD with two or four

transmit antennas, OUSTC and general NOUSTC.

3.2 Generalized Quadratic Receiver for Binary

Orthogonal Signals in SIMO Systems

In this section, we review the main idea of the GQR for binary orthogonal

signals over the slow, flat, Rayleigh fading channel in SIMO systems [41, 42]. The

structure of the GQR is actually based on a new detector–estimator interpretation

of the well-known QR for binary orthogonal signals [41]. This new interpretation

shows that it is wrong to refer to the QR as a noncoherent receiver. The QR

actually performs partially coherent detection, and uses half of the energy per bit

to estimate the channel. This new interpretation also provides an access to the

generalization of the QR to achieve substantial performance gains by exploiting the

channel memory to improve the channel estimation accuracy [42]. Thus here, we

first review the detector–estimator interpretation of the QR, and then generalize it

to obtain the GQR. This section serves as a starting point of the main contribution

of this chapter, i.e., design and performance analysis of the GQRs for USTM.
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Fig. 3.1: The binary orthogonal signal structure.

3.2.1 Detector–Estimator Receiver for Binary Orthogonal

Signals

As shown in Fig. 3.1, after rotating the coordinate system, the orthogonal

signal structure can be considered as the combination of an antipodal signal set

and a pilot component for channel measurement [41]. In the original s0s1-space,

the transmitted signal can be given in vector notation by

s =





√
Ess0 =

√
Es


 1

0


 , on hypothesis H0, (3.1a)

√
Ess1 =

√
Es


 0

1


 , on hypothesis H1. (3.1b)

Here, Es is the energy per bit, and s0 and s1 are orthonormal vectors corresponding

to orthonormal waveforms s0 (t) and s1 (t) over [0, Ts]. Then we define the rotated

coordinate system as s′0s
′
1-space in which the orthonormal vectors s′0 and s′1 are

defined by





s′0 =
1√
2

[s0 + s1] , (3.2a)

s′1 =
1√
2

[s1 − s0] . (3.2b)
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In this new s′0s
′
1-space, the transmitted signal is given by

s =





√
Es

2
[s′0 − s′1] =

√
Es

2


 1

−1


 , on hypothesis H0, (3.3a)

√
Es

2
[s′0 + s′1] =

√
Es

2


 1

1


 , on hypothesis H1. (3.3b)

Thus, from the s0s1-space to the s′0s
′
1-space, the rotation matrix Ar is given by

Ar =
1√
2


 1 1

−1 1


 . (3.4)

From (3.3) and Fig. 3.1, we can see that after the coordinate system rotation,

the two orthogonal signals have the same value on the s′0-axis and the opposite

values on the s′1-axis. Hence,
√

Es/2s
′
0 is an unmodulated component, which is

independent of the hypothesis and can be used to estimate the channel. The

antipodal signal set, i.e.,
√

Es/2s
′
1 and −

√
Es/2s

′
1, is data bearing component

and can be used to detect signals.

Suppose we employ a diversity reception over NR i.i.d. flat Rayleigh fading

channels. Then in the s0s1-space, the complex received signal over the ith channel

is given in vector notation by

ri = cis + vi, i = 1, · · · , NR. (3.5)

Here, s is defined by (3.1); Es is now the energy per bit per diversity channel, and

NREs = Eb is the energy per bit. The received signal vector is ri = [r0i r1i]
>. Its

elements are given by rji =
∫ Ts

0
ri (t)s

∗
j (t) dt for j = 0, 1, where ri (t) , 0 ≤ t < Ts,

is the received signal over the ith channel, and (·)∗ denotes the conjugate operation.

The additive white Gaussian noise vector is given by vi = [v0i v1i]
>, where we have

vji =
∫ Ts

0
vi (t)s

∗
j (t) dt for j = 0, 1, and vi (t), 0 ≤ t < Ts, is the noise over the ith

channel. The noise variables {v0i, v1i}NR

i=1 are i.i.d. CN (0, N0) distributed. The

parameters {ci}NR

i=1 are the unknown complex channel gains which are independent
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Fig. 3.2: The detector–estimator receiver structure for binary orthogonal signals.

of the hypothesis as well as the noise set {vi}NR

i=1. In Rayleigh fading channels,

{ci}NR

i=1 are i.i.d. CN (0, 2σ2) distributed variables.

Then we transform the received signal in (3.5) into s′0s
′
1-space. In s′0s

′
1-space,

the received signal vector r′i = [r′0i r′1i]
> is given by

r′i =


 r′0i

r′1i


 = Arri =

1√
2


 1 1

−1 1





 r0i

r1i


 =

1√
2


 r0i + r1i

r1i − r0i


 . (3.6)

Thus we have [41, eq. (13)]





r′0i = ci

√
Es

2
+ v′0i, i = 1, · · · , NR, (3.7a)

r′1i = qci

√
Es

2
+ v′1i, i = 1, · · · , NR, (3.7b)

where q = 1 on hypothesis H1, and q = −1 on hypothesis H0; and v′i = [v′0i v′1i]
> =

Arvi is AWGN with {v′0i, v
′
1i}NR

i=1 being i.i.d. CN (0, N0) distributed. From (3.7),

it is clear that r′0i is a hypothesis-independent noisy observation on the unknown

channel gain ci, and only r′1i contains the data information. Thus, a detector–

estimator receiver can be used to detect the data carried by r′1i, as shown in

Fig. 3.2 [41]. The maximum a posteriori probability (MAP) or conditional mean

estimate ĉi of ci based on r′0i is given by [41, eq. (14)]

ĉi = E [ci |r′0i ] =
2σ2

√
Es/2

Esσ2 + N0

r′0i, i = 1, · · · , NR. (3.8)
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Then the detector–estimator receiver in Fig. 3.2 treats the ĉi’s as if they were

equal to ci’s and uses them to remove the unknown gains ci’s from the decision

statistics r′1i’s. The data decision is made using the likelihood ratio test (LRT)

[41, eq. (15)]:

Re

{
NR∑
i=1

r′1iĉ
∗
i

}
H1

≷
H0

0 (3.9)

or equivalently

Re

{
NR∑
i=1

r′1ir
′∗
0i

}
H1

≷
H0

0. (3.10)

Here, Re{·} denotes the real part of the quantity in the brackets. Using (3.6), the

receiver (3.10) can be rewritten as

Re

{
NR∑
i=1

r′1ir
′∗
0i

}
=

1

2

NR∑
i=1

[|r1i|2 − |r0i|2
] H1

≷
H0

0. (3.11)

Thus, the detector–estimator receiver in (3.9) or (3.10) is equivalent to a QR in the

sense that they produce identical symbol decisions, and the QR has been shown

in [40, ch. 7] to be the optimum receiver.

3.2.2 Generalized Quadratic Receiver for Binary Orthog-

onal Signals

Since the detector–estimator receiver in s′0s
′
1-space produces identical symbol

decisions as the optimum QR in s0s1-space, as shown in (3.11), the error probabil-

ity of the former should be the same as that of the latter, given by the well-known

result in [1, eqs. (14.4–15) and (14.4–30)]. One important consequence of this new

interpretation of the QR is that we can further improve the error performance by

exploiting the correlation or the memory of the channel between signaling inter-

vals. As a natural extension of the detector–estimator receiver in (3.9) or (3.10),

Kam et al. proposed in [42] to use the signals received over all the symbol intervals
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Fig. 3.3: Channel estimation in the GQR for binary orthogonal signals.

or a subset of these intervals to estimate the channel gain in each symbol interval,

as shown in Fig. 3.3. By doing so, the accuracy of the channel gain estimate

can be improved. This, in turn, leads to an improvement in the error probability

performance in data detection.

We now consider to detect the data in the kth symbol interval. The received

signal vector over the ith channel during the kth symbol interval is given by

ri (k) = ci (k) s + vi (k) , i = 1, · · · , NR. (3.12)

Here, the noise vectors vi (k) = [v0i (k) v1i (k)]> for k = 0, 1, · · · ,∞ and

i = 1, · · · , NR are i.i.d. CN (0, N0I2). Each variable of the channel gain se-

quence {ci (k)}∞k=0 is assumed to remain constant within each symbol interval

with CN (0, 2σ2) distribution, and is assumed to be correlated with the one in an-

other symbol interval with the correlation function Rc (m) = E [ci (k + m) c∗i (k)].

The channel gain sequence {ci (k)}∞k=0 is independent of {cj (k)}∞k=0 for i 6= j, and

is independent of the noise sequence {vj (k)}∞k=0 for all i and j.

According to (3.9), (3.10), and (3.11), the conventional QR is equivalent to

the following detector–estimator receiver [42, eq. (19)]

−
√

2Re

{
NR∑
i=1

r′1i (k) ĉ∗i (k)

}
= Re

{
NR∑
i=1

[r0i (k)− r1i (k)] ĉ∗i (k)

}
H(k)=H0

≷
H(k)=H1

0.

(3.13)

Here,

ĉi (k) = E [ci (k) |r′0i (k) ] = E [ci (k) |r0i (k) + r1i (k) ] (3.14)
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is the MMSE or MAP or conditional mean estimate of ci (k) based on (r0i (k) +

r1i (k)) for each i = 1, · · · , NR.

Generalizing (3.13) then leads to the GQR for binary orthogonal signals,

namely [42, eq. (20)]

Re

{
NR∑
i=1

[r0i (k)− r1i (k)] ĉi|Z(k)

}
H(k)=H0

≷
H(k)=H1

0. (3.15)

Here,

ĉi|Z(k) = E [ci (k) |Zi (k) ] , i = 1, · · · , NR, (3.16)

is the MMSE or MAP or conditional mean estimate of ci (k) based on the infor-

mation set

Zi (k) = {r0i (m) + r1i (m)}k+M
m=k−M , i = 1, · · · , NR. (3.17)

The error probability of this GQR is given by [42, eqs. (24) and (25)]

Pe =

(
1− µ

2

)NR NR−1∑
i=0

(
NR − 1 + i

i

)(
1 + µ

2

)i

(3.18)

where

µ =

√
1− v2

c/(2σ
2)

1 + 2/γc

. (3.19)

Here, γc = 2σ2Es/N0 is the mean received SNR per channel per bit, and v2
c is the

mean-square error (MSE) in the estimate ĉi|Z(k), given by

v2
c = E

[∣∣ci (k)− ĉi|Z(k)
∣∣2

∣∣∣{Zi (k)}NR

i=1

]
. (3.20)

Since the channels are identical, the MSE v2
c is identical for all the channels, i.e.,

independent of the channel index i.

For finite memory sets, the estimator for each channel is a Wiener filter which
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generates ĉi|Z(k) as a linear weighted sum of the signals in Zi (k), namely [14, eq.

(24)]

ĉi|Z(k) =
M∑

m=−M

α(m) [r0i (k + m) + r1i (k + m)] . (3.21)

The weights α(m)’s are chosen to minimize the MSE v2
c . According to the orthog-

onality property, α(m)’s are the solutions of the following equations [14, eq. (25)]

M∑
m=−M

α(m) [EsRc (j −m) + 2N0δmj] =
√

EsRc (j) , j = −M, · · · ,M (3.22)

where

δmj =

{
1, m = j,

0, m 6= j.

The corresponding MMSE is given by

v2
c = Rc (0)−

√
Es

M∑
m=−M

α(m)Rc (m) = 2σ2 −
√

Es

M∑
m=−M

α(m)Rc (m). (3.23)

Kam et al. have shown in [42] that when the information set Zi (k) only

involves {r0i (k) + r1i (k)}, i.e., only the received signals in the current interval

are used to estimate channels, the MMSE in (3.23) reduces to v2
c = 4σ2/(γc + 2).

Thus, the parameter µ in (3.19) of the error probability for the GQR reduces to

µ = γc/(γc+2), which turns out to be the same as that in [1, eq. (14.4–30)] for the

conventional QR. As the channel memory span exploited in channel estimation

increases, the error probability of the GQR decreases. In the limit of perfect

channel estimation, i.e., v2
c = 0, the parameter µ in (3.19) for the GQR reduces to

µ =
√

γc/(γc + 2), which turns out to be the same as that in [1, eq. (14.4–21)] for

the CR. The simulation results in [42] have shown that the performance gain of the

GQR over the QR is larger for a slower channel, and is also larger for a higher order

of diversity. For a finite memory receiver, most of the potential performance gain
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can be obtained by using signal observations in just a few immediately adjacent

symbol intervals. Hence, the additional computational requirement is not great

in most cases of practical interest.

3.3 Generalized Quadratic Receiver for Unitary

Space–Time Modulation

In this section, we extend the concept of the GQR to the USTM system over

the flat Rayleigh block-fading channel. In Section 3.3.1, we first give the USTM

system model which takes into account the channel memory. Then in Section 3.3.2,

we derive the GQR for the USTC-OD with two or four transmit antennas in [67].

In Section 3.3.3, we derive the GQR for OUSTC in [54]. In Section 3.3.4, we give

a unified derivation of the PEP for the above two GQRs. In Section 3.3.5, we

derive the GQR for general NOUSTC. Finally, in Section 3.3.6, we present some

numerical and simulation results.

3.3.1 System Model

Consider a system with NT transmit antennas and NR receive antennas. The

Rayleigh fading channels are assumed to remain constant in one time-block of

T symbol intervals, and we assume T > NT . Thus, at the kth time-block, the

received signal vector is given by

x(k) =
√

ρT/NTΨlh(k) + w(k). (3.24)

To make the discussion concise, the time-block index k is omitted when only

the signals in the current kth time-block are considered, and is only used to

avoid confusion when the signals in the adjacent time-blocks are also involved.

In each individual time-block, x, ρ, Ψl, h, and w in (3.24) have the same def-

initions as those in (2.5). We review these definitions here for easy reference.
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The TNR × 1 complex received signal vector is defined as x = [x>1 x>2 · · · x>NR
]>,

where xn = [xn((k − 1)T + 1) xn((k − 1)T + 2) · · · xn(kT )]> is the received

signal vector at receive antenna n and time-block k. The quantity ρ is the mean

SNR at each receive antenna. The TNR × NT NR transmitted signal matrix is

defined as Ψl = INR
⊗ Φl, where the T × NT unitary matrix Φl, chosen from

the constellation {Φl

∣∣Φ†
lΦl = INT

, l = 1, . . . , L}, is transmitted from NT transmit

antennas at time-block k. The NT NR × 1 complex channel gain vector is defined

as h = [h>1 h>2 · · · h>NR
]>, where hn = [h1n h2n · · · hNT n]>. Each hmn is the path

gain from transmit antenna m to receive antenna n at time-block k, and h is

CN (0, INT NR
) distributed. The TNR × 1 complex noise vector is defined as w =

[w>
1 w>

2 · · · w>
NR

]>, where wn = [wn((k−1)T +1) wn((k−1)T +2) · · · wn(kT )]>

is the noise vector at receive antenna n and time-block k, and w is CN (0, ITNR
)

distributed.

In addition, we assume that the path gains over different branches are always

independent, but those over the same branch are correlated from one time-block to

another with the correlation Rh(τ) = E[hmn(k+τ)h∗mn(k)]. The correlation Rh(τ)

is assumed to be identical for all branches, i.e., Rh(τ) is independent of m and n,

and thus we have E[h(k + τ)h†(k)] = Rh(τ)INT NR
,∀τ . We also assume that the

noise vectors are independent with respect to both time and space, i.e., E[w(k +

τ)w†(k)] = 0TNR
,∀τ 6= 0, and are independent of h, i.e., E[w(k+τ)h†(k)] = 0,∀τ .

As we have mentioned in Chapter 2, if the channel h is unknown, the ML

receiver is the QR in (2.9), while if the channel h is known, the ML receiver is

the CR in (2.11). When the singular values {dm,lj}NT
m=1 of the matrix Φ†

jΦl are

equal, i.e., they satisfy (2.15), and the singular values {δm,lj}NT
m=1 of the matrix

(Φj − Φl) are equal, i.e., they satisfy (2.21), the closed-form expressions for the

PEP of mistaking Ψl for Ψj when Ψl was sent for the QR and the CR can be

written in the same form, given by

Pe(λlj) =

(
1− λlj

2

)NT NR NT NR−1∑
i=0

(
NT NR − 1 + i

i

)(
1 + λlj

2

)i

. (3.25)
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For the QR in (2.9), the parameter λlj = λlj,QR is given by (2.17), while for the CR

in (2.11), the parameter λlj = λlj,CR is given by (2.23). The QR bases its current

decision only on the received signals in the current time-block. In Sections 3.3.2–

3.3.5, we develop the GQRs which also extract CSI inherent in the received signals

over the adjacent time-blocks. The GQRs bridge the performance gap between

the QR and the CR, and as will be shown, their PEP expressions are also given

in the form of (3.25) when the conditions in (2.15) and (2.21) are both satisfied.

3.3.2 Generalized Quadratic Receiver for Unitary Space–

Time Constellations with Orthogonal Design

We now consider the USTC-OD for NT = 2 and 4, and T = 2NT proposed

in [67]. For the case of NT = 2 and L = q2, q ∈ N, their constellations are given

by (2.44). For the case of NT = 2 and L = 22n−1, n ∈ N, their constellations are

obtained by extracting the subsets of the constellations of size L = 22n [66]. For

the case of NT = 4 and L = q3, q ∈ N, their constellations are given by (2.45).

We can see that these signal matrices consist of a training block and a data block,

and this data block is a square complex orthogonal design for STBC [7]. We let

Cp and Cd denote, respectively, the NT ×NT training block and the NT ×NT data

block, and wp and wd denote the corresponding NT NR × 1 noise vectors. Thus,

the received signals in the training block session are given by

xp =
√

ρT/NT (INR
⊗Cp)h + wp, (3.26)

and the received signals in the data block session are given by

xd =
√

ρT/NT (INR
⊗Cd)h + wd. (3.27)

As shown in [67, pgs. 1321–1322], by exploiting the property of orthogonal

designs, the QR in (2.9) can be simplified to a receiver that decides on the indexes

of the signal matrices separately. For example, for the constellations in (2.44) with

64



3.3. GQR FOR UNITARY SPACE–TIME MODULATION

NT = 2 and L = q2, q ∈ N, the QR in (2.9) can be simplified as





îML = arg max
i=0,...,q−1

‖Ψ†
i,0x‖2, (3.28a)

l̂ML = arg max
l=0,...,q−1

‖Ψ†
0,lx‖2. (3.28b)

For the constellations in (2.45) with NT = 4 and L = q3, q ∈ N, the QR in (2.9)

can be simplified as





îML = arg max
i=0,...,q−1

‖Ψ†
i,0,0x‖2, (3.29a)

l̂ML = arg max
l=0,...,q−1

‖Ψ†
0,l,0x‖2, (3.29b)

ĵML = arg max
j=0,...,q−1

‖Ψ†
0,0,jx‖2. (3.29c)

As will be shown in Section 3.3.2.4, our GQR can also be simplified similarly.

3.3.2.1 GQR Structure

We now derive the GQR for the USTC-OD given above. As was done for

space–time decoding in [10–12, 126], when the channel estimate ĥ, instead of h

itself, is available to the receiver, we can replace h in the CR (2.11) by ĥ to obtain

a mismatched receiver for USTM. It is clear that for the USTC-OD, the CR in

(2.11) for USTM is equivalent to the CR only for the data block, which can be

obtained by replacing x and Ψl in (2.11) with xd and (INR
⊗ Cd,l), respectively,

namely

Ĉd,CR = arg min
Cd,l∈{Cd,1,...,Cd,L}

∥∥∥xd −
√

ρT/NT (INR
⊗Cd,l)h

∥∥∥
2

. (3.30)

Here, Cd,l is the data block of Φl for l = 1, · · · , L, and C†
d,lCd,l = 1

2
INT

. Thus,

we can also obtain a mismatched receiver for the data block by using ĥ to replace

h in the CR (3.30) for the data block, as was done in [10, eq. (13)]. These two

mismatched receivers are equivalent. Here, we first present the GQR derived from

the mismatched receiver for USTM, since this GQR has a structure similar to that

of the GQR designed in Section 3.3.3 for OUSTC, and we can derive their PEP
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Fig. 3.4: GQR structure for Case I where the channel estimate is the same for all the
hypotheses, and Case II where the channel estimate is the same for the two
hypotheses concerned.

expressions together in Section 3.3.4. We will discuss the equivalent GQR derived

from the mismatched receiver for the data block in Sections 3.3.2.4 and 3.3.2.5.

We define the general information set as

Z = {xp(k + m)}M2

m=−M1
, M1,M2 ≥ 0. (3.31)

Then we use ĥp|Z = E
[
h
∣∣Z]

, the MMSE channel estimate based on Z, to replace

h in the CR in (2.11), and obtain the mismatched receiver for USTM, i.e.,

Ψ̂ = arg min
Ψl∈{Ψ1,...,ΨL}

∥∥∥x−
√

ρT/NTΨlĥp|Z
∥∥∥

2

. (3.32)

Since both Ψ†
lΨl = INT NR

and ĥp|Z are independent of the hypothesis, we can

reduce (3.32) further to obtain our GQR, namely

Ψ̂GQR = arg max
Ψl∈{Ψ1,...,ΨL}

Re
{
ĥ†p|ZΨ†

lx
}

. (3.33)

The GQR in (3.33) is shown in Fig. 3.4 as Case I. Its structure is similar to that

of (3.15). This receiver first obtains the channel estimate ĥp|Z based on Z, which
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provides a partially coherent reference in detecting the data carried by Ψ†
lx, the

projection of the received signal onto the complex subspace spanned by each of

the possible transmitted signal matrices. As will be shown in Section 3.3.2.3,

by using MMSE channel estimation, we can ensure that the GQR in (3.33) has

the same error performance as the QR in (2.9) when we set M1 = M2 = 0 in

(3.31). Since we can further improve the channel estimation accuracy, as shown in

[42], by exploiting the channel memory and using also the received signals over the

adjacent time-blocks to estimate the channel, we expect a better error performance

by setting M1 > 0 and/or M2 > 0.

3.3.2.2 Error Performance

For the USTC-OD in (2.44) with NT = 2, it has been shown that all the

singular values of Φ†
i,lΦi′,l′ , ∀Φi,l,Φi′,l′ ∈ Ca are identical, given by (2.46), and all

the singular values of (Φi,l − Φi′,l′) are identical, given by (2.47). It can easily

be shown that similar results hold for the case of NT = 4. Thanks to this nice

property, the PEPs of the USTC-OD for the QR and the CR are given explicitly

and exactly by the PEP function in (3.25) with the parameters defined in (2.17)

and (2.23), respectively.

We now discuss the PEP of the GQR in (3.33). We let hn and ĥn|Z denote

the nth element of h and its MMSE estimate, respectively. Then the MSE v2
h of

the channel estimate is defined as

v2
h = E

[∣∣∣hn − ĥn|Z
∣∣∣
2
]

,∀n ∈ {1, . . . , NT NR}. (3.34)

Here, since the channels are statistically identical, v2
h is independent of n. As

will be shown in Section 3.3.4, when the conditions in (2.15) and (2.21) are both

satisfied, for the GQR in (3.33), the PEP of mistaking Ψl for Ψj when Ψl was
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sent is given by the PEP function Pe(λlj,GQR) in (3.25) with

λlj,GQR =

(√
1 +

4v2
h(d

2
lj − 1) + 4 [v2

h + NT /(ρT )] δ2
lj

δ4
lj (1− v2

h)

)−1

. (3.35)

From (3.25) together with (3.35), we can see that Pe(λlj,GQR) is an increasing

function of the MSE v2
h. Hence, if we can exploit the channel correlation better to

obtain a more accurate channel estimate, we will have a smaller Pe(λlj,GQR). When

v2
h = 0, i.e., the channel estimation is perfect, the error performance parameter

λlj,GQR in (3.35) for the GQR reduces to λlj,CR in (2.23) for the CR.

3.3.2.3 Channel Estimation

Now we discuss channel estimation for the USTC-OD in (2.44) and (2.45), by

using a Wiener filter to estimate the channel h(k) based on the received signals over

successive time-blocks. We define the channel measurement components b(k+m)

for time-blocks {k + m}M2
m=−M1

as

b(k + m) =
(
ρT/NT

)−1/2
Fpxp(k + m)

= h(k + m) + (ρT/NT )−1/2 Fpwp(k + m),m = −M1, . . . , M2, (3.36)

where Fp = (INR
⊗Cp)

−1. It is clear that b(k + m) is a noisy observation on the

channel gain h(k+m), and {b(k+m)}M2
m=−M1

is a one-to-one function of Z in (3.31).

Thus, we have ĥp|Z = E
[
h(k)

∣∣{b(k +m)}M2
m=−M1

]
. We define bn(k +m) as the nth

element of b(k + m), and bn(k) =
[
bn(k −M1) bn(k −M1 + 1) · · · bn(k + M2)

]>
.

Then the MMSE estimate of hn(k) based on bn(k) is

ĥn|Z = a†bn(k), n = 1, . . . , NT NR, (3.37)

where a = [a(−M1) a(−M1 + 1) · · · a(M2)]
> is the Wiener filter weight vector.

According to the orthogonality property, the vector a is the solution of the Wiener-

68



3.3. GQR FOR UNITARY SPACE–TIME MODULATION

Hopf equation [127], given by

a = R−1
bb rhb, (3.38)

where Rbb = E
[
bn(k)b†n(k)

]
is the autocorrelation matrix and rhb =

E
[
bn(k)h∗n(k)

]
is the cross correlation vector. Since we have E[hn(k+s)h∗n(k+t)] =

Rh(s − t) and the noise samples are independent of one another and also inde-

pendent of the channel gains, the (s, t)th entry of Rbb for the USTC-OD is given

by

rst =





1 + 2(ρT/NT )−1, s = t

Rh(s− t), s 6= t
(3.39)

and rhb is given by

rhb = [Rh(−M1) Rh(−M1 + 1) · · · Rh(M2)]
> . (3.40)

From (3.38)–(3.40), we can see that a is real-valued and independent of the channel

branch number n and the time-block number k. Thus, a can be computed in

advance, and (3.37) becomes

ĥp|Z = Ba, (3.41)

where

B = [b(k −M1) b(k −M1 + 1) · · · b(k + M2)] = [b1(k) b2(k) · · · bNT NR
(k)]> .

(3.42)

The MMSE v2
h in (3.34) becomes [127]

v2
h = 1− a>rhb = 1−

M2∑
m=−M1

a(m)Rh(m). (3.43)

The expression (3.43) shows that a smaller v2
h can be obtained if more adjacent

time-blocks are used in channel estimation, provided the channel gains over these
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time-blocks are correlated with that being estimated. Hence, if the channel fading

is slow enough, v2
h is expected to approach zero when we exploit a longer channel

memory. This results in the performance of our GQR approaching that of the CR.

The expression (3.43) also shows that slower fading will result in a smaller v2
h and

in turn a better error performance even if the same number of time-blocks is used

in channel estimation, since each element Rh(m) is larger for slower fading.

We now examine the worst case where only the received signals in the current

time-block are used to acquire the CSI, i.e., M1 = M2 = 0. From (3.38)–(3.43),

we obtain

a(0) =
ρT/NT

ρT/NT + 2
(3.44)

and

v2
h =

2

ρT/NT + 2
. (3.45)

For the USTC-OD in (2.44), substituting this value of v2
h and the singular values

in (2.46) and (2.47) into the PEP expressions of the GQR in (3.35) and the QR

in (2.17), we see that the PEP of our GQR reduces to that of the QR. Similar

results hold for the case of NT = 4.

3.3.2.4 Simplified GQR

The GQR in (3.33) can be simplified so that it has a complexity less than

that of the QR in (2.9) and even that of the simplified QR in (3.28) and (3.29).

We illustrate this for the case of NT = 2 and L = q2, q ∈ N. It is easy to see that

the GQR in (3.33) can be simplified to the following form

Ψ̂GQR = arg max
i,l∈{0,...,q−1}

Re
{
ĥ†p|ZD†

i,lxd

}
, (3.46)
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where Di,l = Di + Dl, and

Di = INR
⊗ 1

2


 ri 0

0 r−i


 , Dl = INR

⊗ 1

2


 0 rl

−r−l 0


 .

The GQR in (3.46) can also be derived directly from the mismatched receiver for

the data block. As described in Section 3.3.2.1, we can replace h in the CR (3.30)

with ĥp|Z when h is not available, and obtain the mismatched receiver for the data

block, namely

Ĉd = arg min
{i,l}∈{0,...,q−1}

∥∥∥xd −
√

ρT/NT

(
INR

⊗Cd,(i,l)

)
ĥp|Z

∥∥∥
2

. (3.47)

Here, Cd,(i,l) is the data block of Φi,l for {i, l} ∈ {0, · · · , q − 1}. This receiver is

equivalent to [10, eq. (18)] when M1 = M2 = 0. Since Cd,(i,l) has a one-to-one

correspondence with Ψi,l, the decision Ĉd on Cd,(i,l) is equivalent to the decision

Ψ̂ on Ψi,l. Thus, simplifying (3.47) leads to (3.46).

By exploiting the property of orthogonal designs, the GQR in (3.46) can be

further simplified to decide on Ψ̂îGQR,l̂GQR
, i.e.,

Ψ̂GQR = arg max
Ψi,l

Re
{
ĥ†p|Z

(
D†

i + D†
l

)
xd

}
= Ψ̂îGQR,l̂GQR

, (3.48)

where





îGQR = arg max
i∈{0,...,q−1}

Re
{
ĥ†p|ZD†

ixd

}
, (3.49a)

l̂GQR = arg max
l∈{0,...,q−1}

Re
{
ĥ†p|ZD†

lxd

}
. (3.49b)

It is clear that this detector needs to use only the received signals in the current

orthogonal-design session, as shown in Fig. 3.5. To detect the signals at time-block

k, the simplified GQR in (3.36), (3.41) and (3.48) needs to calculate the quantities

Fpxp(k + M2) ({Fpxp(k + m)}M2−1
m=−M1

are computed in the previous time-blocks)

and Ba each once, and the quantities Re
{
ĥ†p|ZD†

ixd

}
and Re

{
ĥ†p|ZD†

lxd

}
each

q times. By contrast, the original QR in (2.9) needs to calculate the quantity
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Fig. 3.5: Simplified GQR structure for the USTC-OD with NT = 2, 4.

∥∥Ψ†
i,lx

∥∥2
, q2 times. We can see that if M1 and M2 are small enough, the simplified

GQR, including the detector and the estimator, can involve less computational

complexity than the QR in (2.9). Even compared with the simplified form of the

QR in (3.28), which calculates the quantities
∥∥Ψ†

i,0x
∥∥2

and
∥∥Ψ†

0,lx
∥∥2

each q times,

our simplified GQR can still involve less computational complexity, since the sizes

of matrices Di, Dl and xd are only half of those of Ψi,0, Ψ0,l and x, respectively.

For large-sized constellations, the complexity of the simplified GQR is much less

than those of the QR and the simplified form of the QR.

3.3.2.5 Discussion

Our work here is motivated by designing a receiver which exploits pilot com-

ponents inherent in the data signals themselves to provide a better performance

than that of the QR. When M1 = M2 = 0, the simplified GQR in (3.48) is equiva-

lent to the mismatched receiver for orthogonal STBC that uses the current received

training block to obtain the MMSE channel estimate. The latter receiver has also

been discussed in [10, 12, 126]. In [10], the performance of general training codes,

which consist of one training block and one or more data blocks, was evaluated for
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the mismatched receiver with MMSE channel estimation based on the current re-

ceived training block. Proposition 1 therein shows that this mismatched receiver

is equivalent to the QR if and only if the training codes, which consist of one

training block with orthonormal columns and one data block with orthonormal

rows, are transmitted over block-wise constant, i.i.d. Rayleigh fading channels.

This proposition holds for any power distribution between the training and data

blocks. It verifies our result in Section 3.3.2.3, i.e., for the USTC-OD with NT = 2

or 4, our GQR gives the same PEP as the QR when M1 = M2 = 0. It also indi-

cates that for the USTC-OD with NT = 3, which can be obtained by deleting one

column from the design of NT = 4 [67], the mismatched receiver is suboptimal,

i.e., its error performance is worse than that of the QR when M1 = M2 = 0, since

the rows of the data block are not orthogonal. This indication is consistent with

our results, so we will use the GQR designed in Section 3.3.5 for general NOUSTC

to process the USTC-OD with NT = 3 to provide a performance at least as good

as that of the QR.

In [10–12, 126], the error performance is improved by increasing or optimiz-

ing the power of the training block, while in our work, the error performance is

improved by exploiting the channel memory to increase the channel estimation

accuracy. For a given training code which satisfies the conditions in Proposition 1

in [10] mentioned above, optimizing the power distribution between the training

and data blocks, as was done in [10, 12], can give a better error performance for

the mismatched receiver, or equivalently, for the QR. Even after obtaining the op-

timal power distribution, one can further improve the error performance by using

our GQR to exploit the channel memory.

In addition, the PEP expression in (3.25) together with (3.35) is given in terms

of the MSE v2
h, and shows clearly the effect of the channel estimation accuracy

on the error performance. This PEP expression has more flexibility than those in

the literature. It holds for the mismatched receivers with different MMSE channel

estimation accuracies, since it is independent of the exact expression of the MMSE
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channel estimate. It is also valid for various unitary constellations, including not

only training codes, but also OUSTC, as will be shown in Section 3.3.3.

3.3.3 Generalized Quadratic Receiver for Orthogonal Uni-

tary Space–Time Constellations

We now derive the GQR for OUSTC which are defined by {Φl

∣∣Φ†
lΦl =

INT
,Φ†

lΦj = 0NT
, l, j = 1, . . . , L, l 6= j}. Some examples of this class of con-

stellations can be found in [54]. Signal matrices in OUSTC do not contain explicit

training blocks, but we can extend the channel estimation method for binary

orthogonal signals in [42] to OUSTC.

We first consider the case where only the received signals in the current time-

block are involved in channel estimation, i.e., M1 = M2 = 0. When we decide

between two signal matrices Ψl and Ψj, we can reexpress the QR in (2.9) as

∥∥∥Ψ†
jx

∥∥∥
2

−
∥∥∥Ψ†

lx
∥∥∥

2

= Re
{
x† (Ψj + Ψl)

(
Ψ†

j −Ψ†
l

)
x
} Ψj

≷
Ψl

0. (3.50)

For OUSTC, the value of the first half of the terms in the curly brackets in (3.50)

is independent of the two hypotheses concerned, i.e., the vector

b =
(
ρT/NT

)−1/2
(
Ψ†

j + Ψ†
l

)
x = h + (ρT/NT )−1/2

(
Ψ†

j + Ψ†
l

)
w (3.51)

has the same value irrespective of whether Ψl or Ψj was transmitted at time-block

k. We can see that b in (3.51) is a noisy observation on h, and thus can be defined

as the channel measurement component. The MMSE estimate of h based on b

when either Ψl or Ψj was sent in time-block k is given by

ĥlj = E
[
h
∣∣Ψl,Ψj,b

]
= a(0)b, (3.52)
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where the Wiener filter weight is

a(0) =
ρT/NT

ρT/NT + 2
(3.53)

by (3.38). Since a(0) and
(
ρT/NT

)−1/2
are real positive numbers, the receiver

Re
{
ĥ†lj

(
Ψ†

j −Ψ†
l

)
x
} Ψj

≷
Ψl

0 (3.54)

gives the same decisions on Ψ as the QR in (3.50), and thus they have the same

error performance.

We can improve the channel estimation accuracy further in the receiver (3.54)

by exploiting the channel memory, and obtain a better error performance over the

QR. In the limit of perfect channel estimation, i.e., ĥlj = h, (3.54) becomes

Re
{
h†

(
Ψ†

j −Ψ†
l

)
x
}

=
1

2

[∥∥∥x−
√

ρT/NTΨlh
∥∥∥

2

−
∥∥∥x−

√
ρT/NTΨjh

∥∥∥
2
] Ψj

≷
Ψl

0,

(3.55)

which shows that in this limit, our GQR gives the same decisions on Ψ as the CR

in (2.11).

To exploit the channel memory and obtain the channel estimate with higher

accuracy, we define the general information set Z for OUSTC as

Z = {b(k + m)}M2

m=−M1
, M1,M2 ≥ 0. (3.56)

Here, the channel measurement components {b(k + m)}M2
m=−M1

are defined by

b(k + m) =
(
ρT/NT

)−1/2
Fo(m)x(k + m), m = −M1, . . . , M2, (3.57)

where

Fo(m) =





Ψ†
j + Ψ†

l , m = 0, (3.58a)

L∑
i=1

Ψ†
i , m = −M1, . . . , M2, and m 6= 0. (3.58b)
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For the case of m = 0, if either Ψl or Ψj was sent at time-block k, b(k) has the

same value given by (3.51). For the case of m 6= 0, regardless of which signal

matrix was sent at time-block (k + m), b(k + m) has the same value, given by

b(k + m) = h(k + m) + (ρT/NT )−1/2
L∑

i=1

Ψ†
iw(k + m). (3.59)

Then similar to the case of the USTC-OD in Section 3.3.2.3, the MMSE channel

estimate based on Z when either Ψl or Ψj was sent at time-block k is given by

ĥlj|Z = E
[
h
∣∣Ψl,Ψj, Z

]
=

M2∑
m=−M1

a(m)b(k + m) = Ba, (3.60)

where B = [b(k −M1) b(k −M1 + 1) · · · b(k + M2)]. The values of the Wiener

filter weight vector a = [a(−M1) a(−M1 + 1) · · · a(M2)]
> and the MMSE v2

h can

be obtained by using the formulas in (3.38) and (3.43), respectively. The (s, t)th

entry of the autocorrelation matrix Rbb for OUSTC becomes

ro,st =





1 + L (ρT/NT )−1 , s = t 6= M1 + 1, (3.61a)

1 + 2 (ρT/NT )−1 , s = t = M1 + 1, (3.61b)

Rh(s− t), s 6= t. (3.61c)

The cross correlation vector rhb for OUSTC has the same value as that in (3.40).

We can see that the values of a and v2
h are independent of the channel branch

number n and the time-block number k, and also independent of the values of l

and j.

Now, we use ĥlj|Z in (3.60) to replace ĥlj in the receiver (3.54), and obtain

the GQR for OUSTC:

Re
{
ĥ†lj|Z

(
Ψ†

j −Ψ†
l

)
x
} Ψj

≷
Ψl

0. (3.62)

In this GQR, for any pair of Ψl and Ψj, we just apply the same weight vector

a, computed in advance by using the values of Rbb in (3.61) and rhb in (3.40), to
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{b(k + m)}M2
m=−M1

in (3.57) to obtain ĥlj|Z , and apply the decision rule in (3.62).

We can choose an arbitrary pair of the signal matrices to start the comparisons.

If neither of the alternatives Ψl and Ψj is the actual signal matrix sent at time-

block k, b(k) in (3.57) for the case of m = 0 just contains noise, and thus, it does

not matter which of the alternatives is selected. We just move on to the next

comparison between this interim survivor and the next possible signal matrix. An

error event can only occur when the actual signal matrix sent is involved in the

comparison. We can see that the GQR for OUSTC needs to estimate the channel

and use the decision rule in (3.62) (L− 1) times to come to a final decision. This

GQR structure is shown in Fig. 3.4 as Case II where the channel estimate is the

same for the two hypotheses concerned.

For OUSTC, the singular values {dm,lj}NT
m=1 of Φ†

jΦl satisfy the condition in

(2.15), and are all given by d = 0. The singular values {δm,lj}NT
m=1 of (Φj − Φl)

satisfy the condition in (2.21), and are all given by δ =
√

2. We can see that the

values of these singular values are independent of the values of l and j. As will

be shown in Section 3.3.4, the PEP of the GQR for OUSTC for any pair of Ψl

and Ψj is also given by the PEP function in (3.25), and the parameter λlj,GQR in

(3.35) reduces to λGQR, given by

λGQR =

√
(1− v2

h)ρT/NT

2 + ρT/NT

. (3.63)

For the worst case where only the received signals in the current time-block are

used to estimate the channel, i.e., M1 = M2 = 0, we substitute the value of the

MMSE

v2
h =

2

ρT/NT + 2
(3.64)

into (3.63), and find that the PEP parameter of the GQR for OUSTC reduces to

that of the QR in (2.17), the same result as our analysis for the special case of the

GQR in (3.54). Similar to the case of the USTC-OD in Section 3.3.2, as M1 and
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M2 increase, the value of v2
h for OUSTC decreases, and the PEP of the GQR for

OUSTC drops lower and lower toward that of the CR.

3.3.4 PEP of the GQRs for the USTC-OD and OUSTC

In this section, we give a unified derivation of the PEP for the GQRs for the

USTC-OD in Section 3.3.2 and for OUSTC in Section 3.3.3.

For both the GQRs in (3.33) and in (3.62), the conditional PEP of mistaking

Ψl for Ψj when Ψl was sent, or vice versa in the kth time-block is given by

Pe

(
Ψl,Ψj

∣∣Z)
= Pr

[
Re

{
ĥ†

(
Ψ†

j −Ψ†
l

)
x
}

> 0

∣∣∣∣Ψl, Z

]
. (3.65)

For the GQR in (3.33), we have ĥ = ĥp|Z , and for the GQR in (3.62), we have

ĥ = ĥlj|Z . We define

f = Re
{
ĥ†

(
Ψ†

j −Ψ†
l

)
x
}

. (3.66)

Then f is a Gaussian random variable given Z, Ψl and Ψj, with conditional mean

f̂ = −
√

ρT

4NT

ĥ†
[(

Ψ†
l −Ψ†

j

)
(Ψl −Ψj)

]
ĥ (3.67)

and conditional variance

v2
f =

1

2
ĥ†

{
v2

hρT

NT

(
Ψ†

jΨlΨ
†
lΨj − INT NR

)

+

(
v2

hρT

NT

+ 1

) (
Ψ†

l −Ψ†
j

)
(Ψl −Ψj)

}
ĥ. (3.68)

Here, the quantity v2
h is the MSE in the estimate ĥ, and is identical for all branches.

The conditional PEP is thus given by

Pe

(
Ψl,Ψj

∣∣Z)
= Q

(
− f̂

vf

)
, (3.69)
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where Q(·) is the Gaussian Q-function. It follows that the PEP is given by

Pe (Ψl,Ψj) = Eĥ

[
Q

(
− f̂

vf

)]
. (3.70)

When all the singular values of Φ†
jΦl are equal to dlj, i.e., the condition in

(2.15) is satisfied, we have Ψ†
jΨlΨ

†
lΨj = d2

ljINT NR
. When all the singular val-

ues of (Φj −Φl) are equal to δlj, i.e., the condition in (2.21) is satisfied, we have(
Ψ†

l −Ψ†
j

)
(Ψl −Ψj) = δ2

ljINT NR
. Thus, when the conditions in (2.15) and (2.21)

are both satisfied, the PEP expression in (3.70) can be reduced to

Pe (Ψl,Ψj) = Eĥ


Q




√√√√√ δ4
lj

∥∥∥ĥ
∥∥∥

2

2v2
h(d

2
lj − 1) + 2

[
v2

h + NT /(ρT )
]
δ2
lj





 . (3.71)

Now, we define g =
∥∥∥ĥ

∥∥∥
2

=
∑NT NR

n=1

∣∣∣ĥn

∣∣∣
2

, where ĥn is the nth element of ĥ. Each

ĥn is a complex Gaussian random variable with mean zero and variance

E

[∣∣∣ĥn

∣∣∣
2
]

= E
[|hn|2

]− E

[∣∣∣hn − ĥn

∣∣∣
2
]

= 1− v2
h , σ2

ĥ
. (3.72)

Thus, g is a chi22NT NR
distributed random variable with probability density func-

tion [1, eq. 2.1–110]

pg(g) =
1

σ2NT NR

ĥ
Γ(NT NR)

gNT NR−1e−g/σ2
ĥ , g ≥ 0 (3.73)

where Γ(·) is the Gamma function, defined as [124, eq. (8.310 1)]

Γ(x) =

∫ ∞

0

tx−1e−tdt, Re(x) > 0. (3.74)
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Then (3.71) becomes [1, pg. 825]

Pe (Ψl,Ψj) =

∫ ∞

0

Pe

(
Ψl,Ψj

∣∣g)
pg(g)dg

=

(
1− λlj,GQR

2

)NT NR NT NR−1∑
i=0

(
NT NR − 1 + i

i

)(
1 + λlj,GQR

2

)i

,

(3.75)

where

λlj,GQR =

(√
1 +

4v2
h(d

2
lj − 1) + 4

[
v2

h + NT /(ρT )
]
δ2
lj

δ4
lj(1− v2

h)

)−1

.

The closed-form expression in (3.75) for the PEP applies to the GQR in (3.33) for

the USTC-OD with two or four transmit antennas, and also applies to the GQR

in (3.62) for OUSTC.

When the conditions in (2.15) and (2.21) are both satisfied, we can also obtain

a CUB on Pe (Ψl,Ψj). We first bound the Gaussian Q-function in the RHS of

(3.69) by using the Chernoff bound: Q(x) < e−x2/2/2, and obtain

Pe

(
Ψl,Ψj

∣∣g)
<

1

2
exp

{
− δ4

ljg

4v2
h(d

2
lj − 1) + 4

[
v2

h + NT /(ρT )
]
δ2
lj

}
. (3.76)

Then using the formula in [124, eq. 3.351 3], i.e.,

∫ ∞

0

xne−axdx = n!a−n−1, Re(a) > 0, (3.77)

we obtain the CUB on Pe (Ψl,Ψj) as

Pe (Ψl,Ψj) <
1

2

{
1 +

δ4
lj(1− v2

h)

4v2
h(d

2
lj − 1) + 4

[
v2

h + NT /(ρT )
]
δ2
lj

}−NT NR

. (3.78)

Since the exact expression for the PEP in (3.75) is already simple to use, we will

not discuss the CUB in (3.78) further here.
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3.3.5 Generalized Quadratic Receiver for General

Nonorthogonal Unitary Space–Time Constellations

Thus far, we have developed the GQR for the USTC-OD with NT = 2, 4

and the GQR for OUSTC, and have derived a closed-form expression for their

PEP. We now consider a more general case, i.e., NOUSTC which are defined

by {Φl

∣∣Φ†
lΦl = INT

, ∃{Φl,Φj} s.t. Φ†
lΦj 6= 0NT

, l, j = 1, . . . , L, l 6= j}. These

NOUSTC may contain an explicit training block in each Φl, such as the USTC-

OD with NT = 3 in [67], and may also not contain any explicit training blocks,

such as the constellations in [54] (except those OUSTC). For this general case, we

can still give a form of the GQR and analyze its error performance. However, it

is difficult to obtain the PEP expression precisely for this GQR.

In NOUSTC, the two alternatives, Ψl and Ψj, can be orthogonal or

nonorthogonal to each other. In our derivation here, we treat them as a nonorthog-

onal pair in general. All the results also apply to an orthogonal pair. For

NOUSTC, the reexpressed form of the QR in (3.50) still holds. However, un-

der the assumption that either Ψl or Ψj was sent at time-block k, the vector b in

(3.51) becomes

b =
(
ρT/NT

)−1/2
(
Ψ†

j + Ψ†
l

)
x = Aljh + b′, (3.79)

where

Alj =

{
Ψ†

jΨl, if Ψl was sent,

Ψ†
lΨj, if Ψj was sent,

and

b′ = h + (ρT/NT )−1/2
(
Ψ†

j + Ψ†
l

)
w. (3.80)

Comparing (3.79) with (3.51), we can see that there is one additional term for

NOUSTC which is dependent on the hypothesis. Thus, we cannot regard b as
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the channel measurement component for NOUSTC anymore. However, the second

term b′ has the same form as b in (3.51) for OUSTC, and can be made to be closer

to h by using the same method in Section 3.3.3. Therefore, instead of obtaining

the channel estimate directly, we first obtain the Wiener filter weight vector a for

the MMSE estimate of h based on b′ as if b′ were available, and then apply a to

b, since we cannot separate b′ from b.

We now define the general information set Z for NOUSTC as

Z = {b′(k + m)}M2

m=−M1
, M1,M2 ≥ 0. (3.81)

Here, the vector b′(k + m) is defined by

b′(k + m) = h(k + m) + (ρT/NT )−1/2 Fno(m)w(k + m), (3.82)

where Fno(m) is chosen to be a function of the unitary signal matrices, and Fno(m),

m 6= 0 should be independent of all the hypotheses. For some NOUSTC, the value

of
∑L

i=1 Ψ†
iΨj is independent of j ∈ {1, . . . , L}, and

(∑L
i=1 Ψ†

iΨj

)−1

exists. Thus,

we can define Fno(m) as

Fno(m) =





Ψ†
j + Ψ†

l , m = 0, (3.83a)
(

L∑
i=1

Ψ†
iΨj

)−1 L∑
i=1

Ψ†
i , m = −M1, . . . , M2, and m 6= 0.(3.83b)

For other NOUSTC, we have to employ past decisions {Ψ̂(k + m)}−1
m=−M1

to esti-

mate the channel, i.e., we have M2 = 0 and define Fno(m) as

Fno(m) =

{
Ψ†

j + Ψ†
l , m = 0, (3.84a)

Ψ̂†(k + m), m = −M1, . . . ,−1. (3.84b)

For this decision-feedback method, in the first time-block, we just set M1 = M2 =

0, and make a decision without the aid of past decisions. Then in the following

time-blocks, we can set M1 > 0 to use past decisions in channel estimation. The
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channel estimate based on Z is thus given by

ĥlj|Z =

M2∑
m=−M1

alj(m)b′(k + m). (3.85)

Here, the Wiener filter weight vector a = [alj(−M1) alj(−M1 + 1) · · · alj(M2)]
>

and the corresponding MMSE v2
h can be obtained, respectively, by using the for-

mulas in (3.38) and (3.43), and replacing b(k + m) therein with b′(k + m). The

cross correlation vector rhb′ for NOUSTC has the same value as that in (3.40),

while the (s, t)th entry of the autocorrelation matrix Rb′b′ for NOUSTC becomes

rno,st =





1 + ‖f(−1)‖2 (ρT/NT )−1 , s = t 6= M1 + 1, (3.86a)

1 + ‖f(0)‖2 (ρT/NT )−1 , s = t = M1 + 1, (3.86b)

Rh(s− t), s 6= t. (3.86c)

In (3.86), f(m) can be any row of Fno(m), since for the constellations with the

structures defined in [54, 67], the value of ‖f(m)‖ is independent of the row num-

ber. Besides, f(−1) in (3.86a) can be any f(m),m = −M1, · · · ,M2, m 6= 0,

because in (3.83) or (3.84), ‖f(m)‖’s for all m 6= 0 are the same. We also can see

that the value of ‖f(0)‖ is dependent on {l, j}. Thus, the value of a should be

computed for each pair {l, j}, and this can be done in advance. We now define

b(k + m) = (ρT/NT )−1/2 Fno(m)x(k + m), m = −M1, · · · ,M2, (3.87)

and B = [b(k −M1) b(k −M1 + 1) · · · b(k + M2)]. Then we obtain the GQR

for NOUSTC:

Re

{(
M2∑

m=−M1

alj(m)b†(k + m)

)(
Ψ†

j −Ψ†
l

)
x

}
= Re

{
a>B†

(
Ψ†

j −Ψ†
l

)
x
} Ψj

≷
Ψl

0.

(3.88)

Here, we need to apply the decision rule in (3.88) (L − 1) times to reach a final

decision.
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For the worst case of M1 = M2 = 0, we have

alj(0) =
ρT/NT

ρT/NT + ‖f(0)‖2

and

alj(0)b =
(ρT/NT )1/2

ρT/NT + ‖f(0)‖2

(
Ψ†

j + Ψ†
l

)
x.

We can see that in this case, the GQR for NOUSTC in (3.88) gives the same

decision on Ψ as the QR in (3.50). Then we evaluate the error performance

of the GQR for the case where we exploit the channel memory. Similar to the

case of OUSTC, only the comparisons where one of the alternatives is the true

hypothesis affect the error performance of the GQR. Thus, under the assumption

that either Ψl or Ψj was sent at time-block k and the assumption that past

decisions {Ψ̂†(k + m)}−1
m=−M1

in the decision-feedback method are all correct, we

can expand b(k + m) in (3.87) as

b(k + m) =





Aljh(k) + b′(k), m = 0,

b′(k + m), m 6= 0,
(3.89)

and the GQR in (3.88) becomes

Re
{(

alj(0)h†A†
lj + ĥ†lj|Z

)(
Ψ†

j −Ψ†
l

)
x
} Ψj

≷
Ψl

0. (3.90)

From this expression, we can see that when M1 and/or M2 increase, the value of

Ba in (3.88) approaches h. This is because as the channel memory span exploited

increases, ĥlj|Z in (3.85) becomes more and more accurate, and at the same time,

the decrease in the value of alj(0) makes the effect of the term Aljh decrease.

Thus, the error probability of the GQR for NOUSTC reduces from that of the QR

and comes closer to that of the CR.
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3.3.6 Numerical and Simulation Results

We now show some numerical and simulation results to prove the effective-

ness of our GQRs. Here, we assume that the fading process on each link is cor-

related according to Jakes’ model [128] with autocorrelation function Rh(4t) =

J0(2πfdTs4t), where J0(·) is the zeroth-order Bessel function of the first kind, fd

is the maximum Doppler frequency, and Ts is the symbol interval. In the theoreti-

cal analyses, we assume a block-fading channel model for simplicity, i.e., 4t = τT

and τ is an integer, while in the simulations, we use a more realistic symbol-wise

constant fading channel model, i.e., 4t can be any integer.

We first show the performance of the GQR designed in Section 3.3.2 for the

USTC-OD with NT = 2, 4 [67]. Fig. 3.6 shows the numerical results for the USTC-

OD in (2.44) with NT = 2 and L = 16 and the USTC-OD in (2.45) with NT = 4

and L = 27 versus the value of M1 = M2 = M . The normalized fade rate is set to

be fdTs = 0.0025. These results are computed by using (3.25) together with (3.35),

(3.43), (3.38)–(3.40) for the GQR, with (2.17) for the QR, and with (2.23) for the

CR. It is clear that the PEP of our GQR reduces from that of the QR and ap-

proaches that of the CR as the channel memory span increases. About half of the

potential improvement is obtained by increasing M1 = M2 = M from 0 to 1, and

the incremental improvement decreases as M increases further. This means that

we can obtain most of the potential performance improvement by exploiting the

channel correlation over just a few adjacent time-blocks. This quality, in addition

to the other merits such as having closed-form PEP expressions, enabling low-

complexity detections, and enjoying full antenna diversity, makes the USTC-OD

with NT = 2, 4 as well as its GQR more attractive and more important. Fig. 3.7

shows the theoretical and simulated values of the PEPs for the USTC-OD with

fdTs = 0.0025 versus SNR. We can see that the simulation results agree very well

with the theoretical predictions. However, at higher SNR’s, the simulation results

are slightly higher than the theoretical predictions. This is due to the mismatch

between the approximate block-fading channel model used in the theoretical anal-
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Fig. 3.6: Theoretical PEPs of the QR, the CR and the GQR for the USTC-OD in [67] of
Case 1 where NT = 2, L = 16, d0,0;0,1 = 0.8660, δ0,0;0,1 = 0.7071 and Case 2
where NT = 4, L = 27, d0,0,0;0,0,1 = 0.8660, δ0,0,0;0,0,1 = 0.7071. The normalized
fade rate is fdTs = 0.0025.

yses and the symbol-wise constant fading channel model used in the simulations.

The performance is dominated by the errors due to noise at lower SNR’s, and the

effect of the mismatch between the channel models is more visible at higher SNR’s.

This mismatch increases with the fade rate. Figs. 3.8 and 3.9 show the simulated

block error probabilities (BEPs) for fdTs = 0.0025 and 0.01, respectively. We can

see that our GQR is effective for both slow and fast fading channels. By setting

M = 1, more than fifty percent of the potential gain is obtained in slow fading,

while a smaller percentage is obtained in fast fading. Fig. 3.10 shows the simu-

lated BEPs for the USTC-OD in (2.44) with NT = 2, L = 16 and fdTs ranging

from 0.0025 to 0.01. We can see that at low SNR (ρ = 2dB), the channel fade rate
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Fig. 3.7: PEPs of the QR, the CR and the GQR for the USTC-OD in [67] of Case 1 where
NT = 2, L = 16, d0,0;0,1 = 0.8660, δ0,0;0,1 = 0.7071 and Case 2 where NT = 4,
L = 27, d0,0,0;0,0,1 = 0.8660, δ0,0,0;0,0,1 = 0.7071 with NR = 1 and fdTs = 0.0025.
The channel memory span is M1 = M2 = M = 0, 1, 2, 5.

has a negligible effect on the error performance, but at high SNR (ρ = 20dB), the

improvement brought about by exploiting more channel memory decreases as the

fade rate increases.

Next, we show the error performance of the GQR designed in Section 3.3.3 for

OUSTC [54]. Fig. 3.11 shows the results for the OUSTC with NT = 1 and L = 8

in [54, Table I]. This constellation is generated by using the construction in (2.40)

with u′ = [3 7 6 5 0 4 2]. The numerical results are computed by using (3.25)

together with (3.63), (3.43), (3.38), (3.61), and (3.40) for the GQR. Although

increasing M from 0 to 1 gives less gain than that in the case of the USTC-OD,

the PEP of the GQR reduces steadily toward that of the CR as M increases. Since

OUSTC usually have a small size (L ≤ T/NT ), they cannot provide a high data
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rate. This limits the importance of OUSTC and also of this GQR.

Finally, we show the performance of the GQR designed in Section 3.3.5 for

general NOUSTC. This GQR applies to a wide range of the constellations designed

for USTM. Here, we apply this GQR to the USTC-OD with NT = 3 in [67] and

the NOUSTC with block-circulant structure in [54]. For the case of the USTC-OD

with NT = 3, as we have mentioned in Section 3.3.2.5, we do not recommend using

the GQR designed in Section 3.3.2, since this GQR is suboptimal for this case and

gives an error performance worse than that of the QR when M1 = M2 = 0.

Instead, we recommend the GQR for NOUSTC in (3.88) together with Fno(m)

in (3.83), because this GQR can guarantee an error performance at least as good

as that of the QR for the USTC-OD with NT = 3, and can provide a large
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performance gain when M1,M2 > 0. Fig. 3.12 shows the performance of the

GQR in (3.88) for the USTC-OD with NT = 3 which is obtained by deleting

the fourth column of the constellation in (2.45) with NT = 4 and L = 27. Two

channel estimation methods are used for comparison. Method 1 employs Fno(m)

in (3.83) which does not involve past decisions, and Method 2 employs Fno(m) in

(3.84) which requires past decisions. We can see that for a given positive value

of (M1 + M2), Method 1 provides a better performance than Method 2. This is

because Method 2 has the error propagation problem, and thus is not as robust

as Method 1. In addition, the received signals in the immediate past M1 and the

immediate succeeding M2 time-blocks are more correlated with the channel gains

being estimated than are those in the past (M1+M2) time-blocks. Fig. 3.13 shows
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the results for the NOUSTC with block-circulant structure of size L = 17 with

NT = 2 in [54, Table II]. This constellation is generated by using the construction

in (2.40) with u′ = [12 11 9 14 6 10 0]. The normalized fade rate is set to be

fdTs = 0.0025 and 0.01. For this constellation, we only can employ Method 2 to

estimate the channel. We can see that for this case, the GQR in (3.88) also provides

large performance improvements in both slow and fast fading environments.

We did not consider the optimum order in which the signal matrices Ψl and

Ψj are chosen from the signal matrix set {Ψ1,Ψ2, · · · ,ΨL} for comparison in the

GQRs given in (3.62) and (3.88). Our simulations have shown that the BEP of

the GQRs does not show any significant difference between the different orders.
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The important point that we want to demonstrate is that as the channel memory

span exploited in channel estimation increases, the BEP of the GQRs converges

to that of the CR, and we have achieved this.

3.4 Summary

In this chapter, we have reviewed the idea of the GQR proposed for binary or-

thogonal signals over the flat Rayleigh fading channel in SIMO systems. This GQR

improves the error performance over the QR by exploiting the channel memory

and acquiring CSI inherent in the received data signals themselves. Furthermore,

we have extended this concept to the USTM scheme. Although USTM is effec-
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tive in data detections without CSI at the receiver, perfect knowledge of CSI at

the receiver can bring about a 2–4 dB gain in SNR. To realize this large perfor-

mance improvement potential and at the same time conserve bandwidth resources,

we have proposed the GQRs for the USTC-OD, OUSTC and general NOUSTC,

which estimate the channel gains without requiring additional training signals to

be sent, and which exploit the channel memory to improve the channel estimation

accuracy. Closed-form expressions of the PEP have been derived for the GQR

designed for the USTC-OD with two or four transmit antennas, and for the GQR

designed for OUSTC. Our analytical and simulation results have shown that the

error probabilities of these GQRs reduce from that of the QR to that of the CR as
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the channel memory span exploited in channel estimation increases. The GQRs

have been shown to work well even in fast fading environments, although they

provide more improvements in slow fading environments. In addition, the GQR

for the USTC-OD with two or four transmit antennas have been simplified. The

complexity of this simplified GQR for large-sized constellations can be much less

than that of the QR and even that of the simplified form of the QR, provided that

the channel memory span exploited in channel estimation is small enough.

Besides using the existing USTC designed in the literature for the QR, it is

also desirable to obtain some new unitary constellations for the GQRs. Since the

error probabilities of the GQRs are upper bounded by that of the QR and lower

bounded by that of the CR, we can first obtain the constellations optimal for
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the QR. This step can minimize the upper bound on the PEP of the GQRs, and

ensure a good performance when the GQRs only use the received signals in the

current time-block to estimate the channel. Then from the constellations optimal

for the QR, we should choose those having the best performance for the CR. This

step can minimize the lower bound on the PEP of the GQRs, and thus allow a

larger improvement potential in the use of the GQRs.
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Chapter 4

Computing and Bounding the

First-Order Marcum Q-Function

In this chapter and the subsequent two chapters, we extend our work to

the performance analysis of QFRs in general. As reviewed in Chapter 1, the

first-order Marcum Q-function and the generalized Marcum Q-function are often

involved in the error performance analysis of QFRs. Thus, studying these Marcum

Q-functions can facilitate our research on QFRs. We present our results on the

first-order Marcum Q-function in this chapter, and the results on the generalized

Marcum Q-function in Chapter 5. Applications to the performance analysis of

QFRs will be given in Chapter 6.

The first-order Marcum Q-function, Q(a, b), can be given a geometric in-

terpretation which explains Q(a, b) as the probability that a complex, Gaussian

random variable with real, nonnegative mean a, takes on values outside of a disk

BO,b of radius b centered at the origin O. This interpretation engenders a fruit-

ful approach for deriving new representations and tight, upper and lower bounds

on Q(a, b). The new representations obtained involve finite-range integrals whose

integrands are given in terms of either purely exponential functions, or a prod-

uct of an exponential function and a complementary error function, i.e, erfc(·).
These representations are shown to be simpler than their counterparts in the lit-
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erature. The new bounds obtained include the generic exponential bounds and

simple exponential bounds, generic erfc bounds and simple erfc bounds, generic

single-integral bounds and simple single-integral bounds. Here, the generic bounds

involve an arbitrarily large number of terms, and the simple bounds involve just

a few terms. The new generic bounds approach the exact value of Q(a, b) as the

number of terms involved increases. The new simple bounds are tighter than the

existing exponential bounds in most cases, especially when the arguments a and b

are large. Thus, in many applications requiring further analytical manipulations

of Q(a, b), these new bounds can lead to some closed-form results which are better

than the results available so far.

4.1 Introduction

The first-order Marcum Q-function, Q(·, ·), was first introduced in [103, 104],

and utilized extensively to deal with problems in radar and communications [1].

It is the tail probability of a normalized Rician random variable, defined by

Q(a, b) =

∫ ∞

b

xexp

(
−x2 + a2

2

)
I0(ax)dx, a ≥ 0, b ≥ 0. (4.1)

Here, I0(·) is the modified Bessel function of the first kind of order zero, given by

[124, eq. (8.431 3)]

I0(x) =
1

π

∫ π

0

ex cos θdθ. (4.2)

In recent years, the importance of this Q-function increases since it appears fre-

quently in the performance analyses of digital communications, especially in eval-

uating the error performance of QFRs for a variety of partially coherent, differ-

entially coherent, and quadratic detections [1, 5]. A lot of work has been done

for the numerical computation of Q(a, b) [105–112], and there has been a built-in

function in MATLAB to compute numerical values of Q(a, b) easily. However, it is

also often desirable to have a further analytical handle on Q(a, b), for instance, in
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optimization of system performance with respect to system parameters. In prob-

lems involving transmission over fading channels especially, one often would also

need to do statistical averaging over the arguments a and/or b of the function.

In these scenarios, the form in (4.1) is not easy to use, since it requires one to

compute an infinite integral with an integrand involving I0(·) over an argument-

dependent range. Some alternative representations of Q(a, b) were developed in

[113–115], which involve only a finite integral over one or two exponential inte-

grands. These alternative representations can help to solve some problems arising

from further manipulating Q(a, b), such as in [5, 31, 117], and may even lead to

closed-form results in the error performance analysis of some communication prob-

lems, such as in [118]. However, they cannot solve all the problems encountered,

and cannot give closed-form results for all the error performance analysis prob-

lems of interest. Bounding Q(a, b) using simple functions such as the exponential

function and the erfc function, is, therefore, a promising approach to facilitating

analytical work involving Q(a, b). Some exponential bounds have been derived in

[23, 114, 120, 121] by using mathematical approaches, but unfortunately, these

bounds are not sufficiently tight, particularly when the arguments a and b are

large.

Here, we present a novel approach for computing and bounding the first-order

Marcum Q-function that is based purely on simple geometric arguments. This ge-

ometric view was first presented briefly in [129], and is fully developed here. In

this geometric view, Q(a, b) is the probability that a complex, Gaussian random

variable z with real, nonnegative mean a, takes on values outside of the region

BO,b bounded by a circle of radius b centered at the origin O. By evaluating this

probability in polar coordinates, we immediately obtain a pair of new representa-

tions of Q(a, b) that involve only a single finite integral with purely exponential

integrands, and that are valid for either a ≥ b or b ≥ a. These new representations

are shown to be simpler and more convenient to use than those in [113–115]. By

evaluating this probability in rectangular coordinates, we also obtain a new rep-
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resentation of Q(a, b), which involves a single finite integral whose integrand is a

product of an exponential function and an erfc function. This new representation

is valid for all the values of a and b concerned. Although this representation is

not as simple as those obtained by using polar coordinates, upper bounding the

erfc function in the integrand of this representation can lead to a very tight up-

per bound on Q(a, b). Besides, the integrand of this representation is also simpler

than the representation in [116] which also involves a finite integral with integrand

involving the erfc function.

In addition to these new representations, the geometric view of the Q-function

turns out to lead to a very fruitful approach to bounding the function. By com-

puting the probability of z lying outside of various geometrical shapes whose

boundaries tightly enclose, or are tightly enclosed by the boundary of BO,b men-

tioned above, a lot of new, upper and lower bounds on Q(a, b) can be derived.

We first derive some generic exponential bounds, which involve only the expo-

nential function, by choosing variations of the circular region such as sectors1, or

angular sectors of annuli2 to be the bounding geometrical shapes. These generic

exponential bounds involve an arbitrarily large number of exponential terms, and

approach the exact value of Q(a, b) as the number of exponential terms involved

increases. Some special cases of these generic bounds with only two exponential

terms are given as new simple exponential bounds which are shown to be much

tighter than the existing exponential bounds in [114, 120], and tighter than the

exponential bounds in [121] for most cases.

Then we turn to the derivation of erfc bounds on Q(a, b). Here, an erfc

bound is a bound involving only the erfc function, or involving both the erfc

and exponential functions. To the best of the authors’ knowledge, there are no

such erfc bounds available in the literature. We first develop some generic erfc

1A sector is the portion of a circular region bounded by two radii and the arc in between
them.

2An annulus, as defined in complex function theory [130], is the region between two concentric
circles. An angular sector of an annulus is the segment of the annulus bounded by two radii and
the two arcs in between them.
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bounds by using a set of rectangular regions as bounding shapes. Then we derive

a simple, tight, upper erfc bound on Q(a, b) by upper bounding the integrand of

the new representation which involves the erfc function, as mentioned above. A

simple, tight, lower erfc bound is also given as a special case of our generic lower

erfc bound. In a wide range of values of the arguments a and b, these simple

erfc bounds are much tighter than the exponential bounds involving only several

exponential functions. They are also simple enough to lead to closed-form results

in many theoretical analyses involving Q(a, b).

After deriving these closed-form bounds, we also investigate the possibility

to derive some tighter bounds which involve single finite integrals but sill can

lead to some closed-form results in some applications. We give some new upper

and lower single-integral bounds which involve only single integrals with simple,

purely exponential integrands. These single-integral bounds are obtained by using

polygons as the bounding shapes. Some generic single-integral bounds are first de-

rived, whose bounding shapes are arbitrary bounding polygons with an arbitrarily

large number of equal or nonequal sides. Then some simple single-integral bounds

are given, which involve three or four single integrals. These simple single-integral

bounds are the special cases of the generic bounds, obtained by using simple equi-

lateral hexagons as the bounding shapes. The advantage of these single-integral

bounds is that the single integrals involved are similar to those involved in the

error probability expression of the general two-dimensional signal constellations

[60]. Therefore, all the computational techniques exploited to compute this error

probability can be used to compute our single-integral bounds straightforwardly.

This property may be helpful in some applications of our single-integral bounds.

Besides the exponential bounds, there are also some I0-bounds, which involve

the use of I0(·), available in the literature [116, 121, 122]. The I0-bounds in [122]

are the tightest in most cases, but they involve the product of I0(·) and erfc(·),
or even more complicated functions of I0(·), and thus, are not easy to use in the

further analytical manipulations of Q(a, b). Compared to these I0-bounds, our
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bounds are easier to handle in theoretical analyses, and thus are more desirable.

We will include these I0-bounds in our numerical results just as a reference of

tightness of our bounds.

In Section 4.2, we present the geometric view of Q(a, b). In Section 4.3, we

give the new finite-integral representations. In Sections 4.4 and 4.5, we propose

generic and simple exponential bounds, respectively. In Sections 4.6 and 4.7, we

develop generic and simple erfc bounds, respectively. In Sections 4.8 and 4.9, we

give generic and simple single-integral bounds, respectively. Section 4.10 presents

the numerical results and comparisons to show the tightness of our bounds.

4.2 The Geometric View of Q(a, b)

Since the Marcum Q-function is the tail probability of a Rician random vari-

able, and this variable arises from the magnitude of a complex Gaussian random

variable, we therefore start with considering the random variable z given by

z = a + y = (a + y1) + y2 = z1 + z2. (4.3)

Here, a ≥ 0 is the mean value that can be assumed to be a known, real constant,

and y is a circularly symmetric, zero-mean, complex, Gaussian random variable

with CN (0, 2σ2
y) distribution. The real and imaginary parts of y, i.e., y1 and y2,

respectively, are i.i.d. real Gaussian random variables with mean zero and variance

σ2
y . The real and imaginary parts of z, i.e., z1 and z2, respectively, are given by

{
z1 = a + y1, (4.4a)

z2 = y2. (4.4b)

The envelope R of z, where

R = |z| =
√

(a + y1)2 + y2
2, (4.5)
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is Rician distributed with PDF given by [1, Chap. 2, eq. (2.1–141)]

pR(R) =
R

σ2
y

e−(R2+a2)/2σ2
yI0

(
Ra

σ2
y

)
, R ≥ 0. (4.6)

The probability of R being greater than a real constant b ≥ 0 is then given by

Pr(R > b) =

∫ ∞

b

R

σ2
y

e−(R2+a2)/2σ2
yI0

(
Ra

σ2
y

)
dR = Q

(
a

σy

,
b

σy

)
. (4.7)

For simplicity, in the following discussions, we normalize a and b by σy, or, equiv-

alently, set σ2
y = 1. Thus, evaluating Q(a, b) in (4.1) is the same as computing

the probability Pr(R > b). From Fig. 4.1, we can see that Q(a, b) or Pr(R > b)

is the probability that the point z lies outside of the disk BO,b of radius b and

centered at the origin O of the z1z2-coordinate system. Since the probability

Pr(R > b) = Pr(
√

z2
1 + z2

2 > b) can also be written as Pr(
√

(a + y1)2 + y2
2 > b), it

is clear that Q(a, b) is also equal to the probability that in the y1y2-coordinate sys-

tem, centered at the point A, i.e., (z1 = a, z2 = 0), the complex random variable

y lies outside of BO,b. Thus, we have

Q(a, b) = 1− Pr(z ∈ BO,b) = 1− Pr(y ∈ BO,b). (4.8)

4.3 New Finite-Integral Representations for

Q(a, b)

Based on the geometric view of Q(a, b) given above, we derive some new

finite-integral representations for Q(a, b). In Section 4.3.1, by evaluating the prob-

abilities in (4.8) using polar coordinates, we obtain a pair of representations whose

integrands only involve the exponential function. In Section 4.3.2, by evaluating

the probabilities in (4.8) using rectangular coordinates, we obtain one represen-

tation whose integrand only involves the erfc-function as well as the exponential

function.
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Fig. 4.1: Geometric view of Q(a, b).

4.3.1 Representations with Integrands Involving the Ex-

ponential Function

In the polar coordinate system centered at the point A, the PDF of y is given

by

py(r, θ) =
r

2π
e−r2/2, r ≥ 0. (4.9)
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We can see that the PDF of y in (4.9) is isotropic, i.e., independent of θ.

4.3.1.1 New Representation for the Case of b ≥ a ≥ 0

For the case of b ≥ a ≥ 0, as shown in Fig. 4.1(a), we use l(θ) to denote the

length of the line segment ABθ, where Bθ is a point on the boundary of BO,b such

that the angle from the positive y1-axis to ABθ is θ. Using the law of cosines, we

get

b2 = a2 + l2(θ)− 2al(θ) cos(π − θ) = a2 + l2(θ) + 2al(θ) cos θ,

from which we can solve for the value of l(θ). Choosing the positive root, we have

l(θ) = −a cos θ +
√

b2 − a2 sin2 θ. (4.10)

Then evaluating the probability Pr(y ∈ BO,b) in (4.8) using (4.9) gives the new

representation of Q(a, b), namely

Q(a, b) = 1−
∫ π

θ=−π

∫ l(θ)

r=0

r

2π
e−r2/2drdθ

=
1

π

∫ π

0

exp

[
−1

2

(
−a cos θ +

√
b2 − a2 sin2 θ

)2
]

dθ, b ≥ a ≥ 0. (4.11)

This representation only involves one finite integral, and its integrand is a pure

exponential function. By defining 0 ≤ ζ = a/b ≤ 1, we can rewrite (4.11) in the

form

Q(bζ, b)=
1

π

∫ π

0

exp

[
−b2

2

(
−ζ cos θ +

√
1− ζ2 sin2 θ

)2
]

dθ, 0 ≤ ζ ≤ 1. (4.12)

4.3.1.2 New Representation for the Case of a ≥ b ≥ 0 and a 6= 0

For the case of a ≥ b ≥ 0 and a 6= 0, as shown in Fig. 4.1(b), we have two

line segments, ABθ,1 and ABθ,2, where Bθ,1 and Bθ,2 are the two points on the
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boundary of BO,b, forming the same angle of θ with the positive y1-axis. Their

lengths are denoted as l1(θ) for ABθ,1, and as l2(θ) for ABθ,2, given, respectively,

by





l1(θ) = −a cos θ −
√

b2 − a2 sin2 θ, (4.13a)

l2(θ) = −a cos θ +
√

b2 − a2 sin2 θ. (4.13b)

Thus, we obtain the new representation of Q(a, b) as

Q(a, b) = 1−
∫ π+arcsin(b/a)

θ=π−arcsin(b/a)

∫ l2(θ)

r=l1(θ)

r

2π
e−r2/2drdθ

= 1− 1

π

∫ π

π−arcsin(b/a)

{
exp

[
−1

2

(
−a cos θ −

√
b2 − a2 sin2 θ

)2
]

− exp

[
−1

2

(
−a cos θ +

√
b2 − a2 sin2 θ

)2
]}

dθ, a ≥ b ≥ 0, a 6= 0.(4.14)

This new representation also only involves one finite integral, and its integrand is

a difference of two pure exponential functions. The lower limit of the integral in

(4.14) is only dependent on the ratio b/a, which can be regarded as a constant

when averaging over fading in many communication problems [120]. By defining

0 ≤ ζ = b/a ≤ 1, we can reexpress (4.14) in the following form

Q(a, aζ) = 1− 1

π

∫ π

π−arcsin(ζ)

{
exp

[
−a2

2

(
− cos θ −

√
ζ2 − sin2 θ

)2
]

− exp

[
−a2

2

(
− cos θ +

√
ζ2 − sin2 θ

)2
]}

dθ, 0 ≤ ζ ≤ 1, (4.15)

or, equivalently, in the form

Q(a, aζ)

= 1− exp[−a2(ζ2 − 1)/2]

π

∫ π

π−arcsin(ζ)

{
exp

[
−a2

(
cos2 θ − cos θ

√
ζ2 − sin2 θ

)]

− exp

[
−a2

(
cos2 θ + cos θ

√
ζ2 − sin2 θ

)] }
dθ, 0 ≤ ζ ≤ 1. (4.16)
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4.3.1.3 Discussions

There are three other pairs of alternative finite-integral representations of

Q(a, b), with integrands involving only the exponential function, available in the

literature. The first pair was given in [113, eqs. (C-26) and (C-27)], namely

Q(a, b) =
1

2π

∫ 2π

0

b2 − ab cos θ

a2 − 2ab cos θ + b2
exp

(
−b2 − 2ab cos θ + a2

2

)
dθ,

b > a ≥ 0, (4.17)

and

Q(a, b) = 1 +
1

2π

∫ 2π

0

b2 − ab cos θ

a2 − 2ab cos θ + b2
exp

(
−b2 − 2ab cos θ + a2

2

)
dθ,

a > b ≥ 0. (4.18)

The second pair representations was developed in [114] and summarized in [5, eqs.

(4.43) and (4.44)], given by

Q(bζ, b) =
1

π

∫ π

0

1± ζ cos θ

1± 2ζ cos θ + ζ2
exp

[
−b2

2

(
1± 2ζ cos θ + ζ2

)]
dθ,

0 ≤ ζ =
a

b
< 1, (4.19)

and

Q(a, aζ) = 1 +
1

π

∫ π

0

ζ2 ± ζ cos θ

1± 2ζ cos θ + ζ2
exp

[
−a2

2

(
1± 2ζ cos θ + ζ2

)]
dθ,

0 ≤ ζ =
b

a
< 1. (4.20)

The third pair of representations was proposed in [115] and also summarized in

[5, eqs. (4.53) and (4.54)], given by

Q(bζ, b) =
1

2π

∫ π

0

{
exp

[
−b2

2

(
1± 2ζ cos θ + ζ2

)]

+ exp

[
−b2

2

(
(1− ζ2)

2

1± 2ζ cos θ + ζ2

)]}
dθ, 0 ≤ ζ =

a

b
≤ 1, (4.21)
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and

Q(a, aζ) = 1 +
1

2π

∫ π

0

{
exp

[
−a2

2

(
1± 2ζ cos θ + ζ2

)]

− exp

[
−a2

2

(
(1− ζ2)

2

1± 2ζ cos θ + ζ2

)]}
dθ, 0 ≤ ζ =

b

a
≤ 1. (4.22)

We can see that the pair of representations in (4.19) and (4.20) is equivalent to

that in (4.17) and (4.18), just with a halved integration interval. The integrands

in (4.17), (4.18), (4.19) and (4.20) are given in terms of one rational function

multiplied by one exponential function of trigonometric functions. The integrands

in (4.21) and (4.22) consist of two pure exponential functions. For the case of b ≥ a,

we can see that our new representation in (4.11) or (4.12) is simpler than those in

(4.17), (4.19), and (4.21), since their integrands involve only one pure exponential

function. For the case of a ≥ b, our new representation in (4.14) or (4.15) is similar

to that in (4.22) with two pure exponential integrands. However, the integration

interval in (4.15) is less than or equal to half of that in (4.22), i.e., not greater

than π/2. Besides, in our forms, the integrands are always determinate, since

the parameters a, b and θ only appear in the numerators. Thus, our forms are

more robust than the existing forms mentioned above, which may be unstable for

some combinations of the arguments. Furthermore, similar to those in (4.21) and

(4.22), both our results in (4.11) and (4.14) are valid for the case of b = a, i.e.,

they give the same result as [5, eq. (4.40)]

Q(a, a) =
1

2

[
1 + exp

(−a2
)
I0

(
a2

)]
. (4.23)

In this aspect, our representations are also better than the pair in (4.17) and (4.18)

and the pair in (4.19) and (4.20), since the latter two pairs do not hold for this

special case.

106



4.3. NEW FINITE-INTEGRAL REPRESENTATIONS FOR Q(A, B)

4.3.2 Representations with Integrands Involving the Erfc

Function

We now derive another new representation for Q(a, b), whose integrand in-

volves the erfc function as well as the exponential function. As shown in Fig. 4.1,

for both the cases of b ≥ a and a ≥ b, in the y1y2-rectangular coordinate system,

the probability of the point z lying inside of BO,b is given by

Pr(z ∈ BO,b) =
1

2π

∫ b−a

y1=−(b+a)

e−y2
1/2

∫ √
b2−(a+y1)2

y2=−
√

b2−(a+y1)2
e−y2

2/2dy2dy1

=
1

2
erfc

(
−b + a√

2

)
− 1

2
erfc

(
b− a√

2

)

− 1√
2π

∫ b−a

−(b+a)

e−y2
1/2erfc

(√
b2 − (a + y1)2

2

)
dy1. (4.24)

Thus, the first-order Marcum Q-function can be written as

Q(a, b)=
1

2
erfc

(
b + a√

2

)
+

1

2
erfc

(
b− a√

2

)

+
1√
2π

∫ b−a

−(b+a)

e−y2
1/2erfc

(√
b2 − (a + y1)2

2

)
dy1, a ≥ 0, b ≥ 0. (4.25)

Compared to the new representations in (4.11) and (4.14) derived using the

polar coordinate system, the new representation in (4.25) is valid for the entire

ranges of a and b. The shortcoming of the representation in (4.25) is that its

integrand involves the erfc function, and its integration limits are dependent on

the values of the arguments a and b. Thus, it is not as simple as the representations

in (4.11) and (4.14). However, this representation leads to a very tight upper erfc

bound, which will be shown in Section 4.7.

There is an alternative representation for Q(a, b) with integrand involving the
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erfc function available in [116, eq. (3)], namely

Q(a, b)= exp

(
−b2 + a2

2

)
I0(ab)

+
a√
2π

∫ π

0

cos θ exp

(
−a2

2
sin2 θ

)
erfc

(
b− a cos θ√

2

)
dθ,

a ≥ 0, b ≥ 0. (4.26)

This representation requires a finite integration over a fixed interval, and it is also

valid over the entire ranges of a and b. Our new representation in (4.25) is simpler

than that in (4.26) in the sense that the integrand in (4.25) is simpler.

4.4 New Generic Exponential Bounds

In addition to the new representations shown above, the geometric view of

Q(a, b) can also lead to some tight bounds. The exponential function is the most

desirable functional form to use when we have to average the bounds on Q(a, b)

over a fading distribution. By using our geometric approach, i.e., computing the

probability of z lying outside of sectors or angular sectors of annuli that completely

cover or are completely covered by the disk BO,b, we can easily obtain bounds in

which only the exponential function is involved. Here, we present some generic

upper and lower exponential bounds, which involve an arbitrarily large number of

exponential terms. Some special cases of these bounds will be given in Section 4.5

to illustrate the use of these generic bounds.

4.4.1 Bounds for the Case of b ≥ a ≥ 0

As shown by the solid lines inside BO,b in Fig. 4.2, upper exponential bounds

can be obtained by using a set of contiguous, concentric sectors, centered at the

point A, to fill BO,b. The sectors are chosen to be symmetrical about the z1-axis.

Since the PDF of y, centered at the point A, in (4.9) is isotropic, the probability

of z, centered at the origin O, lying inside the union of all the sectors is equal
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Fig. 4.2: Diagram of the derivation of the new generic exponential bounds GUB1-KL and
GLB1-KL on Q(a, b) for the case of b > a.

to twice the probability of z, or equivalently y, lying inside the union of the N

sectors in the upper half plane. Then in the upper half plane, the (N + 1) angles,

i.e., 0 = θ0 < θ1 < · · · < θN = π, are first defined, and the ith sector, denoted as

BA,l(θi−1),θi−1,θi
, is set to be centered at the point A with the radius l(θi−1), covering

the angle from θi−1 to θi. Thus, the probability of z lying inside BA,l(θi−1),θi−1,θi
is

given by

Pr(z ∈ BA,l(θi−1),θi−1,θi
) =

∫ θi

θ=θi−1

∫ l(θi−1)

r=0

r

2π
e−r2/2drdθ

=
θi − θi−1

2π

{
1− exp

[
− l2(θi−1)

2

]}
. (4.27)

Our first generic, upper, exponential bound on Q(a, b), denoted as GUB1-KL

(after the authors), is, therefore, given by

Q(a, b) ≤ QGUB1-KL(a, b)

= 1− 2
N∑

i=1

Pr(z ∈ BA,l(θi−1),θi−1,θi
)

=
1

π

N∑
i=1

(θi − θi−1) exp

[
−1

2

(
−a cos θi−1 +

√
b2 − a2 sin2 θi−1

)2
]

,

b ≥ a ≥ 0, (4.28)
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were we have 0 = θ0 < θ1 < · · · < θN = π, and N is the number of sectors in the

upper (or lower) half plane.

Similarly, by using a set of contiguous, concentric sectors to form a region

whose boundary circumscribes the boundary of BO,b, as shown by the dashed

lines outside BO,b in Fig. 4.2, we can obtain our first generic, lower, exponential

bound, denoted as GLB1-KL, on Q(a, b). For this case, the ith sector has a radius

of l(θi), and is denoted by BA,l(θi),θi−1,θi
. Thus, GLB1-KL is given by

Q(a, b) ≥ QGLB1-KL(a, b)

= 1− 2
N∑

i=1

Pr(z ∈ BA,l(θi),θi−1,θi
)

=
1

π

N∑
i=1

(θi − θi−1) exp

[
−1

2

(
−a cos θi +

√
b2 − a2 sin2 θi

)2
]

,

b ≥ a ≥ 0, (4.29)

where we also have 0 = θ0 < θ1 < · · · < θN = π.

In both (4.28) and (4.29), as N approaches infinity, the area covered by the

union of the bounding sectors approaches that covered by BO,b, and thus, GUB1-

KL and GLB1-KL approach the exact value of Q(a, b).

Incidentally, we can also obtain our generic exponential bounds GUB1-KL in

(4.28) and GLB1-KL in (4.29) by applying the rectangular numerical integration

rule [130] to the new representation for Q(a, b) in (4.11). Since the integrand in

(4.11) is a monotonic, non-increasing function of θ for 0 ≤ θ ≤ π, we can partition

the interval [0, π] into N uniform or nonuniform subintervals, i.e., choose N − 1

arbitrary values θ1, θ2, . . . , θN−1 of θ such that 0 = θ0 < θ1 < · · · < θN = π, and

rewrite (4.11) as

Q(a, b) =
1

π

N∑
i=1

∫ θi

θi−1

exp

[
−1

2

(
−a cos θ +

√
b2 − a2 sin2 θ

)2
]

dθ. (4.30)

The integral in (4.30) for each value of i can be upper bounded by the product

of (θi − θi−1) and the value of the integrand evaluated at θ = θi−1. This gives
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GUB1-KL in (4.28). GLB1-KL in (4.29) is also easy to obtain from (4.30) by

replacing the integral over [θi−1, θi) by the product of (θi − θi−1) and the value of

the integrand evaluated at θ = θi. This procedure is similar to that used in [131]

to obtain the improved upper bound for the erfc function.

4.4.2 Bounds for the Case of a ≥ b ≥ 0 and a 6= 0

For this case, since the point A is outside of BO,b, we need to use angular

sectors of annuli, instead of sectors, to bound the disk BO,b. As shown by the

solid lines inside BO,b in Fig. 4.3(a), a generic, upper, exponential bound can be

obtained by using a set of contiguous angular sectors of concentric annuli to fill

BO,b. The ith angular sector of the annulus in the upper half plane, denoted as

BA,l1(θi),l2(θi),θi,θi+1
, is centered at A with an inner radius of l1(θi) and an outer

radius of l2(θi), and covers the angle from θi to θi+1. The probability of z lying

inside this ith angular sector of the annulus is given by

Pr(z ∈ BA,l1(θi),l2(θi),θi,θi+1
) =

∫ θi+1

θ=θi

∫ l2(θi)

r=l1(θi)

r

2π
e−r2/2drdθ

=
θi+1 − θi

2π

{
exp

[
− l21(θi)

2

]
− exp

[
− l22(θi)

2

]}
. (4.31)

Thus, we obtain our second generic upper exponential bound, denoted as GUB2-

KL, namely

Q(a, b) ≤ QGUB2-KL(a, b)

= 1− 2
N−1∑
i=1

Pr(z ∈ BA,l1(θi),l2(θi),θi,θi+1
)

= 1− 1

π

N−1∑
i=1

(θi+1 − θi)

{
exp

[
−1

2

(
−a cos θi −

√
b2 − a2 sin2 θi

)2
]

− exp

[
−1

2

(
−a cos θi +

√
b2 − a2 sin2 θi

)2
]}

, a ≥ b ≥ 0, a 6= 0. (4.32)

Here, we have π − arcsin(b/a) = θ0 < θ1 < · · · < θN = π, and there are only

(N − 1) angular sectors of annuli used in the upper (or lower) half plane.
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Fig. 4.3: Diagram of the derivation of the new generic exponential bounds GUB2-KL and
GLB2-KL on Q(a, b) for the case of a > b.

From Fig. 4.3(b), it is also easy to understand that instead of setting both

the inner and outer radii of the (i + 1)th angular sector to be different from

those of the ith angular sector, i.e., setting the (i + 1)th angular sector as

BA,l1(θi+1),l2(θi+1),θi+1,θi+2
, we can also leave either the inner radius or the outer

radius of the (i+1)th angular sector unchanged, i.e., set the (i+1)th angular sec-

tor as BA,l1(θi),l2(θi+1),θi+1,θi+2
or BA,l1(θi+1),l2(θi),θi+1,θi+2

. For this more general case,
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our upper bound GUB2-KL becomes

Q(a, b) ≤ QGUB2-KL(a, b)

= 1− 1

π

{
N−1∑
i=1

(θi+1 − θi) exp

[
−1

2

(
−a cos θi −

√
b2 − a2 sin2 θi

)2
]

−
M−1∑
j=1

(ωj+1 − ωj) exp

[
−1

2

(
−a cos ωj +

√
b2 − a2 sin2 ωj

)2
]}

,

a ≥ b ≥ 0, a 6= 0. (4.33)

Here, we have π − arcsin(b/a) = θ0 < θ1 < · · · < θN = π, π − arcsin(b/a) = ω0 <

ω1 < · · · < ωM = π, and θ1 = ω1.

A generic lower exponential bound can be obtained similarly by using a set

of contiguous angular sectors of concentric annuli to form a region whose bound-

ary circumscribes that of BO,b, as shown by the dashed lines outside of BO,b in

Fig. 4.3(a). For this case, the ith angular sector of the annulus in the upper half

plane is denoted by BA,l1(θi),l2(θi),θi−1,θi
, which is centered at A and covers the angle

from θi−1 to θi with the inner radius of l1(θi) and the outer radius of l2(θi). The

probability of z lying inside BA,l1(θi),l2(θi),θi−1,θi
is then given by

Pr(z ∈ BA,l1(θi),l2(θi),θi−1,θi
) =

θi − θi−1

2π

{
exp

[
− l21(θi)

2

]
− exp

[
− l22(θi)

2

]}
.

Thus, our second generic lower exponential bound, denoted as GLB2-KL, is given

by

Q(a, b) ≥ QGLB2-KL(a, b)

= 1− 2
N∑

i=1

Pr(z ∈ BA,l1(θi),l2(θi),θi−1,θi
)

= 1− 1

π

N∑
i=1

(θi − θi−1)

{
exp

[
−1

2

(
−a cos θi −

√
b2 − a2 sin2 θi

)2
]

− exp

[
−1

2

(
−a cos θi +

√
b2 − a2 sin2 θi

)2
]}

, a ≥ b ≥ 0, a 6= 0. (4.34)

Here, we have π− arcsin(b/a) = θ0 < θ1 < · · · < θN = π, and there are N angular
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sectors of annuli used in the upper (or lower) half plane.

For this lower bound, we can also choose either the inner or the outer radius

to be the same for two adjacent angular sectors of annuli, as shown in Fig. 4.3(b),

and this leads to a more general expression for our lower bound, GLB2-KL, i.e.,

Q(a, b) ≥ QGLB2-KL(a, b)

= 1− 1

π

{
N∑

i=1

(θi − θi−1) exp

[
−1

2

(
−a cos θi −

√
b2 − a2 sin2 θi

)2
]

−
M∑

j=1

(ωj − ωj−1) exp

[
−1

2

(
−a cos ωj +

√
b2 − a2 sin2 ωj

)2
]}

,

a ≥ b ≥ 0, a 6= 0, (4.35)

where we have π − arcsin(b/a) = θ0 < θ1 < · · · < θN = π and π − arcsin(b/a) =

ω0 < ω1 < · · · < ωM = π.

Similar to the case of b ≥ a, GUB2-KL in (4.33) and GLB2-KL in (4.35)

can also be obtained by applying the rectangular numerical integration rule [130]

to the new form of Q(a, b) in (4.14), making use of the non-decreasing property

of the first integrand and the non-increasing property of the second integrand.

Compared to this mathematical interpretation, our geometric derivation shows

more clearly the geometric meaning of the generic bounds, which enables one to

judge the tightness of the bounds geometrically.

4.5 New Simple Exponential Bounds

Here, we illustrate some special cases of the above generic exponential bounds

with only two exponential terms.

We first consider the case of b ≥ a ≥ 0. For the upper bound GUB1-KL

in (4.28) and the lower bound GLB1-KL in (4.29) with N = 2, the value of the

angle θ1 will affect greatly the tightness of the bounds. We use θopt
1 to denote such

a value of θ1 that GUB1-KL or GLB1-KL with this θopt
1 is the tightest over the
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entire range of a and b among GUB1-KL or GLB1-KL with all possible values of

θ1 ∈ (0, π). It is easy to see that θopt
1 should be a function of a and b. However, it

is difficult to obtain θopt
1 analytically from (4.28) or (4.29). We have also tried the

numerical method, i.e., to find a functional form for θopt
1 which gives a best fit to

some numerical values of θopt
1 as a function of a and b. We find that for GUB1-KL,

θopt
1 can be approximately expressed as a negative exponential function for a given

value of a, and as a positive exponential function for a given value of b. However,

it is difficult to find a functional form which gives a good approximation to θopt
1

as a function of both a and b, and the result obtained thus far cannot provide a

much better performance than that obtained by simply setting θ1 as a constant.

Thus, by comparing the performance of the bounds with different constant values

of θ1, we recommend here θ1 = π/2 for GUB1-KL and θ1 = π/3 for GLB1-KL.

This gives our first new simple upper bound, denoted as UB1-KL, namely

Q(a, b) ≤ QUB1-KL(a, b)

=
1

2

{
exp

(
−b2 − a2

2

)
+ exp

[
−(b− a)2

2

]}
, b ≥ a ≥ 0, (4.36)

and our first new simple lower bound, denoted as LB1-KL, namely

Q(a, b) ≥ QLB1-KL(a, b)

=
1

3
exp

[
−(−a +

√
4b2 − 3a2)

2

8

]
+

2

3
exp

[
−(b + a)2

2

]
,

b ≥ a ≥ 0. (4.37)

These two bounds are not the tightest for all the possible values of a and b which

satisfy b ≥ a ≥ 0, but they are simple with reasonable tightness for all a and b

over this range.

Next, we consider the case of a ≥ b ≥ 0 and a 6= 0. For the upper bound

GUB2-KL in (4.33) with N = M = 2, the value of θ1 = ω1 has to be dependent

on the ratio b/a, since we have θ0 = ω0 = π − arcsin(b/a). From our numerical
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results, we find that setting

θ1 = ω1 = π − 17

24
arcsin

b

a

gives a bound reasonably tight over the ranges of a and b with a ≥ b. This leads

to our second simple upper bound, UB2-KL, i.e.,

Q(a, b)

≤ QUB2-KL(a, b)

= 1− 17 arcsin b
a

24π

{
exp

[
− l21

(
π − 17

24
arcsin b

a

)

2

]
− exp

[
− l22

(
π − 17

24
arcsin b

a

)

2

]}
,

a ≥ b ≥ 0, a 6= 0. (4.38)

For the lower bound GLB2-KL in (4.35), the only special case with two exponential

terms is given by setting N = M = 1 in (4.35). This leads to our second simple

lower bound LB2-KL, i.e.,

Q(a, b) ≥ QLB2-KL(a, b)

= 1− arcsin(b/a)

π

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}
,

a ≥ b ≥ 0, a 6= 0. (4.39)

A point to note is that the simple bounds shown above are just the bounds

that are generally tight over the entire ranges of a and b concerned, instead of

the tightest bounds. For a subrange of a and b of interest, one can obtain some

simple bounds tighter than those shown here by choosing better values for the

parameters in our generic bounds.

4.6 New Generic Erfc Bounds

In addition to the generic exponential bounds in Section 4.4, we can also derive

some generic erfc bounds, which involve only the erfc function, by evaluating in
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Fig. 4.4: Diagram of the derivation of the new generic erfc bounds GUB3-KL and GLB3-
KL on Q(a, b).

rectangular coordinates the probability of z lying outside of the union of a set

of rectangular regions. Although these generic erfc bounds are not as simple as

the generic exponential bounds, they may be tighter than the latter for some

cases. The generic upper erfc bounds can be obtained by using a set of contiguous

rectangular regions to fill the disk BO,b, as shown by the solid lines inside BO,b

in Fig. 4.4. Thus we obtain the generic upper erfc bound, denoted as GUB3-KL,

namely

Q(a, b) ≤ QGUB3-KL(a, b)

= 1− 1

2π

N−1∑
i=1

∫ µi+1

y1=µi

∫ √
b2−(a+µi)2

y2=−
√

b2−(a+µi)2
e−(y2

1+y2
2)/2dy2dy1

− 1

2π

M−1∑
j=1

∫ νj

y1=νj−1

∫ √
b2−(a+νj)2

y2=−
√

b2−(a+νj)2
e−(y2

1+y2
2)/2dy2dy1

= 1− 1

2

N−1∑
i=1

[
erfc

(
µi√
2

)
− erfc

(
µi+1√

2

)] [
1− erfc

(√
b2 − (a + µi)2

2

)]

− 1

2

M−1∑
j=1

[
erfc

(
νj−1√

2

)
− erfc

(
νj√
2

)] [
1− erfc

(√
b2 − (a + νj)2

2

)]
,

a ≥ 0, b ≥ 0, (4.40)
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where we have −b − a = µ0 < µ1 < · · · < µN = −a and −a = ν0 < ν1 < · · · <

νM = b− a.

The generic lower erfc bound, denoted as GLB3-KL, can be obtained by using

a set of contiguous rectangular regions to cover BO,b, as shown by the dashed lines

outside BO,b in Fig. 4.4, namely

Q(a, b) ≥ QGLB3-KL(a, b)

= 1− 1

2π

N∑
i=1

∫ µi

y1=µi−1

∫ √
b2−(a+µi)2

y2=−
√

b2−(a+µi)2
e−(y2

1+y2
2)/2dy2dy1

− 1

2π

M∑
j=1

∫ νj

y1=νj−1

∫ √
b2−(a+νj−1)2

y2=−
√

b2−(a+νj−1)2
e−(y2

1+y2
2)/2dy2dy1

= 1− 1

2

N∑
i=1

[
erfc

(
µi−1√

2

)
− erfc

(
µi√
2

)] [
1− erfc

(√
b2 − (a + µi)2

2

)]

− 1

2

M∑
j=1

[
erfc

(
νj−1√

2

)
− erfc

(
νj√
2

)] [
1− erfc

(√
b2 − (a + νj−1)2

2

)]
,

a ≥ 0, b ≥ 0. (4.41)

Here, we have −b − a = µ0 < µ1 < · · · < µN = −a and −a = ν0 < ν1 < · · · <

νM = b − a. From Fig. 4.4, it is clear that GUB3-KL and GLB3-KL are valid

for both the cases of b ≥ a ≥ 0 and a ≥ b ≥ 0, and approach the exact value of

Q(a, b) as the values of N and M increase.

As in the case of the generic exponential bounds in Section 4.4, the generic

erfc bounds in (4.40) and (4.41) can also be obtained by applying the rectangular

integration rule [130] to the equation in the first line of (4.24) to evaluate Q(a, b)

in the rectangular coordinate system.

4.7 New Simple Erfc Bounds

We now give some simple erfc bounds which only involve a few terms. Ac-

cording to our numerical results, we find that the generic erfc bound GUB3-KL

in (4.40) evaluated with a small number of terms is not tight. Thus, we give here
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another tight simple erfc bound which is derived from the new representation in

(4.25) for Q(a, b). As shown in Section 4.3.2, for both the cases of b ≥ a and a ≥ b,

the new representation (4.25) for Q(a, b) is valid. Since erfc(x) is well known to

be bounded by an exponential function, i.e.,

erfc(x) ≤ e−x2

, x ≥ 0, (4.42)

we can obtain our third new simple upper bound, referred to as UB3-KL, by using

(4.42) in the integral in (4.25), namely

Q(a, b) ≤ QUB3-KL(a, b)

=
1

2
erfc

(
b + a√

2

)
+

1

2
erfc

(
b− a√

2

)
+

1√
2π

∫ b−a

−(b+a)

e−y2
1/2e−[b2−(a+y1)2]/2dy1

=
1

2
erfc

(
b + a√

2

)
+

1

2
erfc

(
b− a√

2

)

+
1

a
√

2π

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}
, a > 0, b ≥ 0. (4.43)

This new bound, UB3-KL, only involves the erfc and exponential functions, and

is easy to handle, both analytically and numerically. For example, in a fading

scenario, the average of the erfc function over a fading distribution can be calcu-

lated in closed form for the Rayleigh [5, eq. (5.6)], Nakagami-m [5, eq. (5.18)],

and Rician [132, eq. (19)] fading channels. Therefore, evaluating the average of

UB3-KL over these fading channels in closed form will not pose any problem. As

will be shown in Section 4.10, this bound is very tight for large values of a and b.

Other simple upper erfc bounds can also be obtained by using a few rectan-

gular regions, or together with some sectors, to fill the disk BO,b. While many such

bounds can be obtained, most are not as tight and simple as UB3-KL in (4.43).

For instance, the bounds obtained by using a single inscribed square region and

the bound obtained by using a combination of a rectangular region and a right

semicircular region have been shown to be loose in [133] and [134], respectively.

A tight, simple, lower erfc bound on Q(a, b) can be obtained by setting N =
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Fig. 4.5: Diagram of the derivation of the simple lower erfc bound LB3-KL on Q(a, b).

M = 1 in GLB3-KL (4.41). This corresponds to using a square region centered at

the origin O as the bounding shape, whose sides are 2b in length, parallel to either

the z1-axis or the z2-axis, as shown by the solid lines outside of BO,b in Fig. 4.5.

This gives our third, new, simple lower bound, abbreviated as LB3-KL, namely

Q(a, b) ≥ QLB3-KL(a, b)

=
1

2

[
erfc

(
b + a√

2

)
+ erfc

(
b− a√

2

)][
1− erfc

(
b√
2

)]
+ erfc

(
b√
2

)
,

a ≥ 0, b ≥ 0. (4.44)

This bound turns out to be very tight for large values of a and b, and is valid

for both the cases of b ≥ a and a ≥ b. It involves the product of two different

erfc functions. The integral involved in averaging the product of two different erfc

functions over a fading distribution has been solved for Rayleigh fading in [135],

and will be solved for Nakagami-m fading and given a pair of upper and lower

bounds for Rician fading in Chapter 6. Thus, it is easy to evaluate or bound the

average of our erfc bound LB3-KL over these fading channels in closed form.

Another simple, lower erfc bound on Q(a, b) can be derived by computing the

probability of z lying outside of a square region which is obtained by rotating the
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square region used in the derivation of LB3-KL 45◦, as shown by the dotted lines

outside of BO,b in Fig. 4.5. However, the results in [134] show that this bound is

not as tight as LB3-KL in (4.44).

4.8 New Generic Single-Integral Bounds

In Section 4.4, we have derived the generic exponential bounds which are

obtained by using variations of circular regions as bounding shapes. In Section 4.6,

we have derived the generic erfc bounds which are obtained by using variations

of rectangular regions as bounding shapes. Both of these two types of bounds are

closed-form bounds. In this section, we derive some generic single-integral bounds

which involve single finite integrals and which are obtained by using polygons as

bounding shapes. The bounding polygons considered here involve an arbitrarily

large number of sides, and can be equilateral or inequilateral. Thus, the generic

bounds obtained involve an arbitrarily large number of single integrals.

4.8.1 Upper Bounds

We first derive generic upper single-integral bounds on Q(a, b) by computing

the probability of z lying outside of the polygon PU,N which has N sides, and

which is inscribed within BO,b, as shown in Fig. 4.6. To construct PU,N , we first

choose N points (Bi, i = 1, · · · , N) on the boundary of BO,b such that N angles

ψi’s between the positive z1-axis and the segment OBi are formed and given by

0 = ψ1 < . . . < ψN < ψN+1 = 2π, and then we connect adjacent points using

straight line segments. The length of the line segment ABi, denoted as l(ψi), is

given by

l(ψi) =
√

b2 + a2 − 2ab cos(ψi). (4.45)
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Fig. 4.6: Diagram of the derivation of the new generic upper single-integral bounds GUBI1-
KL and GUBI2-KL on Q(a, b).

The angle from the positive y1-axis to ABi, denoted as θi, is given by

θi =





arccos[(b cos(ψi)− a)/l(ψi)], if ψi ≤ π

2π − arccos[(b cos(ψi)− a)/l(ψi)], if ψi > π

= sign(π − ψi)(arccos[(b cos(ψi)− a)/l(ψi)]− π) + π, (4.46)

122



4.8. NEW GENERIC SINGLE-INTEGRAL BOUNDS

where sign(·) is the three-valued sign function, given by

sign(x) =





1, if x > 0,

0, if x = 0,

−1, if x < 0.

(4.47)

The angle between the line segments ABi and BiBi+1, denoted as φi, is given by

φi = arccos

[
l2(ψi)− l2(ψi+1) + 2b2[1− cos(ψi+1 − ψi)]

4b sin[(ψi+1 − ψi)/2]l(ψi)

]
. (4.48)

We first consider the case of b > a, as shown in Fig. 4.6(a). The probability

of z lying inside the triangular region 4ABiBi+1 is given by

Pr (z ∈ 4ABiBi+1) =

∫ θi+1−θi

θ=0

∫ di(θ)

r=0

r

2π
e−r2/2drdθ

=
θi+1 − θi

2π
− 1

2π

∫ θi+1−θi

θ=0

exp

[
−d2

i (θ)

2

]
dθ, (4.49)

where di(θ) is given by

di(θ) =
l(ψi) sin(φi)

sin(π − φi − θ)

=
l(ψi) sin(φi)

sin(φi + θ)
. (4.50)

Substituting (4.50) into (4.49) gives

Pr(z ∈ 4ABiBi+1) =
θi+1 − θi

2π
− 1

2π

∫ θi+1−θi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 sin2(φi + θ)

]
dθ.

(4.51)

The probability of z lying inside the entire polygon PU,N is, therefore, given by

Pr(z ∈ PU,N) =
N∑

i=1

Pr(z ∈ 4ABiB(i+1) modulo N). (4.52)

This gives our first generic upper bound involving single integrals, abbreviated as
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GUBI1-KL, namely

Q(a, b) ≤ QGUBI1-KL(a, b)

= 1− Pr(z ∈ PU,N)

=
1

2π

N∑
i=1

∫ θi+1−θi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 sin2(φi + θ)

]
dθ, b > a ≥ 0, (4.53)

where {θi, i = 1, . . . , N + 1} are defined by (4.46), and we have 0 = θ1 < . . . <

θN < θN+1 = 2π.

If the points {Bi}N
i=1 are chosen to be symmetrical about the z1-axis, and we

have ψN/2+1 = π, then (4.53) reduces to

QGUBI1-KL(a, b) =
1

π

N/2∑
i=1

∫ θi+1−θi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 sin2(φi + θ)

]
dθ, b > a ≥ 0.

(4.54)

This generic bound involves N/2 single integrals.

We also note that the region covered by one acute-angled (obtuse-angled)

triangle can be seen as the addition (subtraction) of the regions covered by two

right-angled triangles which have a common leg. For example, for the case of using

an equilateral hexagon as the bounding shape, as shown in Fig. 4.7, we have

4AB1B2 = 4AE1B1 +4AE1B2,

4AB2B3 = 4AE2B3 −4AE2B2, for a > b/2

4AB2B3 = 4AE2B3 +4AE2B2, for a < b/2

4AB3B4 = 4AE3B3 +4AE3B4.

Thus, the probability of z lying inside each acute-angled or obtuse-angled triangle

is also equal to the sum of the probabilities of z lying inside the two right-angled

triangles. This means that we can split each integral in (4.51) into two simpler
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B2B3

B1B4

B5 B6

E2

E1

E3

a b0

z2

,O bB

GUBI1-KL

A

y2

 or z y1 1O

Fig. 4.7: Diagram of the split of the triangles in the derivation of the generic single-integral
bounds on Q(a, b).

integrals, namely, we have

Pr(z ∈ 4ABiBi+1) =
θi+1 − θi

2π
− 1

2π

∫ π
2
−φi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 cos2(θ)

]
dθ

− 1

2π

∫ θi+1−θi−(π
2
−φi)

θ=0

exp

[
− l2(ψi) sin2(φi)

2 cos2(θ)

]
dθ. (4.55)

Here, l(ψi) sin(φi) is the length of the common leg, and (π
2
− φi) is positive when

φi is an acute angle, and is negative when φi is an obtuse angle. The alternative

expression for the bound GUBI1-KL in (4.54) is, therefore, given by

Q(a, b) ≤ QGUBI1a-KL(a, b)

=
1

π

N/2∑
i=1

{∫ π
2
−φi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 cos2(θ)

]
dθ

+

∫ θi+1−θi−(π
2
−φi)

θ=0

exp

[
− l2(ψi) sin2(φi)

2 cos2(θ)

]
dθ

}
,

b > a ≥ 0. (4.56)

This alternative expression involves N simpler single integrals.

We now turn to the case of b < a, as shown in Fig. 4.6(b). For this case, (4.50)
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still holds, but (4.49) and (4.52) are not accurate anymore. This is because when

we have b < a, θi’s do not monotonically increase as i increases, i.e., (θi+1 − θi)

may be negative. As the point Bi moves counterclockwise along the boundary of

BO,b, ψi increases from 0 to 2π. The corresponding θi will first decrease from π to

its minimum value of π − arcsin(b/a), and then increase to its maximum value of

π +arcsin(b/a), and finally return to π. Here, the minimum and maximum values

of θi correspond, respectively, to the upper and lower tangential points on which

ABi is tangential to the boundary of BO,b. Therefore, (4.49) should be modified

to

Pr(z ∈ 4ABiBi+1) =

∫ |θi+1−θi|

θ=0

∫ di(θ)

r=0

r

2π
e−r2/2drdθ

=
|θi+1 − θi|

2π
− 1

2π

∫ |θi+1−θi|

θ=0

exp

[
−d2

i (θ)

2

]
dθ. (4.57)

The second point to note is that when we combine the probabilities of z lying

inside all the triangular regions, we will not simply add these probabilities up, as

we did in (4.52). Actually, we need to add Pr(z ∈ 4ABiBi+1) when (θi+1 − θi)

is positive, and subtract Pr(z ∈ 4ABiBi+1) when (θi+1 − θi) is negative. After

considering all these modifications, we obtain the second new generic upper bound,

abbreviated as GUBI2-KL, namely

Q(a, b)

≤ QGUBI2-KL(a, b)

= 1− Pr(z ∈ PU,N)

= 1 +
1

2π

N∑
i=1

sign[θ(i+1) modulo N − θi]

∫ |θ(i+1) modulo N−θi|

θ=0

exp

[
− l2(ψi) sin2(φi)

2 sin2(φi + θ)

]
dθ,

a > b > 0. (4.58)

We find that in (4.58), the effect of the signs before the integrals can be reflected

by setting the upper integral limit as (θi+1 − θi) and the angle variable in the

integrand as |θ|. Thus, we obtain an alternative expression for our new upper
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bound GUBI2-KL in (4.58), namely

QGUBI2-KL(a, b) = 1 +
1

2π

N∑
i=1

∫ θ(i+1) modulo N−θi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 sin2(φi + |θ|)

]
dθ,

a > b > 0. (4.59)

Although this expression is more compact than that in (4.58), the existence of

|θ| in the integrand makes it difficult to compute (4.59) numerically by using

Mathematica. Thus, we will still use (4.58) as the expression of the bound GUBI2-

KL in the subsequent discussion.

If we choose the points {Bi}N
i=1 symmetrically about the z1-axis, and set

θN/2+1 = π, GUBI2-KL in (4.58) can be reduced to

Q(a, b) ≤ QGUBI2-KL(a, b)

= 1 +
1

π

N/2∑
i=1

sign(θi+1 − θi)

∫ |θi+1−θi|

θ=0

exp

[
− l2(ψi) sin2(φi)

2 sin2(φi + θ)

]
dθ, a > b > 0.

(4.60)

Similar to the case of b > a, each integral in (4.60) can be split into two parts,

and the alternative expression is given by

QGUBI2a-KL(a, b) = 1 +
1

π

N/2∑
i=1

sign(θi+1 − θi)

{∫ π
2
−φi

θ=0

exp

[
− l2(ψi) sin2(φi)

2 cos2(θ)

]
dθ

+

∫ |θi+1−θi|−(π
2
−φi)

θ=0

exp

[
− l2(ψi) sin2(φi)

2 cos2(θ)

]
dθ

}
, a > b > 0.

(4.61)

4.8.2 Lower Bounds

Generic lower single-integral bounds for Q(a, b) can be obtained by computing

the probability of z lying outside the polygon PL,N whose boundary circumscribes

BO,b, as shown in Fig. 4.8. Here, PL,N is formed by two steps. We first choose

N points (Bi, i = 1, · · · , N) on the boundary of BO,b such that N angles ψi’s
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Fig. 4.8: Diagram of the derivation of the new generic lower single-integral bounds GLBI1-
KL and GLBI2-KL on Q(a, b).

between the positive z1-axis and OBi are formed and given by 0 = ψ1 < . . . <

ψN < ψN+1 = 2π. Then at each point Bi, we draw a line tangential to the

boundary of BO,b. The point of intersection of the tangential lines at Bi and Bi+1

is the vertex Di of PL,N . We only discuss the case that the points {Bi}N
i=1 are
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chosen to be symmetrical about the z1-axis. The length of the line segment ODi,

denoted as qi,i+1, is given by

qi,i+1 =
b

cos [(ψi+1 − ψi)/2]
. (4.62)

The length of the line segment ADi, denoted as k(ψi, ψi+1), is thus given by

k(ψi, ψi+1) =

√
a2 + q2

i,i+1 − 2aqi,i+1 cos

(
ψi + ψi+1

2

)
. (4.63)

The angle from the positive y1-axis to the line segment ADi, denoted as βi, is

given by

βi =





arccos
[

qi,i+1 cos[(ψi+ψi+1)/2]−a

k(ψi,ψi+1)

]
, if ψi < π

2π − arccos
[

qi,i+1 cos[(ψi+ψi+1)/2]−a

k(ψi,ψi+1)

]
, if ψi ≥ π

= sign [sign(π − ψi)− 0.5]

{
arccos

[
qi,i+1 cos [(ψi + ψi+1)/2]− a

k(ψi, ψi+1)

]
− π

}
+ π.

(4.64)

The angle between the line segments ADi and DiDi+1, denoted as αi, is given by

αi =
π

2
− ψi+1 − ψi

2
+ sign [sign(π − ψi)− 0.5]

· arccos

[
qi,i+1 − a cos [(ψi + ψi+1)/2]

k(ψi, ψi+1)

]
. (4.65)

We first consider the case of b > a, as shown in Fig. 4.8(a). The probability

of z lying inside the triangular region 4ADiDi+1 is given by

Pr(z ∈ 4ADiDi+1) =

∫ βi+1−βi

θ=0

∫ vi(θ)

r=0

r

2π
e−r2/2drdθ. (4.66)

Here, vi(θ) is given by

vi(θ) =
k(ψi, ψi+1) sin(αi)

sin(αi + θ)
. (4.67)
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Substituting (4.67) into (4.66) gives

Pr(z ∈ 4ADiDi+1) =
βi+1 − βi

2π
− 1

2π

∫ βi+1−βi

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 sin2(αi + θ)

]
dθ.

(4.68)

The probability of z lying inside the entire polygon PL,N is, therefore, given by

Pr(z ∈ PL,N) =
N∑

i=1

Pr(z ∈ 4ADiD(i+1) modulo N). (4.69)

Here, “modulo” denotes the modulo operation with n modulo n = n. Thus, our

first generic single-integral lower bound, denoted as GLBI1-KL, is given by

Q(a, b) ≥ QGLBI1-KL(a, b)

= 1− Pr(z ∈ PL,N)

=
1

2π

N∑
i=1

∫ βi+1−βi

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 sin2(αi + θ)

]
dθ, b ≥ a ≥ 0, (4.70)

where (βi, i = 1, . . . , N) are defined in (4.64), and we have 0 < β1 < . . . < βN < 2π

and βN+1 = β1 +2π. Since the points {Bi}N
i=1 are chosen to be symmetrical about

the z1-axis here, the probability Pr(z ∈ PL,N) is twice the probability of z lying

inside the upper half of the polygon PL,N . Thus, if we set ψN/2+1 = π, the bound

GLBI1-KL can be reduced to

Q(a, b) ≥ QGLBI1-KL(a, b)

=
1

π

∫ β1

θ=0

exp

[
− (b− a)2

2 cos2(θ)

]
dθ

+
1

π

N
2
−1∑

i=1

∫ βi+1−βi

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 sin2(αi + θ)

]
dθ

+
1

π

∫ π−βN/2

θ=0

exp

[
− (b + a)2

2 cos2(θ)

]
dθ, b ≥ a ≥ 0. (4.71)

This bound involves (N/2 + 1) single integrals, and its alternative expression is
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given by

QGLBI1a-KL(a, b) =
1

π

∫ β1

θ=0

exp

[
−(b− a)2

2 cos2 β

]
dθ

+
1

π

N/2−1∑
i=1

{∫ π
2
−αi

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 cos2(θ)

]
dθ

+

∫ βi+1−βi−(π
2
−αi)

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 cos2(θ)

]
dθ

}

+
1

π

∫ π−βN/2

θ=0

exp

[
−(b + a)2

2 cos2 β

]
dθ, b ≥ a ≥ 0, (4.72)

which involves N simpler single integrals.

Similar to the case of the upper bound, the lower bound for a > b, as

shown in Fig. 4.8(b), can be obtained by making some small modifications in

the derivation of GLBI1-KL in (4.70). We first compute the probabilities of

z lying inside the triangles 4ADiD(i+1) modulo N , i = 1, . . . , N , taking into ac-

count the fact that (βi+1 − βi) may be negative, and then use the sign of the

upper integral limit (βi+1 − βi) to determine the sign before the ith probability

Pr(z ∈ 4ADiD(i+1) modulo N) in the sum of the total probability Pr(z ∈ PL,N). In

addition, for this case, the angle αi computed by using (4.65) is not always posi-

tive. Since we need the absolute value of this angle, we replace αi in the integrand

with |αi|. After considering all these modifications, we have the second generic

lower bound, GLBI2-KL, namely

Q(a, b) ≥ QGLBI2-KL(a, b)

= 1− Pr(z ∈ PL,N)

= 1 +
1

2π

N∑
i=1

sign[β(i+1) modulo N − βi]

·
∫ |β(i+1) modulo N−βi|

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 sin2(|αi|+ θ)

]
dθ, a ≥ b > 0, (4.73)

where {βi}N
i=1 are defined in (4.64). Considering the symmetric positions of
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{Bi}N
i=1, and ψN/2+1 = π, the bound GLBI2-KL in (4.73) can be reduced to

Q(a, b) ≥ QGLBI2-KL(a, b)

= 1 +
1

π

∫ β1−π

θ=0

exp

[
− (a− b)2

2 cos2(θ)

]
dθ +

1

π

N
2
−1∑

i=1

sign(βi+1 − βi)

·
∫ |βi+1−βi|

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 sin2(|αi|+ θ)

]
dθ

+
1

π

∫ π−βN/2

θ=0

exp

[
− (b + a)2

2 cos2(θ)

]
dθ, a ≥ b > 0. (4.74)

An alternative expression for (4.74) is given by

QGLBI2a-KL(a, b) = 1 +
1

π

∫ β1−π

θ=0

exp

[
−(a− b)2

2 cos2 β

]
dθ +

1

π

N
2
−1∑

i=1

sign(βi+1 − βi)

·
{∫ π

2
−αi

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 cos2(θ)

]
dθ

+

∫ |βi+1−βi|−(π
2
−αi)

θ=0

exp

[
−k2(ψi, ψi+1) sin2(αi)

2 cos2(θ)

]
dθ

}

+
1

π

∫ π−βN/2

θ=0

exp

[
−(b + a)2

2 cos2 β

]
dθ, a ≥ b > 0. (4.75)

From the geometric approach, it is clear that the generic upper and lower

single-integral bounds derived in this section approach the exact value of Q(a, b)

as N , the number of sides of the bounding polygons, increases, since the area

covered by the bounding polygons grows closer to BO,b. Although these bounds

involve single integrals, one advantage of these bounds is that the integrals in-

volved have a form similar to that in the error probability expression of the general

two-dimensional signal constellations [60]. Thus, we can apply all the techniques

exploited for the computations of this error probability to our bounds. For in-

stance, when the ratio a/b is independent of the instantaneous SNR, like in the

expression for the conditional error probability of a variety of single-channel, par-

tially coherent, differentially coherent, and quadratic detections [114, eq. (14)],

the integral limits and angles in our single-integral bounds are all fixed values,
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independent of the instantaneous SNR. Then the closed form results for averag-

ing these bounds over Rayleigh and Nakagami-m fading channels can be obtained

easily by using the results in [5, Sections 5.4.2 and 5A.1 5].

4.9 New Simple Single-Integral Bounds

We now derive some simple single-integral bounds which involve only a few

single integrals. These bounds are special cases of the generic single-integral

bounds derived in Section 4.8, and are obtained by using an equilateral hexagon

to bound BO,b, as shown in Figs. 4.6 and 4.8. Thus, the ψi’s in GUBI1-KL in

(4.54), GUBI2-KL in (4.60), GLBI1-KL in (4.71), and GLBI2-KL in (4.74) are

given by ψi = (i− 1)π/3, i = 1, · · · , 6.

4.9.1 Upper Bounds

We first show the upper bound on Q(a, b) for the case of b > a. This upper

bound is obtained by computing the probability of z lying outside the equilateral

hexagon PU,6 which is inscribed within BO,b, as shown in Fig. 4.6(a). Since PU,6

is symmetrical about the z1-axis, and the PDF of y in (4.9) is isotropic, the

probability Pr(z ∈ PU,6) is twice the probability of z lying inside the upper half of

the hexagon PU,6, i.e., we have

Pr(z ∈ PU,6) = 2 [Pr(z ∈ 4AB1B2) + Pr(z ∈ 4AB2B3) + Pr(z ∈ 4AB3B4)] .

(4.76)

Now, we compute the probabilities of z lying inside the three triangles in (4.76)

one by one according to (4.45), (4.46), (4.48), and (4.51). In the triangle4AB1B2,

the sides and angles are given by

l(ψ1) = b− a,

l(ψ2) =
√

b2 + a2 − ab,
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θ1 = 0,

θ2 = arccos

[
b− 2a

2
√

b2 + a2 − ab

]
,

φ1 =
π

3
.

Thus, the probability of z lying inside the triangle 4AB1B2 is given by

Pr(z ∈ 4AB1B2)

=
1

2π
arccos

[
b− 2a

2
√

b2 + a2 − ab

]
− 1

2π

∫ arccos

»
b−2a

2
√

b2+a2−ab

–

θ=0

exp

[
− 3(b− a)2

8 sin2(π/3 + θ)

]
dθ.

(4.77)

Similarly, in the triangle 4AB2B3, the sides and angles are given by

l(ψ3) =
√

b2 + a2 + ab,

θ3 − θ2 = arccos

[
b2 + 2a2

2
√

b4 + a4 + a2b2

]
,

φ2 = arccos

[
b− 2a

2
√

b2 + a2 − ab

]
,

and thus, the probability Pr(z ∈ 4AB2B3) is given by

Pr(z ∈ 4AB2B3)

=
1

2π
arccos

[
b2 + 2a2

2
√

b4 + a4 + a2b2

]
− 1

2π

·
∫ arccos

»
b2+2a2

2
√

b4+a4+a2b2

–

θ=0

exp

[
− 3b2

8 sin2(arccos[(b− 2a)/(2
√

b2 + a2 − ab)] + θ)

]
dθ.

(4.78)

Finally, in the triangle 4AB3B4, the sides and angles are given by

l(ψ4) = b + a,

θ4 − θ3 = arccos

[
b + 2a

2
√

b2 + a2 + ab

]
,

θ4 = π,
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φ3 = arccos

[
b− a

2
√

b2 + a2 + ab

]
,

and the probability Pr(z ∈ 4AB3B4) is given by

Pr(z ∈ 4AB3B4)

=
1

2π
arccos

[
b + 2a

2
√

b2 + a2 + ab

]

− 1

2π

∫ arccos

»
b+2a

2
√

b2+a2+ab

–

θ=0

exp

[
− 3(b + a)2

8 sin2(arccos[(b− a)/(2
√

b2 + a2 + ab)] + θ)

]
dθ.

(4.79)

Substituting (4.77), (4.78), and (4.79) into (4.76), and also noting that we have

the sum of the angles

(θ2 − θ1) + (θ3 − θ2) + (θ4 − θ3) = θ4 − θ1 = π,

we obtain our first simple upper bound involving single integrals, abbreviated as

UBI1-KL, namely

Q(a, b)

< QUBI1-KL(a, b)

= 1− Pr(z ∈ PU,6)

=
1

π

{∫ arccos

»
b−2a

2
√

b2+a2−ab

–

θ=0

exp

[
− 3(b− a)2

8 sin2(π/3 + θ)

]
dθ

+

∫ arccos

»
b2+2a2

2
√

b4+a4+a2b2

–

θ=0

exp

[
− 3b2

8 sin2(arccos[(b− 2a)/(2
√

b2 + a2 − ab)] + θ)

]
dθ

+

∫ arccos

»
b+2a

2
√

b2+a2+ab

–

θ=0

exp

[
− 3(b + a)2

8 sin2(arccos[(b− a)/(2
√

b2 + a2 + ab)] + θ)

]
dθ

}
,

b > a > 0. (4.80)

This upper bound involves three finite single integrals. As mentioned in Sec-

tion 4.8.1 and shown in Fig. 4.7, the probability of z lying inside each acute-
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angled or obtuse-angled triangle is also equal to the sum of the probabilities of

z lying inside the two right-angled triangles. For example, by using the equality

∠E1AB1 + ∠E1AB2 = ∠B1AB2, i.e.,

π

6
+ arctan

[
b + a√
3(b− a)

]
= arccos

[
b− 2a

2
√

b2 + a2 − ab

]
, (4.81)

the probability Pr(z ∈ 4AB1B2) in (4.77) can be given alternatively by

Pr(z ∈ 4AB1B2)

=

∫ π
6

θ=0

∫ √
3(b−a)

2 cos(θ)

r=0

r

2π
e−r2/2dr +

∫ arctan
h

b+a√
3(b−a)

i

θ=0

∫ √
3(b−a)

2 cos(θ)

r=0

r

2π
e−r2/2drdθ

=
1

2π
arccos

[
b− 2a

2
√

b2 + a2 − ab

]
− 1

2π

∫ π
6

θ=0

exp

[
−3(b− a)2

8 cos2(θ)

]
dθ

− 1

2π

∫ arctan
h

b+a√
3(b−a)

i

θ=0

exp

[
−3(b− a)2

8 cos2(θ)

]
dθ. (4.82)

As a result, each integral in (4.80) can be split into two simpler integrals, and this

gives the alternative form

Q(a, b)

< QUBI1a-KL(a, b)

= 1− 2[Pr(z ∈ 4AB1E1) + Pr(z ∈ 4AE1B2) + Pr(z ∈ 4AE2B3)

− Pr(z ∈ 4AE2B2) + Pr(z ∈ 4AB3E3) + Pr(z ∈ 4AE3B4)]

=
1

π

∫ π
6

θ=0

{
exp

[
−3(b− a)2

8 cos2(θ)

]
+ exp

[
−3(b + a)2

8 cos2(θ)

]}
dθ

+
1

π

∫ arctan
h

b+a√
3(b−a)

i

θ=0

exp

[
−3(b− a)2

8 cos2(θ)

]
dθ +

1

π

∫ arctan
h

b+2a√
3b

i

θ=0

exp

[
− 3b2

8 cos2(θ)

]
dθ

+
1

π

∫ arctan
h

b−2a√
3b

i

θ=0

exp

[
− 3b2

8 cos2(θ)

]
dθ +

1

π

∫ arctan
h

b−a√
3(b+a)

i

θ=0

exp

[
−3(b + a)2

8 cos2(θ)

]
dθ,

b > a > 0. (4.83)

In the first equality in (4.83), the probability Pr(z ∈ 4AE2B2) is deducted from

the total probability, because we consider here the case of a > b/2. However,
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the final result in (4.83) holds for either a > b/2 or a < b/2. This is because

the sign before the probability Pr(z ∈ 4AE2B2) can be reflected by the sign

of the upper integral limit arctan
[
(b− 2a)/(

√
3b)

]
. If we have a > b/2, then

arctan
[
(b− 2a)/(

√
3b)

]
will be negative, and thus the integral

∫ arctan
h

b−2a√
3b

i

θ=0

exp

[
− 3b2

8 cos2(θ)

]
dθ = −

∫ arctan
h

2a−b√
3b

i

θ=0

exp

[
− 3b2

8 cos2(θ)

]
dθ

(4.84)

will be negative; while if we have a < b/2, then the integral limit

arctan
[
(b− 2a)/(

√
3b)

]
will be positive, and thus the integral in (4.84) will be

positive.

We now turn to the case of b < a, as shown in Fig. 4.6(b). According to

(4.57), the probability of z lying inside the triangle 4AB1B2 is given by

Pr(z ∈ 4AB1B2) =
1

2π
arccos

[
2a− b

2
√

b2 + a2 − ab

]

− 1

2π

∫ arccos

»
2a−b

2
√

b2+a2−ab

–

θ=0

exp

[
− 3(a− b)2

8 sin2(2π/3 + θ)

]
dθ,(4.85)

while the probabilities of z lying inside the triangles 4AB2B3 and 4AB3B4 are

still given by (4.78) and (4.79), respectively. The probability Pr(z ∈ PU,6) is not

given by (4.76) anymore for this case, and it becomes

Pr(z ∈ PU,6) = 2 [−Pr(z ∈ 4AB1B2) + Pr(z ∈ 4AB2B3) + Pr(z ∈ 4AB3B4)] .

(4.86)

Since we have

θ1 = θ4 = π,

(θ2 − θ1) + (θ3 − θ2) + (θ4 − θ3) = θ4 − θ1 = 0,
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our second simple upper bound involving single integrals, abbreviated as UBI2-

KL, is given by

Q(a, b)

< QUBI2-KL(a, b)

= 1− Pr(z ∈ PU,6)

= 1− 1

π

∫ arccos

»
2a−b

2
√

b2+a2−ab

–

θ=0

exp

[
− 3(b− a)2

8 sin2(2π/3 + θ)

]
dθ

+
1

π

∫ arccos

»
b2+2a2

2
√

b4+a4+a2b2

–

θ=0

exp

[
− 3b2

8 sin2(arccos[(b− 2a)/(2
√

b2 + a2 − ab)] + θ)

]
dθ

+
1

π

∫ arccos

»
b+2a

2
√

b2+a2+ab

–

θ=0

exp

[
− 3(b + a)2

8 sin2(arccos[(b− a)/(2
√

b2 + a2 + ab)] + θ)

]
dθ,

a > b > 0. (4.87)

This upper bound also involves three finite single-integrals. Similar to the case

of b > a, each integral in (4.87) can be split into two parts, and the alternative

expression is given by

Q(a, b)

< QUBI2a-KL(a, b)

= 1 +
1

π

∫ π
6

θ=0

{
exp

[
−3(b− a)2

8 cos2(θ)

]
+ exp

[
−3(b + a)2

8 cos2(θ)

]}
dθ

+
1

π

∫ arctan
h

b+a√
3(b−a)

i

θ=0

exp

[
−3(b− a)2

8 cos2(θ)

]
dθ +

1

π

∫ arctan
h

b+2a√
3b

i

θ=0

exp

[
− 3b2

8 cos2(θ)

]
dθ

+
1

π

∫ arctan
h

b−2a√
3b

i

θ=0

exp

[
− 3b2

8 cos2(θ)

]
dθ +

1

π

∫ arctan
h

b−a√
3(b+a)

i

θ=0

exp

[
−3(b + a)2

8 cos2(θ)

]
dθ,

a > b > 0. (4.88)

Comparing (4.88) with (4.83), we can see that the only difference between the

expression for UBI2a-KL and the expression for UBI1a-KL is the constant term

1.
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4.9.2 Lower Bounds

Now, we derive simple lower bounds for Q(a, b) by computing the probability

of z lying outside the equilateral hexagon PL,6 whose boundary circumscribes that

of BO,b, as shown in Fig. 4.8.

We first consider the case of b > a. As shown in Fig. 4.8(a), the probability

Pr(z ∈ PL,6) is given by

Pr(z ∈ PL,6) = 2[Pr(z ∈ 4AB1D1) + Pr(z ∈ 4AD1D2) + Pr(z ∈ 4AD2D3)

+ Pr(z ∈ 4AD3B4)], (4.89)

where 4AB1D1 and 4AD3B4 are right-angled triangles. According to (4.62),

(4.63), (4.64), (4.65), (4.68), (4.69), and (4.71), we obtain our first simple single-

integral lower bound, abbreviated as LBI1-KL, namely

Q(a, b)

> QLBI1-KL(a, b)

= 1− Pr(z ∈ PL,6)

=
1

π

{∫ arctan
h

b√
3(b−a)

i

θ=0

exp

[
− (b− a)2

2 cos2(θ)

]
dθ

+

∫ arccos

»
a2−ab+2b2/3√

(a2+4b2/3−2ab)(a2+4b2/3)

–

θ=0

exp


− (b− a/2)2

2 sin2
(
arccos

(
2b−3a

2
√

3a2+4b2−6ab

)
+ θ

)

 dθ

+

∫ arccos

»
a2+ab+2b2/3√

(a2+4b2/3+2ab)(a2+4b2/3)

–

θ=0

exp


− (b + a/2)2

2 sin2
(
arccos

(
2b−3a

2
√

3a2+4b2

)
+ θ

)

 dθ

+

∫ arctan
h

b√
3(b+a)

i

θ=0

exp

[
− (b + a)2

2 cos2(θ)

]
dθ

}
, b > a > 0. (4.90)

This lower bound involves four finite single-integrals.

Similarly, for the case of b < a, as shown in Fig. 4.8(b), the probability
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Pr(z ∈ PL,6) is given by

Pr(z ∈ PL,6) = 2[−Pr(z ∈ 4AB1D1) + Pr(z ∈ 4AD1D2) + Pr(z ∈ 4AD2D3)

+ Pr(z ∈ 4AD3B4)]. (4.91)

According to (4.62), (4.63), (4.64), (4.65), (4.68), (4.69), and (4.74), our second

simple single-integral lower bound, denoted as LBI2-KL, is thus given by

Q(a, b)

> QLBI2-KL(a, b)

= 1− Pr(z ∈ PL,6)

= 1 +
1

π

{∫ arctan
h

b√
3(b−a)

i

θ=0

exp

[
− (b− a)2

2 cos2(θ)

]
dθ

+

∫ arccos

»
a2−ab+2b2/3√

(a2+4b2/3−2ab)(a2+4b2/3)

–

θ=0

exp


− (b− a/2)2

2 sin2
(
arccos

(
2b−3a

2
√

3a2+4b2−6ab

)
+ θ

)

 dθ

+

∫ arccos

»
a2+ab+2b2/3√

(a2+4b2/3+2ab)(a2+4b2/3)

–

θ=0

exp


− (b + a/2)2

2 sin2
(
arccos

(
2b−3a

2
√

3a2+4b2

)
+ θ

)

 dθ

+

∫ arctan
h

b√
3(b+a)

i

θ=0

exp

[
− (b + a)2

2 cos2(θ)

]
dθ

}
, a > b > 0. (4.92)

This expression also only differs from the expression for LBI1-KL in (4.90) in the

constant term 1.

4.10 Comparison and Numerical Results

In this section, we study the tightness of our new upper and lower bounds

on Q(a, b) derived in Sections 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9, and compare their

tightness with the existing bounds in the literature. We first discuss the closed-

form bounds in 4.4, 4.5, 4.6, 4.7. Then we show the performance of the single-

integral bounds in 4.8 and 4.9.
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4.10.1 Performance of the Closed-Form Bounds

In the literature, there are two types of bounds available, i.e., exponential

bounds which involve only the exponential function, and I0-bounds which involve

the I0 function, i.e., involve the use of I0(·), I0(·)erfc(·),
√

I0(·), or even more

complicated functions of I0(·). In general, I0-bounds are not convenient to use

in theoretical analyses, and thus are not as useful as our exponential bounds and

erfc bounds in this sense. In the following discussions, we focus on the comparison

between our exponential/erfc bounds and the existing exponential bounds. We

will also compare our bounds with the existing I0-bounds, but only for a reference

purpose.

4.10.1.1 Upper Bounds for the Case of b ≥ a ≥ 0

For this case, we have derived one generic exponential bound, i.e, GUB1-

KL in (4.28), which converges to the exact value of Q(a, b) as N , the number of

exponential terms involved, increases. We have also shown one of its special cases,

i.e., UB1-KL in (4.36), by defining N = 2 and θ1 = π/2. The existing exponential

bound UB1-SA given in [23, eq. (44)] and [120, eq. (3)], i.e.,

Q(a, b) ≤ QUB1-SA(a, b) = exp

[
−(b− a)2

2

]
, b ≥ a ≥ 0, (4.93)

is also a special case of GUB1-KL with N = 1. That means UB1-SA can be

obtained by using the disk BA,b−a of radius (b− a) centered at A as the bounding

shape. Thus, all the bounds obtained by setting N to a value larger than one in

GUB1-KL, such as UB1-KL in (4.36), are tighter than UB1-SA in (4.93). Besides

the exponential bounds, we have also derived one generic erfc bound, i.e, GUB3-

KL in (4.40), and one simple erfc bound, i.e, UB3-KL in (4.43). According to

our numerical results, the generic erfc bound GUB3-KL is looser than the generic

exponential bound GUB1-KL when evaluated with a similar number of terms,

although the former is more complicated than the latter. Thus, we skip the
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numerical results for GUB3-KL here.

The other existing exponential bounds in the literature include UB1-S in [114,

eq. (12)], given by

Q(a, b) ≤ QUB1-S(a, b) =
b

b− a
exp

[
−(b− a)2

2

]
, b > a ≥ 0, (4.94)

and UB1-AT in [121, eq. (17)], given by

Q(a, b) ≤ QUB1-AT (a, b)

=
1

2

√
1

2

[
1 +

1

1− (a/b)2

] {
exp

[
−(b− a)2

2

]
+ exp

[
−(b + a)2

2

]}
,

b > a ≥ 0. (4.95)

It has been shown in [120] that UB1-SA in (4.93) is always tighter than UB1-S in

(4.94). Thus, our bound UB1-KL in (4.36) is also tighter than UB1-S.

The I0-bounds available in the literature include the bound UB1-C in [116,

eq. (5)], given by

Q(a, b) ≤ QUB1-C(a, b)

= exp

(
−a2 + b2

2

)
I0(ab) + a

√
π

8
erfc

(
b− a√

2

)
, b ≥ a ≥ 0, (4.96)

the bound UB2-AT in [121, eq. (12)], given by

Q(a, b) ≤ QUB2-AT (a, b)

=

√
1

2

[
1 +

1

1− (a/b)2

]
exp

(
−b2 + a2

2

) √
I0 (2ab), b > a ≥ 0, (4.97)

and the bound UB1-CF in [122, eq. (7)], given by

Q(a, b) ≤ QUB1-CF (a, b)

=
I0(ab)

eab

{
exp

[
−(b− a)2

2

]
+ a

√
π

2
erfc

(
b− a√

2

)}
, b ≥ a ≥ 0. (4.98)
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The bound UB1-CF can be reexpressed as

Q(a, b) ≤ QUB1-CF (a, b)

= exp

(
−a2 + b2

2

)
I0(ab) + a

√
π

8
erfc

(
b− a√

2

)
2I0(ab)

exp(ab)
, b ≥ a ≥ 0.

(4.99)

Thus, if we have 2I0(ab)/ exp(ab) < 1, i.e., ab > 0.877, UB1-CF is tighter than

UB1-C. Among these I0-bounds, UB1-C is simpler, but it is not tight in most

cases, especially when the value of ab is large. The other two I0-bounds, UB2-AT

and UB1-CF, are more complicated than our exponential bounds, and even are

harder to handle than our simple erfc bounds when analytical manipulations are

concerned, since they involve
√

I0(·) or the product I0(·)erfc(·) .

Figs. 4.9, 4.10, and 4.11 shows, respectively, the results for the cases of b >

a = 0.5, 1, 5. The exact value and our new bounds are shown by the solid lines.

The existing exponential bounds and I0-bounds in the literature are shown by the

dashed lines and dotted lines, respectively. Some markers are used when two lines

are too close to tell them apart. For simplicity, we just choose equispaced points

for θi, i.e., θi = iπ/N , in GUB1-KL. We use a subscript, say, N = n, on a generic

bound to denote the value of the bound evaluated with N = n and equispaced

{θi}N
i=0. In Figs. 4.9 and 4.10, we ignore the results for the I0-bounds to make

other results presented clearly. We can see that our simple exponential bound

UB1-KL is tighter than the existing bounds UB1-S and UB1-SA in all the cases

shown, as expected. It is also tighter than UB1-AT when a is large, say a = 5.

Although our simple erfc bound UB3-KL is looser than the other bounds when a

is close to zero, say a = 0.1, it can be tighter than UB1-S and UB1-SA when a

is a little larger, as in the case of a = 0.5. It grows even tighter as a increases,

and becomes the tightest simple bound when a is large, say a = 5. The existing

exponential bound UB1-AT is tight when a is small, but it loses its tightness and

becomes looser than our simple bounds UB1-KL and UB3-KL when a is large.

Actually, it is looser than UB1-KL and UB3-KL even in the case of a = 1 when b
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Fig. 4.9: The first-order Marcum Q-function Q(a, b) and its upper bounds versus b for the
case of b ≥ a = 0.5.
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Fig. 4.10: The first-order Marcum Q-function Q(a, b) and its upper bounds versus b for
the case of b ≥ a = 1.
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Fig. 4.11: The first-order Marcum Q-function Q(a, b) and its upper bounds versus b for
the case of b ≥ a = 5.
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is either close to a or much larger than a. Our generic exponential bound GUB1-

KL evaluated with a few terms is already very tight. We can see that for the case

of a = 5, GUB1-KL evaluated with N = 2, 4, 6 terms is tighter than the existing

exponential bounds UB1-S, UB1-SA, and UB1-AT. The tightness of the generic

bound GUB1-KL increases with N , but the incremental improvement decreases

as N increases further.

4.10.1.2 Upper Bounds for the Case of a ≥ b ≥ 0

Thus far, for the case of a > b, the only upper bound reported in the literature

is the bound UB2-CF in [122, eq. (12)], given by

Q(a, b) ≤ QUB2-CF (a, b)

= 1− I0(ab)

exp(ab)

{
exp

(
−a2

2

)
− exp

[
−(b− a)2

2

]

+ a

√
π

2

[
erfc

(
− a√

2

)
− erfc

(
b− a√

2

)] }
, (4.100)

which is an I0-bound. Our new closed-form bounds for this case include one generic

exponential bound, i.e., GUB2-KL in (4.33), its special case with N = M = 2

and θ1 = ω1 = π− 17
24

arcsin b
a
, i.e., UB2-KL in (4.38), one generic erfc bound, i.e.,

GUB3-KL in (4.40), and one simple erfc bound, i.e., UB3-KL in (4.43). Thus,

our work here not only provides some exponential upper bounds for the case of

a > b for the first time, it also provides a systematic approach to generating such

simple and tight bounds. Since GUB3-KL is not as good as GUB2-KL, it is not

discussed here further.

Fig. 4.12 shows the results for the case of b < a = 5. Here, we also choose

equispaced points for θi and ωi in GUB2-KL, i.e., M = N and θi = ωi = π −
arcsin(b/a) + i arcsin(b/a)/N . We can see that our simple erfc bound UB3-KL is

very tight for a large a, and is close to the I0-bound UB2-CF. The tightness of

UB3-KL grows as a increases. The generic bound GUB2-KL with ten terms, i.e.,
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Fig. 4.12: The first-order Marcum Q-function Q(a, b) and its upper bounds versus b for
the case of b ≤ a = 5.
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N = M = 6, is already tight and close to the tight erfc bound, UB3-KL, and the

I0-bound, UB2-CF. The bounds UB2-KL and GUB2-KLN=M=2 are two special

cases of GUB2-KL with two exponential terms, one with θ1 = ω1 = π− 17
24

arcsin b
a

and the other with θ1 = ω1 = π− 1
2
arcsin b

a
. They have shown different tightness.

UB2-KL is a little looser than GUB2-KLN=M=2 when b is much smaller than a,

but is much tighter than GUB2-KLN=M=2 when b is close to a. This shows that

in addition to increasing the values of N and M , properly choosing the values of

θi and ωj can also improve the tightness of the generic bound.

4.10.1.3 Lower Bounds for the Case of b ≥ a ≥ 0

For this case, we have derived one generic exponential bound, i.e., GLB1-KL

in (4.29), its special case with N = 2 and θ1 = π/3, i.e., LB1-KL in (4.37), one

generic erfc bound, i.e., GLB3-KL in (4.41), and its special case with N = M = 1,

i.e., LB3-KL in (4.44). The existing exponential bound LB1-SA in [120, eq. (3)],

i.e.,

Q(a, b) ≥ QLB1-SA(a, b) = exp

[
−(b + a)2

2

]
, b ≥ a ≥ 0 (4.101)

is a special case of GLB1-KL with N = 1. From our geometric approach, it is

clear that GLB1-KL with N > 1 is tighter than LB1-SA. The other two existing

exponential bounds are LB1-S in [114, eq. (12)], given by

Q(a, b) ≥ QLB1-S(a, b) =
b

b + a
exp

[
−(b + a)2

2

]
, b ≥ a ≥ 0, (4.102)

and LB1-AT in [121, eq. (18)], given by

Q(a, b) ≥ QLB1-AT (a, b) = exp

(
−b2

2

)
, a ≥ 0, b ≥ 0. (4.103)

From [120], LB1-SA is always tighter than LB1-S. It is also clear that LB1-KL and

LB1-AT are always tighter than LB1-SA. The I0-bounds in the literature include

149



CHAPTER 4. COMPUTING AND BOUNDING THE FIRST-ORDER MARCUM Q-FUNCTION

the bound LB1-C in [116, eq. (4)] given by

Q(a, b) ≥ QLB1-C(a, b) = exp

(
−a2 + b2

2

)
I0(ab), b ≥ a ≥ 0, (4.104)

and the bound LB1-CF in [122, eq. (9)] given by

Q(a, b) ≥ QLB1-CF (a, b) =
I0(ab)b

exp(ab)

√
π

2
erfc

(
b− a√

2

)
, b ≥ a ≥ 0. (4.105)

Figs. 4.13 and 4.14 show the lower bounds for the case of b > a = 1, 5, respectively.

We set θi = iπ/N for GLB1-KL, and µi = −b− a + bi/N and νj = −a + bj/M for

GLB3-KL. We can see that although GLB1-KLN=2, LB1-S, LB1-SA, and LB1-AT

are very tight at a small value of a, say a = 0.1, they are loose for a larger value

of a. In Fig. 4.14, LB1-SA, LB1-S and LB1-AT are not shown, since they are

much looser than the other bounds for this case. Both LB1-KL and GLB1-KLN=2

are the special cases of GLB1-KL with two exponential terms, one with θ1 = π/3

and the other with θ1 = π/2. The results show that when a is not close to zero,

setting θ1 = π/3 instead of θ1 = π/2 in GLB1-KL with N = 2 can bring about a

lot of gains. We also can see that when a is not too small, the erfc bound LB3-KL

is the tightest simple bound, and increasing the values of N and M in GLB3-KL

will not bring much incremental improvement.

4.10.1.4 Lower Bounds for the Case of a ≥ b ≥ 0

The new generic erfc bound GLB3-KL in (4.41) and its special case LB3-KL

in (4.44) are still valid for this case. We have also derived one generic exponential

bound, i.e., GLB2-KL in (4.35). Our simple exponential bound LB2-KL in (4.39)

is a special case of GLB2-KL with N = M = 1. There are four existing exponential

bounds in the literature, including the bound LB2-S in [114, eq. (13)], given by

Q(a, b) ≥ QLB2-S(a, b) = 1− a

a− b
exp

[
−(a− b)2

2

]
, a > b ≥ 0, (4.106)
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Fig. 4.13: The first-order Marcum Q-function Q(a, b) and its lower bounds versus b for
the case of b ≥ a = 1.
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Fig. 4.14: The first-order Marcum Q-function Q(a, b) and its lower bounds versus b for
the case of b ≥ a = 5.
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Fig. 4.15: Diagram of the derivation of the lower exponential bounds LB2-KL and LB2-SA
for the case of a > b.

the bound LB2-SA in [120, eq. (4)], give by

Q(a, b) ≥ QLB2-SA(a, b)

= 1− 1

2

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}
, a ≥ b ≥ 0, (4.107)

the bound LB1-AT in [121, eq. (18)] or in (4.103), and the bound LB2-AT in [121,

eq. (21)], given by

Q(a, b) ≥ QLB2-AT (a, b)

= 1− 1

2

√
(b/a)2

2 [1− (b/a)2]

{
exp

[
−(b− a)2

2

]
+ exp

[
−(b + a)2

2

]}
,

a > b ≥ 0. (4.108)

From [120], LB2-SA is always tighter than LB2-S. It is also easy to see that LB2-

KL is always tighter than LB2-SA, since the factor arcsin(b/a)/π preceding the

braces in (4.39) is less than the factor 1/2 preceding the braces in (4.107). Actually,
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LB2-SA can also be obtained by using our geometric approach. As shown in

Fig. 4.15, when we use the left half of the annulus between the boundaries of the

disks BA,b+a and BA,b−a as the bounding shape, we can obtain the lower bound

LB2-SA. The bounding shape for LB2-KL is just a part of that for LB2-SA, i.e.,

the part between the dashed lines. Thus, using this geometric approach, it is also

easy to prove that LB2-KL is tighter than LB2-SA. The existing I0-bound LB1-C

in [116, eq. (4)] or in (4.104) is also valid for this case. The other two I0-bounds

in the literature include the bound LB3-AT in [121, eq. (20)], given by

Q(a, b) ≥ QLB3-AT (a, b)

= 1−
√

(b/a)2

2
(
1− (b/a)2) exp

[
−b2 + a2

2

]√
I0 (2ab), a > b ≥ 0, (4.109)

and LB2-CF in [122, eq. (14)], given by

Q(a, b) ≥ QLB2-CF (a, b)

= 1− exp

(
−a2 − c2

2

) {
exp

(
−c2

2

)
− exp

[
−(b− c)2

2

]

+ c

√
π

2

[
erfc

(
− c√

2

)
− erfc

(
b− c√

2

)] }
, a ≥ b ≥ 0, (4.110)

where c = [log I0(ab)]/b. We can see that LB2-CF is very complicated because of

the factor c.

In our numerical results in Figs. 4.16 and 4.17, we set θi = π− arcsin (b/a) +

i arcsin (b/a)/N and ωj = π − arcsin (b/a) + j arcsin (b/a)/M for GLB2-KL, and

µi = −b − a + bi/N and νj = −a + bj/M for GLB3-KL. Fig. 4.16 shows the

results for the case of b < a = 1. In this case, for GLB2-KL, increasing the

value of M is more useful than increasing the value of N , so we just set N = 1.

GLB2-KLN=1,M=3 is just a little looser than GLB3-KLN=1,M=3 when b is close to

a, but it is much simpler than the latter. GLB2-KLN=1,M=9 is close to the tightest

I0-bound LB2-CF. Our simple exponential bound LB2-KL is much tighter than

those existing exponential bounds, i.e., LB2-S, LB2-SA, LB1-AT, and LB2-AT.
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Fig. 4.16: The first-order Marcum Q-function Q(a, b) and its lower bounds versus b for
the case of b ≤ a = 1.
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Fig. 4.17: The first-order Marcum Q-function Q(a, b) and its lower bounds versus b for
the case of b ≤ a = 5.
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Fig. 4.17 shows the results for the case of b < a = 5. Unlike the case of a = 1, for

GLB2-KL, increasing the value of N is now more useful than increasing the value

of M . We can see that LB3-KL, GLB2-KLN=3,M=1 and LB2-KL are very close to

one another, and are even tighter than LB2-CF and LB3-AT when b is close to

a. There are some bounds which are not shown here, such as LB1-C and LB2-S,

since they are much looser than the others.

4.10.2 Performance of the Single-Integral Bounds

In this section, we give some numerical results to show the tightness of our

new single-integral bounds on Q(a, b) derived in Sections 4.8 and 4.9. We have

shown in Section 4.10.1 that our simple erfc bounds, i.e., UB3-KL in (4.43) and

LB3-KL in (4.44), are the tightest simple bounds over a wide range of values of a

and b, especially in the cases that a and b are large. Our generic erfc bounds, i.e.,

GUB3-KL in (4.40) and GLB3-KL in (4.41), will provide just a little improvement

over these simple erfc bounds, but with a large increase in the complexity of the

bounds. Thus here, we mainly compare our new single-integral bounds with these

simple erfc bounds, and only show the results for the cases of small a where our

single-integral bounds can provide further improvements over these simple erfc

bounds. In Section 4.5, the lower erfc bound LB3-KL was obtained by using

the square region, whose sides are of length 2b and are parallel to either of the

axes, to cover BO,b, as shown by the solid lines outside of BO,b in Fig. 4.5. It is

clear that LB3-KL can also be given alternatively by setting N = 4 and ψi =

(i− 1)2π/N in our generic single-integral lower bounds, i.e., GLBI1-KL in (4.71)

for b > a and GLBI2-KL in (4.74) for a > b. In our numerical results, we choose

equispaced points for ψi in our generic single-integral bounds for simplicity, i.e.,

ψi = (i− 1)2π/N, i = 1, · · · , N . Thus, LB3-KL is equal to GLBI1-KLN=4 for

b > a, and equal to GLBI2-KLN=4 for a > b. Our simple single-integral bounds

in Section 4.9 are also presented as the special cases of the generic bounds with

N = 6.
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Fig. 4.18 shows the numerical results for the case of b ≥ a = 1. The bound

GUBI1-KL in (4.54) is shown with N = 6, 8, 10, and the bound GLBI1-KL in

(4.71) is shown with N = 4, 6, 8. We can see that the tightness of both these

two generic bounds increases with the value of N . For this small value of a = 1,

GUBI1-KLN=10, which involves five single integrals, and GLBI1-KLN=6, which

involves four single integrals, are tighter than UB3-KL and LB3-KL, respectively.

These results show that GUBI1-KL and GLBI1-KL evaluated with just a few

integrals can be tighter than the simple erfc bounds. Fig. 4.19 shows the numerical

results for the case of b ≤ a = 2. Since for this case, our simple exponential bounds

UB2-KL in (4.38) and LB2-KL in (4.39) are tighter than the erfc bounds UB3-KL

in (4.43) and LB3-KL in (4.44), respectively, we also include them for comparison.

We can see that GUBI2-KL and GLBI2-KL evaluated with a few integrals can be

tighter than the simple exponential bounds and erfc bounds.

Now, we compare our generic single-integral bounds with the generic ex-

ponential bounds derived in Section 4.4. The exponential bounds involve only

exponential functions, and thus, are the most desirable form when one has to

integrate the bounds on Q(a, b) over a fading distribution. However, in some ap-

plications, bounds which are tighter than the exponential bounds but are not very

complicated may be needed. Our generic single-integral bounds may provide a

way to obtain such bounds. Here, we only illustrate the comparisons between

GUBI1-KL in (4.54) and GUB1-KL in (4.28), and between GLBI1-KL in (4.71)

and GLB1-KL in (4.29) for the case of b > a. As shown in Fig. 4.20, we set the two

types of bounds to involve the same number of terms and cover the same angular

ranges. Using the same definitions of the arguments as those in (4.54) and (4.71),

we rewrite GUB1-KL in (4.28) and GLB1-KL in (4.29), respectively, as

Q(a, b) ≤ QGUB1-KL(a, b)

=
1

π

N/2∑
i=1

(θi+1 − θi) exp

[
−1

2

(
−a cos θi +

√
b2 − a2 sin2 θi

)2
]

, b ≥ a ≥ 0,

(4.111)
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Fig. 4.18: The first-order Marcum Q-function Q(a, b) and its upper and lower bounds
versus b for the case of b ≥ a = 1.
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Fig. 4.19: The first-order Marcum Q-function Q(a, b) and its upper and lower bounds
versus b for the case of b ≤ a = 2.
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Q(a, b) ≥ QGLB1-KL(a, b)

=
β1

π
exp

[
−1

2

(
−a cos β1 +

√
b2 − a2 sin2 β1

)2
]

+
1

π

N/2−1∑
i=1

(βi+1 − βi) exp

[
−1

2

(
−a cos βi+1 +

√
b2 − a2 sin2 βi+1

)2
]

+
π − βN/2

π
exp

[
−(b + a)2

2

]
, b ≥ a ≥ 0. (4.112)
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Fig. 4.21 shows the comparison between the generic exponential bounds and the

generic single-integral bounds. We can see that for the case of a = 1, when the

settings for N and θi or βi are the same for the two types of bounds, GUBI1-KL

can only provide some improvements over GUB1-KL when b is not much larger

than a, but GLBI1-KL can provide more improvements over GLB1-KL.

4.11 Summary

By taking a geometric view of the first-order Marcum Q-function, Q(a, b), a

very general and powerful approach for computing and bounding the Q-function

has been presented that leads to many new results. New finite-integral represen-

tations of Q(a, b) have been derived, which are simpler than their counterparts

in the literature. New closed-form bounds have also been derived, including the

generic and simple exponential bounds and the generic and simple erfc bounds.

The generic bounds have been shown to approach the exact value of Q(a, b) as the

number of terms involved increases, and the simple bounds have been shown to

be tighter than the existing exponential bounds in most cases, especially when the

arguments a and b are large. In addition to the closed-form bounds, new bounds

involving single finite integrals have also been developed, including the generic

and simple single-integral bounds.

Among these bounds, the exponential bounds are the easiest to handle in

theoretical analyses. If the tightness of the exponential bounds does not satisfy

the need, we can use the erfc bounds. The new, simple erfc bounds, UB3-KL

and LB3-KL, turn out to be close to the tightest existing I0-bounds when the

arguments a and b are not too small, and they are given in a form simpler than

the latter. Thus, although our simple erfc bounds are not the tightest closed-form

bounds with just a few terms, they are the ones that can lead to the tightest

closed-form results in many theoretical analyses involving Q(a, b). Bounds which

are tighter than these simple erfc bounds may be obtained by using the generic
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Fig. 4.21: The first-order Marcum Q-function Q(a, b) and its upper and lower bounds
versus b for the case of b ≥ a = 1.
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erfc bounds, or the generic and simple single-integral bounds, but at a cost of

involving more complicated terms.
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Chapter 5

Computing and Bounding the

Generalized Marcum Q-Function

In this chapter, we extend the geometric approach to the generalized Mar-

cum Q-function. The generalized Marcum Q-function of order m, Qm(a, b), is

interpreted geometrically as the probability of a 2m-dimensional, real, Gaussian

random vector z2m, whose mean vector has a Frobenius norm of a, lying outside

of a hyperball B2m
O,b of 2m dimensions, with radius b, and centered at the origin O.

Based on this new geometric interpretation, some new representations and closed-

form bounds are derived for Qm(a, b). For the case where m is an odd multiple of

0.5, a new closed-form representation is proposed, which involves only exponen-

tial and erfc functions, and thus is easy to handle in computations. For the case

where m is an integer, a pair of new finite-integral representations for Qm(a, b)

is proposed. In addition to the new representations, some generic exponential

bounds and generic erfc bounds on Qm(a, b) of integer order m are also derived by

computing the probability of z2m lying outside of various bounding geometrical

shapes whose surfaces tightly enclose, or are tightly enclosed by the surface of

B2m
O,b. These bounding shapes consist of an arbitrarily large number of parts. As

their closeness of fit with B2m
O,b improves, our generic bounds approach the exact

value of Qm(a, b). Besides, the functions, Qm+0.5(a, b) and Qm−0.5(a, b), which
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can be evaluated using our new closed-form representation mentioned above, are

also shown to be tight upper and lower bounds, respectively, on Qm(a, b). Their

average is a good approximation to Qm(a, b).

5.1 Introduction

In Chapter 4, we have shown a geometric view of the first-order Marcum

Q-function, Q(a, b), and based on this geometric view, we have developed some

new representations and bounds for Q(a, b). In this chapter, we extend this geo-

metric approach to the case of the generalized Marcum Q-function, Qm(a, b). The

generalized Marcum Q-function is defined as [1, eq. (2.1–122)]

Qm(a, b) =

∫ ∞

b

x
(x

a

)m−1

exp

(
−x2 + a2

2

)
Im−1(ax)dx, a > 0, b ≥ 0, (5.1)

where Im (·) is the mth-order modified Bessel function of the first kind, and is

given by [124, eq. (8.431 3)]

Im(x) =

(x

2

)m

Γ

(
m +

1

2

)
Γ

(
1

2

)
∫ π

0

e±x cos θ sin2m(θ)dθ. (5.2)

Here, the order m can be an integer or a non-integer [5]. It is clear that when

we have m = 1, Qm(a, b) in (5.1) reduces to Q(a, b) in (4.1). This generalized

Marcum Q-function is often involved in the error performance analysis of multi-

channel detections in wireless communication systems [1, 5]. The infinite-integral

representation of Qm(a, b) in (5.1), involving Im−1(·) in the integrand and the

argument b in the lower integral limit, may pose problems for theoretical anal-

yses and numerical computations in some applications. Therefore, for Qm(a, b)

of integer order m, some alternative finite-integral representations have been de-

rived in [113, Appendix C] and [114]. To further simplify analytical results or to

facilitate analytical manipulations of Qm(a, b), some simple exponential bounds,
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which involve only the exponential function, have been given in [120, 121]. Some

Ik-bounds, which involve I0(·) or {Ik(·)}m−1
k=0 , have also been given in [121, 122],

but these Ik-bounds are too complicated to use in some further analytical manip-

ulations of Qm(a, b), such as in averaging Qm(a, b) over a fading distribution. All

these existing results were obtained by using a mathematical approach, usually

resorting to alternative expressions or bounds of the functions involved in defining

the Q-function. Thus far, closed-form representations of Qm(a, b) for integer or

non-integer m are not available in the literature.

In this chapter, we use a novel geometric approach to derive some new repre-

sentations and bounds for Qm(a, b). We introduce a new geometric interpretation

of Qm(a, b) as the probability of a real, Gaussian random vector zn of n = 2m

dimensions, with a mean vector of Frobenius norm a, lying outside of the region

enclosed by a hypersphere Sn
O,b of n dimensions1, with radius b, and centered at the

origin O. Based on this new interpretation, we first propose a new, closed-form

representation of Qm(a, b) for the case of odd n. This new representation only

involves the exponential function and the erfc function, and thus, is easy to use

in both numerical and analytical work. It is valid for the entire ranges of a > 0

and b ≥ 0. For the special case of a = 0, we also propose a new, closed-form

representation of Qm(0, b), which can be used in evaluating the tail probability of

a central chi-square random variable with an odd number n of degrees of freedom.

For the case of even n, i.e., integer m, we also give a new pair of finite-integral

representations of Qm(a, b), one for b ≥ a and the other for a ≥ b, whose in-

tegrands involve only the exponential function. This pair of new forms is more

robust than the forms in [113, Appendix C] and [114]. Since so far, we are not

able to obtain a closed-form representation of Qm(a, b) for integer m, we develop

1A hypersphere of n dimensions may have different definitions in different contexts. Here,
a hypersphere of n dimensions, also known as an n-sphere, is defined as the set of points
(z1, z2, . . . , zn) such that we have

∑n
i=1(zi − ci)2 = b2, where the point (c1, c2, . . . , cn) is the

center of the hypersphere, and b is the radius of the hypersphere [136, Chap. 1]. This definition
is different from that given in [137, eq. (10.1)] where the equation

∑n
i=1(zi − ci)2 = b2 defines

an (n− 1)-sphere, but is used in the discussions in [137, Chap. VIII 13–14] and [138].
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some closed-form bounds for Qm(a, b) by computing the probability of zn lying

outside of various geometrical bounding shapes whose surfaces tightly enclose, or

are tightly enclosed by the n-sphere Sn
O,b. We first derive some generic exponen-

tial bounds which involve only the exponential function, and then derive some

generic erfc bounds which involve only the exponential function and the erfc func-

tion. The geometrical bounding shapes used in the derivations of these generic

bounds consist of an arbitrarily large number of components. As these bounding

shapes converge to the hyperball2 B2m
O,b which is the region enclosed by the n-

sphere S2m
O,b, our generic bounds approach the exact value of Qm(a, b). In addition

to these generic bounds, we also prove that Qm+0.5(a, b) is a tight upper bound on

Qm(a, b), irrespective of whether n is even or odd. Thus, for the case of even n,

Qm+0.5(a, b) and Qm−0.5(a, b) can be used, respectively, as tight upper and lower

bounds on Qm(a, b), and they can be evaluated using our new closed-form repre-

sentation for odd n. Our numerical results show that Qm+0.5(a, b) and Qm−0.5(a, b)

are very tight, close to or tighter than the tightest closed-form bounds available in

the literature. The average of these two bounds also approximates Qm(a, b) very

well.

Section 5.2 gives the new geometric view of Qm(a, b). Section 5.3 derives the

new representations of Qm(a, b). Section 5.4 presents the new, generic, exponential

bounds on Qm(a, b) of integer order m. Section 5.5 gives the new erfc bounds on

Qm(a, b) of integer order m, including the justification of using Qm+0.5(a, b) and

Qm−0.5(a, b) as bounds on Qm(a, b), and the derivation of the new, generic, erfc

bounds. Section 5.6 presents numerical results and comparisons with existing

bounds in the literature.

2A hyperball of n dimensions, also known as an n-ball, is the region inside an n-sphere
[139, 140]. Here, our results hold irrespective of whether or not the n-ball includes the points
on the n-sphere.
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5.2 The Geometric View of Qm(a, b)

For the case where the order of the Marcum Q-function, m, satisfies m = 0.5n

and n ∈ N, where N is the positive integer set, Qm(a, b) can be shown to be the tail

probability of a normalized noncentral chi-square random variable with n degrees

of freedom. It is clear that this chi-square random variable can be obtained from

the norm square of an n-dimensional, real, Gaussian random vector zn, namely,

zn = (z1 z2 · · · zn)> = pn + yn. (5.3)

Here, pn = (p1 p2 · · · pn)> is a real, constant mean vector with the Frobenius

norm a, i.e., ‖pn‖ =
√∑n

i=1 p2
i = a, and yn = (y1 y2 · · · yn)> is a real, Gaussian

noise vector, whose entries are independent Gaussian random variables, each with

zero mean and identical variance σ2
y . Thus, the Frobenius norm square of zn, i.e.,

R1 = ‖zn‖2 =
n∑

i=1

z2
i , (5.4)

has a noncentral chi-square distribution with n degrees of freedom and noncen-

trality parameter a2 = ‖pn‖2 =
∑n

i=1 p2
i . Its PDF is given by [1, eq. (2.1–118)]

pR1(R1)=
1

2σ2
y

(
R1

a2

)(n−2)/4

e−(R1+a2)/2σ2
yIn

2
−1

(√
R1a

σ2
y

)
, R1 ≥ 0.

The probability of R1 being greater than a real constant b2, where b ≥ 0, or,

equivalently, R =
√

R1 being greater than b, is then given by [1, eq. (2.1–124)]

Pr (R > b) =

∫ ∞

b2
pR1(R1)dR1 = Qm

(
a

σy

,
b

σy

)
. (5.5)

In the following discussions, we simply set σ2
y = 1, and thus, Qm(a, b) is the tail

probability of R or R1. This means that evaluating Qm(a, b) in (5.1) is the same

as computing the probability Pr(R > b). This probability can be interpreted

geometrically as the probability of the vector zn lying outside of the hyperball

Bn
O,b which is centered at the origin O, i.e., (z1 = · · · = zn = 0), and has a radius
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Fig. 5.1: Geometric view of Qm(a, b) for the case of n = 3 and m = 1.5.

of b. Since this geometric interpretation holds for any mean vector pn of norm a,

we can, without loss of generality, treat the mean vector as pn = (a 0 · · · 0)>

hereafter, and this leads to z1 = a + y1, and zi = yi, i = 2, · · · , n. Fig. 5.1

shows the case of n = 3 and m = 1.5, where the noise vector yn is centered at

the point A, i.e., (z1 = a, z2 = · · · = zn = 0). Since we have Pr(R > b) =

Pr(
√

(a + y1)2 +
∑n

i=2 y2
i > b), it is easy to see that Qm(a, b) is also equal to the

probability of yn lying outside of Bn
O,b. Thus, we have

Qm(a, b) = 1− Pr
(
zn ∈ Bn

O,b

)
= 1− Pr

(
yn ∈ Bn

O,b

)
. (5.6)

In the next section, we will evaluate the probability in (5.6) first for the case of

odd n, i.e., m being an odd multiple of 0.5, and then for the case of even n, i.e.,

m being an integer.

5.3 New Representations of Qm(a, b)

To compute the probability of the vector zn lying inside of Bn
O,b in (5.6), we can

slice up Bn
O,b using a set of parallel (n−1)-flats3 which are perpendicular to the z1-

3In n-dimensional space, a p-flat has p dimensions, and is defined by (n − p) independent
linear equations [136, 137]. Thus, in 3-dimensional space, a p-flat specializes to a 2-dimensional
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axis and defined by the equations z1 = a+y1 for each value of y1 ∈ [−(a+b), b−a].

Each of these flats intersects Bn
O,b in an (n−1)-ball Bn−1

Z1,b′ which is enclosed by the

(n−1)-dimensional hypersphere of radius b′ =
√

b2 − z2
1 centered at the point Z1,

i.e., (z1 = a+y1, z2 = · · · = zn = 0). Since the two (n−1)-dimensional subvectors

z′n−1 = (z2 z3 · · · zn)> and y′n−1 = (y2 y3 · · · yn)> are identical, the norm square

R′
1 =

∥∥z′n−1

∥∥2
=

∑n
i=2 y2

i has a central chi-square distribution with (n−1) degrees

of freedom with PDF [1, eq. (2.1–110)]

pR′1(R
′
1) =

1

2(n−1)/2Γ
(

n−1
2

)R′
1
(n−3)/2

e−R′1/2, R′
1 ≥ 0. (5.7)

The conditional probability of z′n−1 lying inside Bn−1
Z1,b′ is given by

Pr
(
z′n−1 ∈ Bn−1

Z1,b′ |z1 = a + y1

)
= Pr

(
R′

1 ≤ b′2 |z1 = a + y1

)

=
1

2(n−1)/2Γ
(

n−1
2

)
∫ b2−(a+y1)2

0

R′
1
(n−3)/2

e−R′1/2dR′
1.

(5.8)

The probability of zn lying inside Bn
O,b is, therefore, given by

Pr(zn ∈ Bn
O,b) =

∫ b−a

y1=−(a+b)

[
Pr(z′n−1 ∈ Bn−1

Z1,b′ |z1 = a + y1 )
] e−y2

1/2

√
2π

dy1. (5.9)

Substituting (5.8) into (5.9) gives

Pr(zn ∈ Bn
O,b)

=
1

2n/2
√

πΓ
(

n−1
2

)
∫ b−a

y1=−(a+b)

e−y2
1/2

∫ b2−(a+y1)2

R′1=0

R′
1
(n−3)/2

e−R′1/2dR′
1dy1. (5.10)

According to (5.6), the conditional probability in (5.8) can also be written as

Pr
(
z′n−1 ∈ Bn−1

Z1,b′ |z1 = a + y1

)
= 1−Qm−0.5

(
0,

√
b2 − (a + y1)2

)
. (5.11)

plane for p = 2, or a straight line for p = 1.
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Using (5.6) and (5.11) in (5.9), we can obtain

1−Qm (a, b) =

∫ b−a

y1=−(a+b)

[
1−Qm−0.5

(
0,

√
b2 − (a + y1)2

)] e−y2
1/2

√
2π

dy1. (5.12)

5.3.1 Representations for the Case of Odd n

When n is odd and thus m is an odd multiple of 0.5,

Qm−0.5

(
0,

√
b2 − (a + y1)2

)
in (5.12) has a closed-form expression, given

by [5, eq. (4.73)]

Qm−0.5

(
0,

√
b2 − (a + y1)2

)
= exp

[
−b2 − (a + y1)

2

2

]
m−1.5∑

k=0

1

k!

[
b2 − (a + y1)

2

2

]k

,

n = 2m is odd. (5.13)

The mth-order Marcum Q-function is therefore given by

Qm (a, b)

= 1−
∫ b−a

−(a+b)

{
1− exp

[
−b2 − (a + y1)

2

2

] m−1.5∑

k=0

1

k!

[
b2 − (a + y1)

2

2

]k
}

e−y2
1/2

√
2π

dy1

=
1

2
erfc

(
a + b√

2

)
+

1

2
erfc

(
b− a√

2

)
+

1√
2π

exp

(
−b2 − a2

2

) m−1.5∑

k=0

1

2kk!

·
∫ b−a

−(a+b)

exp (ay1)
[
b2 − (a + y1)

2
]k

dy1, n = 2m is odd. (5.14)

By defining y′1 = a + y1 and performing some manipulations, we obtain

∫ b−a

−(a+b)

exp (ay1)
[
b2 − (a + y1)

2
]k

dy1

= exp
(−a2

) k∑
q=0

(−1)q

(
k

q

)
b2(k−q)

∫ b

−b

exp (ay′1)y
′
1
2q

dy′1

= exp
(−a2

) k∑
q=0

(−1)q

(
k

q

)
b2(k−q) (2q)!

a2q+1

2q∑
i=0

(−ab)i exp (ab)− (ab)i exp (−ab)

i!
.

(5.15)
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In the last step of (5.15), we have used the following formula [124, eq. (2.321 2)]

∫
eaxxndx = eax

n∑
i=0

(−1)n−i n!xi

i!an−i+1
. (5.16)

Substituting (5.15) into (5.14) gives

Qm(a, b) =
1

2
erfc

(
a + b√

2

)
+

1

2
erfc

(
b− a√

2

)
+

1

a
√

2π

m−1.5∑

k=0

b2k

2k

k∑
q=0

(−1)q (2q)!

(k − q)!q!

·
{

2q∑
i=0

1

(ab)2q−i i!

[
(−1)i exp

(
−(b− a)2

2

)
− exp

(
−(b + a)2

2

)]}
,

a > 0, b ≥ 0, n = 2m is odd. (5.17)

This new closed-form representation involves only simple exponential functions

and erfc functions, and is easy to evaluate both numerically and analytically. We

can see that (5.17) is valid for the entire ranges of a > 0 and b ≥ 0.

For the special case of a = 0, it is easy to obtain from (5.14)

Qm(0, b) = erfc

(
b√
2

)
+

1√
2π

exp

(
−b2

2

) m−1.5∑

k=0

b2k+1

2k−1

k∑
q=0

(−1)q

(k − q)!q!(2q + 1)
,

b ≥ 0, n = 2m is odd. (5.18)

By using Mathematica, we obtain the following equalities

k∑
q=0

(−1)q

(k − q)!q!(2q + 1)
=

√
π

2Γ(k + 3/2)
=

2k

(2k + 1)!!
, (5.19)

where x!! = x(x− 2)(x− 4)× · · · . Using these equalities in (5.18), we can reduce

the expression for Qm(0, b) to

Qm(0, b) = erfc

(
b√
2

)
+

1√
2

exp

(
−b2

2

) m−1.5∑

k=0

b2k+1

2kΓ(k + 3/2)

= erfc

(
b√
2

)
+

√
2

π
exp

(
−b2

2

) m−1.5∑

k=0

b2k+1

(2k + 1)!!
,

b ≥ 0, n = 2m is odd. (5.20)
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To the best of our knowledge, this is a new closed-form result for the tail proba-

bility of a central chi-square random variable with an odd number n of degrees of

freedom.

The new representation for Qm(a, b) in (5.17) can also be expressed in terms

of the complementary incomplete gamma function which is defined as

Γ (s, x) =

∫ ∞

x

ts−1e−tdt. (5.21)

This function has a closed-form expression when its first argument s is equal to a

positive integer l, namely [124, eq. (8.352 2)]

Γ (l, x) =

∫ ∞

x

tl−1e−tdt = e−x

l−1∑

k=0

(l − 1)!

k!
xk. (5.22)

Thus, (5.17) can be rewritten as

Qm(a, b) =
1

2
erfc

(
a + b√

2

)
+

1

2
erfc

(
b− a√

2

)
+

1

a
√

2π
exp

(
−b2 + a2

2

) m−1.5∑

k=0

b2k

2k

·
k∑

q=0

(−1)q [Γ (2q + 1,−ab)− Γ (2q + 1, ab)]

(k − q)!q! (ab)2q ,

a > 0, b ≥ 0, n = 2m is odd. (5.23)

By using Mathematica, we find that Qm(0, b) in (5.20) can also be written in terms

of the Gamma functions as

Qm(0, b) =
Γ(m, b2/2)

Γ(m)
. (5.24)

This expression is the same as those in [118, eq. (10)] and [5, eq. (4.71)], and has

been shown in [118] to be valid for any order m. Thus, (5.24) has two alternative

closed-form expressions, one in (5.20) for m being an odd multiple of 0.5, and one

in [5, eq. (4.73)], i.e.,

Qm(0, b) =
m−1∑
i=0

exp

(
−b2

2

)
(b2/2)i

i!
, (5.25)

174



5.3. NEW REPRESENTATIONS OF QM (A, B)

for integer m.

From (5.17) or (5.23), it is easy to see that for odd n, the generalized Marcum

Q-function satisfies the recursion relation

Qm+1(a, b) = Qm(a, b) +
b2m−1

2ma
√

π

m−0.5∑
q=0

(−1)q (2q)!

(m− 0.5− q)!q!

{
2q∑

i=0

1

(ab)2q−i i!

·
[
(−1)i exp

(
−(b− a)2

2

)
− exp

(
−(b + a)2

2

)]}
,

a > 0, b ≥ 0, n = 2m is odd, (5.26)

or equivalently

Qm+1(a, b) = Qm(a, b) +
b2m−1

2ma
√

π
exp

(
−b2 + a2

2

)

·
m−0.5∑
q=0

(−1)q [Γ (2q + 1,−ab)− Γ (2q + 1, ab)]

(m− 0.5− q)!q! (ab)2q ,

a > 0, b ≥ 0, n = 2m is odd. (5.27)

In [5, eq. (4.61)], a recursion relation has been given for any order m, i.e.,

Qm+1(a, b) = Qm(a, b) +

(
b

a

)m

exp

[
−

(
b2 + a2

2

)]
Im(ab), a > 0, b ≥ 0.(5.28)

Thus, the relations in (5.26) and (5.27) are the two new alternative forms of (5.28)

for the case that m is an odd multiple of 0.5.

5.3.2 Representations for the Case of Even n

For the case of even n, according to (5.20), Qm−0.5

(
0,

√
b2 − (a + y1)2

)
in

(5.12) can also be given a closed-form expression. Substituting this closed-form

expression into (5.12) and performing some manipulations will lead to the same

expression for Qm(a, b) as that in [1, eq. (2.1–122)], i.e.,

Qm(a, b) = Q(a, b) + exp

(
−b2 + a2

2

) m−1∑

k=1

(
b

a

)k

Ik (ab). (5.29)
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Here, we use another approach, i.e., using the probability in (5.10), to derive a

pair of new representations of Qm(a, b) involving only finite-range integrals. By

defining R′ =
√

R′
1, we can rewrite (5.10) as

Pr(zn ∈ Bn
O,b)

=
1

2m−1
√

πΓ
(
m− 1

2

)
∫ b−a

y1=−(a+b)

∫ √
b2−(a+y1)2

R′=0

R′2(m−1)
exp

(
−y2

1 + R′2

2

)
dR′dy1.

(5.30)

In the polar coordinate system, we define r =
√

y2
1 + R′2 and θ = arctan (R′/y1).

Thus, (5.30) can be rewritten as

Pr(zn ∈ Bn
O,b) =

1

2m−1
√

πΓ
(
m− 1

2

)
∫ θ2

θ=θ1

∫ l2(θ)

r=l1(θ)

(r sin θ)2(m−1) exp

(
−r2

2

)
rdrdθ.

(5.31)

Here, for the case of b ≥ a, we have θ1 = 0, θ2 = π, and





l1(θ) = 0,

l2(θ) = −a cos θ +
√

b2 − a2 sin2 θ.
(5.32)

For the case of a ≥ b, we have θ1 = π − arcsin(b/a), θ2 = π, and





l1(θ) = −a cos θ −
√

b2 − a2 sin2 θ,

l2(θ) = −a cos θ +
√

b2 − a2 sin2 θ.
(5.33)

By defining r′ = r2/2 and using (5.16), (5.31) can be reduced as

Pr(zn ∈ Bn
O,b) =

1√
πΓ

(
m− 1

2

)
∫ θ2

θ=θ1

sin2(m−1) θ

∫ l22(θ)/2

r′=l21(θ)/2

r′(m−1) exp (−r′) dr′dθ

=
Γ(m)√

πΓ
(
m− 1

2

)
∫ θ2

θ=θ1

sin2(m−1) θ

{
exp

[
− l21 (θ)

2

] m−1∑

k=0

1

k!

[
l21 (θ)

2

]k

− exp

[
− l22 (θ)

2

] m−1∑

k=0

1

k!

[
l22 (θ)

2

]k
}

dθ. (5.34)
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Thus, for the case of b ≥ a ≥ 0, the new representation of Qm(a, b) is given by

Qm (a, b)

= 1− Γ(m)√
πΓ

(
m− 1

2

)
∫ π

θ=0

sin2(m−1) θ

{
1− exp

[
− l22 (θ)

2

] m−1∑

k=0

1

k!

[
l22 (θ)

2

]k
}

dθ

=
Γ(m)√

πΓ
(
m− 1

2

)
∫ π

θ=0

sin2(m−1) θ exp

[
− l22 (θ)

2

] m−1∑

k=0

1

k!

[
l22 (θ)

2

]k

dθ,

b ≥ a ≥ 0, integer m. (5.35)

Here, we have used the formulas in [124, eqs. (3.621 3) and (2.513 1)], i.e.,

∫ π/2

θ=0

sin2n θdθ =
(2n− 1)!!π

(2n)!!2
=

π

22n+1

(
2n

n

)
=

√
πΓ(n + 1

2
)

2Γ(n + 1)
. (5.36)

For the case of a ≥ b ≥ 0, the new representation of Qm(a, b) is given by

Qm (a, b)

= 1− Γ(m)√
πΓ

(
m− 1

2

)
∫ π

θ=π−arcsin(b/a)

sin2(m−1) θ

{
exp

[
− l21 (θ)

2

] m−1∑

k=0

1

k!

[
l21 (θ)

2

]k

− exp

[
− l22 (θ)

2

] m−1∑

k=0

1

k!

[
l22 (θ)

2

]k
}

dθ, a ≥ b ≥ 0, integer m. (5.37)

There are another two pairs of alternative finite-integral representations avail-

able in the literature. The first pair was given in [113, eq. (C-26)], i.e.,

Qm(a, b) =
a

2π

(
b

a

)m ∫ 2π

0

b cos(m− 1)θ − a cos mθ

a2 − 2ab cos θ + b2
exp

[
−b2 − 2ab cos θ + a2

2

]
dθ,

b > a > 0, (5.38)

and in [113, eq. (C-27)], i.e.,

Qm(a, b)

= 1 +
a

2π

(
b

a

)m ∫ 2π

0

b cos(m− 1)θ − a cos mθ

a2 − 2ab cos θ + b2
exp

[
−b2 − 2ab cos θ + a2

2

]
dθ,

a > b ≥ 0. (5.39)
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The second pair was given in [114, eq. (7)] or equivalently in [5, eq. (4.69)], i.e.,

Qm(bζ, b) =
1

2π

∫ π

−π

ζ−(m−1)
{
cos

[
(m− 1)

(
θ + π

2

)]− ζ cos
[
m

(
θ + π

2

)]}

1 + 2ζ sin θ + ζ2

· exp

[
−b2

2

(
1 + 2ζ sin θ + ζ2

)]
dθ, 0+ ≤ ζ =

a

b
< 1, (5.40)

and in [114, eq. (10)] or equivalently in [5, eq. (4.77)], i.e.,

Qm(a, aζ) = 1− 1

2π

∫ π

−π

ζm
{
cos

[
m

(
θ + π

2

)]− ζ cos
[
(m− 1)

(
θ + π

2

)]}

1 + 2ζ sin θ + ζ2

· exp

[
−a2

2

(
1 + 2ζ sin θ + ζ2

)]
dθ, 0 ≤ ζ =

b

a
< 1. (5.41)

The integration interval in (5.37) is not greater than π/2, and thus, is less than

that in (5.39) and (5.41). Besides, in the new representations in (5.35) and (5.37),

the integrands are always determinate, since the arguments a, b, and θ appear

only in the numerators. By contrast, in the existing representations given in

(5.38) through (5.41), the denominators of the integrands may be close to zero

for some combinations of the arguments. Thus, our new representations are more

robust than these existing representations.

Thus far, Qm(a, b) of integer order m cannot be given a closed-form repre-

sentation which only involves some elementary functions, such as the exponential

and erfc functions. The representations available are not simple to use in obtain-

ing closed-form analytical results in some further manipulations of Qm(a, b). In

Sections 5.4 and 5.5, we derive some closed-form bounds for Qm(a, b) of integer

order m, which may facilitate some theoretical analyses involving Qm(a, b).

5.4 New Exponential Bounds for Qm(a, b) of In-

teger Order m

In this section, we derive new, generic, exponential bounds for Qm(a, b), which

involve only exponential functions and have an arbitrarily large number of terms.
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θ1
θ2

Fig. 5.2: Diagram of a spherical sector.

5.4.1 Bounds for the Case of b ≥ a ≥ 0

A generic, upper, exponential bound on Qm(a, b) can be obtained by using a

set of contiguous, hyperspherical sectors4 to fill the hyperball Bn
O,b, as shown by

the solid lines inside Bn
O,b in Fig. 5.3(a). The axes of these hyperspherical sectors

all lie on the z1-axis, or, equivalently, the y1-axis, and their vertices all lie on the

point A, i.e., (z1 = a, z2 = · · · = zn = 0) or (y1 = y2 = · · · = yn = 0). Each of

them covers one of N angular ranges defined by 0 = θ0 < θ1 < · · · < θN = π. We

use Bn
A,l2(θ),θ1,θ2

to denote a hyperspherical sector which covers the angular range

[θ1, θ2] of the n-ball Bn
A,l2(θ) centered at the point A and with the radius l2(θ) defined

in (5.32). Thus, for the generic upper exponential bound, the ith hyperspherical

sector in the bounding shape is denoted as Bn
A,l2(θi−1),θi−1,θi

. The probability of

zn lying inside Bn
A,l2(θi−1),θi−1,θi

is given by the probability Pr(zn ∈ Bn
A,l2(θi−1)) =

[1 − Qm (0, l2(θi−1))] times the ratio of the surface content of the region on the

surface of Bn
A,l(θi−1) which is demarcated by Bn

A,l(θi−1),θi−1,θi
to the surface content

4In 3-dimensional Euclidean space, a spherical sector is a part of a ball, and is a solid of
revolution with the same axis as the ball [141], as shown in Fig. 5.2. Its intersection with the
half-plane starting from its axis is a sector bounded by two radii of the ball and the arc in
between them. If the angles between the positive axis of the ball and the two radii are denoted
as θ1 and θ2, then they satisfy 0 ≤ θ1, θ2 ≤ π and 0 ≤ θ2 − θ1 ≤ π. We say that this spherical
sector covers the angular range [θ1, θ2] of the ball. If we have θ1 = 0 and θ2 = π, the spherical
sector covers the whole ball. This concept can be extended straightforwardly to n-dimensional
Euclidean space. A hyperspherical sector is the part of an n-ball between the two hypersurfaces
formed by rotating two radii around the axis. If the angles between the positive axis of the
n-ball and the two radii are θ1 and θ2, we say that this hyperspherical sector covers the angular
range [θ1, θ2] of the n-ball.
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(b) GUBm2-KL and GLBm2-KL for the case of a > b

Fig. 5.3: Diagram of the derivation of the new generic exponential bounds on Qm(a, b).

of the entire n-ball Bn
A,l2(θi−1) [138, eq. (4.1)]. As we have mentioned in Section

5.3.1, the expression for Qm(0, b) is given in closed form in (5.20) for odd n and

in (5.25) for even n. Here, n is even, and thus, we have

Pr(zn ∈ Bn
A,l2(θi−1),θi−1,θi

)

=

∫ θi

θi−1
Sn−1(sin θ)dθ

Sn(1)

{
1− exp

[
− l22 (θi−1)

2

] m−1∑

k=0

1

k!

[
l22 (θi−1)

2

]k
}

, (5.42)
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where Sn(c) is the surface content of an n-sphere with radius c, i.e., [137, pg. 136]

Sn(c) =
2πn/2cn−1

Γ
(

n
2

) . (5.43)

Using (5.43) in (5.42), we obtain

Pr(zn ∈ Bn
A,l2(θi−1),θi−1,θi

)

=
Γ(m)

∫ θi

θi−1
sin2(m−1) θdθ

√
πΓ

(
m− 1

2

)
{

1− exp

[
− l22 (θi−1)

2

] m−1∑

k=0

1

k!

[
l22 (θi−1)

2

]k
}

. (5.44)

The integral in (5.44) can be solved by using [124, eq. 2.513 1]

∫
sin2n θdθ =

θ

22n

(
2n

n

)
+

(−1)n

22n−1

n−1∑
i=0

(−1)i

(
2n

i

)
sin[(2n− 2i)θ]

2n− 2i
. (5.45)

Thus, we obtain our first generic upper bound on Qm(a, b), denoted as GUBm1-

KL, namely

Qm(a, b) ≤ QGUBm1-KL(a, b)

= 1−
N∑

i=1

Pr(zn ∈ Bn
A,l2(θi−1),θi−1,θi

)

=
N∑

i=1

Γ(m)
∫ θi

θi−1
sin2(m−1) θdθ

√
πΓ

(
m− 1

2

)
{

exp

[
− l22 (θi−1)

2

] m−1∑

k=0

1

k!

[
l22 (θi−1)

2

]k
}

=
N∑

i=1

{
θi − θi−1

π
+

m−2∑
j=0

(−1)m−1−j
(
2m−2

j

)

π
(
2m−2
m−1

)

· sin[2(m− 1− j)θi]− sin[2(m− 1− j)θi−1]

m− 1− j

}

·
{

exp

[
− l22 (θi−1)

2

] m−1∑

k=0

1

k!

[
l22 (θi−1)

2

]k
}

, b ≥ a ≥ 0, m integer. (5.46)

Here, we have 0 = θ0 < θ1 < · · · < θN = π. The bound GUBm1-KL in (5.46) on

Qm(a, b) reduces to the bound GUB1-KL in (4.28) on Q(a, b) when m = 1.

When we set N = 1 in (5.46), the generic upper bound GUBm1-KL reduces
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to

Qm(a, b) ≤ exp

[
−(b− a)2

2

] m−1∑

k=0

1

k!

[
(b− a)2

2

]k

, b ≥ a ≥ 0, m integer.

(5.47)

This upper bound uses the n-ball Bn
A,b−a as the bounding shape.

When we set N = 2 and θ1 = π/2 in (5.46), GUBm1-KL reduces to

Qm(a, b) ≤ 1

2

{
exp

[
−(b− a)2

2

] m−1∑

k=0

1

k!

[
(b− a)2

2

]k

+ exp

[
−b2 − a2

2

] m−1∑

k=0

1

k!

[
b2 − a2

2

]k
}

, b ≥ a ≥ 0, m integer.

(5.48)

This upper bound uses the combination of two semi-hyperballs, Bn
A,b−a and

Bn
A,
√

b2−a2 , as the bounding shape.

Similarly, a generic, lower, exponential bound can be obtained by using a

set of contiguous hyperspherical sectors to cover the hyperball Bn
O,b, as shown by

the dashed lines outside Bn
O,b in Fig. 5.3(a). Here, the ith hyperspherical sector

is denoted as Bn
A,l2(θi),θi−1,θi

which covers the angular range [θi−1, θi] of the n-ball

Bn
A,l2(θi)

. The probability of zn lying inside Bn
A,l2(θi),θi−1,θi

is given by

Pr(zn ∈ Bn
A,l2(θi),θi−1,θi

)

=

∫ θi

θi−1
Sn−1(sin θ)dθ

Sn(1)

{
1− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

=
Γ(m)

∫ θi

θi−1
sin2(m−1) θdθ

√
πΓ

(
m− 1

2

)
{

1− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

. (5.49)

Then our first generic lower bound on Qm(a, b), denoted as GLBm1-KL, is given
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by

Qm(a, b) ≥ QGLBm1-KL(a, b)

= 1−
N∑

i=1

Pr(zn ∈ Bn
A,l2(θi),θi−1,θi

)

=
N∑

i=1

Γ(m)
∫ θi

θi−1
sin2(m−1) θdθ

√
πΓ

(
m− 1

2

)
{

exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

=
N∑

i=1

{
θi − θi−1

π
+

m−2∑
j=0

(−1)m−1−j
(
2m−2

j

)

π
(
2m−2
m−1

)

· sin[2(m− 1− j)θi]− sin[2(m− 1− j)θi−1]

m− 1− j

}

·
{

exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

, b ≥ a ≥ 0, m integer. (5.50)

Here, we also have 0 = θ0 < θ1 < · · · < θN = π. The bound GLBm1-KL in (5.50)

on Qm(a, b) reduces to the bound GLB1-KL in (4.29) on Q(a, b) when m = 1.

When we set N = 1 in (5.50), the generic lower bound GLBm1-KL reduces

to

Qm(a, b) ≥ exp

[
−(b + a)2

2

] m−1∑

k=0

1

k!

[
(b + a)2

2

]k

, b ≥ a ≥ 0, m integer.

(5.51)

This lower bound uses the hyperball Bn
A,b+a as the bounding shape.

When we set N = 2 and θ1 = π/2 in (5.50), GLBm1-KL reduces to

Qm(a, b)

≥ 1

2

{
exp

[
−b2 − a2

2

] m−1∑

k=0

1

k!

[
b2 − a2

2

]k

+ exp

[
−(b + a)2

2

] m−1∑

k=0

1

k!

[
(b + a)2

2

]k
}

,

b ≥ a ≥ 0, m integer. (5.52)

This lower bound uses the combination of two semi-hyperballs, Bn
A,
√

b2−a2 and

Bn
A,b+a, as the bounding shape.
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θ1 θ2
l2

l1

Fig. 5.4: Diagram of a spherical annulus.

5.4.2 Bounds for the Case of a ≥ b ≥ 0 and a 6= 0

For this case, since the point A is outside of Bn
O,b, we have to use a set of

contiguous, hyperspherical annuli5, instead of hyperspherical sectors, to construct

a bounding shape. We use Bn
A,l1(θ),l2(θ),θ1,θ2

to denote a hyperspherical annulus

which covers the angular range [θ1, θ2] of the n-dimensional hollow ball Bn
A,l1(θ),l2(θ)

which is centered at the point A and has inner radius l1(θ) and outer radius l2(θ)

defined in (5.33). We first define π − arcsin(b/a) = θ0 < θ1 < · · · < θN = π, and

derive the upper generic exponential bound. As shown by the solid lines inside Bn
O,b

in Fig. 5.3(b), the ith hyperspherical annulus can be denoted as Bn
A,l1(θi),l2(θi),θi,θi+1

.

5In 3-dimensional Euclidean space, a spherical shell is the region between two concentric
spheres of different radii [142]. We define a spherical annulus as an angular sector of a spherical
shell with inner radius l1 and outer radius l2, as shown in Fig. 5.4, which is a solid of revolution
with the same axis as the spherical shell. The intersection of this spherical annulus with the
half-plane starting from its axis is an angular sector of an annulus bounded by two radii of the
shell and the two arcs in between them. If the angles between the positive axis of the spherical
annulus and the two radii are denoted as θ1 and θ2, then we say that this spherical annulus covers
the angular range [θ1, θ2] of the spherical shell. This concept can be extended straightforwardly
to n-dimensional Euclidean space. A hyperspherical annulus is defined as the part of an n-
dimensional hollow ball, with inner radius l1 and outer radius l2, between the two hypersurfaces
formed by rotating two radii around the axis. If the angles between the positive axis of the
hyperspherical annulus and the two radii are θ1 and θ2, we say that this hyperspherical annulus
covers the angular range [θ1, θ2] of the n-dimensional hollow ball.
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Similar to (5.42), the probability of zn lying inside Bn
A,l1(θi),l2(θi),θi,θi+1

is given by

Pr(zn ∈ Bn
A,l1(θi),l2(θi),θi,θi+1

)

=

∫ θi+1

θi
Sn−1(sin θ)dθ

Sn(1)

{
exp

[
− l21 (θi)

2

] m−1∑

k=0

1

k!

[
l21 (θi)

2

]k

− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

. (5.53)

Thus, we obtain our second generic upper bound on Qm(a, b), denoted as GUBm2-

KL, namely

Qm(a, b)

≤ QGUBm2-KL(a, b)

= 1−
N−1∑
i=1

Pr(zn ∈ Bn
A,l1(θi),l2(θi),θi,θi+1

)

= 1−
N−1∑
i=1

∫ θi+1

θi
Sn−1(sin θ)dθ

Sn(1)

{
exp

[
− l21 (θi)

2

] m−1∑

k=0

1

k!

[
l21 (θi)

2

]k

− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

= 1−
N−1∑
i=1

{
θi+1 − θi

π
+

m−2∑
j=0

(−1)m−1−j
(
2m−2

j

)

π
(
2m−2
m−1

)

· sin[2(m− 1− j)θi+1]− sin[2(m− 1− j)θi]

m− 1− j

}

·
{

exp

[
− l21 (θi)

2

] m−1∑

k=0

1

k!

[
l21 (θi)

2

]k

− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

,

a ≥ b ≥ 0, a 6= 0, m integer. (5.54)

Here, we have π− arcsin(b/a) = θ0 < θ1 < · · · < θN = π. The bound GUBm2-KL

in (5.54) on Qm(a, b) reduces to the bound GUB2-KL in (4.32) on Q(a, b) when

m = 1.

Similarly, for the lower bound, the ith hyperspherical annulus, denoted as

Bn
A,l1(θi),l2(θi),θi−1,θi

, covers the angular range [θi−1, θi] of the n-dimensional hollow
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ball Bn
A,l1(θi),l2(θi)

, as shown by the dashed lines outside Bn
O,b in Fig. 5.3(b). The

probability of zn lying inside Bn
A,l1(θi),l2(θi),θi−1,θi

is given by

Pr(zn ∈ Bn
A,l1(θi),l2(θi),θi−1,θi

) =

∫ θi

θi−1
Sn−1(sin θ)dθ

Sn(1)

{
exp

[
− l21 (θi)

2

] m−1∑

k=0

1

k!

[
l21 (θi)

2

]k

− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

. (5.55)

Thus, our second generic lower bound on Qm(a, b), denoted as GLBm2-KL, is

given by

Qm(a, b)

≥ QGLBm2-KL(a, b)

= 1−
N∑

i=1

Pr(zn ∈ Bn
A,l1(θi),l2(θi),θi−1,θi

)

= 1−
N∑

i=1

∫ θi

θi−1
Sn−1(sin θ)dθ

Sn(1)

{
exp

[
− l21 (θi)

2

] m−1∑

k=0

1

k!

[
l21 (θi)

2

]k

− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

= 1−
N∑

i=1

{
θi − θi−1

π
+

m−2∑
j=0

(−1)m−1−j
(
2m−2

j

)

π
(
2m−2
m−1

)

· sin[2(m− 1− j)θi]− sin[2(m− 1− j)θi−1]

m− 1− j

}

·
{

exp

[
− l21 (θi)

2

] m−1∑

k=0

1

k!

[
l21 (θi)

2

]k

− exp

[
− l22 (θi)

2

] m−1∑

k=0

1

k!

[
l22 (θi)

2

]k
}

,

a ≥ b ≥ 0, a 6= 0, m integer. (5.56)

Here, we have π − arcsin(b/a) = θ0 < θ1 < · · · < θN = π. The bound GLBm2-KL

in (5.56) on Qm(a, b) reduces to the bound GLB2-KL in (4.34) on Q(a, b) when

m = 1.

From the geometrical interpretation of these generic bounds, it is clear that as

the number of hyperspherical sectors or hyperspherical annuli used in the bounding
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shapes increases, the closeness of fit of the bounding shapes with the hyperball Bn
O,b

improves, and thus our generic bounds become tighter and tighter, approaching

the exact value of Qm(a, b).

5.5 New Erfc Bounds for Qm(a, b) of Integer Or-

der m

In this section, we present some erfc bounds for Qm(a, b) of integer order m.

We give two types of erfc bounds, one from the new representation of Qm(a, b) for

odd n given in Section 5.3.1, and the other from the geometrical bounding shapes.

5.5.1 Bounds from the New Representation of Qm(a, b) for

Odd n

We first prove the inequality

Qm(a, b) < Qm+0.5(a, b), ∀m = 0.5n, n ∈ N. (5.57)

This inequality can be proved by using a mathematical approach or a geometric

approach. Here, we use a geometric approach, which enables us to discuss the

difference between Qm(a, b) and Qm+0.5(a, b) geometrically.

According to in (5.6), for any n ∈ N and m = 0.5n, Qm+0.5(a, b) is equal

to the probability of the (n + 1)-dimensional vector zn+1 lying outside of the

(n + 1)-ball Bn+1
O,b , where O is defined by (z1 = z2 = · · · = zn+1 = 0), that is, in

(n + 1)-dimensional space, we have

Qm+0.5(a, b) = 1− Pr
(
zn+1 ∈ Bn+1

O,b

)
. (5.58)

Now we consider the geometric interpretation of Qm(a, b) in (n + 1)-dimensional

space. We define Cn
C,ι,µ1,µ2

as an n-spherical cylinder6. Here, C is the axis of the

6A hyperspherical cylinder in n-dimensional space, also known as an n-spherical cylinder, is
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n-spherical cylinder, defined by (n−1) linear equations. Thus, C is a straight line

in n-dimensional space and a point in (n− 1)-dimensional space. This n-spherical

cylinder intersects the (n−1)-flats perpendicular to the axis C in Bn−1
C,ι , and extends

from µ1 to µ2 along C. Using this definition, Qm(a, b) can be represented, in (n+1)-

dimensional space, as the probability of zn+1 lying outside of the hyperspherical

cylinder Cn+1
O,b,−∞,∞, where O is defined by (z1 = z2 = · · · = zn = 0). The (n + 1)-

spherical cylinder Cn+1
O,b,−∞,∞ intersects the n-flats perpendicular to the zn+1-axis

in Bn
O,b, and extends from −∞ to ∞ along the zn+1-axis. Then we have

Qm(a, b) = 1− Pr
(
zn+1 ∈ Cn+1

O,b,−∞,∞
)
. (5.59)

From the geometric point of view, it is easy to see that the (n + 1)-ball Bn+1
O,b

is contained in the (n + 1)-spherical cylinder Cn+1
O,b,−∞,∞. From the mathematical

point of view, it is also straightforward to prove that Bn+1
O,b ⊂ Cn+1

O,b,−∞,∞, since

Cn+1
O,b,−∞,∞ is the set {zn+1|

∑n
i=1 z2

i ≤ b2,−∞ < zn+1 < ∞}, and Bn+1
O,b is the

set {zn+1|
∑n+1

i=1 z2
i ≤ b2} = {zn+1|

∑n
i=1 z2

i ≤ b2 − z2
n+1,−b ≤ zn+1 ≤ b}. Thus,

comparing (5.58) and (5.59) gives the inequality in (5.57). This result means that

for integer m, we can use Qm+0.5(a, b) and Qm−0.5(a, b), which can be evaluated

easily by (5.17), as upper and lower bounds on Qm(a, b), respectively.

We next discuss the tightness of the bound in (5.57) from a geometric view.

From (5.58) and (5.59), we can see that the difference between Qm+0.5(a, b) and

Qm(a, b) is given by

Qm+0.5(a, b)−Qm(a, b)= Pr
(
zn+1 ∈ Cn+1

O,b,−∞,∞
)− Pr

(
zn+1 ∈ Bn+1

O,b

)

= Pr
(
zn+1 ∈

[
Cn+1

O,b,−∞,∞ − Bn+1
O,b

])

= Pr
(
zn+1 ∈ Dn+1

O,b,−∞,∞
)
,∀m = 0.5n, n ∈ N. (5.60)

Here, Dn+1
O,b,−∞,∞ =

[
Cn+1

O,b,−∞,∞ − Bn+1
O,b

]
is the region inside Cn+1

O,b,−∞,∞ but outside

a region such that its intersections with the (n−1)-flats perpendicular to the axis of the cylinder
are (n − 1)-balls with the same radius, and the centers of these (n − 1)-balls all lie on the axis
of the cylinder [138].
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Bn+1
O,b , i.e., the remaining part of the infinite (n + 1)-spherical cylinder Cn+1

O,b,−∞,∞

after the removal of the (n + 1)-ball Bn+1
O,b from its center. Now we can see that

the tightness of the bound in (5.57) is determined by the probability Pr
(
zn+1 ∈

Dn+1
O,b,−∞,∞

)
. We first consider the case that the center of the Gaussian distribution

lies at a given point of the positive z1-axis, i.e., a is fixed, and the radius b of Bn+1
O,b

and Bn
O,b increases from 0 to ∞. We find that Pr

(
zn+1 ∈ Dn+1

O,b,−∞,∞
)

will start

with a very small value, and increase to its maximum value when b increases to

a value around a or a little larger than a, and then decrease and approach zero

as b increases further. The small values of this probability at the two ends result

from the fact that zn+1 is most likely to lie outside Cn+1
O,b,−∞,∞ when b ¿ a, and

to lie inside Bn+1
O,b when b À a. The maximum value of this probability will be

smaller for larger a and b, since the probability of zn+1 lying inside Bn+1
O,b will be

larger for a larger radius b. For the case that the radius b is fixed, we can find

a similar trend when a increases from 0 to ∞, that is, P
(
zn+1 ∈ Dn+1

O,b,−∞,∞
)

will

first increase from a small value, and attain its peak when a increases to a value

less than b, and then decrease and approach zero as a increases further.

5.5.2 Bounds from the Geometrical Bounding Shapes

We now derive some generic erfc bounds, which involve erfc functions and

exponential functions and have an arbitrarily large number of terms, by using the

geometrical bounding shapes.

We consider the use of a set of contiguous, hyperspherical cylinders to bound

the hyperball Bn
O,b. The axes of these hyperspherical cylinders all lie on the y1-

axis. As shown in Fig. 5.5, we divide the area y1 ∈ [−b − a,−a] on the y1-axis

into N parts by defining −b − a = µ0 < µ1 < · · · < µN = −a, and divide the

area y1 ∈ [−a, b − a] on the y1-axis into M parts by defining −a = ν0 < ν1 <

· · · < νM = b − a. Each of these parts is covered by a hyperspherical cylinder.

For one of these hyperspherical cylinders, say Cn
O′,ιi,µi,µi+1

where O′ is defined by
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(z2 = z3 = · · · = zn = 0), the probability of zn lying inside Cn
O′,ιi,µi,µi+1

is given by

Pr
(
zn ∈ Cn

O′,ιi,µi,µi+1

)
= [1−Qm−0.5 (0, ιi)]

∫ µi+1

y1=µi

e−y2
1/2

√
2π

dy1. (5.61)

Here, Qm−0.5(0, b) is given by (5.20) for integer m. Thus, as shown by the solid

lines inside Bn
O,b in Fig. 5.5, our third generic upper bound on Qm(a, b), denoted

as GUBm3-KL, is given by

Qm(a, b)

≤ QGUBm3-KL(a, b)

= 1−
N−1∑
i=1

Pr

(
zn ∈ Cn

O′,
√

b2−(a+µi)2,µi,µi+1

)

−
M−1∑
j=1

Pr

(
zn ∈ Cn

O′,
√

b2−(a+νj)2,νj−1,νj

)

= 1−
N−1∑
i=1

[
1−Qm−0.5

(
0,

√
b2 − (a + µi)2

)] ∫ µi+1

y1=µi

e−
y2
1
2√

2π
dy1

−
M−1∑
j=1

[
1−Qm−0.5

(
0,

√
b2 − (a + νj)2

)] ∫ νj

y1=νj−1

e−
y2
1
2√

2π
dy1

= 1− 1

2

N−1∑
i=1

[
1− erfc

(√
b2 − (a + µi)2

2

)
−

√
2

π
exp

(
−b2 − (a + µi)

2

2

)

·
m−2∑

k=0

(b2 − (a + µi)
2)

k+1/2

(2k + 1)!!

] [
erfc

(
µi√
2

)
− erfc

(
µi+1√

2

)]

− 1

2

M−1∑
j=1

[
1− erfc

(√
b2 − (a + νj)2

2

)
−

√
2

π
exp

(
−b2 − (a + νj)

2

2

)

·
m−2∑

k=0

(b2 − (a + νj)
2)

k+1/2

(2k + 1)!!

] [
erfc

(
νj−1√

2

)
− erfc

(
νj√
2

)]
,

a ≥ 0, b ≥ 0, m integer. (5.62)

Here, we have −b − a = µ0 < µ1 < · · · < µN = −a and −a = ν0 < ν1 < · · · <

νM = b − a. The bound GUBm3-KL in (5.62) on Qm(a, b) reduces to the bound

GUB3-KL in (4.40) on Q(a, b) when m = 1.
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Fig. 5.5: Diagram of the derivation of the new generic erfc bounds GUBm3-KL and
GLBm3-KL on Qm(a, b).

Similarly, as shown by the dashed lines outside Bn
O,b in Fig. 5.5, our third

generic lower bound on Qm(a, b), denoted as GLBm3-KL, is given by

Qm(a, b)

≥ QGLBm3-KL(a, b)

= 1−
N∑

i=1

Pr

(
zn ∈ Cn

O′,
√

b2−(a+µi)2,µi−1,µi

)

−
M∑

j=1

Pr

(
zn ∈ Cn

O′,
√

b2−(a+νj−1)2,νj−1,νj

)

= 1− 1

2

N∑
i=1

[
1− erfc

(√
b2 − (a + µi)2

2

)
−

√
2

π
exp

(
−b2 − (a + µi)

2

2

)

·
m−2∑

k=0

(b2 − (a + µi)
2)

k+1/2

(2k + 1)!!

] [
erfc

(
µi−1√

2

)
− erfc

(
µi√
2

)]

− 1

2

M∑
j=1

[
1− erfc

(√
b2 − (a + νj−1)2

2

)
−

√
2

π
exp

(
−b2 − (a + νj−1)

2

2

)

·
m−2∑

k=0

(b2 − (a + νj−1)
2)

k+1/2

(2k + 1)!!

] [
erfc

(
νj−1√

2

)
− erfc

(
νj√
2

)]
,

a ≥ 0, b ≥ 0, m integer. (5.63)
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Here, we also have −b− a = µ0 < µ1 < · · · < µN = −a and −a = ν0 < ν1 < · · · <
νM = b − a. The bound GLBm3-KL in (5.63) on Qm(a, b) reduces to the bound

GLB3-KL in (4.41) on Q(a, b) when m = 1.

When we set N = M = 1, GLBm3-KL in (5.63) reduces to

Qm(a, b) ≥ 1− 1

2

[
1− erfc

(
b√
2

)
−

√
2

π
exp

(
−b2

2

) m−2∑

k=0

b2k+1

(2k + 1)!!

]

·
[
erfc

(−b− a√
2

)
− erfc

(
b− a√

2

)]
, a ≥ 0, b ≥ 0, m integer.

(5.64)

It is clear that the generic erfc bounds in (5.62) and (5.63) are valid for entire

ranges of a and b. They grow tighter as the closeness of fit of the bounding shapes

with Bn
O,b improves.

5.6 Comparison and Numerical Results

In this section, we first give some numerical results for Qm+0.5(a, b), Qm(a, b)

and Qm−0.5(a, b) to verify that the generalized Marcum-Q-function is an increasing

function of its order. Then we compare the tightness of all the new bounds derived

in Sections 5.4 and 5.5 with that of the existing bounds in the literature.

5.6.1 Relationship between Qm±0.5(a, b) and Qm(a, b)

We now give some numerical results of Qm+0.5(a, b) and Qm−0.5(a, b) for in-

teger m, and show their relationship with Qm(a, b). Fig. 5.6 shows the results

for different values of a, i.e, a = 1, 5, 10. Fig. 5.7 shows the results for different

values of m, i.e, m = 5, 10, 15. We can see that Qm+0.5(a, b) and Qm−0.5(a, b) are

very close to Qm(a, b), and all of them have a similar shape. Thus, we can use

Qm+0.5(a, b) and Qm−0.5(a, b), respectively, as tight upper and lower bounds on

Qm(a, b), just as we have discussed in Section 5.5.1. In Fig. 5.8, the differences

(Qm+0.5(a, b)−Qm(a, b)) and (Qm(a, b)−Qm−0.5(a, b)) are shown, which indicate
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Fig. 5.6: The generalized Marcum Q-function Qm(a, b), its upper bound Qm+0.5(a, b), its
lower bound Qm−0.5(a, b), and its approximation [Qm+0.5(a, b) + Qm−0.5(a, b)]/2
versus b for a = 1, 5, 10 and m = 5.

the tightness of the upper bound Qm+0.5(a, b) and the tightness of the lower bound

Qm−0.5(a, b), respectively. We can see that for a given a and m, the differences are

very small at both the ranges b ¿ a and b À a, and have a peak at a value of b

around a or larger than a. We can also see that the peak values of the differences

become smaller as a increases. This means that the upper and lower bounds grow

tighter as a increases. These results are consistent with our predictions in Section

5.5.1. In addition, we also find that although [Qm+0.5(a, b) − Qm(a, b)] is not the

same as [Qm(a, b) − Qm−0.5(a, b)], their difference is very small for large a or b.

Since Qm+0.5(a, b) and Qm−0.5(a, b) have a similar shape to that of Qm(a, b), and

have a similar tightness as bounds on Qm(a, b), we can use their average as a good
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Fig. 5.7: The generalized Marcum Q-function Qm(a, b), its upper bound Qm+0.5(a, b), its
lower bound Qm−0.5(a, b), and its approximation [Qm+0.5(a, b) + Qm−0.5(a, b)]/2
versus b for m = 5, 10, 15 and a = 5.

approximation to Qm(a, b). Their average can be obtained from (5.26) as

1

2
[Qm+0.5(a, b) + Qm−0.5(a, b)]

= Qm−0.5(a, b) +
b2m−2

2m+0.5a
√

π

m−1∑
q=0

(−1)q (2q)!

(m− 1− q)!q!

{
2q∑

i=0

1

(ab)2q−i i!

·
[
(−1)i exp

(
−(b− a)2

2

)
− exp

(
−(b + a)2

2

)]}
, a > 0, b ≥ 0, integer m.

(5.65)

As shown in Figs. 5.6 and 5.7, the average in (5.65) almost coincides with the

exact value of Qm(a, b).
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Fig. 5.8: Differences between Qm(a, b) and its bounds Qm±0.5(a, b) versus b for a = 1, 5, 10
and m = 5, 10, 15.

5.6.2 Performance of the New Bounds

Next, we compare the tightness of our new bounds on Qm(a, b) in Sections 5.4

and 5.5 with that of the existing bounds on Qm(a, b) in the literature. There are

two types of bounds available in the literature, namely, exponential bounds which

involve only the exponential function, and Ik-bounds which involve the function

Ik(·). Since most of the existing bounds are valid for only either b > a or b < a,

we show the comparisons case by case.
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5.6.2.1 Bounds for the Case of b > a

For the case of b > a, the existing upper exponential bounds include UBm1-

SA in [120, eq. (8)], given by

Qm(a, b) ≤ QUBm1-SA(a, b)

= exp

[
−(b− a)2

2

]
+

1

π

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}

·
(

b

a

)m−1
[

1− (a/b)m−1

1− (a/b)

]
, b > a > 0, (5.66)

and UBm1-AT in [121, eq. (17)], given by

Qm(a, b) ≤ QUBm1-AT (a, b)

=
1

2

√
2m− 1

2
+

(a/b)2(1−m)

2[1− (a/b)2]

{
exp

[
−(b− a)2

2

]
+ exp

[
−(b + a)2

2

]}
,

b > a > 0. (5.67)

The existing lower exponential bounds include LBm1-SA in [120, eq. (11)], given

by

Qm(a, b) ≥ QLBm1-SA(a, b) = exp

[
−(b + a)2

2

] m−1∑
i=0

(b2/2)i

i!
, b > a ≥ 0, (5.68)

and LBm1-AT in [121, the first line in eq. (18)], given by

Qm(a, b) ≥ QLBm1-AT (a, b) = exp

(
−b2

2

) m−1∑
i=0

(b2/2)i

i!
, a ≥ 0, b ≥ 0. (5.69)

There are three existing Ik-bounds available in the literature. The upper bound

UBm2-AT in [121, eq. (12)] involves
√

I0(·), given by

Qm(a, b) ≤ QUBm2-AT (a, b)

=

√
2m− 1

2
+

(a/b)2(1−m)

2[1− (a/b)2]
exp

(
−b2 + a2

2

) √
I0 (2ab), b > a ≥ 0.

(5.70)
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The upper bound UBm1-CF is given by

Qm(a, b) ≤ QUBm1-CF (a, b) =
I0(ab)

eab

{
exp

[
−(b− a)2

2

]
+ a

√
π

2
erfc

(
b− a√

2

)}

+ exp

(
−a2 + b2

2

) m−1∑

k=1

(
b

a

)k

Ik(ab), b ≥ a > 0.

(5.71)

This bound is obtained by using the upper bound UB1-CF in (4.98) to bound

Q(a, b) in the series expression of Qm(a, b) in [122, eq. (2)], i.e,

Qm(a, b) = Q(a, b) + exp

(
−a2 + b2

2

) m−1∑

k=1

(
b

a

)k

Ik(ab), a > 0, b ≥ 0. (5.72)

Similarly, the lower bound LBm1-CF can be obtained by using the lower bound

LB1-CF in (4.105) to bound Q(a, b) in (5.72), and thus, is given by

Qm(a, b) ≥ QLBm1-CF (a, b)

=
I0(ab)b

exp(ab)

√
π

2
erfc

(
b− a√

2

)
+ exp

(
−a2 + b2

2

) m−1∑

k=1

(
b

a

)k

Ik(ab),

b ≥ a > 0. (5.73)

These two bounds, UBm1-CF and LBm1-CF, involve {Ik(·)}m−1
k=0 . Using a similar

method, we can also obtain some new Ik-bounds by using our new bounds on

Q(a, b) derived in Chapter 4 to bound Q(a, b) in (5.72). However, these new

Ik-bounds, with {Ik(·)}m−1
k=1 being involved, are as complicated as UBm1-CF and

LBm1-CF, and thus, are not more desirable than the latter bounds.

For this case, our new bounds derived in this chapter include the generic ex-

ponential bounds GUBm1-KL in (5.46) and GLBm1-KL in (5.50), the erfc bounds

Qm+0.5(a, b) and Qm−0.5(a, b) in (5.17), and the generic erfc bounds GUBm3-KL

in (5.62) and GLBm3-KL in (5.63). We have also given an approximation of

Qm(a, b) in (5.65). For simplicity, we just choose equispaced points for the param-

eters, i.e., θi = iπ/N for GUBm1-KL and GLBm1-KL, and µi = −b − a + bi/N
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and νj = −a + bj/M for GUBm3-KL and GLBm3-KL. Figs. 5.9 and 5.10 show,

respectively, the upper and lower bounds on Qm(a, b) for the case of b > a = 5

with m = 5. Figs. 5.11 and 5.12 show, respectively, the upper and lower bounds on

Qm(a, b) for the case of b > a = 5 with m = 10. In our numerical results, the exact

value of Qm(a, b), the erfc bounds Qm+0.5(a, b) and Qm−0.5(a, b), and our generic

exponential bounds are shown by the solid lines. Our generic erfc bounds are

shown by the dash-dotted lines. The existing exponential bounds and Ik-bounds

are shown by the dashed lines and dotted lines, respectively. The approximation

of Qm(a, b) in (5.65) is shown by the marker “×”. If the Ik-bounds UBm1-CF and

LBm1-CF are too close to the approximation and the exact value of Qm(a, b) in

some cases, they are also marked with “+”. We can see that when a and m are

large, Qm+0.5(a, b) and Qm−0.5(a, b) outperform most of the other bounds, only a

little looser than the pair of UBm1-CF and LBm1-CF. However, the former pair

only involves the simple erfc functions and exponential functions, much simpler

than the latter pair of Ik-bounds. Our generic upper exponential bound GUBm1-

KL and erfc bound GUBm3-KL evaluated with a few terms are much tighter than

the existing exponential bounds UBm1-SA and UBm1-AT when b is close to a,

but they need to involve more terms to outperform the latter bounds when b is

much larger than a. When a is close to zero, say a = 0.1, GUBm3-KL is not

tight, but GUBm1-KL is still very tight, and can be much tighter than UBm1-SA

and UBm1-AT when m is large, say m = 5. Our generic lower exponential bound

GLBm1-KL and erfc bound GLBm3-KL evaluated with a few terms are much

tighter than the existing exponential bounds LBm1-SA and LBm1-AT for a wide

range of values of the arguments. The bound LBm1-AT is only tight for small a.

The bound LBm1-SA is not shown here, since it is much looser than the others

when a is not close to zero.
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Fig. 5.9: The generalized Marcum Q-function Qm(a, b) and its upper bounds versus b for
the case of b > a = 5 and m = 5.
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Fig. 5.10: The generalized Marcum Q-function Qm(a, b) and its lower bounds versus b for
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Fig. 5.11: The generalized Marcum Q-function Qm(a, b) and its upper bounds versus b for
the case of b > a = 5 and m = 10.
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Fig. 5.12: The generalized Marcum Q-function Qm(a, b) and its lower bounds versus b for
the case of b > a = 5 and m = 10.
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5.6.2.2 Bounds for the Case of a > b

For the case of a > b, the only existing upper bound is the Ik-bound UBm2-

CF, which is obtained by using the upper bound UB2-CF in (4.100) to bound

Q(a, b) in (5.72), and thus given by

Qm(a, b) ≤ QUBm2-CF (a, b)

= 1− I0(ab)

exp(ab)

{
exp

(
−a2

2

)
− exp

[
−(b− a)2

2

]
+ a

√
π

2

[
erfc

(
− a√

2

)

− erfc

(
b− a√

2

)] }
+ exp

(
−a2 + b2

2

) m−1∑

k=1

(
b

a

)k

Ik(ab), a ≥ b > 0.

(5.74)

The existing lower exponential bounds include the bound LBm2-SA in [120, eq.

(12)], given by

Qm(a, b) ≥ QLBm2-SA(a, b) = 1− 1

2

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}

+ exp

[
−(b + a)2

2

] m−1∑
i=1

(b2/2)i

i!
, a > b ≥ 0, (5.75)

the bound LBm1-AT in [121, eq. (18)], given by (5.69), and the bound LBm2-AT

in [121, eq. (21)], given by

Qm(a, b) ≥ QLBm2-AT (a, b)

= 1− 1

2

√
(a/b)2(1−m)

2[(a/b)2 − 1]

{
exp

[
−(b− a)2

2

]
+ exp

[
−(b + a)2

2

]}
,

a > b > 0. (5.76)

The existing lower Ik-bounds include the bound LBm3-AT in [121, eq. (20)], i.e.,

Qm(a, b) ≥ QLBm3-AT (a, b)

= 1−
√

(a/b)2(1−m)

2[(a/b)2 − 1]
exp

(
−b2 + a2

2

) √
I0 (2ab), a > b ≥ 0, (5.77)
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and the bound LBm2-CF, which is obtained by using the lower bound LB2-CF in

(4.110) to bound Q(a, b) in (5.72), and given by

Q(a, b)

≥ QLBm2-CF (a, b)

= 1− exp

(
−a2 − c2

2

) {
exp

(
−c2

2

)
− exp

[
−(b− c)2

2

]
+ c

√
π

2

[
erfc

(
− c√

2

)

− erfc

(
b− c√

2

)] }
+ exp

(
−a2 + b2

2

) m−1∑

k=1

(
b

a

)k

Ik(ab), a ≥ b > 0, (5.78)

where c = [log I0(ab)]/b. The bound LBm3-AT involves
√

I0(·), and the bounds

UBm2-CF and LBm2-CF involve {Ik(·)}m−1
k=0 . Our new bounds include the generic

exponential bounds GUBm2-KL in (5.54) and GLBm2-KL in (5.56), the erfc

bounds Qm+0.5(a, b) and Qm−0.5(a, b) in (5.17), and the generic erfc bounds

GUBm3-KL in (5.62) and GLBm3-KL in (5.63). We also choose equispaced

points for θi in GUBm2-KL and GLBm2-KL, i.e., we have θi = π − arcsin(b/a) +

i arcsin(b/a)/N .

Figs. 5.13 and 5.14 show, respectively, the upper and lower bounds on Qm(a, b)

for the case of b < a = 5 with m = 5. Figs. 5.15 and 5.16 show, respectively, the

upper and lower bounds on Qm(a, b) for the case of b < a = 5 with m = 10.

Since for a > b, the value of Qm(a, b) is close to 1, we show the results on a linear

scale. From our numerical results, we can see that Qm+0.5(a, b) is tighter than

UBm2-CF when a is not much larger than m. When we have a ¿ m, as in the

case of a = 5 and m = 10, UBm2-CF may exceed one and thus become useless.

For large a, our generic bounds GUBm2-KL and GUBm3-KL when evaluated

with a few terms are not as tight as Qm+0.5(a, b). Our lower bound Qm−0.5(a, b) is

tighter than LBm2-CF for a wide range of values of the arguments, and the latter

is tighter than the former only when both a and m are small. When evaluated

with a few terms, the bounds GLBm2-KL and GLBm3-KL are much tighter than

the existing exponential bounds, and even tighter than the Ik-bounds, for a wide
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Fig. 5.13: The generalized Marcum Q-function Qm(a, b) and its upper bounds versus b for
the case of b < a = 5 and m = 5.
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Fig. 5.14: The generalized Marcum Q-function Qm(a, b) and its lower bounds versus b for
the case of b < a = 5 and m = 5.
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Fig. 5.15: The generalized Marcum Q-function Qm(a, b) and its upper bounds versus b for
the case of b < a = 5 and m = 10.
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Fig. 5.16: The generalized Marcum Q-function Qm(a, b) and its lower bounds versus b for
the case of b < a = 5 and m = 10.
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range of values of the arguments. The bound LBm1-AT is only tight when a is

small. The bounds which are not shown here are much looser than the others for

the cases concerned.

5.7 Summary

In this chapter, we have presented a novel geometric view for Qm(a, b). Based

on this geometric view, we have derived a new closed-form representation of

Qm(a, b) for m being an odd multiple of 0.5, which involves only simple exponen-

tial functions and erfc functions. We have also derived a pair of new finite-integral

representations for Qm(a, b) of integer order m, which are more robust than their

counterparts in the literature.

In addition to these new representations, we have also shown that Qm+0.5(a, b)

and Qm−0.5(a, b) are, respectively, tight upper and lower bounds on Qm(a, b), and

their average is a good approximation of Qm(a, b). Besides, we have developed

some generic exponential bounds and erfc bounds on Qm(a, b) of integer order

m. These generic bounds approach the exact value of Qm(a, b) as the number

of terms involved increases. Our upper bounds for a > b are the only upper

exponential/erfc bounds available for this case. When evaluated with a few terms,

our generic upper bounds for b > a can be tighter than the existing exponential

bounds for some values of arguments. Our generic lower bounds for b > a can

be tighter than the existing exponential bounds for a wide range of values of the

arguments. Our generic lower bounds for a > b can also be tighter than the

existing exponential bounds, and even can be tighter than the existing Ik-bounds

for a wide range of values of the arguments.
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Chapter 6

Performance Analysis of

Quadratic-Form Receivers

In this chapter, we show some applications of our new representations, generic

exponential bounds and simple erfc bounds, derived in Chapter 4 for the first-

order Marcum Q-function, Q(·, ·), to the performance analysis of quadratic-form

receivers for a variety of single-channel, differentially coherent and quadratic detec-

tions. By using our new representations and generic exponential bounds for Q(·, ·),
we propose an exact, single-finite-integral expression, and a pair of closed-form

generic upper and lower bounds for the average bit error probability of quadratic-

form receivers over generalized fading channels. To apply our simple erfc bounds

on Q(·, ·) to bounding the average bit error probability, we first evaluate the inte-

grals involved in averaging the product of two Gaussian Q-functions over fading

statistics. For Nakagami-m fading, we obtain an exact closed-form result for the

integral involved, and for Rician fading, we obtain a pair of closed-form upper and

lower bounds on the integral involved. Then based on these results, we propose

two pairs of closed-form upper and lower bounds on the average bit error proba-

bility of quadratic-form receivers, one pair for Nakagami-m fading and the other

pair for Rician fading, by using our simple erfc bounds on Q(·, ·).
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6.1. INTRODUCTION

6.1 Introduction

In Chapter 1, we have reviewed some research results in the literature for

QFRs. We can see that for a variety of coherent, differentially coherent, partially

coherent, and quadratic detections with diversity, the decision metric can be ex-

pressed as a special case of a general quadratic form in complex Gaussian random

variables [1, 24–27]. For this general QFR, the expression of the bit error prob-

ability over AWGN channels can be given in terms of the generalized Marcum

Q-function, Qm(·, ·), [1, 5, 27, 31]. When a fading environment is considered, we

need to average the conditional bit error probability over the distribution of the

total instantaneous SNR per bit at the output of the diversity combiner. This re-

quires us to compute the average of the generalized Marcum Q-function over the

distribution of the total instantaneous SNR [118, 143]. The computation involved

is usually complicated. In [113, 114], the generalized Marcum Q-function has been

rewritten into single finite integrals with exponential integrands. Based on these

alternative representations, for systems that employ postdetection equal gain com-

bining (EGC) to process signals received from multiple independent channels, the

average bit error probability of QFRs for differentially coherent and quadratic

detections over generalized fading channels has been given in [31, eq. (76)] and

[5, eq. (9.115)] as a single finite integral whose integrand involves the product of

the moment generating functions (MGFs) of the subchannel instantaneous SNRs.

Integrals involved in the average of the generalized Marcum Q-function over the

Rayleigh and Nakagami-m fading distributions have been evaluated in closed form

in [118, 143], and used therein to obtain closed-form expressions of the average

bit error probability of differentially coherent and quadratic detections for some

systems employing postdetection EGC or selection combining (SC). In addition

to the exact expressions, some upper bounds on the average bit error probability

of differentially coherent and quadratic detections with postdetection EGC over

independent generalized fading channels have also been proposed in [120, 121]

by using the exponential bounds on the generalized Marcum Q-function derived
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therein. Thus far, there is no lower bound on the average bit error probability of

the general QFR available in the literature.

Since in this chapter, we mainly want to show some applications of our new

representations and bounds derived in Chapter 4 for the first-order Marcum Q-

function, Q(·, ·), we will focus on the performance analysis of single-channel, dif-

ferentially coherent and quadratic detections, for which the expression of the bit

error probability only involves Q(·, ·) with both the arguments being proportional

to the square root of the instantaneous SNR. By using our new finite-integral

representations of Q(·, ·) in Section 4.3.1, we propose a new single-finite-integral

expression for the average bit error probability of QFRs over generalized fading

channels. By using our generic exponential bounds on Q(·, ·) in Section 4.4, we pro-

pose a pair of upper and lower generic bounds on the average bit error probability

of QFRs over generalized fading channels. Since the generic exponential bounds

approach the exact value of Q(·, ·) as the number of terms involved increases, our

generic performance bounds also approach the exact value of the average bit error

probability. Our simple erfc bounds on Q(a, b) in Section 4.7 can also be used to

derive bounds on the average bit error probability, but the averages of the prod-

uct of two Gaussian Q-functions over fading distributions should be solved first.

Thus, we first evaluate the integrals involved in the averages of the product of

two Gaussian Q-functions over the Nakagami-m and Rician distributions. Then

we apply the exact result, or the upper and lower bounds for these integrals to

deriving some new upper and lower bounds on the average bit error probability

over the Nakagami-m and Rician channels. Our numerical results show that when

evaluated with a few terms, our generic upper bounds on the average bit error

probability derived from the generic exponential bounds on Q(a, b) are tighter

than the existing bounds in [120, 121]. Our upper bounds on the average bit error

probability derived from the simple erfc bounds on Q(a, b) are also tighter than

the existing bounds in some cases. Our lower bounds are the only lower bounds

available, and they are shown to be tight. Thus, our lower bounds together with
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our tight upper bounds can give a better approximation to the error performance

of QFRs with single-channel reception when the exact, closed-form expression for

the average bit error probability is hard to obtain, or is too complicated to use.

In Section 6.2, we review some results in the literature for the bit error proba-

bility of QFRs for diversity reception over multiple, independent AWGN channels.

In Sections 6.3 and 6.4, we propose a new single-finite-integral expression and a

pair of generic upper and lower bounds, respectively, for the average bit error

probability of QFRs over generalized fading channels. In Section 6.5, we evaluate

the averages of the product of two Gaussian Q-functions over the Nakagami-m

and Rician distributions. In Section 6.6, we derive a pair of new, upper and lower

bounds on the average bit error probability for each of Nakagami-m fading and

Rician fading. In Section 6.7, we show some numerical results for our new exact

expression and upper and lower bounds on the average bit error probability, and

also compare the tightness of our new upper bounds with that of the existing

upper bounds proposed in [120, 121].

6.2 Bit Error Probability of QFRs for Multi-

channel Detection over AWGN Channels

For a variety of coherent, differentially coherent, partially coherent, and

quadratic detections, the decision metric for diversity reception over N indepen-

dent AWGN channels can be expressed as a special case of the general quadratic

form in complex Gaussian random variables given by [1, eq. (B–1)]

D =
N∑

k=1

Dk =
N∑

k=1

(A|Xk|2 + B|Yk|2 + CXkY
∗
k + C∗X∗

kYk). (6.1)

Here, A and B are real constants, and C may be a complex constant; {Xk}N
k=1

are independent complex Gaussian random variables with CN (X̄k, 2µxx) distri-

bution, and {Yk}N
k=1 are independent complex Gaussian random variables with
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CN (Ȳk, 2µyy) distribution. The pair {Xk, Yk} are correlated with covariance

µxy = 1
2
E[(Xk − X̄k)(Yk − Ȳk)

∗], and {Xk, Yi} are independent for k 6= i. We

need |C|2 − AB > 0, since otherwise D will be always negative or positive, inde-

pendent of Xk’s and Yk’s. If we have A = 1, B = −1 and C = 0, D reduces to the

decision metric for quadratic detection in [1, eq. (12.1–5)]. If we have A = B = 0

and C = 1/2, D reduces to the decision metric for coherent detection in [1, eq.

(12.1–7)]. The probability of D being negative is given by [1, eq. (B–21)]

Pr(D < 0) = Q(a, b)− I0(ab) exp

[
−(a2 + b2)

2

]
+

I0(ab) exp [−(a2 + b2)/2]

(1 + v2/v1)2N−1

·
N−1∑

k=0

(
2N − 1

k

)(
v2

v1

)k

+
exp [−(a2 + b2)/2]

(1 + v2/v1)2N−1

N−1∑
n=1

In(ab)

·
N−1−n∑

k=0

(
2N − 1

k

) [(
b

a

)n (
v2

v1

)k

−
(a

b

)n
(

v2

v1

)2N−1−k
]

. (6.2)

Here, we have [1, eqs. (B–22), (B–6) and (B–8)]

a =

[
2v2

1v2(α1v2 − α2)

(v1 + v2)2

]1/2

,

b =

[
2v1v

2
2(α1v1 + α2)

(v1 + v2)2

]1/2

,

v1 =

√
w2 +

1

4(µxxµyy − |µxy|2)(|C|2 − AB)
− w,

v2 =

√
w2 +

1

4(µxxµyy − |µxy|2)(|C|2 − AB)
+ w,

w =
Aµxx + Bµyy + C∗µ∗xy + Cµxy

4(µxxµyy − |µxy|2)(|C|2 − AB)
,

α1 =
N∑

k=1

α1k,

α2 =
N∑

k=1

α2k,

α1k = 2(|C|2 − AB)(|X̄k|2µyy + |Ȳk|2µxx − X̄∗
k Ȳkµxy − X̄kȲ

∗
k µ∗xy),

α2k = A|X̄k|2 + B|Ȳk|2 + C∗X̄∗
k Ȳk + CX̄kȲ

∗
k . (6.3)
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A point to note is that in the expressions for w and α2k in [1, eq. (B–6)], C should

be C∗, and C∗ should be C. These errors are corrected in (6.3).

In [31, eq. (60)], the probability in (6.2) has been rewritten in terms of the

generalized Marcum Q-function as

Pr(D < 0)

= Q(a, b)−
[
1− 1

(1 + v2/v1)
2N−1

N−1∑

k=0

(
2N − 1

k

)(
v2

v1

)k
]

I0(ab) exp

[
−(a2 + b2)

2

]

+
1

(1 + v2/v1)
2N−1

{
N∑

k=2

(
2N − 1

N − k

)(
v2

v1

)N−k

[Qk(a, b)−Q(a, b)]

}

− 1

(1 + v2/v1)
2N−1

{
N∑

k=2

(
2N − 1

N − k

)(
v2

v1

)N−1+k

[Qk(b, a)−Q(b, a)]

}
. (6.4)

By using the equalities [124, eq. (1.111)]

N−1∑

k=0

(
2N − 1

k

)(
v2

v1

)k

=
N∑

k=1

(
2N − 1

N − k

)(
v2

v1

)N−k

, (6.5)

N∑

k=1

(
2N − 1

N − k

) [(
v2

v1

)N−k

+

(
v2

v1

)N+k−1
]

=

[
1 +

(
v2

v1

)]2N−1

, (6.6)

and [31, eq. (67)]

Q(a, b)− 1

2
I0(ab) exp

(
−a2 + b2

2

)
=

1

2
[1−Q(b, a) + Q(a, b)] (6.7)

in (6.4), we can further simplify (6.4) to

Pr(D < 0)

=
(v2/v1)

N

(1 + v2/v1)
2N−1

N∑

k=1

(
2N − 1

N − k

) {(
v1

v2

)k

Qk(a, b) +

(
v2

v1

)k−1

[1−Qk(b, a)]

}
.

(6.8)

For some modulation schemes of interest, we have v1 = v2. For this special
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Table 6.1: Parameters for Four Modulation Schemes with Multichannel Differentially Co-
herent Detection or Multichannel Quadratic Detection

Modulation α β

Binary Orthogonal FSK 0 1

Binary DPSK 0
√

2

DQPSK with Gray Coding
√

2−√2
√

2 +
√

2

Binary Correlated Signals with Cor-
relation Coefficient 0 < |ς| < 1

√
1−

√
1− |ς|2
2

√
1 +

√
1− |ς|2
2

case, from (6.6), we obtain the equality

N∑

k=1

(
2N − 1

N − k

)
= 22N−2, (6.9)

and (6.8) reduces to [31, eq. (68)]

Pr(D < 0) =
1

2
+

1

22N−1

N∑

k=1

(
2N − 1

N − k

)
[Qk(a, b)−Qk(b, a)] . (6.10)

From (6.10), we can see that for a number of special cases of particular im-

portance, the bit error probability can be given by

Pb(γ, α, β) =
1

2
+

1

22N−1

N∑

k=1

(
2N − 1

N − k

)
[Qk(α

√
γ, β

√
γ)−Qk(β

√
γ, α

√
γ)] ,

(6.11)

where γ is the total instantaneous SNR per bit at the output of the combiner, and

the values of the arguments α and β are dependent on modulation schemes, and

are summarized in Table 6.1 for four different modulation schemes [1, 5, 31, 118].

For the special case of N = 1, which corresponds to the case of single-channel
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detection, (6.11) reduces to

Pb(γ, α, β) =
1

2
[1 + Q(α

√
γ, β

√
γ)−Q(β

√
γ, α

√
γ)] . (6.12)

Thus, for quadratic detection of equal energy, equiprobable, correlated binary

signals, the bit error probability is given by (6.12) with the arguments [1, eq.

(5.4–54)]





α =

√
1−

√
1− |ς|2
2

, (6.13a)

β =

√
1 +

√
1− |ς|2
2

, (6.13b)

where 0 < |ς| < 1 is the magnitude of the cross-correlation coefficient between the

two signals. When we set ς = 0 in (6.12) and (6.13), and use the values of the

Marcum Q-function for the special cases, i.e.,

Q(0, b) = exp

(
−b2

2

)
, (6.14)

Q(a, 0) = 1, (6.15)

we obtain the well-known result for orthogonal binary FSK with quadratic detec-

tion, namely, [1, eq. (5.4–55)]

Pb(γ, 0, 1) =
1

2
e−γ/2. (6.16)

For the case of binary differential PSK (DPSK), we have α = 0 and β =
√

2, and

thus, (6.12) reduces to [1, eq. (5.2–69)]

Pb(γ, 0,
√

2) =
1

2
e−γ. (6.17)

Finally, for the case of differential quadrature PSK (DQPSK) with Gray coding,
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the bit error probability is given by (6.12) with the arguments [1, eq. (5.2–71)]





α =

√
2−

√
2, (6.18a)

β =

√
2 +

√
2. (6.18b)

6.3 Average Bit Error Probability of QFRs for

Single-Channel Detection over Fading Chan-

nels

From the above section, we can see that the average bit error probability

over fading channels for a variety of single-channel, differentially coherent and

quadratic detections is given by

Pb(α, β) =

∫ ∞

0

pγ(γ)Pb(γ, α, β)dγ

=
1

2
+

1

2

∫ ∞

0

pγ(γ)[Q(α
√

γ, β
√

γ)−Q(β
√

γ, α
√

γ)]dγ. (6.19)

Here, pγ(γ) is the PDF of γ. From Table 6.1, we can see that we usually have

β > α ≥ 0.

The closed-form result for Pb(α, β) in (6.19) has been given for Rayleigh fading

in [31], and for Nakagami-m fading in [118, 143]. However, for the case of Rician

fading, the closed-form result for Pb(α, β) in (6.19) has only been given in [31] for

some simple cases, such as binary orthogonal FSK with quadratic detection and

binary DPSK, both of which have α = 0. For some more complicated cases, such as

DQPSK with Gray coding and binary correlated signals with quadratic detection,

only a single-finite-integral result has been given in [31, eqs. (30) and (46)]. This

single-finite-integral result was obtained by using the alternative finite-integral

representations of Q(a, b) in (4.19) and (4.20) to express the Marcum Q-functions
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Table 6.2: PDF and MGF of the SNR per Bit γ for Fading Channels

Fading PDF pγ(γ) MGF Mγ(s)

Rayleigh 1
γ̄

exp
(
−γ

γ̄

)
] (1− sγ̄)−1

Rician (K ≥ 0\) (1+K)e−K−(1+K)γ/γ̄

γ̄
I0

(
2
√

K(1+K)γ
γ̄

)
1+K

1+K−sγ̄
exp

(
Ksγ̄

1+K−sγ̄

)

Nakagami-m
(m ≥ 1/2)

mmγm−1

γ̄mΓ(m)
exp

(
−mγ

γ̄

)
(1− sγ̄/m)−m

] γ̄ is the average SNR per bit.
\ K is the ratio of the power of the line-of-sight component to the average power of the

scattered component.

in (6.19) and interchanging the order of integration, namely, [31, eq. (30)]

Pb(α, β) =
1

4π

∫ π

−π

β2 − α2

β2 + 2αβ sin θ + α2
Mγ

[
−1

2

(
β2 + 2αβ sin θ + α2

)]
dθ,

(6.20)

where Mγ(s) =
∫∞

0
esγpγ(γ)dγ is the MGF of γ. The expression of Pb(α, β) in

(6.20) is a unified form for various fading channels. The PDF and the MGF of γ

for the Rayleigh, Rician, Nakagami-m fading channels are summarized in Table 6.2

[5, Table 2.2]. It is clear that the case of Rayleigh fading can be regarded as a

special case of Nakagami-m fading with m = 1, or as a special case of Rician

fading with K = 0. Since the MGFs in Table 6.2 for the three fading channels

are all given in closed form, the expression of Pb(α, β) in (6.20) involves only a

single-fold finite-range integral. However, the expression of Pb(α, β) in (6.20) may

be unstable in some cases, because the denominator (β2 + 2αβ sin θ + α2) could

be small for some parameters combinations.

By using a similar method, we can also obtain a new single-finite-integral re-

sult for Pb(α, β) in (6.19). We use our new finite-integral representations of Q(a, b)

in (4.11) and (4.14) to express Q(α
√

γ, β
√

γ) and Q(β
√

γ, α
√

γ), respectively, and
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obtain

Pb(α, β) =
1

2
+

1

2

∫ ∞

0

pγ(γ)

{
1

π

∫ π

0

exp

[
−γ

2

(
−α cos θ +

√
β2 − α2 sin2 θ

)2
]

dθ

− 1 +
1

π

∫ π

π−arcsin(α/β)

{
exp

[
−γ

2

(
−β cos θ −

√
α2 − β2 sin2 θ

)2
]

− exp

[
−γ

2

(
−β cos θ +

√
α2 − β2 sin2 θ

)2
]}

dθ

}
dγ

=
1

2π

∫ π

0

Mγ

[
−1

2

(
−α cos θ +

√
β2 − α2 sin2 θ

)2
]

dθ

+
1

2π

∫ π

π−arcsin(α/β)

{
Mγ

[
−1

2

(
−β cos θ −

√
α2 − β2 sin2 θ

)2
]

−Mγ

[
−1

2

(
−β cos θ +

√
α2 − β2 sin2 θ

)2
]}

dθ. (6.21)

We can see that our new expression of Pb(α, β) in (6.21) is more robust than that

in (6.20), since its integrands are pure MGFs and do not involve denominator

terms before the MGFs.

6.4 Bounds on the Average Bit Error Proba-

bility Derived from the Generic Exponen-

tial Bounds on the First-Order Marcum Q-

Function

In addition to the exact expression of the average bit error probability

Pb(α, β), its upper and lower bounds are also of interest, especially when the

closed-form result for Pb(α, β) is difficult to obtain or hard to evaluate. Upper

bounds on Pb(α, β) can be obtained by using an upper bound on Q(a, b) for b > a

to bound Q(α
√

γ, β
√

γ) in (6.19) and using a lower bound on Q(a, b) for a > b

to bound Q(β
√

γ, α
√

γ) in (6.19). We have derived some exponential bounds and
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erfc bounds on Q(a, b) in Chapter 4, and have shown their superiority over the

existing exponential bounds in [114, 120, 121] for a wide range of values of the

arguments. The I0-bounds on Q(a, b) proposed in [116, 121, 122] and discussed

in Chapter 4 are not suitable for this application. In this section, we focus on the

usage of the exponential bounds on Q(a, b) in bounding Pb(α, β). In Section 6.6,

we will show the usage of the erfc bounds on Q(a, b) in bounding Pb(α, β).

In [120], an upper bound on Pb(α, β) has been given by using the exponential

bound UB1-SA in (4.93) as the upper bound on Q(a, b) for b > a and using the

exponential bound LB2-SA in (4.107) as the lower bound on Q(a, b) for a > b,

namely [120, eq. (18)]

Pb(α, β) ≤ Pb,UB-SA(α, β)

=
3

4
Mγ

[
−(β − α)2

2

]
− 1

4
Mγ

[
−(β + α)2

2

]
. (6.22)

In [121], another upper bound on Pb(α, β) has been given by using the ex-

ponential bound UB1-AT in (4.95) as the upper bound on Q(a, b) for b > a and

using the exponential bound LB2-AT in (4.108) as the lower bound on Q(a, b) for

a > b, namely [121, eq. (29)]

Pb(α, β) ≤ Pb,UB-AT (α, β)

=
1

4

{√
1

2

[
1 +

1

1− (a/b)2

]
+

√
(b/a)2

2 [1− (b/a)2]

}

·
{

Mγ

[
−(β − α)2

2

]
+ Mγ

[
−(β + α)2

2

]}
. (6.23)

Similarly, we can also obtain some new upper bounds on Pb(α, β) by using

our exponential bounds derived in Chapter 4 for Q(a, b). By using the generic

upper exponential bound GUB1-KL in (4.28) as the upper bound on Q(a, b) for

b > a and using the generic lower exponential bound GLB2-KL in (4.35) as the

lower bound on Q(a, b) for a > b, we can obtain a generic upper bound on Pb(α, β)
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as

Pb(α, β) ≤ Pb,GUB-KL(α, β)

=
1

2
+

1

2

∫ ∞

0

[QGUB1-KL(α
√

γ, β
√

γ)−QGLB2-KL(β
√

γ, α
√

γ)] pγ(γ)dγ

=
1

2π

{
G∑

k=1

(φk − φk−1)Mγ

[
− l2(φk−1)

2

]
+

H∑
i=1

(θi − θi−1)Mγ

[
− l21(θi)

2

]

−
M∑

j=1

(ωj − ωj−1)Mγ

[
− l22(ωj)

2

]}
. (6.24)

Here, we have 0 = φ0 < φ1 < · · · < φG = π, π − arcsin(α/β) = θ0 < θ1 < · · · <

θH = π, π − arcsin(α/β) = ω0 < ω1 < · · · < ωM = π,

l(φk) = −α cos φk +

√
β2 − α2 sin2 φk, (6.25)

and





l1(θi) = −β cos θi −
√

α2 − β2 sin2 θi, (6.26a)

l2(ωj) = −β cos ωj +
√

α2 − β2 sin2 ωj. (6.26b)

Using the MGFs given in Table 6.2, we can see that for Nakagami-m fad-

ing, the generic upper bound Pb,GUB-KL(α, β) in (6.24) on the average bit error

probability becomes

Pb,GUB-KL(α, β) =
1

2π

{
G∑

k=1

(φk − φk−1)

[
1 +

γ̄l2(φk−1)

2m

]−m

+
H∑

i=1

(θi − θi−1)

[
1 +

γ̄l21(θi)

2m

]−m

−
M∑

j=1

(ωj − ωj−1)

[
1 +

γ̄l22(ωj)

2m

]−m
}

. (6.27)

For Rician fading, the generic upper bound Pb,GUB-KL(α, β) in (6.24) on the av-
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erage bit error probability becomes

Pb,GUB-KL(α, β) =
G∑

k=1

(φk − φk−1)(1 + K)

π[2 + 2K + γ̄l2(φk−1)]
exp

[
− Kγ̄l2(φk−1)

2 + 2K + γ̄l2(φk−1)

]

+
H∑

i=1

(θi − θi−1)(1 + K)

π[2 + 2K + γ̄l21(θi)]
exp

[
− Kγ̄l21(θi)

2 + 2K + γ̄l21(θi)

]

−
M∑

j=1

(ωj − ωj−1)(1 + K)

π[2 + 2K + γ̄l22(ωj)]
exp

[
− Kγ̄l22(ωj)

2 + 2K + γ̄l22(ωj)

]
.

(6.28)

In addition to upper bounds, lower bounds on Pb(α, β) are also useful. There

is no lower bound on Pb(α, β) available in the literature. This is because using

the mathematical methods in the literature cannot lead to simple upper bounds

on Q(a, b) for a > b. However, we can obtain some new lower bounds on Pb(α, β)

here, since we have derived some simple upper bounds on Q(a, b) for a > b in

Chapter 4. By using the generic lower exponential bound GLB1-KL in (4.29) as

the lower bound on Q(a, b) for b > a and using the generic upper exponential

bound GUB2-KL in (4.33) as the upper bound on Q(a, b) for a > b, we obtain a

generic lower bound on Pb(α, β) as

Pb(α, β)

≥ Pb,GLB-KL(α, β)

=
1

2
+

1

2

∫ ∞

0

[QGLB1-KL(α
√

γ, β
√

γ)−QGUB2-KL(β
√

γ, α
√

γ)] pγ(γ)dγ

=
1

2π

∫ ∞

0

{
G∑

k=1

(φk − φk−1) exp

[
− l2(φk)γ

2

]
+

H−1∑
i=1

(θi+1 − θi) exp

[
− l21(θi)γ

2

]

−
M−1∑
j=1

(ωj+1 − ωj) exp

[
− l22(ωj)γ

2

] }
pγ(γ)dγ

=
1

2π

{
G∑

k=1

(φk − φk−1)Mγ

[
− l2(φk)

2

]
+

H−1∑
i=1

(θi+1 − θi)Mγ

[
− l21(θi)

2

]

−
M−1∑
j=1

(ωj+1 − ωj)Mγ

[
− l22(ωj)

2

]}
. (6.29)
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Here, the arguments are defined in the same way as those in (6.24), but θ1 = ω1

is required.

It is easy to see that for Nakagami-m fading, the generic lower bound

Pb,GLB-KL(α, β) in (6.29) for the average bit error probability becomes

Pb,GLB-KL(α, β) =
1

2π

{
G∑

k=1

(φk − φk−1)

[
1 +

γ̄l2(φk)

2m

]−m

+
H−1∑
i=1

(θi+1 − θi)

[
1 +

γ̄l21(θi)

2m

]−m

−
M−1∑
j=1

(ωj+1 − ωj)

[
1 +

γ̄l22(ωj)

2m

]−m
}

. (6.30)

For Rician fading, the generic lower bound Pb,GLB-KL(α, β) in (6.29) for the average

bit error probability becomes

Pb,GLB-KL(α, β) =
G∑

k=1

(φk − φk−1)(1 + K)

π[2 + 2K + γ̄l2(φk)]
exp

[
− Kγ̄l2(φk)

2 + 2K + γ̄l2(φk)

]

+
H−1∑
i=1

(θi+1 − θi)(1 + K)

π[2 + 2K + γ̄l21(θi)]
exp

[
− Kγ̄l21(θi)

2 + 2K + γ̄l21(θi)

]

−
M−1∑
j=1

(ωj+1 − ωj)(1 + K)

π[2 + 2K + γ̄l22(ωj)]
exp

[
− Kγ̄l22(ωj)

2 + 2K + γ̄l22(ωj)

]
.

(6.31)

The generic upper bound Pb,GUB-KL(α, β) in (6.24) and the generic lower

bound Pb,GLB-KL(α, β) in (6.29) involve an arbitrarily large number of terms.

We have shown in Chapter 4 that our generic exponential bounds on Q(a, b),

i.e., GUB1-KL in (4.28), GUB2-KL in (4.33), GLB1-KL in (4.29), and GLB2-

KL in (4.35), approach the exact value of Q(a, b) as the number of terms in-

volved increases. Thus, the two error probability bounds, Pb,GUB-KL(α, β) and

Pb,GLB-KL(α, β), which are derived from these generic exponential bounds on

Q(a, b), will also approach the exact value of Pb(α, β) in (6.21) as the number

of terms involved increases.
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6.5 Averages of the Product of Two Gaussian

Q-Functions over Fading Statistics

In addition to the generic exponential bounds on Q(a, b), we have also derived

some erfc bounds on Q(a, b) in Chapter 4. These erfc bounds can also be used to

derive bounds on Pb(α, β) in (6.19), but averaging the product of two Gaussian

Q-functions over the fading statistics will be required. For the case that the two

Gaussian Q-functions are identical, the integral involved in the average has been

evaluated in closed form for Rayleigh fading [5, eq. (5.29)] and Nakagami-m fading

[5, eq. (5.30)]. For the case that the two Gaussian Q-functions are different, the

integral involved has only been solved in closed form for Rayleigh fading [135,

eq. (5)]. In this section, we evaluate the integral for the latter case. We give an

exact result for Nakagami-m fading, and tight upper and lower bounds for Rician

fading, all in closed form. These results will be used to derive some bounds on

Pb(α, β) in Section 6.6.

The average of the product of two Gaussian Q-functions over a fading distri-

bution is given by

I =

∫ ∞

0

pγ(γ)Q(A1
√

γ)Q(A2
√

γ)dγ, A1 ≥ 0, A2 ≥ 0. (6.32)

Here, Q(x) is the Gaussian Q-function, given by [60]

Q(x) =

∫ ∞

x

e−t2/2

√
2π

dt =
1

2
erfc

(
x√
2

)
=

1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ. (6.33)

The product Q(x)Q(y) in (6.32) can be rewritten into a sum of two single

finite-integrals by using a simple geometric approach. We assume that X and Y

are two independent Gaussian random variables with zero mean and unit variance.

Then the product Q(x)Q(y) is the probability of (X,Y ) lying in the shaded area

(X > x, Y > y) in Fig. 6.1. This probability can be obtained by computing the

probability of (X,Y ) lying in the unshaded areas P1 and P2 in the upper right
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X

Y

( ),x y

0

P1

θ

θ

P2

Fig. 6.1: Diagram of the evaluation of the product of two Gaussian Q-functions.

quadrant. This leads to

Q(x)Q(y)

=
1

4
− Pr[(X,Y ) ∈ P1]− Pr[(X,Y ) ∈ P2]

=
1

4
−

∫ π/2−arctan(y/x)

θ=0

∫ x/sin θ

r=0

r

2π
e−r2/2drdθ −

∫ arctan(y/x)

θ=0

∫ y/sin θ

r=0

r

2π
e−r2/2drdθ

=
1

2π

∫ π/2−arctan(y/x)

0

exp

(
− x2

2 sin2 θ

)
dθ +

1

2π

∫ arctan(y/x)

0

exp

(
− y2

2 sin2 θ

)
dθ.

(6.34)

This result turns out to be the same as that in [5, eq. (4.8)].

Substituting (6.34) into (6.32), we can therefore rewrite the integral in (6.32)

as

I =
1

2π

∫ π/2−arctan(A2/A1)

0

Mγ

(
− A2

1

2 sin2 θ

)
dθ

+
1

2π

∫ arctan(A2/A1)

0

Mγ

(
− A2

2

2 sin2 θ

)
dθ. (6.35)

Using the MGFs given in Table 6.2, we can evaluate the average in (6.35) for

various fading models.
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6.5.1 Nakagami-m fading

For Nakagami-m fading, the MGF of γ is given by [5, eq. (2.22)]

Mγ(s) = (1− sγ̄/m)−m, m ≥ 1

2
. (6.36)

Substituting (6.36) into (6.35) leads to

INakagami =
1

2π

∫ π/2−arctan(A2/A1)

0

[
sin2 θ

sin2 θ + A2
1γ̄/(2m)

]m

dθ

+
1

2π

∫ arctan(A2/A1)

0

[
sin2 θ

sin2 θ + A2
2γ̄/(2m)

]m

dθ. (6.37)

The integrals in (6.37) can be solved by using the formula in [5, eq. (5A.24)] which

can be rewritten as

1

π

∫ φ

0

(
sin2 θ

sin2 θ + η

)m

dθ =
φ

π
− 1

π

m−1∑

k=0

(
2k

k

)
(π

2
+ arctan ϕ)$

4k(1 + η)k

− 1

π

m−1∑

k=1

k∑
i=1

Tikϕ$

(1 + ϕ2)k−i+1(1 + η)k
, m integer, (6.38)

where

$ =

√
η

1 + η
signφ,

ϕ = −$ cot φ,

Tik =

(
2k
k

)
(
2k−2i
k−i

)
4i(2k − 2i + 1)

.

Applying (6.38) to (6.37), we obtain a closed-form result for (6.37) with integer

m after some simplifications, namely,

INakagami =
1

4
− 1

2π

m−1∑

k=0

(
2k

k

)[
λ(c1, c2)

4k(1 + c1)k
+

λ(c2, c1)

4k(1 + c2)k

]

+
1

2π

m−1∑

k=1

k∑
i=1

Tik
√

c1c2[(1 + c1)
−i + (1 + c2)

−i]

(1 + c1 + c2)k−i+1
. (6.39)
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Here, c1 = A2
1γ̄/(2m), c2 = A2

2γ̄/(2m), and the function λ(x1, x2) is given by

λ(x1, x2) =

√
x1

1 + x1

arctan

(√
1 + x1

x2

)
.

For the case of Rayleigh fading, i.e., m = 1, (6.39) reduces to

IRayleigh =
1

4
− λ(A2

1γ̄/2, A2
2γ̄/2) + λ(A2

2γ̄/2, A2
1γ̄/2)

2π
. (6.40)

The result in (6.40) turns out to be the same as that in [135, eq. (5)]. Our

derivation has avoided computing the three-fold integral in (6.32) directly, and

thus is much simpler than that in [135].

6.5.2 Rician Fading

For Rician fading, the MGF of γ is given by [5, eq. (2.17)]

Mγ(s) =
1 + K

1 + K − sγ̄
exp

(
Ksγ̄

1 + K − sγ̄

)
. (6.41)

Substituting (6.41) into (6.35) gives

IRician

=
1

2π

∫ π/2−arctan(A2/A1)

0

sin2 θ

sin2 θ + A2
1γ̄/(2 + 2K)

exp

(
− KA2

1γ̄/(2 + 2K)

sin2 θ + A2
1γ̄/(2 + 2K)

)
dθ

+
1

2π

∫ arctan(A2/A1)

0

sin2 θ

sin2 θ + A2
2γ̄/(2 + 2K)

exp

(
− KA2

2γ̄/(2 + 2K)

sin2 θ + A2
2γ̄/(2 + 2K)

)
dθ.

(6.42)

It is difficult to give closed-form results for the integrals in (6.42), but we can upper

and lower bound these integrals by substituting, respectively, the upper and lower

integral limits into the exponential integrands, i.e., using the inequalities

∫ φ

0

e−Ksin2 θ

sin2 θ + η
dθ ≤

∫ φ

0

sin2 θ

sin2 θ + η
exp

[
− Kη

sin2 θ + η

]
dθ

≤ exp

[
− Kη

sin2 φ + η

]∫ φ

0

sin2 θ

sin2 θ + η
dθ. (6.43)
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The integral in the upper and lower bounds in (6.43) can be evaluated in closed

form by using Mathematica or setting m = 1 in the formula in (6.38). Thus, we

have

∫ φ

0

sin2 θ

sin2 θ + η
dθ = φ−

√
η

1 + η
arctan

(√
1 + η

η
tan φ

)
. (6.44)

Applying (6.43) to (6.42) leads to a closed-form upper bound on IRician, i.e.,

IRician ≤ 1

2π
q(r1, r2) exp

[
−K(r1 + r2)

1 + r1 + r2

]
, (6.45)

and a closed-form lower bound on IRician, i.e.,

IRician ≥ 1

2π
q(r1, r2) exp(−K), (6.46)

where r1 = A2
1γ̄/(2 + 2K), r2 = A2

2γ̄/(2 + 2K), and

q(x1, x2) =
π

2
− λ(x1, x2)− λ(x2, x1).

In (6.43), the equalities hold for K = 0 or η → ∞. The second equality also

holds for η = 0. Thus, the bounds on IRician in (6.45) and (6.46) equal the exact

result in (6.42) when K = 0, i.e., reduce to IRayleigh in (6.40). The upper bound is

accurate when r1 and r2 approach infinity or zero. The lower bound grows tighter

as r1 and/or r2 increase. Fig. 6.2 shows that at high SNR, both bounds converge

to the exact value. For low SNR around γ̄ = 0dB, the upper bound is close to the

exact value, and much tighter than the lower bound. If γ̄ decreases further, the

upper bound will merge with the exact value eventually.
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Fig. 6.2: Exact value of IRician in (6.42), its upper bound in (6.45) and its lower bound in
(6.46) versus γ̄.

6.6 Bounds on the Average Bit Error Probabil-

ity Derived from the Simple Erfc Bounds on

the First-Order Marcum Q-Function

We now apply the results in Section 6.5 to bounding the average bit er-

ror probability Pb(α, β) in (6.19). In Section 4.7, for the first-order Marcum Q-

function, Q(a, b), we have derived a simple upper erfc bound, i.e., UB3-KL in

(4.43), and a simple lower erfc bound, i.e., LB3-KL in (4.44). Using the Gaussian

Q-function in (6.33), these two erfc bounds can be rewritten as

QUB3-KL(a, b) = Q (b + a) + Q (b− a) +
e−(b−a)2/2 − e−(b+a)2/2

a
√

2π
, a > 0, b ≥ 0,

(6.47)
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and

QLB3-KL(a, b) = [Q (b + a) + Q (b− a)] [1− 2Q (b)] + 2Q (b) , a ≥ 0, b ≥ 0.

(6.48)

Using (6.47) and (6.48) to bound the Marcum Q-functions in (6.19), we obtain a

new upper bound on Pb(α, β), i.e.,

Pb(α, β) ≤ 1

2
+

1

2

∫ ∞

0

pγ(γ) [QUB3-KL(α
√

γ, β
√

γ)−QLB3-KL(β
√

γ, α
√

γ)] dγ

=

∫ ∞

0

pγ(γ)

{
Q((β − α)

√
γ) +

1

2α
√

2π
√

γ

·
{

exp

[
−(β − α)2γ

2

]
− exp

[
−(β + α)2γ

2

]}

+ [Q((β + α)
√

γ)−Q((β − α)
√

γ)]Q(α
√

γ)

}
dγ, (6.49)

and a new lower bound

Pb(α, β) ≥ 1

2
+

1

2

∫ ∞

0

pγ(γ) [QLB3-KL(α
√

γ, β
√

γ)−QUB3-KL(β
√

γ, α
√

γ)] dγ

=

∫ ∞

0

pγ(γ)

{
Q((β − α)

√
γ) + Q(β

√
γ)− 1

2β
√

2π
√

γ

·
{

exp

[
−(β − α)2γ

2

]
− exp

[
−(β + α)2γ

2

]}

− [Q((β + α)
√

γ) + Q((β − α)
√

γ)]Q(β
√

γ)

}
dγ. (6.50)

In the following, we evaluate the right-hand sides of (6.49) and (6.50) for

Nakagami-m and Rician fading.
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6.6.1 Nakagami-m fading

For Nakagami-m fading, the PDF of γ is given by [5, eq. (2.21)]

pγ(γ) =
mmγm−1

γ̄mΓ(m)
exp

(
−mγ

γ̄

)
, γ ≥ 0. (6.51)

The average of the Gaussian Q-function over Nakagami-m fading is given by

∫ ∞

0

Q(c
√

γ)pγ(γ)dγ =
1

π

∫ ∞

0

∫ π/2

0

exp

(
− c2γ

2 sin2 θ

)
dθpγ(γ)dγ

=
1

π

∫ π/2

0

Mγ

(
− c2

2 sin2 θ

)
dθ

=
1

π

∫ π/2

0

(
1 +

c2γ̄

2m sin2 θ

)−m

dθ. (6.52)

For integer m, the integral in the last step of (6.52) can be evaluated by using the

formula in (6.38), and thus (6.52) becomes [5, eq. (5.18)]

∫ ∞

0

Q(c
√

γ)pγ(γ)dγ =
1

2

[
1−

√
c2γ̄/(2m)

1 + c2γ̄/(2m)

m−1∑

k=0

(
2k

k

)
1

4k[1 + c2γ̄/(2m)]k

]
,

m integer. (6.53)

The average of the exponential function over Nakagami-m fading can be ob-

tained by using the definition of the Gamma function in (3.74), and thus is given

by

∫ ∞

0

γ−1/2 exp

(
−c2γ

2

)
pγ(γ)dγ =

∫ ∞

0

mmγm−3/2

γ̄mΓ(m)
exp

[
−

(
c2

2
+

m

γ̄

)
γ

]
dγ

=
m1/2Γ(m− 1

2
)

γ̄1/2Γ(m) [1 + c2γ̄/(2m)]m−1/2
. (6.54)

Applying (6.53), (6.54) and (6.39) to the RHS of (6.49) leads to a closed-form
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upper bound on Pb(α, β) for integer m, namely

Pb(α, β) ≤ Pb,UB-KL(α, β)

=
1

2
− 1

2π

m−1∑

k=0

(
2k

k

)[
π
√

e1/(1 + e1)− λ(e1, e3)

4k(1 + e1)k

+
λ(e2, e3)

4k(1 + e2)k
+

λ(e3, e2)− λ(e3, e1)

4k(1 + e3)k

]

+
1

2π

m−1∑

k=1

k∑
i=1

{
Tik
√

e2e3[(1 + e2)
−i + (1 + e3)

−i]

(1 + e2 + e3)k−i+1

− Tik
√

e1e3[(1 + e1)
−i + (1 + e3)

−i]

(1 + e1 + e3)k−i+1

}

+
Γ(m− 1

2
)

4
√

πe3Γ(m)

[
(1 + e1)

1
2
−m − (1 + e2)

1
2
−m

]
, m integer,

(6.55)

where e1 = (β − α)2γ̄/(2m), e2 = (β + α)2γ̄/(2m), e3 = α2γ̄/(2m).

Similarly, applying (6.53), (6.54) and (6.39) to the RHS of (6.50), we obtain

a closed-form lower bound on Pb(α, β) for integer m as

Pb(α, β) ≥ Pb,LB-KL(α, β)

=
1

2
− 1

2π

m−1∑

k=0

(
2k

k

)[
π
√

e1/(1 + e1)− λ(e1, e4)

4k(1 + e1)k

+
π
√

e4/(1 + e4)− λ(e4, e2)− λ(e4, e1)

4k(1 + e4)k
− λ(e2, e4)

4k(1 + e2)k

]

− 1

2π

m−1∑

k=1

k∑
i=1

{
Tik
√

e2e4[(1 + e2)
−i + (1 + e4)

−i]

(1 + e2 + e4)k−i+1

+
Tik
√

e1e4[(1 + e1)
−i + (1 + e4)

−i]

(1 + e1 + e4)k−i+1

}

− Γ(m− 1
2
)

4
√

πe4Γ(m)

[
(1 + e1)

1
2
−m − (1 + e2)

1
2
−m

]
, m integer,

(6.56)

where e4 = β2γ̄/(2m).
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6.6.2 Rician Fading

For Rician fading, the PDF of γ is given by [5, eq. (2.16)]

pγ(γ) =
(1 + K)e−K− (1+K)γ

γ̄

γ̄
I0

(
2

√
K(1 + K)γ

γ̄

)
, γ ≥ 0.

The average of the Gaussian Q-function over Rician fading can be solved by

using the result in [132, eq. (19)], i.e.,

∫ ∞

0

Q(c
√

γ)pγ(γ)dγ = Q[u(d), v(d)]− w(d)

2

[
1 +

√
d

1 + d

]
,

where d = c2γ̄/(2 + 2K), and

u(x) =

√
K

[
1 + 2x− 2

√
x(1 + x)

]
/(2 + 2x),

v(x) =

√
K

[
1 + 2x + 2

√
x(1 + x)

]
/(2 + 2x),

w(x) = exp [−K(1 + 2x)/(2 + 2x)] I0 [K/(2 + 2x)] .

The average of the exponential function over Rician fading can be obtained

by applying [124, eq. (6.618 4)]

∫ ∞

0

γ−1/2 exp

(
−c2γ

2

)
pγ(γ)dγ =

√
(1 + K)π

γ̄(1 + d)
w(d). (6.57)

For the average of the two products of Gaussian Q-functions over Rician

fading, to obtain an upper bound on Pb(α, β), we use the upper bound in (6.45)

to bound the integral corresponding to the positive product and use the lower

bound in (6.46) to bound the integral corresponding to the negative product.

Thus, the RHS of (6.49) can be further upper bounded in closed form, and an
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upper bound on Pb(α, β) can be given by

Pb(α, β) ≤ Pb,UB-KL(α, β)

= Q(u(d1), v(d1))−
[
1 +

√
d1

1 + d1

− 1

2
√

d3(1 + d1)

]

· w(d1)

2
− w(d2)

4
√

d3(1 + d2)
+

1

2π
q(d2, d3)

· exp

[
−K(d2 + d3)

1 + d2 + d3

]
− 1

2π
q(d1, d3) exp(−K), (6.58)

where d1 = (β − α)2γ̄/(2 + 2K), d2 = (β + α)2γ̄/(2 + 2K), d3 = α2γ̄/(2 + 2K).

To obtain a lower bound on Pb(α, β), we use the upper bound in (6.45) to

bound the averages of the two positive products of Gaussian Q-functions in (6.50).

Thus, the RHS of (6.50) can be further lower bounded in closed form, and a lower

bound on Pb(α, β) is given by

Pb(α, β) ≥ Pb,LB-KL(α, β)

= Q(u(d1), v(d1)) + Q(u(d4), v(d4))−
[
1 +

√
d1

1 + d1

+
1

2
√

d4(1 + d1)

]

· w(d1)

2
−

[
1 +

√
d4

1 + d4

]
w(d4)

2
+

w(d2)

4
√

d4(1 + d2)
− 1

2π
q(d2, d4)

· exp

[
−K(d2 + d4)

1 + d2 + d4

]
− 1

2π
q(d1, d4) exp

[
−K(d1 + d4)

1 + d1 + d4

]
, (6.59)

where d4 = β2γ̄/(2 + 2K).

6.7 Comparison and Numerical Results

In this section, we give some numerical results to show the tightness of our

new upper and lower bounds derived in Sections 6.4 and 6.6 for the average bit

error probability of QFRs for single-channel, differentially coherent and quadratic

detections over Nakagami-m and Rician fading channels. We also compare the

tightness of our new upper bounds with that of the existing upper bounds, i.e.,
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Pb,UB-SA(α, β) in (6.22) and Pb,UB-AT (α, β) in (6.23).

6.7.1 Nakagami-m fading

In Section 6.4, we have derived a generic upper bound, i.e., Pb,GUB-KL(α, β) in

(6.24), and a generic lower bound, i.e., Pb,GLB-KL(α, β) in (6.29), on the average

bit error probability Pb(α, β) in (6.21). This pair of bounds was derived from

our generic exponential bounds on Q(a, b). They are given in terms of weighted

sums of an arbitrarily large number of the MGFs of the SNR per bit, and are

applicable to a variety of fading channel models. For Nakagami fading, they have

the explicit expressions in (6.27) and (6.30). In Section 6.6.1, by using our simple

erfc bounds on Q(a, b), we have also derived another pair of bounds on Pb(α, β),

i.e., the upper bound Pb,UB-KL(α, β) in (6.55), and the lower bound Pb,LB-KL(α, β)

in (6.56). For different cases, the values of the parameters in the generic bounds,

Pb,GUB-KL(α, β) in (6.27) and Pb,GLB-KL(α, β) in (6.30), required to achieve a

satisfactory tightness may be different. For simplicity, in all our numerical results

for these generic bounds, we set G = H = M = 5 and choose equispaced points

for φk, θi and ωj, i.e., φk = kπ/G, θi = π − arcsin(α/β) + i arcsin(α/β)/H, and

ωj = π − arcsin(α/β) + j arcsin(α/β)/M . The exact value of the average bit

error probability Pb(α, β) in (6.21) is shown by the solid line. The new generic

bounds Pb,GUB-KL(α, β) in (6.27) and Pb,GLB-KL(α, β) in (6.30) are shown by the

dash-dotted lines. The new bounds Pb,UB-KL(α, β) in (6.55) and Pb,LB-KL(α, β) in

(6.56) are shown by the dashed lines. The existing upper bounds Pb,UB-SA(α, β)

in (6.22) and Pb,UB-AT (α, β) in (6.23) are shown by the dotted lines.

We first consider the case of DQPSK with Gray coding where α =
√

2−√2

and β =
√

2 +
√

2. Figs. 6.3, 6.4 and 6.5 show the results for Nakagami-m fading

with m = 1, m = 2 and m = 5, respectively. The case of m = 1 shows the re-

sults for Rayleigh fading. We can see that our new lower bounds Pb,GLB-KL(α, β)

and Pb,LB-KL(α, β) are tight. Our generic upper bound Pb,GUB-KL(α, β) is tighter

than the existing bounds Pb,UB-SA(α, β) and Pb,UB-AT (α, β). Our upper bound
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Pb,UB-KL(α, β) is tighter than the existing bound Pb,UB-SA(α, β), and for most

cases also tighter than Pb,UB-AT (α, β). The bound Pb,UB-KL(α, β) is only looser

than Pb,UB-AT (α, β) either at low SNR or for the case of m = 1. Then we con-

sider the case of binary correlated signals, where α =
√

(1−
√

1− |ς|2)/2 and

β =
√

(1 +
√

1− |ς|2)/2. Figs. 6.6 and 6.7 show the results for |ς| = 0.5 and

|ς| = 0.95, respectively, over Nakagami fading with m = 1. Figs. 6.8 and 6.9

show the results for |ς| = 0.5 and |ς| = 0.95, respectively, over Nakagami fad-

ing with m = 5. We can see that for this modulation scheme, our new lower

bounds Pb,GLB-KL(α, β) and Pb,LB-KL(α, β) are also tight. Our generic upper

bound Pb,GUB-KL(α, β) is tighter than the existing bounds Pb,UB-SA(α, β) and

Pb,UB-AT (α, β). Our upper bound Pb,UB-KL(α, β) is tighter than the existing bound

Pb,UB-SA(α, β), and also tighter than the existing bound Pb,UB-AT (α, β) when the

magnitude of the correlation coefficient is large.

6.7.2 Rician fading

For Rician fading, the explicit expressions for the generic upper bound

Pb,GUB-KL(α, β) and the generic lower bound Pb,GLB-KL(α, β) are given in (6.28)

and (6.31), respectively. In Section 6.6.2, we have given another pair of bounds,

i.e., the upper bound Pb,UB-KL(α, β) in (6.58), and the lower bound Pb,LB-KL(α, β)

in (6.59). Here, we also set G = H = M = 5 for the generic bounds

Pb,GUB-KL(α, β) in (6.28) and Pb,GLB-KL(α, β) in (6.31), and choose equispaced

points for φk, θi and ωj, just as in the case of Nakagami-m fading.

Figs. 6.10 and 6.11 show the results for the case of DQPSK with Gray coding

over Rician fading with K = 5 and K = 15, respectively. We can see that

our new lower bounds Pb,GLB-KL(α, β) and Pb,LB-KL(α, β) are tight. Our generic

upper bound Pb,GUB-KL(α, β) is tighter than the existing bounds Pb,UB-SA(α, β)

and Pb,UB-AT (α, β). Our upper bound Pb,UB-KL(α, β) is tighter than the existing

bound Pb,UB-SA(α, β), but only tighter than Pb,UB-AT (α, β) when K is large and

SNR is neither very low nor very high. Figs. 6.12 and 6.13 show the results for

237



CHAPTER 6. PERFORMANCE ANALYSIS OF QUADRATIC-FORM RECEIVERS

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Average SNR per Bit (dB)

A
ve

ra
ge

 B
it 

E
rr

or
 P

ro
ba

bi
lit

y 
P

b(α
,β

)

P
b,UB−SA

(α,β)

P
b,UB−AT

(α,β)

P
b,UB−KL

(α,β)

P
b,GUB−KL

(α,β)

Exact

P
b,LB−KL

(α,β)

P
b,GLB−KL

(α,β)

Fig. 6.3: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of DQPSK
with Gray coding, where α =

√
2−√2 and β =

√
2 +

√
2, over Nakagami fading

with m = 1.
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Fig. 6.4: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of DQPSK
with Gray coding, where α =

√
2−√2 and β =

√
2 +

√
2, over Nakagami fading

with m = 2.
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Fig. 6.5: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of DQPSK
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√
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√
2 +

√
2, over Nakagami fading

with m = 5.
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Fig. 6.6: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2, and
|ς| = 0.5, over Nakagami fading with m = 1.
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Fig. 6.7: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2, and
|ς| = 0.95, over Nakagami fading with m = 1.
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Fig. 6.8: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2, and
|ς| = 0.5, over Nakagami fading with m = 5.
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Fig. 6.9: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.27) (dash-dotted line) and (6.55) (dashed line), the new lower bounds in
(6.30) (dash-dotted line) and (6.56) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2, and
|ς| = 0.95, over Nakagami fading with m = 5.
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the case of binary correlated signals with |ς| = 0.5 and |ς| = 0.95, respectively,

over Rician fading with K = 5. Figs. 6.14 and 6.15 show the results for the case

of binary correlated signals with |ς| = 0.5 and |ς| = 0.95, respectively, over Rician

fading with K = 15. We can see that our generic upper bound Pb,GUB-KL(α, β)

is tighter than the existing bounds Pb,UB-SA(α, β) and Pb,UB-AT (α, β), although

for the case of small |ς| and large K, Pb,GUB-KL(α, β) may need a larger G to

outperform Pb,UB-AT (α, β). For example, for the case of |ς| = 0.02 and K = 10,

Pb,GUB-KL(α, β) with G = 5 and H = M = 2 is looser than Pb,UB-AT (α, β), but

Pb,GUB-KL(α, β) with G = 8 and H = M = 2 is tighter than the latter. Our upper

bound Pb,UB-KL(α, β) is tighter than the existing bound Pb,UB-AT (α, β) at medium

and high SNR for large |ς|. This bound and Pb,LB-KL(α, β) are very close to the

exact value at high SNR for large K and |ς|.

6.8 Summary

In this chapter, we have shown the applications of our new representations,

generic exponential bounds, and simple erfc bounds derived in Chapter 4 for the

first-order Marcum Q-function, Q(a, b), to error performance analysis of QFRs for

a variety of single-channel, differentially coherent and quadratic detections. We

have derived a new single-finite-integral expression for the average bit error prob-

ability of QFRs. This expression is applicable for various fading channel models,

and is more robust than its counterpart in the literature. We have also derived

a pair of generic upper and lower bounds on the average bit error probability of

QFRs for a variety of fading channel models by using our generic exponential

bounds on Q(a, b). Besides, we have derived, for each of Nakagami-m fading and

Rician fading, another pair of upper and lower bounds on the average bit error

probability of QFRs by using our simple erfc bounds on Q(a, b). Our new lower

bounds are the only lower bounds available thus far, and they have been shown to

be tight. Our generic upper bound on the average bit error probability of QFRs
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Fig. 6.10: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.28) (dash-dotted line) and (6.58) (dashed line), the new lower bounds
in (6.31) (dash-dotted line) and (6.59) (dashed line), and the existing upper
bounds in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of
DQPSK with Gray coding, where α =

√
2−√2 and β =

√
2 +

√
2, over Rician

fading with K = 5.
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Fig. 6.11: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.28) (dash-dotted line) and (6.58) (dashed line), the new lower bounds
in (6.31) (dash-dotted line) and (6.59) (dashed line), and the existing upper
bounds in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of
DQPSK with Gray coding, where α =

√
2−√2 and β =

√
2 +

√
2, over Rician

fading with K = 15.
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Fig. 6.12: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.28) (dash-dotted line) and (6.58) (dashed line), the new lower bounds in
(6.31) (dash-dotted line) and (6.59) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2,
and |ς| = 0.5, over Rician fading with K = 5.
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Fig. 6.13: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.28) (dash-dotted line) and (6.58) (dashed line), the new lower bounds in
(6.31) (dash-dotted line) and (6.59) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2,
and |ς| = 0.95, over Rician fading with K = 5.
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Fig. 6.14: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.28) (dash-dotted line) and (6.58) (dashed line), the new lower bounds in
(6.31) (dash-dotted line) and (6.59) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2,
and |ς| = 0.5, over Rician fading with K = 15.
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Fig. 6.15: The average bit error probability in (6.21) (solid line), the new upper bounds
in (6.28) (dash-dotted line) and (6.58) (dashed line), the new lower bounds in
(6.31) (dash-dotted line) and (6.59) (dashed line), and the existing upper bounds
in (6.22) (dotted line) and (6.23) (dotted line) versus γ̄ for the case of binary

correlated signals, where α =
√

(1−
√

1− |ς|2)/2, β =
√

(1 +
√

1− |ς|2)/2,
and |ς| = 0.95, over Rician fading with K = 15.
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when evaluated with a few terms has been shown to be tighter than the existing

bounds available in the literature for Nakagami-m and Rician fading. Our upper

bounds derived from the simple erfc bounds on Q(a, b) have also been shown to

be tighter than the existing bounds in some cases.

In addition, we have also evaluated the averages of the product of two Gaus-

sian Q-functions over fading statistics. For Nakagami-m fading, an exact closed-

form result has been derived. For Rician fading, a pair of closed-form, upper and

lower bounds has been obtained and shown to be asymptotically tight. These

results have been used in the derivation of the closed-form bounds on the average

bit error probability of QFRs based on the simple erfc bounds on Q(a, b).
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

QFRs are receivers which have quadratic-form decision metrics. They are

commonly used in communication systems. In this dissertation, we have studied

some topics on design and performance analysis of QFRs.

We started with the performance analysis of QRs in MIMO systems. As one

type of QFRs, QRs are also referred to as square-law receivers, and are usually

used when knowledge of the received carrier phase is not available at the receiver.

MIMO systems have been widely accepted as a bandwidth-saving approach to

increasing the capacity of wireless communication systems, and STC is a popular

technique to achieve the capacity of MIMO systems. Among all the STC struc-

tures, USTM is the one that uses a QR to detect signals without CSI at either the

transmitter or the receiver. For USTM, we have derived some simple, tight, upper

and lower bounds on the PEP of the QR over the Rayleigh block-fading channel.

Our analytical and numerical results have shown that these simple bounds are

tighter than the existing bounds in the literature either over a particular SNR

range or over the entire SNR range. They have also led to some modifications for

the USTM constellation design criteria.

In addition to the performance analysis of the conventional QR for USTM,
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we have also contributed to designing new receivers, i.e., the GQRs, to improve

the error performance of USTM. For USTM, perfect knowledge of CSI at the re-

ceiver can bring about a 2–4 dB gain in SNR. To realize this large performance

improvement potential, we have designed the GQRs to incorporate channel esti-

mation into the receivers for various unitary space–time constellations, including

the USTC-OD, OUSTC and general NOUSTC. These GQRs estimate the channel

gains without the help of additional training signals, and thus conserve bandwidth

resources. They exploit the channel memory to improve the channel estimation

accuracy, and thus bridge the performance gap between the QR and the CR as

the channel memory span exploited in channel estimation increases. For the GQR

designed for the USTC-OD with two or four transmit antennas and the GQR

designed for OUSTC, closed-form expressions of the PEP have been derived. The

GQRs have been shown to work well in both slow and fast fading environments,

and the improvement obtained by exploiting the channel memory decreases with

the channel fade rate. The GQR for the USTC-OD with two or four transmit

antennas have been simplified, and its complexity can be much less than those of

the original form and the simplified form of the QR when the constellation size is

large and the channel memory span exploited is small.

After analyzing the QR and deriving the GQRs for USTM, we extend our

research to the performance analysis of a general QFR, whose decision metric is

given in terms of a general quadratic form in complex Gaussian random variables.

Receivers for a variety of coherent, differentially coherent, partially coherent, and

quadratic detections with diversity can be written as a special case of this general

QFR. The bit error probability of this general QFR has been given in the litera-

ture in terms of the first-order Marcum Q-function, Q(a, b), and the generalized

Marcum Q-function, Qm(a, b). To facilitate the error performance analysis of the

general QFR over fading channels, we have studied the first-order Marcum Q-

function and the generalized Marcum Q-function by using a geometric approach.

We began with the first-order Marcum Q-function. By taking a geometric view of
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Q(a, b), we have derived some new representations and upper and lower bounds

for Q(a, b). Our new finite-integral representations of Q(a, b) are simpler than

their counterparts in the literature. Our new closed-form bounds include the

generic and simple exponential bounds and the generic and simple erfc bounds.

The generic bounds have been shown to approach the exact value of Q(a, b) as

the number of terms involved increases. The simple bounds have been shown to

be tighter than the existing exponential bounds in most cases, especially when

the arguments a and b are large. In addition to the closed-form bounds, we have

also developed some generic and simple single-integral bounds which involve single

finite integrals. These single-integral bounds may be tighter than the exponen-

tial bounds and the erfc bounds in some cases, but at a cost of involving single

integrals.

Then we extended the geometric approach to the generalized Marcum Q-

function. Based on a novel geometric view of Qm(a, b), we have derived a new

closed-form representation of Qm(a, b) for m being an odd multiple of 0.5, which

is the first closed-form representation of Qm(a, b) for this case, involving only

simple exponential functions and erfc functions. We have also derived a pair

of new finite-integral representations of Qm(a, b) for m being an integer, which

are more robust than their counterparts in the literature. We have shown that

Qm+0.5(a, b) and Qm−0.5(a, b) are, respectively, tight upper and lower bounds on

Qm(a, b), and their average is a good approximation of Qm(a, b). Thus, for the

case of m integer, Qm+0.5(a, b) and Qm−0.5(a, b) can be evaluated by using our

new closed-form representation, and can be used to bound Qm(a, b) tightly. In

addition to these two bounds, we have also derived some generic exponential

bounds and erfc bounds on Qm(a, b) of integer order m. These generic bounds

approach the exact value of Qm(a, b) as the number of terms involved increases.

When evaluated with a few terms, our generic upper bounds can be tighter than

the existing bounds in some cases. Our generic lower bounds can be tighter than

the existing exponential bounds for a wide range of values of the arguments, and
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can be even tighter than the existing Ik-bounds when b is less than a.

With these new representations and bounds for the Marcum Q-functions, we

can obtain some new results for the error performance analysis of the general QFR

over fading channels. In the literature, receivers in a variety of single-channel,

differentially coherent and quadratic detections have been shown as spacial cases

of the general QFR whose conditional bit error probability involves only the first-

order Marcum Q-functions with both the arguments being proportional to the

square root of the instantaneous SNR. For this type of QFRs, we have illustrated

some applications of our results for Q(a, b) to evaluating the average bit error

probability. By using the new representations of Q(a, b), we have derived a new

single-finite-integral expression for the average bit error probability of QFRs over

generalized fading channels, which is more robust than its counterpart in the

literature. By using our generic exponential bounds on Q(a, b), we have derived

a pair of generic upper and lower bounds on the average bit error probability

of QFRs over generalized fading channels, which approach the exact value of

the average bit error probability as the number of terms involved increases. By

using our simple erfc bounds on Q(a, b), we have derived, for each of Nakagami-

m fading and Rician fading, a pair of upper and lower bounds on the average

bit error probability of QFRs. Our new lower bounds on the average bit error

probability of QFRs are the only lower bounds available thus far, and they have

been shown to be tight. When evaluated with a few terms, our generic upper

bound on the average bit error probability of QFRs has been shown to be tighter

than the existing bounds for Nakagami-m and Rician fading. Our upper bounds

derived from the simple erfc bounds on Q(a, b) have also been shown to be tighter

than the existing bounds in some cases. As a basis of applying our simple erfc

bounds on Q(a, b) to evaluating the average bit error probability of QFRs, we

have also evaluated the averages of the product of two Gaussian Q-functions over

fading statistics. For Nakagami-m fading, an exact closed-form result has been

derived. For Rician fading, a pair of closed-form, upper and lower bounds has
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been obtained and shown to be asymptotically tight.

7.2 Future Work

7.2.1 Applications of New Representations and Bounds

for the Generalized Marcum Q-Function

In this dissertation, we have shown some applications of our new representa-

tions and bounds for Q(a, b) to the error performance analysis of QFRs for a variety

of single-channel, differentially coherent and quadratic detections. In our future

work, we will also work on the applications of our new representations and bounds

on Qm(a, b) to the error performance analysis of QFRs for multichannel reception.

In the case of multichannel reception, to obtain the average error probability of

QFRs over fading channels, we need to average the conditional error probability

of QFRs over the distribution of the total instantaneous SNR at the output of the

diversity combiner. This distribution depends on the combining technique used

in detection, and in some cases it may be very complicated [5, 118, 143]. Averag-

ing the conditional error probability of QFRs over these complicated distributions

may be difficult. Thus, we still have a lot of work to do to obtain closed-form,

exact expressions or tight bounds for the average error probability of QFRs for

multichannel reception.

7.2.2 Extension of the Generalized Marcum Q-Function

and Performance Analysis of QFRs

In Chapter 5, we have shown that if the real Gaussian random variables

{zi}n
i=1 are independent and have means {pi}n

i=1 and variances 1, i.e., zi is N (pi, 1)

distributed, then the generalized Marcum Q-function gives the tail probability of
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the sum of the noncentral chi-square random variables {z2
i }n

i=1, i.e., we have

Qm (a, b) = Pr

(
n∑

i=1

z2
i > b2

)
, (7.1)

where a2 =
∑n

i=1 p2
i . In Chapter 6, we have discussed the general quadratic form

in complex Gaussian random variables

D =
N∑

k=1

(A|Xk|2 + B|Yk|2 + CXkY
∗
k + C∗X∗

kYk), (7.2)

where Xk’s are independent CN (X̄k, 2µxx) distributed, Yk’s are independent

CN (Ȳk, 2µyy) distributed, and we have E[(Xk − X̄k)(Yk − Ȳk)
∗] = 2µxy, E[(Xk −

X̄k)(Yi− Ȳi)
∗] = 0 for k 6= i. Here, the variances, µxx and µyy, and the covariance,

µxy, are independent of the channel index k. The probability of D being negative

has been shown to be given by

Pr(D < 0) =
(v2/v1)

N

(1 + v2/v1)
2N−1

N∑

k=1

(
2N − 1

N − k

)

·
{(

v1

v2

)k

Qk(a, b)−
(

v2

v1

)k−1

Qk(b, a) +

(
v2

v1

)k−1
}

. (7.3)

Comparing the expression of D in (7.2) with the quantity in the brackets in (7.1),

it is easy to understand why the probability Pr(D < 0) can be given in terms of

the generalized Marcum Q-functions.

An extension of the general quadratic form in (7.2) can be given by

Dg =
N∑

k=1

(Ak|Xk|2 + Bk|Yk|2 + CkXkY
∗
k + C∗

kX
∗
kYk). (7.4)

Here, Xk’s and Yk’s have the same definitions as those in (7.2). The constant coef-

ficients Ak, Bk and Ck now are dependent on the channel index k. The variances,

µxx and µyy, and the covariance, µxy, are still assumed to be independent of the

channel index k, since the effect of Xk’s and Yk’s having different variances and
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covariances for different k can be reflected by the coefficients Ak’s, Bk’s and Ck’s

and the corresponding changes in the values of X̄k’s and Ȳk’s.

Another general quadratic form in complex Gaussian random variables dis-

cussed a lot in the literature is given by

Df = r†Fr. (7.5)

This is an indefinite Hermitian quadratic form of the N -dimensional complex

Gaussian random vector r. Here, F is an N × N Hermitian matrix, i.e., we

have F = F†, and r is CN (mr,Vr) distributed. This general quadratic form

also generalizes decision metrics of a variety of coherent, differentially coherent,

partially coherent, and quadratic detections, and applies to various detections by

using different definitions for the Gaussian random vector r and the Hermitian

matrix F [20, 34–38]. In [36] and [20, Appendix B], the indefinite quadratic

form in (7.5) was shown to be equivalent to a weighted sum of norm squares of

independent complex Gaussian random variables with different nonzero means

and identical variances, i.e., we have

Df =
N∑

k=1

αk|qk|2. (7.6)

Here, q = [q1, q2, · · · , qN ] is CN (U†L−1mr, IN) distributed; L is any nonsingular

factorization of Vr such that Vr = LL†; ∆ = diag(α1, α2, · · · , αN) is the

diagonal real eigenvalue matrix of L†FL, and U is the corresponding unitary

eigenvector matrix. Comparing (7.6) with (7.4), we can see that the quadratic

form in (7.5) or the difference of two such quadratic forms can be regarded as a

special case of the quadratic form in (7.4).

For the case of X̄k = Ȳk = 0, k = 1, · · · , n, the CF and the CDF of the

general quadratic form in (7.4) have been evaluated in [29]. However, even for

this zero-mean case, the CDF was just given in an implicit residue form, and is

not easy to use. Thus, evaluating the CDF of Dg in (7.4) in explicit closed form

259



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

for both the nonzero-mean and zero-mean cases is still an open problem.

From (7.3), we can see that the probability of D being negative can be given

in terms of the weighted differences of two generalized Marcum Q-functions with

the arguments in the reverse order. This result inspires us to investigate in our

future work the possibility of expressing the probability of Dg being negative in

terms of some weighted differences of two super generalized Marcum Q-functions.

This super generalized Marcum Q-function can be regarded as an extension of the

generalized Marcum Q-function in (7.1), and can be defined as the tail probability

of the weighted sum of the noncentral chi-square random variables {z2
i }n

i=1, namely

Qm (a, b,Λ) = Pr

(
n∑

i=1

λiz
2
i > b2

)
. (7.7)

Here, {zi}n
i=1 are independent Gaussian random variables with CN (pi, 1) distri-

bution, and we have λi > 0, Λ = diag{λ1, · · · , λn} and a2 =
∑n

i=1 p2
i . The

complement of this super generalized Marcum Q-function, i.e, 1−Qm (a, b,Λ) =

Pr

(
n∑

i=1

λiz
2
i < b2

)
, has been studied a lot in the literature, such as in [39, 144–147].

We can also extend our geometric approach to the evaluation of the right-hand

side of (7.7) to see whether we can obtain some new representations and bounds

for Qm (a, b,Λ). If we can express the probability of Dg being negative in terms of

the super generalized Marcum Q-functions compactly, we can give some explicit,

compact, closed-form results for the error performance of QFRs for a variety of

coherent, differentially coherent, partially coherent, and quadratic detections.
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