
Performance Analysis of

Space-Time Block Coded Systems

with Channel Estimation

Shan Cheng

M.Eng, Zhejiang University, P.R. China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

May 2006



Ackowledgements

I would like to express my profound gratitude to my supervisors: Dr. A. Nal-

lanathan and Prof. P. Y. Kam, for their invaluable guidance and endless patience

throughout the entire duration of my Ph.D course.

I would like to thank my parents and other family members. Their love, patience

and understanding have accompanied me all the way along. Special regards to my

beloved grandfather, who departed us in 2004.

I am also thankful to my labmates and friends, not only for their resourceful dis-

cussion in research, but their friendship that makes my life pleasant and joyful.



Abstract

The capacity of a wireless communication system can be increased considerably by using

multiple transmit and receive antennas. The high-data rate provided by such Multiple-

input-multiple-output (MIMO) communication systems make them promising for next-

generation wireless communication. Among these MIMO techniques, space-time block

coding (STBC) has attracted much research interests. The orthogonal structure of

STBC allows every symbol transmitted to be decoupled at the receiver using only linear

processing. Such a symbol-by-symbol receiver is simple yet efficient in implementation

to achieve the gain provided by both transmit and receive diversities.

To coherently decode the STBC, ideally perfect channel state information (CSI)

would be used at the receiver. As the channel information is not readily available

at the receiver in practice, channel estimates are used to perform coherent detection.

The optimum maximum likelihood detector with imperfect channel estimation is far

more computationally complicated than the optimum symbol-by-symbol detector when

perfect CSI is available. In this dissertation, we propose a symbol-by-symbol channel

estimation receiver for STBC systems, which is sub-optimal but computationally efficient

for implementation and can be applied to many channel models with their corresponding

estimators. In particular, we analyze the bit error probability (BEP) performance of this

receiver when minimum mean-square-error estimates are available.

We first derive the BEP performance of the receiver with maximum ratio combining.

The BEP result is given in an exact closed-form expression, which shows the direct

dependence on the mean square error of the channel estimator and the signal-to-noise

ratio. An upper bound is derived to show the maximum diversity order achievable, which

is determined by the product of the numbers of transmit and receive antennas. We

then extend the work to a system with selection combining schemes, where the receiver



selects the received signal from one or several antennas with best quality according to

the channel estimates. Exact closed-form BEP expressions are derived. The results

show that the selection combining systems achieve the diversity gain provided by the

total number of available receive antennas, but independent of the number of antennas

chosen.

Transmit antenna selection (TAS) is a technique to exploit the transmit diversity

other than space-time coding. We propose a TAS/STBC system based on the channel

estimation receiver structure. Through a feedback link, the receiver informs the trans-

mitter which antennas to be used for STBC transmission. This TAS/STBC system has

a simple yet energy-saving structure, while exhibits the full diversity order provided by

the total number of transmit antennas. An BEP upper bound is obtained in closed-

form for the TAS/STBC systems. Particularly, exact BEP expressions are derived for

TAS/STBC systems with single receive antenna, which is important in down-link com-

munication scenarios.

The designs of orthogonal STBC so far known are limited. Unitary space-time

modulation (USTM) treats the whole transmission block as one constellation, and thus

provides many more possible designs while maintaining the orthogonality of signals.

However, there is no systematic method for optimal USTM constellation design. Thus we

propose a systematic algorithm to search for sub-optimal differential unitary space-time

modulation. The constellations generated by the proposed simple algorithm exhibits

better performance than the well-known cyclic codes.

In summary, in this dissertation, space-time block coded communication systems

with imperfect channel estimation are extensively studied and BEP performances are

obtained in closed-forms. Improved algorithms for constellation search are also proposed

for differential unitary space-time modulation systems.
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Chapter 1

Introduction

The ability to communicate with people on the move has evolved remarkably ever

since 1897, when Guglielmo Marconi first demonstrated continuous contacts with ships

sailing the English Channel using a radio. More recently, the technical breakthroughs in

digital and radio frequency circuit fabrication, new large-scaled circuit integration and

other miniaturization technologies have made the portable radio equipment smaller,

cheaper by orders of magnitude for the past several decades, and will continue at an

even greater pace for the coming decade.

1.1 Introduction to Wireless Communication Sys-

tems

More than 20 years have passed since the first-generation mobile communication

services using analog technology started in the early 1980s. From the early 1990s, digital

cellular and cordless systems (e.g. PDC/GSM/IS54 and IS95) have been introduced

around the world as the second-generation (2G) mobile communication systems capable

of voice and short message communications. The 2G services have been integrated

into our everyday life and society extensively after explosive growth for more than ten

1



CHAPTER 1. INTRODUCTION

years. Meanwhile, research and standardization have been carried out toward the third-

generation (3G) mobile communication systems for the past decade, which is capable

of mobile multimedia services and international seamless roaming. Telecommunication

companies worldwide are now beginning to deploy 3G systems for commercial service

and we will soon be in the era of 3G. As for researchers and engineers, they have already

put their sight to a highly reliable and higher capacity wireless digital system, which is to

be called as the fourth-generation (4G) mobile radio communication systems. The next-

generation requires high speed reliable wireless systems for multimedia communications

services, including voice, data, and image.

The tremendous growth in demand for higher data rates is now out of the range of

current radio technology. Given a limited radio spectrum, the only way to support high

data rates is to develop new spectrally efficient radio communication techniques.

1.2 A Literature Review of Space-Time Coding

Wireless transmission under fading channel suffers from attenuation due to de-

structive addition of multipaths in the propagation media and due to the reflec-

tions,scatterings, interference from other users, etc.. Severe attenuation makes it im-

possible for the receiver to determine the transmitted signal unless some less-attenuated

replica of the transmitted signal is provided to the receiver. This resource is called

diversity and it is the single most important contributor to reliable wireless communi-

cations. Examples of diversity techniques are, but not restricted to, temporal diversity,

frequency diversity, and antenna diversity. Conventionally, to exploit the receive an-

tenna diversity, multiple antennas are deployed at the receiver side to increase the link

capacity. Recently, researchers have found ways to deploy multiple antennas at the

transmit side to further increase the communication capacity. Thus a communication

system with multiple transmit and multiple receive antennas is formed, and we call it a

2



1.2. A LITERATURE REVIEW OF SPACE-TIME CODING

multiple-input-multiple-output (MIMO) communication system. A brief historic review

of MIMO systems is given as following

1.2.1 Simulcast

The concept of MIMO system can be traced back to 1987, when Winters proposed

two basic communication systems in [1]: communication between multiple mobiles and a

base station with multiple antennas, and communication between two mobiles each with

multiple antenna. This is the first paper that discusses the use of multiple antennas at

both ends of the radio link and gives the capacity expression in terms of the eigenvalues

of the channel matrix. In [2] and [3], the authors considered a communication network

where several adjacent base station simultaneously transmit the same message. Later,

and independently, a similar scheme was suggested by Seshadri and Winters for a sin-

gle base station in which copies of the same symbol are transmitted through multiple

antennas at different times [4], hence creating an artificial multipath distortion. Then

a maximum likelihood sequence estimator or a minimum mean squared error (MMSE)

equalizer is used to resolve multipath distortion and obtain diversity gain.

1.2.2 BLAST

Subsequently, Foschini presented the analytical basis of MIMO systems in [5, 6],

where he proposed key expressions for the enhanced capacity of MIMO systems. Refer-

ence [5] is the first paper in which Bell Lab proposed BLAST (Bell-lab Layered Archi-

tecture of Space-Time) as communication architecture for the transmission of high data

rates using multiple antennas at the transmitter and receiver. In the proposed BLAST

system the data stream is divided into blocks which are distributed among the transmit

antennas. In vertical BLAST sequential data blocks are distributed among consecutive

antenna elements, whereas in diagonal BLAST, they are circularly rotated among the

antenna elements. The BLAST signal processing algorithms used at the receiver are

3



CHAPTER 1. INTRODUCTION

the heart of the technique. At the bank of receiving antennas, high-speed signal proces-

sors look at the signals from all the receive antennas simultaneously, first extracting the

strongest substream and then proceeding with the remaining weaker signals, which are

easier to recover once the stronger signals have been removed as a source of interference.

Again, the ability to separate the substreams depends on the slight differences in the

way the different substreams propagate through the environment.

Under the widely used theoretical assumption of independent Rayleigh scattering,

the theoretical capacity of the BLAST architecture grows roughly linearly with the

number of antennas, even when the total transmitted power is held constant. The

laboratory prototype [7] has already demonstrated spectral efficiencies of 20 - 40 bits per

second per Hertz of bandwidth, numbers which are simply unattainable using standard

techniques.

1.2.3 Space-Time Trellis Codes

Although the first attempt to jointly encode multiple transmit antennas was pre-

sented in [4], the key development of the space-time coding concept was originally re-

vealed in [8] in the form of trellis codes. Somehow, space-time trellis codes (STTC)

can be viewed as an improvement of the delay diversity scheme. The example trellis

diagram of delay diversity is shown below in Figure 1.1. By simply swapping the odd

row of the delay-diversity trellis diagram, 2.5-dB coding gain can be achieved in (b),

which is a typical STTC. Note that the STTC is also a delay scheme except the delayed

PSK symbol is π-shifted on the constellation plane if it is an odd symbol, and kept the

same if even symbol.

The STTC requires a multidimensional Viterbi algorithm at the receiver for decod-

ing. It was shown in [8, 9] that the STTC provides a diversity gain equal to the number

of transmit antennas, and a coding gain which depends on the complexity of the code,

i.e., number of states in the trellis, without any loss in the bandwidth efficiency. Still

4



1.2. A LITERATURE REVIEW OF SPACE-TIME CODING

Fig. 1.1: Delay Diversity and Trellis Space-Time Code (Figure partially taken from [8])

the gain of STTC is achieved at the expense of a complex receiver. Since the debut of

STTC in [8], there has been extensive research aiming at improving the performance of

the original STTC designs. Numerous works have been proposed for new code construc-

tion and designs of STTC systems, e.g., [10–14]. However, only marginal gains over the

original scheme by Tarokh et al. were obtained in most cases.

1.2.4 Space-Time Block Codes

The receiver complexity of STTC increases exponentially with the dimensions of

code, trellis, etc., thus making the receiver structure quite complex in implementation.

The popularity of space-time coding really took off with the discovery of the so-called

space-time block codes (STBC) . In [15], Alamouti presented a perfectly beautiful code

that exploits the transmit diversity with two transmit antennas. The orthogonal con-

struction of the code allows simple linear processing at the receiver, in contrast to the

multi-dimensional Viterbi decoder at the STTC receiver. Later, Tarokh et al. gener-

alized this scheme for an arbitrary number of transmit antennas[16, 17]. While STBC

5



CHAPTER 1. INTRODUCTION

provides the same diversity gain as STTC, it gives none or minimal coding gain.

The coherent detection in both [15] and [17] requires perfect channel state informa-

tion (CSI) at the receiver. In [18] and [19], differential STBC schemes were presented,

respectively, for Alamouti’s code and generalized STBC with an arbitrary number of

transmit antennas. The authors use some mapping skills to determine the next block

to be sent. Similar topics were also addressed in [20–22]. More complicated differential

designs can also be found in [23, 24] to combat the fading.

1.2.5 Unitary Space-Time Modulation

More recently, a new scheme called unitary space-time modulation (USTM) [25]

was proposed to achieve channel capacity. The key idea of the USTM is that the whole

transmitting matrix is treated as one constellation signal. By constraining the signal

matrix to be unitary, it is proved that the USTM is still capacity-achieving. Moreover,

there are more available designs compared to the limited designs of STBC, since the entry

of USTM signal matrix is no longer restricted to the combination of certain symbols from

a given constellation set. In [25] and [26], it is pointed out that the ultimate capacity of

a multiple-antenna wireless link is determined by the number of symbol periods between

fades. The diversity gain achievable is constrained by the coherent symbol periods. For

example, in the extreme case where the channel fluctuates every symbol period, only

one transmitter antenna can be usefully employed. Theoretically speaking, one could

increase the capacity indefinitely by employing a greater number of transmit antennas,

but the capacity appears to increase only logarithmically in this number - not a very

effective way to boost capacity. So, actually, there is no point in making the number of

transmitter antennas greater than the length of the coherence interval.

When the coherence interval becomes large compared with the number of transmit-

ter antennas, the normalized capacity approaches the capacity obtained as if the receiver

knew the propagation coefficients. The magnitudes of the time-orthogonal signal vectors

6
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become constants that are equal for all transmitter antennas. In this regime, all of the

signaling information is contained in the directions of the random orthogonal vectors,

the receiver learns the propagation coefficients, and the channel becomes similar to the

classical Gaussian channel.

1.2.6 MIMO Applications in 3G Wireless Systems and Beyond

The 3G mobile communications standards are expected to provide a wide range

of bearer services, spanning from voice to high-rate data services, supporting rates of

at least 144 kb/s in vehicular, 384 kb/s in outdoor-to-indoor and 2 Mb/s in indoor as

well as pico-cellular applications. In work beyond 3G the target is to achieve data rates

in the order of 1Gbps for low-mobility solutions, and 100 Mbps for full coverage and

mobility.

Some techniques like turbo coding have brought the utilization of a single link very

close to Shannon limits of channel capacity. The next step is the creation of multiple

links between a terminal and a base station,which is fulfilled by MIMO systems. So

far there is little commercial implementation of MIMO in cellular systems and deployed

3G systems. The existing MIMO applications include the Lucent’s BLAST chip, which

is demonstrated to be capable of high data rate transmissions. Recently, the third-

generation partnership project has standardized the MIMO models in IEEE 802.16.

Also in the standard IEEE 802.11n for wireless local-area network (WLAN) , MIMO

techniques have been adopted to boost the data rate. Multiple commercialized models

with MIMO techniques have recently been released [27], which demonstrate impressive

performances gains against the existing products. With the potential communication

capacity provided by the multiple links, it is predictable that MIMO systems will be

incorporated into wireless communications of most kinds: cellular, WLAN, or even

satellite in the near future.

7
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1.3 Research Objective

As addressed above, the MIMO system is an attractive solution for the next-

generation wireless communication. In our research, we have concentrated on the

performance analysis of STBC systems and differential unitary space-time modulation

(DUSTM) .

In STBC system designs,it is assumed that the receiver knows perfectly the CSI for

coherent detection. Although differential schemes have been proposed which do not need

CSI, they actually require the channel coherence interval to be long enough for efficient

detection. When the channel fluctuates faster, the performance of differential schemes

degrades considerably. This makes an STBC system that is incorporated with channel

estimation more preferable in practice. The objective of our research is to develop such

a receiver with channel estimation and analyze its performance under fading channels.

Space-time coding provides us with transmit diversity additional to those diversities

conventionally used. In receive antenna diversity, we have several combining schemes

to utilize those received signals undergoing more-or-less independent fading, e.g., equal

gain combining (EGC) , maximum ratio combining (MRC) , selection combining, etc.

Those schemes can all be independently adopted at the receiver for MIMO systems.

Thus, it also aroused our interest in what the performance will be if we introduce these

receive diversity combining techniques together with the transmit diversity provided

by the space-time coding. Also, for a communication system with multiple transmit

antennas, if the transmitter knows the channel fading, it can choose the best one or

several antennas to transmit. The design and performance of such an adaptive transmit

system is also within our research interests.

Furthermore, finding good constellation sets is always of interest for MIMO systems.

This problem is still open since so far there is no systematic optimum solution. We also

put our effort into this approach to find simple yet efficient constellation designs.
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1.4 Structure of the Dissertation

In the next chapter, we present some basic background on MIMO systems and the

channel model adopted in this dissertation.

In Chapter 3, we propose a symbol-by-symbol channel-estimation receiver structure

for STBC systems. Based on the receiver structure, we analyze the performance of the

receiver with imperfect channel estimation.

In Chapter 4, we concentrate on the receiver structure developed in Chapter 3

together with selection combining. Bit error probability (BEP) performance analysis is

carried out based on the order statistics of estimated SNR.

We further extend the work by feeding back the channel estimation information to

the transmitter to optimize the performance. We present an adaptive transmit antenna

selection system. System structure and performance analysis are presented.

In Chapter 5, two new methods for DUSTM constellation design are proposed. The

algorithms are described in detail. The new methods provide better performance than

the known cyclic codes, yet with limited increase in computational complexity.

1.5 Research Contributions

We develop a receiver structure for STBC system with imperfect channel estimation

in Chapter 3. As the optimal maximum-likelihood receiver is rather computationally

complex, we use a symbol-by-symbol receiver for its simplicity. Based on this symbol-

by-symbol receiver structure, performance analysis is carried out to predict its BEP with

phase-shift keying modulations. A closed-form BEP expression is obtained for those

STBC’s where energy is uniformly distributed along time. For those STBC’s where

energy is not uniform along time, upper and lower bounds are obtained to predict the

performance. These two bounds are in most cases so close to each other that they provide

good approximation to the exact BEP. Simulations conducted validate our theoretical
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predictions.

Based on the results obtained in Chapter 3, we further extend our work to chan-

nel estimation STBC systems with receive antenna selection combining and transmit

antenna selection in Chapter 4 and 5, respectively. In both receive antenna selection

and transmit antenna selection schemes, the choice of the transmit/receive antennas are

based on the channel estimates, i.e., it is a channel-estimation based system, so that no

expensive and complex signal-to-noise ratio (SNR) evaluation is needed at the receiver,

which reduces the complexity of the receiver to a large extent. Based on the system

structures, BEP performances are derived and presented in closed-form expressions.

We improved the cyclic code presented in [28, 29] for DUSTM. To utilize the space-

time diversity more than the cyclic code does, we introduce a rotation matrix in code

construction. The proposed constellations are in quasi-diagonal matrix forms. Detailed

diversity product calculations are analyzed to simplify the search process. The final

algorithm improves the diversity product significantly compared to the cyclic codes,

with limited increase or even reduced computational complexity.

10



Chapter 2

MIMO Communication Systems in

Wireless Fading Channels

In this Chapter, we present the information theoretic basis for MIMO systems and

derive their ultimate capacity. We then introduce the MIMO channel models adopted

in this dissertation, and detailed simulation algorithms for multiple channel models are

described and then verified. The principles of Kalman Filter and Wiener Filter are also

described for state-space and Jakes’ channel model, respectively. The PSK signaling

used in this dissertation is defined at the end.

2.1 Capacity of MIMO Systems

2.1.1 MIMO Communication System

We consider a MIMO system with MT transmit and NR receive antennas as shown

in Figure 2.1.

The transmitted signal at time p is represented by an 1 × MT row vector S =

[sp1, sp2, . . . , spMT
]. The total transmitted power is constrained to E0, regardless of the

11
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Fig. 2.1: Wireless link with MT transmitter and NR receiver antennas. Every receiver antenna is con-

nected to every transmitter antenna through an independent, random, unknown propagation

coefficient having Rayleigh distributed magnitude and uniformly distributed phase. Normal-

ization ensures that the total expected transmitted power is independent of MT for a fixed

ρ

number of transmit antennas MT . This power constraint gives

E

[
MT∑
i=1

|spi|2
]

= E0. (2.1)

If we assume that the signals transmitted from individual transmit antennas have

equal power, then the power from each single transmit antenna is given by E0/MT .

The transmitted signal bandwidth is narrow enough, so its frequency response can

be considered as flat.

The channel is described by an MT × NR complex matrix, denoted by H , whose

element hil represents the propagation coefficient between the i-th transmit antenna and

the l-th receive antenna. For normalization purposes we assume that the received power

for each of the NR receive antennas is equal to the total transmitted power, i.e., E0.
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Thus we obtain the normalization constraint for the elements of H , in a channel with

fixed coefficients, as

E

[
MT∑
i=1

|hil|2
]

= MT , l = 1, 2, . . . , NR. (2.2)

We assume that the channel matrix is known to the receiver when using a method such

as transmitting training preamble. On the other hand, in most situations we assume

that the channel parameters are not known at the transmitter.

At the receiver, the additive noise is described by an 1 × NR row matrix N =

[np1, np2, . . . , npNR
], whose components are statistically independent, complex, zero-mean

Gaussian variables. The receive antennas have identical noise powers of N0.

The received signal is represented by an 1 × NR row matrix, denoted by R =

[rp1, rp2, . . . , rpNR
], where each complex component refers to a receive antenna.

The average SNR at each receiver branch is given by

ρ = E0/N0. (2.3)

Normalizing the transmitted signal with (2.3), we can re-define the power constraints

(2.1) as

1

MT

E

[
MT∑
i=1

|spi|2
]

= 1 (2.4)

and the received vector can then be represented as

R =
√
ρ/MT HS + N . (2.5)

2.1.2 Capacity Analysis of MIMO Communication System

The channel capacity is defined as the maximum possible transmission rate such

that the probability of error is arbitrarily small. The well-known Shanon capacity is
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given by

C = W log2(1 + ρ), (2.6)

where W is the bandwidth of the communication channel and ρ is the SNR. In the

system mentioned above, according to the singular value decomposition, the channel

matrix H can be written as

H = V DU †, (2.7)

where U and V are MT ×MT and NR×NR unitary matrices, respectively, and D is an

MT ×NR non-negative diagonal matrix given by

D =

 ∑r 0

0 0

 , (2.8)

where
∑

r = diag [σ1, σ2, . . . , στ ], σi are the singular values of matrix H (also the non-

negative square roots of the eigenvalues of H†H ) and τ is the rank of H .

We define m = min (MT , NR), and

Q =

 H†H NR < MT

HH† NR ≥MT

. (2.9)

Thus we calculate the eigenvalues of H†H by finding the roots of the characteristic

polynomial

det (λIm −Q) = 0. (2.10)

Substituting (2.7) into (2.5) and right-multiplying with U , we get

R′ =
√
ρDS′ + N ′, (2.11)

where R′ = RU , S′ = SV and N ′ = NU .

Since τ = rank(H) = rank(H†H), for the MT × NR matrix H , the rank τ is at
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most m = min (MT , NR), which means that at most m of its singular values are non-zero.

By substituting the entries σi in (2.11) we get for the received components

r′l = σls
′
pl + n′l, l = 1, 2, . . . , τ

r′l = n′l, l = τ + 1, τ + 2, . . . , NR

. (2.12)

(2.12) indicates that the received components r′l, l = τ + 1, τ + 2, . . . , NR, do not depend

on the transmitted signal, i.e., the channel gain is zero. On the other hand, received

components r′pl, for l = 1, 2, . . . , τ depend only on the transmitted component s′pl. Thus

the equivalent MIMO channel from (2.11) can be considered as consisting of τ uncoupled

parallel channels. For example, if MT > NR, as the rank of H cannot be higher than NR,

(2.12) shows that there will be at most NR non-zero gain sub-channels in the equivalent

MIMO channel. On the other hand if NR > MT , there will at most MT non-zero gain

sub-channels in the equivalent MIMO channel.

Note that in the above models the sub-channels are uncoupled and thus their ca-

pacities are summed up. Assuming that transmit power from each antenna is identical,

from (2.1), we can estimate the overall channel capacity as

C = W
τ∑

i=1

log2

(
1 +

ρ

MT

σ2
i

)
. (2.13)

(2.13) can also be written as

C = W log2

[
det

(
Im +

ρ

MT

Q

)]
. (2.14)

As the non-zero eigenvalues of H†H and HH† are the same, the capacity of a channel

with matrix H and H† are the same. When the channel parameters are known at the

transmitter, the capacity given by (2.14) can be increased by assigning the transmitting

power to various antennas according to the “water-filling” rule. The power allocated to

channel i is given by

Ei =

(
µ− E0/ρ

σ2
i

)+

i = 1, 2, ..., τ, (2.15)
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where a+ denotes max(a, 0) and µ is determined so that

r∑
i=1

Ei = E0. (2.16)

The MIMO channel capacity is then

C = W
τ∑

i=1

log2

[
1 +

ρ

E0

(σ2
i µ− E0/ρ)+

]
= W

τ∑
i=1

(
log2

ρµσ2
i

E0

)+

. (2.17)

For example, let’s consider a transmit-diversity system with MT transmit antennas and

one receive antenna. The channel matrix is

H = (h1, h2, ...hMT
)T . (2.18)

As H†H =
MT∑
i=1

|hi|2, by applying formula (2.14) we get for the capacity

C = W log2

(
1 +

MT∑
i=1

|hi|2
ρ

MT

)
. (2.19)

This capacity corresponds to that of linear maximum ratio combining at the receiver.

In the case when the channel matrix elements are equal and normalized as follows:

|h1|2 = |h2|2 = ...|hMT
|2 = 1, (2.20)

then the capacity becomes

C = W log2 (1 + ρ) . (2.21)

This expression applies to the case when the transmitter does not know the channel.

For coordinated transmissions, when the transmitter knows the channel, we can apply

the capacity formula from (2.17). As the rank of the channel matrix is one, there is only

one term in the sum in (2.17) and only one non-zero eigenvalue given by

σ2 =

MT∑
i=1

|hi|2. (2.22)
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And from the normalization condition, we have

µ = E0(1 +
1

ρσ2
). (2.23)

So we get for the capacity

C = W log2

(
1 +

MT∑
i=1

|hi|2 · ρ

)
. (2.24)

For MT = 8 and SNR of 20dB, the capacity is 9.646bps/Hz.

2.2 Mobile Radio Channels and MMSE Channel Es-

timation

The communication channel is the physical medium that connects the transmitter

and the receiver. It can be a pair of wires or an optical fiber for wired communication. In

wireless communication environment, the channel is the free space between the transmit

and the receive antennas. The presence of reflecting objects and scatterers in the space

creates a constantly changing environment that dissipates the signal energy in amplitude,

phase, and time. These effects result in multiple versions of the transmitted signal that

arrive at the receiving antenna, displaced with respect to one another in time and spatial

orientation. The random phases and amplitudes of the different multipath components

cause fluctuations in strength of the received signal. There are many channel models in

the literature. Here, in this dissertation, we consider the non frequency-selective Rayleigh

channel models, where the received signal is a summation of many reflected signals and

the signal with maximum delay does not exceed the symbol duration. Assume that the

multipaths are independent and statistically identical, and the number of multipaths is

large enough, the fading gain can then be modeled as a complex symmetric Gaussian

random variable. The absolute value of the complex Gaussian gain follows the Rayleigh

distribution. This non frequency-selective slow Rayleigh fading channel is the most
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Fig. 2.2: Communication channel model

widely accepted channel model for narrowband transmission systems.

Fig.2.2 depicts the baseband channel model we used in this dissertation. The mul-

tiplicative channel gain is introduced by the medium while the additive white Gaussian

noise (AWGN) arises from the electronic circuitry in the receiver.

At the receiver, perfect sampling is assumed and thus the multiplicative channel

gain is assumed to be piecewise constant for a symbol duration. The model in Fig.

2.2 can be expressed in a discrete-time representation for the m -th symbol duration

[mTs, (m+ 1)Ts] where Ts is the symbol duration time

r(m) = s(m)h(m) + n(m). (2.25)

2.2.1 Rayleigh Fading Channel with Butterworth power spec-

trum density

In this section, we consider non-frequency-selective slow Rayleigh fading channels

with first-order Butterworth, and third-order butterworth models. The Butterworth

spectrum [30] is commonly used to model the fading process on mobile satellite channels

or other channels where the fading process is exponentially correlated. Here, the in-phase

component xc(m) = Re [h(m)] and the quadrature-phase component xs(m) = Im [h(m)]

of each fading process is the output of a state-space model, i.e., xc(m) or xs(m) =

Bx(m), where the state vector x(m) evolves according to a model.

x(m+ 1) = F x(m) + G w(m) (2.26)
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Fig. 2.3: Markov signal model for Kalman filter

of appropriate dimension. Substituting (2.26) into the communication channel model

(2.25), one get the received signal model depicted in Fig. 2.3, where {w(m)}∞m=0 and

{v(m)}∞m=0 are zero mean, independent Gaussian processes with covariance matrices

given by

E[w(m)wT (m′)] = W δmm′ (2.27a)

E[v(m)vT (m′)] = V δmm′ (2.27b)

E[w(m)vT (m′)] = 0 (2.27c)

After x(m) has been generated according to 2.26, it is sent to a multiplicative channel

with gain H̃T (m) ; a sample z(m) is obtained by further disturbing the so generated

y(m) with an additive noise v(m). z(m) is the noisy sample available to the filter to

recover x(m), which will be discussed in the next section. We consider here in particular

the case of a first-order Butterworth (1BTW) and a third-order Butterworth (3BTW)

model for the channel.
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Fig. 2.4: Theoretical and simulated PDF’s of the real part of the first-order Butterworth channel model

with ωdTs = 0.01 and σ2 = 0.25. The simulated PDF is obtained by averaging 1000 repeated

trials

2.2.1.1 First-Order Butterworth Channel Model

The first-order Butterworth fading process has the following power spectrum density

(PSD) function:

S(ω) =
2σ2/ωd

1 + (ω/ωd)2 , (2.28)

where ωd is the 3dB radian frequency of the Butterworth power spectrum. The state-

space realization for the Rayleigh fading channel with first-order Butterworth PSD is

obtained by transforming (2.28) into time domain and solving its first order differen-

tial equation. The processes {xc(m)}∞m=0 and {xs(m)}∞m=0 are each given by a one-

dimensional version of (2.26) with

F = exp [−ωdTs] , G = 1, B = 1, and W = σ2(1− e−2ωdTs), (2.29)

where Ts is the interval between discrete time points.

The output probability density function (p.d.f.) of the simulator given in (2.26) and
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Fig. 2.5: (a)Theoretical and simulated autocorrelation function of the real part;

(b) Theoretical and simulated crosscorrelation function between the real and imaginary part ;

of the first-order Butterworth channel model with ωdTs = 0.01 and σ2 = 0.25. The simulated

results are obtained by averaging 1000 repeated trials

(2.29) is plotted in Fig. 2.4. Compared to the theoretical one, the output samples have

a perfect Gaussian distribution as designed. In this dissertation, we are more interested

in the channel autocorrelation function than the PSD, since the autocorrelation function

would be used to evaluate the mean square error(MSE) of channel estimator. According

to the 1BTW’s PSD function in (2.28), the autocorrelation function is obtained by

inverse Fourier transforming

Rxcxc(∆m) = Rxsxs(∆m) = σ2e−ωdTs|∆m| (2.30)
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and the cross-correlation Rxsxc(∆m) or Rxcxs(∆m) between the real and imaginary parts

should be zero as they are zero-mean independent processes. In Fig. 2.5, we plot the

simulated correlation function Rxcxc(∆m) and Rxcxs(∆m) for example. It is shown that

they match the theoretical prediction quite well.

2.2.1.2 Third-Order Butterworth Channel Model

In the 3BTW model, the quadrature components of the continuous-time fading

process each have a power density spectrum

S(ω) =
3σ2

ωd [1 + (ω/ωd)6]
. (2.31)

The processes {xc(m)}∞k=0 and {xs(m)}∞k=0 can each be generated using a three-

dimensional version of the model (2.26) with

x(m) =


x(1)(m)

x(2)(m)

x(3)(m)

 ,F =


1 ωdT 0

0 1 ωdT

−ωdT −2ωdT 1− 2ωdT

 ,G =


0

0

1

 ,

B =
[

1 0 0
]
,W = 3σ2 ωdT (2.32)

Note that in achieving the Markov model given in (2.26) and (2.32), approximation

ωdTs << 1 must been taken. Therefore, the simulation model is only fine for slow

fading. The p.d.f of 3BTW with ωdTs = 0.001 is plotted in 2.6. The simulated result

still matches theoretical one quite well. It is reported through simulation that the

simulation output has a 5% greater variance than the desired one. As the ωdTs further

increase, the deviation from theoretical becomes more and more obvious, and thus makes

the simulator deviate from theory under fast fading situations. So the usage of 3BTW

is refrained to slow fading scenarios. The 3BTW PSD in (2.31) has an autocorrelation
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Fig. 2.6: Theoretical and simulated PDF’s of the real part of the third-order Butterworth channel model

with ωdTs = 0.001 and σ2 = 0.25. The simulated PDF is obtained by averaging 1000 repeated

trials

function given by [31]

Rxcxc(∆m) = Rxsxs(∆m) =
σ2

2

3∑
l=1

e−ωdTs|∆m|·sin( 2l−1
6

π) · sin
[
2l − 1

6
π + ωdTs|∆m| cos

(
2l − 1

6
π

)]
.

(2.33)

The theoretical correlation functions together with simulated ones are illustrated

in Fig. 2.7. Perfect matches are observed, which validates that the 3BTW simulator is

still quite good under slow fading.

2.2.2 Kalman Filtering for State-Space Channel Model

When a state-space channel model is available, the Kalman filter (KF) is the opti-

mum channel estimator. The KF is more suitable for the decision-feedback (DF) channel

estimation scheme since it can operate recursively in time as symbol decisions are made.

According to the state-space signal model in Fig. 2.3, the correspondent Kalman fil-

ter structure is shown in Fig. 2.8. The principle of KF is described by the following
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Fig. 2.7: (a)Theoretical and simulated autocorrelation function of the real part;

(b) Theoretical and simulated crosscorrelation function between the real and imaginary part ;

of the third-order Butterworth channel model with ωdTs = 0.001 and σ2 = 0.25. The simulated

results are obtained by averaging 1000 repeated trials

Fig. 2.8: Kalman Filter Structure
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equations ([32], Chap. 3, eq.(1.9) and eq.(1.12)

P (m) = H̃T (m)Σ(m|m− 1)H̃(m) + V (m) (2.34)

K(m) = F (m)Σ(m|m− 1)H̃(m)P−1(m) (2.35)

x̂(m|m) = x̂(m|m− 1) + K(m)[z(m)− H̃T (m)x̂(m|m− 1)] (2.36)

Σ(m|m) = Σ(m|m− 1)−Σ(m|m− 1)K(m)H̃(m) (2.37)

x̂(m+ 1|m) = F (m)x̂(m|m) (2.38)

Σ(m+ 1|m) = F (m)Σ(m|m)F T (m) + G(m)W (m)GT (m) (2.39)

where K(m) is the Kalman gain; x̂(m+1|m) and x̂(m|m) are the predicted and updated

state vector; and Σ(m+1|m) and Σ(m|m) are the predicted and updated error covariance

matrices. With initialized value x̂(0| − 1) and Σ(0| − 1), the KF recursively computes

equations (2.34) through (2.39) and predict the MMSE estimate x̂(m+1|m) for x(m+1).

As the exact initial value of x̂(0| − 1) and Σ(0| − 1) are unlikely known to the KF, the

KF needs several periods to establish a track-on state before it can predict reliably. This

initialization phase is done in communication system by sending known preambles to

the receiver before data transmission.

Note that (2.34),(2.35),(2.37), and (2.39) are independent of the observation z(m),

they can be calculated off-line. These equations are also known as Riccati equations.

As Σ represents the MSE of the estimates, by solving those four equations recursively, a

steady-state value of the MSE can be obtained. Especially for the one-dimensional case,

the MSE has a closed-form expression as

Σ∞ =
V F 2 +G2WH̃2 − V +

√
(V + V F 2 +G2WH̃2)2 − 4V 2F 2

2H̃2
. (2.40)

For KF more than one-dimensional, the MSE must be obtained by repeatedly computing

the Riccati equations until a steady-state is reached. In Matlab, there is a Riccati()

function in control toolbox to give readily the solution of Riccati equations.
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Fig. 2.9: Theoretical and simulated PDF’s of the real part of the Jakes’ simulator ωdTs = 0.1 and

σ2 = 0.25. The simulated PDF is obtained by averaging 1000 repeated trials

2.2.3 Rayleigh Fading Channel with Jakes’ PSD

The Jakes spectrum [33, 34] is commonly used to model the fading process for the

land-mobile cellular channel. This Jakes power density spectrum is defined as

S(ω) =

 2σ2
/
ωd

√
1− (ω/ωd)2 |ω| < ωd

0 |ω| > ωd

, (2.41)

and its corresponding autocorrelation is given by

R(∆m) = E[x(m)xT (m+ ∆m)] = σ2 J0(∆mωdTs), (2.42)

where J0(·) is the zero-th order Bessel function of the first kind.

Over the last three decades, there are quite a lot of different approaches to the

simulation model of Jakes’ model [34]. The most well-known mathematical reference

model by Clarke [33] and its simplified simulation model by Jakes [34] have been widely

accepted for Rayleigh fading channels for more than thirty years. However, the Jakes’

simulator is a deterministic model, and the result is questionable when generating mul-

26



2.2. MOBILE RADIO CHANNELS AND MMSE CHANNEL ESTIMATION

Fig. 2.10: (a)Autocorrelation function of the real part;

(b)Autocorrelation function of the imaginary part;

(c) Cross-correlation function between the real and imaginary part ;

(d)Real part of the autocorrelation function of the entire complex process;

(e)Imaginary part of the autocorrelation function of the entire complex process;

(f)Autocorrelation function of the output envelope;

of the Jakes’ channel model with ωdTs = 0.01 and σ2 = 0.25. The simulated results are

obtained by averaging 1000 repeated trials

tiple uncorrelated fading process for frequency selective fading channels and MIMO

channels. Therefore, modifications of Jakes’ simulator have been proposed [35–38]. Re-

cently in [39], it was pointed out that the Jakes’ model is wide-sense nonstationary

when averaged across the physical ensemble of fading channels. An improved simulator
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was also proposed in [39] to remove the stationarity problem by introducing random

phase shifts in the low-frequency oscillators. However, it was addressed in [39] and later

proved in [40] that the higher order statistics of this simulator do not match the desired

ones. In [41], the authors propose a new sum-of-sinusoids model by re-introducing the

randomness to Doppler frequency and initial phase of the sinusoids. This model was

further improved in [42] by introducing path gain randomness to the model. This model

has autocorrelations of quadrature components, the cross correlation of the quadrature

components, and the autocorrelation of the complex envelope that match the desired

ones exactly, even if the number of sinusoids used to generate the channel fading is as

small as eight. Some higher order statistics are also proved to match the theoretical

ones when the number of sinusoids approaches infinity, while good convergence can be

reached even when the number of sinusoids is small. We choose to use this simulator

[42] in this dissertation for Jakes’ PSD.

The normalized low-pass fading process of the statistical sum-of-sinusoids simulation

model is defined by

h(m) = xc(m) + jxs(m) (2.43a)

xc(m) =
2√
N

N∑
n=1

cosψn · cos(mωdTs cosαn + φ) (2.43b)

xs(m) =
2√
N

N∑
n=1

sinψn · cos(mωdTs cosαn + φ) (2.43c)

where

αn =
(2n− 1)π + θ

4N
, n = 1, 2, ...,M. (2.44)

The distribution p.d.f of the channel samples are plotted in Fig. 2.9, where simulated

curve has a perfect match with theoretical one. The statistical property of the above
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Fig. 2.11: Channel samples of size one thousand for different models

process is proven to be

Rxcxc(∆m) = Rxsxs(∆m) = J0(∆mωdTs) (2.45a)

Rxcxs(∆m) = Rxsxc(∆m) = 0 (2.45b)

R|xc|2|xs|2 = 4 + 4J2
0 (∆mωdTs) +

4 + 2J0(2∆mωdTs)

N

N→∞
= 4 + 4J2

0 (∆mωdTs) (2.45c)

Some statistics of the above simulator are presented in Fig. 2.10. The autocorrela-

tions matches the theoretical ones perfectly. Even for envelope autocorrelation function

R|xc|2|xs|2 , the improved simulator has a good match with the desired one.

The channel samples of the mentioned three channel models, namely, first-order
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Butterworth channel, third-order Butterworth channel and Jakes’ fading channel, are

compared in Fig. 2.11. It is clear from Fig. 2.11 that with the same normalized fade

rate ωdTs, the first-order Butterworth channel fluctuates more rapidly than the third-

order one. The 1BTW also has more small-scaled fluctuation. This can be explained

from the PSD’s of the Butterworth channel model. The 3BTW has a more compact

frequency response than the 1BTW so that less high-frequency components are allowed

to pass the 3BTW filter, thus making the output more smooth.

2.2.4 Wiener Filtering for Jakes’ Model

In this dissertation, we use Wiener filter (WF) as estimator of fading channel with

Jakes’ model. The design criterion of WF is to minimize the mean square error between

the desired filter output and the actual output. A commonly used WF model is depicted

in Fig. 2.12, where the prediction output for current sample is a weighted summation of

Lw previously received samples stored in vector ỹ(m) = [y(m− 1), y(m− 2), . . . , y(m−

Lw)]T , where y(m) is the noisy observation of xc(m) or xs(m). The tap-weight vector

w = [w1, w2, . . . , wLw ]T can be predetermined if the characteristic of Jakes’ channel is

known. This well-known MMSE estimator is described by the following equations

ĥ(m) = wT (m)ỹ(m) (2.46)

w(m) = Ξ−1p(m) (2.47)

Ξ = E[ỹil(m)ỹT
il (m)] (2.48)

p(m) = E[hil(m)ỹT
il (m)] (2.49)

The MSE of this WF is given by R(0)− pT (m)w(m).
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Fig. 2.12: Linear Wiener Filter Model

2.3 Phase-Shift Keying Modulation

The information is carried by the phase of the transmitted signal in phase-shift

keying (PSK) modulation, so that the signaling has a constant envelope. Consider

M -ary PSK modulation, where one symbol carries log2M bits of information. The

transmitted signal for mTs ≤ t ≤ (m+ 1)Ts is given by

s(t) =

√
2Es

Ts

cos[ωct− φ(m)], mTs ≤ t ≤ (m+ 1)Ts, (2.50)

where Es is the symbol energy, Ts is the symbol duration and φ(m) takes on one of the

value from set {φl|φl = 2πl/M, l = 0, 1, ...M − 1} in the m-th symbol interval. Using the

following set of orthonormal basis functions

ϕ0(t) =

√
2

Ts

cos(ωct), ϕ1(t) =

√
2

Ts

sin(ωct).

We can represent s(t) in (2.50) in the m-th symbol interval in a complex discrete repre-

sentation

s(m) =
√
Ese

jφ(m). (2.51)
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Fig. 2.13: Constellation maps of PSK signaling

The constellation maps of QPSK and 8PSK are illustrated in 2.13, where Gray

coding is applied to minimize the BEP performance. Recall the signal model in 2.2, the

received signal now can be expressed in a complex baseband representation

r(m) =
√
Esκ(m)∠[φ(m) + θ(m)] + n(m), (2.52)

where κ(m) and θ(m) denotes the magnitude and phase of the Rayleigh fading process

h(m), respectively; and n(m) is AWGN process.

2.4 Summary

In this chapter, we analyzed the capacity of MIMO wireless communication systems

from a perspective of information theory. The result clearly shows that the achievable

capacity is significantly enhanced by deploying multiple antennas at the transmit side.

In communication, the mobile channel model plays a very important role from

preliminary research to implementation phase. We assume the well-known Rayleigh

fading channel model, which is non-frequency-selective and all the links are uncorrelated

from one another. Butterworth and Jakes’ channel models are in particular picked for

the analysis works throughout this dissertation. We presented the detailed simulation

algorithms for those selected channel models, as well as numerical verifications of those

models.
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Chapter 3

BEP Performance Analysis of

Orthogonal Space-Time Block

Codes

We present a symbol-by-symbol, channel estimation receiver for a space-time block

coded system, and derive its analytical performance on a slow, nonselective, Rayleigh

fading channel. Exact, closed-form expressions for its BEP performance for M -ary

phase shift-keying modulations are obtained. These results are important because they

enable us to theoretically predict the actual performance achievable under practical

conditions with channel estimation error. Our BEP expressions show explicitly the

dependence of BEP on the mean square error of the channel estimates, which in turn

depend on the channel fading model and the channel estimator used. Tight upper bounds

are presented that show more clearly the dependence of the BEP on various system

parameters. Simulation results using various fading models are obtained to demonstrate

the validity of the analysis.
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3.1 Introduction

Over the years, various diversity techniques have been studied for reliable high-rate

data transmission on wireless channels. Recently, it has been shown that the use of

transmit diversity coupled with the use of space-time coding is an effective technique to

improve the performance of wireless systems [6, 8, 15, 17, 43].

STBC [15, 17] in particular have been shown to have a simple decoder structure.

A STBC with two transmit antennas was first introduced in [15], and it was later gen-

eralized to STBC’s for an arbitrary number of transmit antennas in [17]. It was also

pointed out in [17] that the full-rate complex orthogonal designs (COD) only exist for

two transmit antennas [15], and COD for more than two transmit antennas must have

a rate less than one. The existence theorems in [17] were later amended and improved

in [44] and [45, 46]. Based on the generalized orthogonal code structure defined in

[17], the designs of orthogonal STBC were extensively studied subsequently, and COD

for more than two transmit antennas were presented in [47–51]. Achievable optimal

rates of STBC were presented in [52]. Recently, a systematic COD algorithm has been

proposed in [53]. The designs in [53] reach the optimal rate proposed in [52] for an

arbitrary number of transmit antennas when the antenna number is less than eighteen.

There are also non-orthogonal approaches for STBC, which can be found in [54–61],etc.

The non-orthogonal structure involves the detection with interference from within the

signal block, so that the performance would be worse than the equivalent orthogonal

ones. However, we can achieve full-rate with those designs, meanwhile, there are more

available non-orthogonal designs. Theoretically, equalization techniques or equivalent

measures can also be taken to suppress the interferences from within the signal block.

The beauty of STBC is that its orthogonal structure allows detection of individual

symbols to be performed independently using only linear processing. This was shown

in [15] for the case of perfect CSI, i.e., when channel estimation is perfect. In practice,

however, perfect channel estimates are not readily available, and one expects to perform
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simultaneous data detection and channel estimation. The aim of this chapter is to

develop a simple, symbol-by-symbol (SBS) , detection-estimation receiver for STBC.

Following the approach in [62], we arrive at a receiver structure which is similar to

that in [15], with the actual channel fading gains replaced by their MMSE estimates.

The detector-estimator receiver structure shows that the symbol detection problem and

the channel estimation problem are separate. While the detector structure is fixed, the

optimum MMSE channel estimator structure depends on knowledge of the statistical

model of the channel fading process and the additive channel noise. Having arrived

at the receiver structure, we next obtain simple, exact, closed-form expressions for its

BEP performance with PSK modulations, namely, BPSK, QPSK and 8-PSK. The BEP

results show clearly the dependence of BEP on the MSE of the channel estimates, which

in turn depends on the channel fading model, the additive channel noise level, and the

estimator structure used. A tight upper bound is also presented to show more explicitly

the dependence of the BEP on the various system parameters. Finally the theoretical

results are validated with simulations.

To avoid the channel estimation problem, differential space-time modulation tech-

niques with differential detection (DD) which requires no knowledge of the channel have

been proposed in [18, 26, 29, 63, 64]. However, the performance of DD may degrade

considerably when the channel fades rapidly. Joint channel estimation and data de-

tection to approach coherent performance has thus been the preferred approach, and

much previous work on this has appeared in the literature. In [65] and [66], an iter-

ative space-time receiver based on the expectation-maximization (EM) algorithm has

been proposed, and improved on later in [67] by using a symbol interleaver in the EM

loop, and good performance has been obtained in fast fading at the expense of high

computational complexity.

Most of the performance analysis for space-time coded systems is in terms of pair-

wise error probability (PEP) . For STBC systems, BEP is preferred over PEP. PEP is
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more suitable for space-time trellis codes. Some BEP performance analysis results for

STBC can be found in [68–73]. In [68], it was assumed that the receiver knows the

CSI perfectly, and exact BEP expressions of BPSK and QPSK for Alamouti’s code [15]

with one receive antenna were presented for both coherent and differential detection.

The coherent results in [68] can be shown to be a special case of ours in this dissertation

when there is no channel estimation error. In [69], the author obtained a PEP expression

based on perfect CSI knowledge using the moment generating function method, and the

result is not in explicit form. Symbol error probability expressions for M -PSK and

M -QAM constellations over the keyhole Nakagami- m channel were presented in [70]

assuming perfect CSI at the receiver. More recently in [71], an accurate BEP upper

bound is proposed for a symbol-by-symbol detector, but again, the result in [71] requires

perfect CSI for decoding. Channel estimation error was taken into account in [72]. But,

computation of the eigenvalues of a correlation matrix is necessary for the PEP analysis

approach in [72]. Reference [73] used Alamouti’s code [15] and pilot-symbol assisted

modulation (PSAM) for channel estimation, but the BEP result is given in an unsolved

integral form that must be evaluated by a numerical approach. In summary, the BEP

results in [68–70, 72, 73] are either not explicit or assume perfect CSI at the receiver.

In [74], a receiver for the Alamouti’s STBC of [15] with two transmit and one receive

antenna was proposed. This receiver uses decision-directed Kalman filtering for channel

estimation, and considers a first-order Markov channel model. No BEP analysis is done,

and BEP results are obtained only via simulations. It is well known that KF is applicable

to a Markov model of any order [75]. Our work is more general than the work in the

existing literature in that it builds on the theoretical foundation in [62] and presents

exact, explicit, closed-form analytical BEP results. Simulation results are presented to

verify the analysis. Reference [24] considers multiple-symbol DD which involves high

computational complexity, and introduces decision-feedback DD as its low-complexity

simplification. While the latter receiver is somewhat similar to our SBS receiver here,
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the analysis in [24] does not lead to closed-form results for the BEP that show the error

performance explicitly as a function of the system parameters as our results here do.

3.2 Receiver Structure for Orthogonal STBC

3.2.1 Definition of Orthogonal STBC

A generalized complex orthogonal STBC for a MIMO communication system with

MT transmit (Tx) and NR receive antennas (Rx) is a P × MT matrix S. Each MT

-dimensional row vector of the code matrix S is transmitted through the MT transmit

antennas at one time, and the transmission of the matrix S is completed in P symbol

periods. We consider in this dissertation linear COD of STBC. During the P symbol

periods, the system transmits K symbols sk, k = 1, . . . , K, which are from a certain

complex constellation. Each entry of S is a linear combination of sk, k = 1, . . . , K and

their conjugates s∗k. The rate of the STBC is defined as K/P . In summary, a linear

orthogonal STBC satisfies:

(i) Linearity: Each entry of S is a linear combination of K symbols sk, k = 1, . . . , K

and their conjugates s∗k, i.e, S can be expressed as [47, 48]

S =
K∑

k=1

(skAk + s∗kBk), (3.1)

where Ak,Bk are P ×MT matrices with constant complex entries. Taking the Alamouti

code in [15] as an example, one gets

S =

 s1 s2

−s∗2 s∗1


A1 =

 1 0

0 0

 ,A2 =

 0 1

0 0

 ,B1 =

 0 0

0 1

 ,B2 =

 0 0

−1 0

 .

(3.2)

(ii) Orthogonality: The matrix S satisfies S†S = D, where S† is the Hermitian
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transpose of S, and D is a diagonal matrix [17]. Using the STBC property in (i), we

have

S†S =
K∑

k=1

K∑
k′=1

(s∗ksk′A
†
kAk′ + s∗ks

∗
k′A

†
kBk′ + sksk′B

†
kAk′ + sks

∗
k′B

†
kBk′)

= diag

[
K∑

k=1

λ1,k|sk|2, . . . ,
K∑

k=1

λMT ,k|sk|2
]

= D

(3.3)

where {λi,k}MT

i=1 are positive numbers. For arbitrary signal constellations to satisfy the

orthogonality condition in (3.3), one requires that

A†
kAk′ + B†

k′Bk = δkk′diag[λ1,k, . . . , λMT ,k] and A†
kBk′ + A†

k′Bk = 0, (3.4)

where δkk′ is the Kronecker delta.

3.2.2 Transmitter Structure

We assume M PSK modulation and constrain the average transmitted energy per

bit to a constant Eb. Since there are K symbols with log2M bits per symbol to be

transmitted in a P ×MT STBC, the total energy assigned to one block is EbK log2M .

From the STBC definition in (3.3), it is clear that the total transmitted energy in a

block is
∑MT

i=1

∑K
k=1 λi,k|sk|2. Thus, for each PSK symbol, the allocated energy is

Es = |sk|2 =
EbK log2M∑MT

i=1

∑K
k=1 λi,k

. (3.5)

The symbol is now defined as sk =
√
Ese

jφk , where φk takes on a value in the set

{2nπ/M}M−1
n=0 .

3.2.3 Receiver Structure

Denoting the m - th transmitted signal block as S(m), the received signal matrix

is

R(m) = S(m)H(m) + N (m). (3.6)
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Here R(m) is the P ×NR received matrix, where each entry rpl(m) is the received signal

at the p - th symbol slot on the l - th receive antenna. H(m) is a MT × NR channel

matrix, where each entry hil(m) is the fading gain on the il - th link, which is from the

i - th transmit to l - th receive antenna, during the m - th block interval. The hil(m)

’s are spatially independent, identically distributed (i.i.d.) complex Gaussian processes

from link to link. It is assumed in (3.6) that all the channels are block-wise constant, i.e.,

they remain constant for P symbol durations. Thus, for each link, {hil(m)}∞m=0 forms a

sequence of zero-mean, complex, Gaussian random variables (r.v.’s) with autocorrelation

function E[hil(m)h∗il(m
′)] = 2R(m − m′), where E is the expectation operator. The

system model is shown in Fig. 3.1 and Fig. 3.2. It is assumed that the continuous-time

fading process for which {hil(m)}∞m=0 is a piecewise-constant approximation has a power

spectrum symmetric around the carrier so that the in-phase component {Re [hil(m)]}∞m=0

and the quadrature-phase component {Im [hi,l(m)]}∞m=0 are i.i.d. processes, each having

correlation function R(m). N (m) is the P × NR noise matrix, whose entries npl(m) ’s

are i.i.d., zero-mean, complex, Gaussian r.v.’s due to AWGN at the p - th symbol slot

on the l - th receive antenna with E[n∗p′l′(m
′)npl(m)] = δpp′δll′δmm′N0. H(m) and N (m)

are independent of each other.

3.2.4 Channel Estimator Structure

We consider the DF and PSAM for channel estimation here. Figure 3.1 and Figure

3.2 illustrate the system structure.

In the DF scheme, the channel matrix H(m) over the m - th block interval is

estimated based on all the previously received signals and decisions made, up till the

(m−1) - th block. Define the m - th decoded signal block as Ŝ(m), and assume the SNR

is sufficiently high and error probability sufficiently low so that all the past decisions

can be assumed correct, i.e., Ŝ(m′) = S(m′), 0 ≤ m′ ≤ m − 1. The receiver performs

modulation wipe-off on the past received signal blocks, and generates the signal samples
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Y (m′) = [Ŝ†(m′)Ŝ(m′)]−1Ŝ†(m′)R(m′) = H(m′) + Ñ(m′), 0 ≤ m′ ≤ m− 1. (3.7)

Y (m′) is a noisy observation on the channel matrix H(m′), and each entry yil(m
′), i =

1 . . .MT , l = 1 . . . NR of Y (m′) can be expressed in the form yil(m
′) = hil(m

′) + ñil(m
′),

where {ñil(m
′)}m′ is a set of i.i.d. zero mean complex Gaussian r.v.’s with variance

[
∑K

k=1 λi,k]−1E−1
s N0. Define Λ(m) = {Y (m′), 0 ≤ m′ ≤ m− 1} as the information set

containing the channel measurements available to the receiver up to the beginning of

m - th block.

After decoding the current block S(m), the measurement Y (m) on the current

channel gain H(m) is obtained as in (3.7) from the received signal R(m) together with

the present decoded block Ŝ(m), and this channel information is fed back to update the

channel estimator. Theoretically, the estimation filter stores all the acquired channel

information Λ(m) from the beginning of transmission up to the present, which is used

to generate the channel estimate Ŝ(m) for the next block. For such a filter working in

DF mode, a known preamble must be sent in the beginning to allow the filter to first

acquire accurate channel estimates before symbol decoding can begin. After that, the

receiver uses the decoded symbols to extract the channel information from the received

signals. A problem with such a scheme is that errors may accumulate in the stored

channel information affecting the accuracy of the subsequent channel estimates. More

errors then enter the filter due to the more frequent erroneous decisions, and this can

cause a “runaway” in the receiver. To control the error propagation, pilot blocks must

be periodically inserted into the transmission to update the filter with correct channel

information.

PSAM was proposed in [76], and it avoids the error propagation problem in the DF

scheme. For the STBC system using PSAM, one pilot block is inserted into the data

stream every Lf blocks [76], and the estimation of the channel matrix H(m) is based
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Fig. 3.1: Decision feedback channel estimation STBC system

Fig. 3.2: PSAM channel estimation STBC system

on the 2Lp pilot blocks nearest to the m - th block. Thus, we define the information set

Λ(m) = {Y (m′), ([[m/Lf ]]− Lp + 1)Lf ≤ m′ ≤ ([[m/Lf ]] + Lp)Lf} (3.8)

as the set of channel measurements for estimation of the channel matrix H(m), where

[[·]] denotes the floor function. There is no decision feedback involved, and no error

41



CHAPTER 3. BEP PERFORMANCE ANALYSIS OF ORTHOGONAL SPACE-TIME BLOCK CODES

Fig. 3.3: PSAM frame structure

propagation due to past decision errors would occur in PSAM. Generally, however,

decision delay is introduced in PSAM, as the receiver must wait until enough pilots

are received before decoding. PSAM has been well accepted since it performs well for

slow fading channels. However, it is expected that the DF scheme would outperform

PSAM under fast fading conditions, because the DF scheme uses channel measurements

from the immediately preceding symbol blocks on which symbol decisions have just been

made, and these measurements are more strongly correlated with the current channel

gain to be estimated. PSAM, on the other hand, uses the channel information from

pilots located several blocks away in time.

The estimate Ĥ(m) of H(m) is, from [62], the conditional mean or MMSE esti-

mate of the channel gain matrix H(m) given Λ(m), i.e., Ĥ(m) = [ĥij(m)]MT×NR
=

E [H(m)|Λ(m)], and can be generated linearly from the measurements in Λ(m), since

the r.v.’s concerned are all Gaussian and the observations are linear. Thus, given Λ(m),

each hil(m) is conditionally Gaussian with mean ĥil(m), and variance 2σ2
e(m), where

2σ2
e,i(m) = E[|hil(m)− ĥil(m)|2|Λ(m)] (3.9)

is the MSE of the estimate ĥil(m). Note that the MSE’s 2σ2
e,i(m) are identical for all

hil(m), l = 1..NR due to the identical channel assumption. According to (3.7), 2σ2
e,i(m)

would have a common value 2σ2
e,0(m) for those STBC where the quantity

∑K
k=1 λi,k is

identical for all i = 1..MT . The work in [62], [75] and [77] shows that the structure of

the estimator for computing Ĥ(m) and the associated MSE 2σ2
e,i(m) depends on the
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channel fading process spectral model.The detail of the MSE calculation can be found

in Chapter 2.

3.2.5 Optimum Receiver Structure

Suppose a sequence of L signal blocks {S(m′)}L−1
m′=0 is sent, and the sequence

{R(m′)}L−1
m′=0 of signals is received. The optimum receiver should make a decision on

the entire sequence {S(m′)}L−1
m′=0 based on {R(m′)}L−1

m′=0 and the channel estimation in-

formation sets [30]. This receiver, of course, is too complex to implement. A simpler

alternative is to detect the sequence {S(m′)}L−1
m′=0 block-by-block. For most cases, espe-

cially when the number of transmit antennas and the constellation size are large, this

block-by-block receiver would still be very complex. Thus, in what follows, we choose to

use a suboptimum SBS receiver, whose complexity is manageable and error performance

can be analytically determined.

In both the DF and the PSAM schemes, the block-by-block receiver detects the

m - th signal block S(m) based on the m - th received signal block R(m) with the aid

of the information set Λ(m). For optimum maximum-likelihood (ML) decoding, the

decoder computes the likelihood p(R(m),Λ(m)|S(m)) for each possible value of the

signal block S(m), and decides on the signal block with the largest likelihood. However,

we have

p(R(m),Λ(m)|S(m)) = p(R(m)|Λ(m),S(m))p(Λ(m)|S(m)) (3.10)

and since the information set Λ(m) is independent of the current transmitted signal

S(m), i.e., p(Λ(m)|S(m)) = p(Λ(m)), the ML decoding rule simplifies to

Ŝ(m) = arg max
S(m)

p(R(m)|S(m),Λ(m)). (3.11)

From (3.6), given S(m) and the set Λ(m), R(m) is conditionally Gaussian with mean

S(m)Ĥ(m). The column vectors of R(m) are independent to each other and each have
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a covariance matrix as

C = S(m)V (m)S†(m) +N0IP×P , (3.12)

where V (m) = diag[σ2
e,i(m)]MT

i=1. The probability density function of the received signal

is

p(R(m)|S(m),Λ(m)) =det−NR(πC)

· exp
(
−Tr

[
[R(m)− S(m)Ĥ(m)]†C−1[R(m)− S(m)Ĥ(m)]

])
.

(3.13)

Thus, the ML block-by-block receiver (3.11) becomes

Ŝ(m) = arg min
S(m)

(
NR ln det(C) + Tr

[
[R(m)− S(m)Ĥ(m)]†C−1[R(m)− S(m)Ĥ(m))]

])
.

(3.14)

(3.11) indicates that the optimum receiver must test all possibilities of the signal matrix

S(m) before it can make the decision. There are totally KM combinations for the K

signallings {sk}K
k=1, with each sk chosen from a constellation set of size M . Thus KM

computation of (3.11) must be performed to decode one block. Such decoding is almost

impossible if the values of K and M become relatively large, e.g., K = 4 and M = 64. In

practice, we may prefer to choose some sub-optimal but computationally simple receiver

structure. Similar work on optimal STBC receivers can also be found in [78].

3.2.6 A Symbol-by-Symbol Receiver Structure

The detector in the form (3.14) makes a simultaneous decision on all the symbols

of the entire block S(m), instead of a decision on one symbol at a time, independently.

This makes the decoder computationally complex, especially when the constellation size

is large. Moreover, it has been found to be impossible to analyze the performance of the

decoder (3.14). Thus, we choose to consider a simpler decoder which makes independent

SBS decisions. Observe that with PSK modulation, if the STBC employed satisfies the
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condition

S†(m)S(m) ∝ I and S(m)S†(m) ∝ I, (3.15)

then C becomes constant and proportional to an identity matrix, and (3.14) simplifies

to

Ŝ(m) = arg min
S(m)

‖(R(m)− S(m)Ĥ(m))‖2, (3.16)

where ‖ · ‖ is the Frobenius norm. This receiver (3.16) can be further simplified to a

SBS detector, given by

ŝk(m) = arg
sk′

max
k′=1...K

Re[zk′(m)s∗k′(m)], (3.17)

where zk′(m) = Tr[R†(m)Bk′Ĥ(m) + Ĥ†(m)A†
k′R(m)]. This detector (3.17) is compu-

tationally much simpler than the detector (3.14). For those STBC’s that satisfy condition

(3.15), it is clear that the detector (3.17) is the ML block-by-block detector. For such

STBC’s, the BEP performance analysis in section 3.3 would give the best performance

achievable. For those STBC’s that do not satisfy condition (3.15), we continue to use

the SBS detector (3.17), which is then a mismatched receiver. The BEP analysis results

in section 3.3 would then not represent the best performance achievable by such codes.

For these latter codes, the optimum detector is the block-by-block detector in (3.14),

whose performance analysis is left for future research. We note that in the special case of

perfect CSI, we would have V (m) = 0 and C = N0I in (3.12). The ML block-by-block

receiver (3.11) would reduce immediately to (3.16), and hence to the symbol-by-symbol

detector (3.17), as expected.
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3.3 BEP Performance Analysis for OSTBC Systems

With PSK modulation, i.e., sk =
√
Ese

jφk , the decoding rule (3.17) is equivalent to

ŝk(m) = arg
sk′

max
k′=1...K

Re
{
zk′e

−jφk′
}
, (3.18)

where

zk′ = Tr[R†Bk′Ĥ + Ĥ†A†
k′R] = xk′ + uk′ (3.19a)

xk′ =
K∑

k=1

[
s∗kTr[H†A†

kBk′Ĥ + Ĥ†A†
k′BkH ] + skTr[Ĥ†A†

k′AkH + H†B†
kBk′Ĥ ]

]
(3.19b)

uk′ = Tr[N †Bk′Ĥ + Ĥ†A†
k′N ] (3.19c)

Hereafter, we drop the block index m for simplicity. For equally likely symbols, the

main quantity of interest is the probability P
(
Re[zk′e

−jα] < 0
∣∣ sk′ =

√
Es

)
[13], where

α is some angle. By conditioning on having the information set Λ, we first evaluate the

conditional probability P
(
Re[zk′e

−jα] < 0
∣∣ sk′ =

√
Es ,Λ

)
.

Proposition 3.1 The quantity zk′ defined in (3.19a) is a Gaussian random variable

conditioning on the information set Λ.

Proof :

Investigate the first component xk′ of zk′ . We first rewrite the STBC construction

matrices Ak,Bk as

Ak = [a1
k,a

2
k, ...,a

MT
k ],Bk = [b1

k, b
2
k, ..., b

MT
k ], (3.20)
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where {ai
k, b

i
k}

MT

i=1 are P × 1 column vectors of Ak,Bk. Now the orthogonal properties

in (3.4) can be re-defined as

ai†
k aj

k′ + bi†
k′b

j
k = λi,kδijδkk′ and ai†

k bj
k′ + ai†

k′b
j
k = 0. (3.21)

Using the linear property of the trace function, the definition of xk′ can be expanded

into four terms as

xk′ =
K∑

k=1

 s∗kTr[H†A†
kBk′Ĥ ] + s∗kTr[Ĥ†A†

k′BkH ]+

skTr[Ĥ†A†
k′AkH ] + skTr[H†B†

kBk′Ĥ ]

. (3.22)

Take the matrix H†A†
kBk′Ĥ in the first term for example

H†A†
kBk′Ĥ = H†


a1†

k

...

aMT †
k

( b1
k′ · · · bMT

k′

)
Ĥ

=


h∗11 · · · h∗MT 1

...
. . .

...

h∗1NR
· · · h∗MT NR




a1†
k b1

k′ · · · a1†
k bMT

k′

...
. . .

...

aMT †
k b1

k′ · · · aMT †
k bMT

k′




ĥ11 · · · ĥ1NR

...
. . .

...

ĥMT 1 · · · ĥMT NR



=



MT∑
j=1

MT∑
i=1

h∗j1a
j†
k bi

k′ĥi1 · · ·
MT∑
j=1

MT∑
i=1

h∗j1a
j†
k bi

k′ĥiNR

...
. . .

...
MT∑
j=1

MT∑
i=1

h∗jNR
aj†

k bi
k′ĥi1 · · ·

MT∑
j=1

MT∑
i=1

h∗jNR
aj†

k bi
k′ĥiNR



,

(3.23)

taking the trace of which gives

Tr[H†A†
kBk′Ĥ ] =

NR∑
l=1

MT∑
j=1

MT∑
i=1

h∗jla
j†
k bi

k′ĥil. (3.24)
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Similarly, we have

xk′ =
K∑

k=1

[
s∗kTr[H†A†

kBk′Ĥ + Ĥ†A†
k′BkH ] + skTr[Ĥ†A†

k′AkH + H†B†
kBk′Ĥ ]

]
=

K∑
k=1

NR∑
l=1

MT∑
j=1

MT∑
i=1

[
s∗k(h∗jla

j†
k bi

k′ĥil + ĥ∗jla
j†
k′b

i
khil) + sk(ĥ∗jla

j†
k′a

i
khil + h∗jlb

j†
k bi

k′ĥil)
]
.

(3.25)

It is clear from the expression above that xk′ is a linear summation of the complex

Gaussian r.v.’s hil and h∗jl, so that xk′ must be a Gaussian r.v. itself. Now let’s investigate

its mean and variance with the fact that hil ∼ N(ĥil, 2σ
2
e,i). The mean of xk′ is

E[xk′ ] =
K∑

k=1

NR∑
l=1

MT∑
j=1

MT∑
i=1

[
s∗k(ĥ∗jla

j†
k bi

k′ĥil + ĥ∗jla
j†
k′b

i
kĥil) + sk(ĥ∗jla

j†
k′a

i
kĥil + ĥ∗jlb

j†
k bi

k′ĥil)
]

=
NR∑
l=1

MT∑
j=1

MT∑
i=1

(
ĥ∗jlĥil

K∑
k=1

[
s∗k(aj†

k bi
k′ + aj†

k′b
i
k) + sk(aj†

k′a
i
k + bj†

k bi
k′)
])

=
NR∑
l=1

MT∑
j=1

MT∑
i=1

(
ĥ∗jlĥilsk′λj,k′δij

)
= sk′

NR∑
l=1

MT∑
i=1

λi,k′

∣∣∣ĥil

∣∣∣2
(3.26)

and the variance is

var[xk′ ]

= Esvar

[
K∑

k=1

NR∑
l=1

MT∑
j=1

MT∑
i=1

[
(h∗jla

j†
k bi

k′ĥil + ĥ∗jla
j†
k′b

i
khil) + (ĥ∗jla

j†
k′a

i
khil + h∗jlb

j†
k bi

k′ĥil)
]]

= 2Es

K∑
k=1

NR∑
l=1

MT∑
j=1

MT∑
i=1

[
σ2

e,j

∣∣∣ĥil

∣∣∣2(∣∣∣aj†
k bi

k′

∣∣∣2 +
∣∣∣bj†

k bi
k′

∣∣∣2)+ σ2
e,i

∣∣∣ĥjl

∣∣∣2(∣∣∣aj†
k′b

i
k

∣∣∣2 +
∣∣∣aj†

k′a
i
k

∣∣∣2)]
= 2Es

K∑
k=1

NR∑
l=1

MT∑
j=1

MT∑
i=1

σ2
e,j

∣∣∣ĥil

∣∣∣2 [∣∣∣aj†
k bi

k′

∣∣∣2 +
∣∣∣bj†

k bi
k′

∣∣∣2 +
∣∣∣ai†

k′b
j
k

∣∣∣2 +
∣∣∣ai†

k′a
j
k

∣∣∣2]
= 2Es

NR∑
l=1

MT∑
j=1

MT∑
i=1

σ2
e,j

∣∣∣ĥil

∣∣∣2 ξj,i,k′ ,
(3.27)

where

ξj,i,k′ =
K∑

k=1

[
|aj†

k bi
k′|2 + |bj†

k bi
k′|2 + |ai†

k′b
j
k|

2 + |ai†
k′a

j
k|

2
]
. (3.28)
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So that xk′ is a Gaussian r.v. defined as

(xk′|sk′ ,Λ) ∼ N

(
sk′

NR∑
l=1

MT∑
i=1

λi,k′

∣∣∣ĥil

∣∣∣2, 2Es

NR∑
l=1

MT∑
j=1

MT∑
i=1

σ2
e,j

∣∣∣ĥil

∣∣∣2 ξj,i,k′) . (3.29)

Similarly, for the second noise term uk′ of zk′ , it is easy to show that uk′ is also a

conditional Gaussian r.v. with mean zero and variance N0

∑NR

l=1

∑MT

i=1 λi,k′

∣∣∣ĥil

∣∣∣2. In

conclusion, zk′ is a conditional complex Gaussian r.v. given by

(zk′|sk′ ,Λ) ∼ N(sk′

MT∑
i=1

NR∑
l=1

λi,k′|ĥil|2, 2Es

MT∑
i=1

NR∑
l=1

MT∑
j=1

ξj,i,k′σ
2
e,j|ĥil|2+N0

MT∑
i=1

NR∑
l=1

λi,k′|ĥil|2).

(3.30)

�

The quantity Re {zk′e
−jα} in the detector (3.18) is a conditionally

Gaussian variable with mean
√
Es cos(φk′ − α)

∑MT

i=1

∑NR

l=1 λi,k′|ĥil|2 and variance

Es

∑MT

i=1

∑NR

l=1

∑MT

j=1 ξj,i,k′σ
2
e,i|ĥil|2 + N0

2

MT∑
i=1

NR∑
l=1

λi,k′|ĥil|2, and the conditional probability

P (Re {zk′e
−jα} < 0|sk′ ,Λ) can now be evaluated as

P (Re
{
zk′e

−jα
}
< 0|sk′ ,Λ) = Q


√√√√√√√√

Es cos2(φk′ − α)

(
MT∑
i=1

NR∑
l=1

λi,k′|ĥil|2
)2

Es

MT∑
i=1

NR∑
l=1

MT∑
j=1

ξj,i,k′σ2
e,j|ĥil|2 + N0

2

MT∑
i=1

NR∑
l=1

λi,k′|ĥil|2

 .

(3.31)

Next, we have to average over the random variables in the information set Λ, or equiv-

alently, over the estimates ĥil(m) in (3.31) to obtain the average error probability

P (Re {zk′e
−jα} < 0|sk′ =

√
Es). To make the averaging tractable, we make use of

the monotonic property of the Q -function. Defining

ωi,k′ =
∑MT

j=1
ξj,i,k′ , ρi,k′ = ωi,k′/λi,k′ ,

σ2
max = max

i=1...MT

{
σ2

e,i

}
, σ2

min = min
i=1...MT

{
σ2

e,i

}
,
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ρmax,k′ = max
i=1...MT

{ρi,k′} , ρmin,k′ = min
i=1...MT

{ρi,k′} ,

λmax,k′ = max
i=1...MT

{λi,k′} , λmin,k′ = min
i=1...MT

{λi,k′} .
(3.32)

The probability in (3.31) can be bounded as

Q


√√√√√λmax,k′Es cos2 α

MT∑
i=1

NR∑
l=1

|ĥil|2

ρmin,k′Esσ2
min + N0

2

 ≤ P (Re
{
zk′e

−jα
}
< 0|sk′ =

√
Es,Λ)

≤ Q


√√√√√λmin,k′Es cos2 α

MT∑
i=1

NR∑
l=1

|ĥil|2

ρmax,k′Esσ2
max + N0

2

 (3.33)

The equality signs hold in (3.33) when

λi,k′ = λk′ , ωi,k′ = ωk′ , for all i = 1 . . .MT , (3.34)

and the ρi,k′ ’s will then have a common value ρk′ = ωk′/λk′ , for all i = 1 . . .MT . Note

that (3.34) includes the condition that 2σ2
e,i(m) = 2σ2

e,0(m) for all i = 1...MT . Since

the estimates ĥil(m) ’s are generated linearly from the elements of set Λ, they are

themselves complex Gaussian r.v.’s, each with mean zero and variance 2[R(0)−σ2
e,i(m)]

[13, 31]. Therefore, the quantity d2(m) =
∑MT

i=1

∑NR

l=1 |ĥil(m)|2 in the argument of the Q

(.) function in (3.33) has a chi-square pdf with 2MTNR degrees of freedom [79]. Using

this pdf to average the upper and lower bounds in (3.33) over the quantity d2(m) gives

the result [79]

F (α, µ(ρmin,k′ , λmax,k′ , σ
2
min)) ≤ P (Re

{
zk′e

−jα
}
< 0|sk′ =

√
Es)

≤ F (α, µ(ρmax,k′ , λmin,k′ , σ
2
max)) (3.35)
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Here, the function F (α, µ) is given by

F (α, µ) =

[
1− µ

2

]MT NR MT NR−1∑
k=0

 MTNR − 1 + k

k

[1 + µ

2

]k

(3.36)

where

µ(ρ, λ, σ2
e) =

(
1 +

NR + ργs(1− η)

λγsη cos2 α

)−1/2

, γs = NR
2R(0)Es

N0

, and η = 1− σ2
e

R(0)
.

(3.37)

The bounds in (3.35) describe the error performance of a single signal symbol sk′ . As

there are K symbols in one block, the average BEP is obtained from the average prob-

ability Γ(α) given by

Γ(α) =
1

K

K∑
k′=1

P (Re
{
zk′e

−jα
}
< 0|sk′ =

√
Es). (3.38)

Now, for BPSK, it is clear that the BEP is given by

PB
b = Γ(α = 0). (3.39)

For QPSK with Gray coding, following the argument in [62], the BEP is given by

PQ
b = Γ(α = π/4). (3.40)

Finally, for 8PSK with Gray coding, the argument in [80] gives a very good approxima-

tion

P
(8)
b ≈ 2

3
Γ(α = 3π/8)[1 + Γ(α = π/8)]. (3.41)

In addition to these two tight upper and lower bounds in (3.35), Γ(α) also admits the

Chernoff upper bound. Applying the bound Q(x) < 0.5e−x2/2 to the upper bound in

(3.33) before averaging over the estimates ĥil(m) gives

Γ(α) <
1

2K

K∑
k′=1

(
1 +

λmin,k′γsη cos2 α

NR + ρmax,k′γs(1− η)

)−MT NR

. (3.42)
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The Chernoff bound in (3.42) shows clearly that the BEP decays exponentially with the

product MTNR of the number of transmit and receive antennas.

From (3.38-3.41), it is clear that the BEP depends on the total mean received

signal-to-noise ratio per symbol, γs, and the MSE, σ2
e(m), which in turn depends on the

channel model and the estimator used. Our receiver and BEP results here reduce to

those of Alamouti [15] and Tarohk [17] if the CSI were perfect, i.e., σ2
e(m) = 0. The

block-wise constant channel assumption plays a key role in obtaining the results. It

leads to the conditional mean and variance of zk′ in (3.19a) being a function only of∑MT

i=1

∑NR

l=1 λi,k′|ĥil(m)|2, independent of the cross-terms in the channel estimates. We

now apply the analytical results above to the existing orthogonal STBC designs. When

condition (3.34) is satisfied, the upper and lower bounds in (3.33) and hence those in

(3.35) coincide with each other. The BEP expression in (3.38) is now given by

Γ(α) =
1

K

K∑
k′=1

F (α, µ(ρk′ , λk′)). (3.43)

The STBC’s that satisfy (3.34) include the Alamouti’s design [15], the full rate real

designs for two to eight transmit antennas [17], the systematic half-rate complex designs

[17], the 4×4 rate-3/4 STBC in [17] and [47], and the 30×6 rate-2/3 design in [53]. For

those square designs which satisfy S†S = SS† =
∑K

k=1 |sk|2I, e.g., Alamouti’s design

[15], the 4 × 4 and 8 × 8 real designs [17], and the the 4 × 4 rate-3/4 STBC in [47], it

can be shown that ωi,k′ = K from (3.28). The BEP expression is then given in (3.43)

with ρk′ = K,λk′ = 1, for all k′. A summary of those known STBC’s having the exact

BEP expression (3.43) is given in Table 3.1.

When condition (3.34) cannot be met, it is impossible to average (3.31) over all

channel estimates analytically. Only the upper and lower bounds in (3.33) can be ob-

tained in general. It will be shown in section 3.4 that these two bounds are very close

to each other for most codes, and, thus they provide a very good approximation to the

BEP performance for PSK modulations. Those orthogonal STBC’s known so far that
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Table 3.1: Parameters list for exact BEP evaluation

Table 3.2: Parameters list for lower and upper bound of BEP evaluation

do not satisfy (3.34) are summarized in Table 3.2.

3.4 Numerical Results and Discussion

In simulation, 20 preamble blocks are firstly sent to train the estimator. The para-

meters are chosen by default as, 1 pilot block is periodically inserted into the transmission

after every 9 data blocks were sent. This incurs 10% loss of bandwidth efficiency. For

Jakes’ channel model, a decision feedback Wiener filter with 10 taps is used, and the

estimator for PSAM uses the 10 nearest pilot block for generating the estimation. Using
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Fig. 3.4: Theoretical BEP performance of Alamouti’s STBC under BTW channel

the above results, the BEP’s of M PSK are computed and plotted against the total mean

received SNR per bit given by γb = 10
9
γs

∑MT

i=1

∑K
k=1 λi,k/K log2M . These BEP results

represent the actual performance achievable by our receiver, under a block-wise constant

channel model. BEP performances of Alamouti’s scheme under Butterworth channel

models are demonstrated in Fig.3.4 and Fig.3.5. Also plotted in Fig.3.4 are the BEP with

perfect CSI at the receiver, i.e., perfect channel estimation with σ2
e(m) = 0, as well as the

conventional one-transmit antenna result obtained from [62] to show the diversity gains.

As mentioned in section 3.2, the performance calculation is based on the assumption of

block-wise constant channel and, thus, uses the block normalized fade rate ωdTB, instead
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Fig. 3.5: Theoretical BEP performance of Alamouti’s STBC under 1BTW channel

of the symbol normalized one ωdTs, i.e., we actually use ωdTB = 0.002 for the BEP com-

putation of the Alamouti’s STBC with the normalized fade-rate of ωdTs = 0.001. This

idea is used throughout this dissertation unless otherwise stated. For this low fade rate,

the performance under the 3BTW channel is almost the same as that of the receiver

with perfect CSI. However, performance under the 1BTW channel is worse than that

under the 3BTW channel. This is because for the same fade-rate, the 3BTW channel

fluctuates more slowly than the 1BTW channel does, making it easier to track. The

fade rate, of course, determines the accuracy with which the channel can be tracked,

and a higher fade rate in general tends to lead to a larger channel estimation MSE. It is
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Fig. 3.6: Theoretical BEP floor under BTW channel

shown in Fig.3.5 that the 8PSK modulation is much worse than the BPSK and QPSK

even under a slow fade rate, which indicates 8PSK is not an efficient modulation for

STBC.We focus on the performances of BPSK and QPSK afterwards. Also in Fig.3.5,

it is obvious that the BEP’s tend to reach a floor as SNR increases. The BEP curve of

our receiver asymptotically reaches an irreducible floor as the SNR approaches infinity.

This is as expected, because the estimated channel gain matrix Ĥ(m) is a predicted es-

timate, and for any nonzero channel fade rate ωdTs there is an irreducible, nonzero error

variance in the prediction, even as the SNR becomes very large. This irreducible predic-

tion error variance leads to the error floor. For the 1BTW channel model, for instance,
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this BEP floor can be obtained analytically. Setting Es/N0 to infinity in (2.40), the

steady-state MSE σ2
e,∞ of the channel estimates can be shown to be R(0)(1− e−2ωdTB),

which is purely a function of the fade rate ωdTs. Using this value of σ2
e,∞ as the value for

σ2
e(m) in (3.37) gives a limiting value of η∞ = e−2ωdTB . This limiting value of η gives the

irreducible BEP for M PSK. Fig.3.6 demonstrated this ultimate floor value for BTW

channel against the normalized fade rate, where the 4 × 4 real orthogonal design [17]

is used for 4-Tx case. As the fade rate becomes larger than some thresholds, the BEP

floor of STBC’s with more transmit antennas become even worse than that of those with

less. As the size of STBC increase, it also requires longer coherent time to satisfy the

block-wise constant channel assumption. As the fade rate increases, the performance of

large-size STBC’s surely degrade much earlier than the small ones. We use Alamouti’s

design[15] and the 4-by4 rate-3/4 designs in [47, 48] in Fig.3.7, and as can be seen, for

a faster channel with a normalized fade rate of ωdTs = 0.1, the performance curves with

channel estimation deviate more from those with perfect CSI, with the deviation being

greater for the QPSK than for the BPSK modulation. Since we use a block fade-rate

ωdTB for performance analysis, the block length P is critical to the performance. In

Fig.3.8, we compare the performance of 2× 2, 4× 4, 8× 8 full-rate real designs together

with the systematically constructed 4× 2, 8× 4, 16× 8 half-rate COD proposed in [17],

respectively. The half-rate codes use QPSK for fair comparison. According to the result

in Table 3.1, they have identical performance when CSI is perfectly known. Under a

1BTW channel of ωdTs = 0.001, it is shown that the full-rate designs with shorter block

length P outperform their corresponding half-rate ones, and the performance gap be-

tween them becomes larger as P increases. This loss is only due to the increased block

fade rate ωdTB. One can expect that when the channel is fast enough to be considered

symbol-wise constant, there will be more loss due to a longer block length P . This

indicates that in designing a practical STBC, one should keep the P as small as possible

while gaining from the space-time diversity. When P is too large, the resulting perfor-
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Fig. 3.7: Theoretical BEP performance comparison with different numbers of transmit antennas under

Jakes’ channel model using DF WF estimator

mance loss so caused might be greater than the diversity gain, making the performance

even worse. As discussed in Section 3.3, an exact BEP expression cannot be obtained

for those STBC’s which do not satisfy condition (3.34). In Fig.3.9, the upper bound and

lower bound of several such STBC’s in Table 3.2 are plotted. It can be seen that under

Jakes’ channel model with ωdTs = 0.01 and PSAM, these two bounds are very close to

each other, the difference being even negligible for the STBC with a small P ( P = 4).

The bounds thus provide a very good approximation to the actual BEP. Recall that

the receiver and its theoretical BEP performance were obtained under the assumption

that the channel is constant over a block. Thus, it would be of interest to know how
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Fig. 3.8: Theoretical BEP performance comparison between full- and half- rate STBC’s under Jakes’

channel model using PSAM

accurately our theoretical BEP results predict the actual performance of our receiver

when the latter is operating under a symbol-wise channel where the channel fading gain

is constant only over a symbol period and fluctuates from one symbol period to the next.

Fig. 3.10 shows the BPSK performance under Jakes’ fading channel with Alamouti’s

scheme for single receive antenna. The gap caused by the error of the imperfect channel

estimation between the theoretical performance and the one with perfect CSI is within

1dB. The Chernoff bound is about 2-3dB higher from the theoretical performance. The

simulation is conducted under a symbol-wise constant channel,i.e., it fluctuates from

symbol period to symbol period, while the theoretical BEP performances were obtained
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Fig. 3.9: Theoretical bounds of BEP performance for different STBC’s under Jakes’ channel model

using PSAM

under the quasi-static assumption. It can be seen in Fig. 3.10 that the simulation re-

sult is close to the theoretical performance, with around 1dB difference. To show the

cause of this gap, we also simulated the case with ideal decision feedback (IDF) . In

IDF mode, different from the actual decision feedback (ADF) mode, the estimator uses

S(m) instead of Ŝ(m) when computing (3.7), i.e., the estimator knows the transmitted

symbols perfectly, and thus can remove the errors due to erroneous decision-feedback.

Using the IDF results as a benchmark, we see that decision errors lead to a performance

degradation of about 2 dB. The IDF result matches the theoretical calculation perfectly,

which means a realistic fading channel with ωdTs = 0.001 is slow enough to validate
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Fig. 3.10: BEP of BPSK with Alamouti’s STBC with one receive antenna under Jakes’ channel model

the quasi-static assumption and it is sound for us to make such an assumption in our

derivations. In Fig.3.11, we adopt the 4 × 4 rate-3/4 STBC proposed in [47] under

a 3BTW channel. Besides the IDF condition, we also generate a block-wise constant

channel for simulation. The curves in the figure clearly show the factors that influence

the STBC performance. The simulation results with block-wise constant channel and

IDF match the theoretical predication perfectly, thus validating our analysis. The per-

formance difference between symbol-wise constant channel case and block-wise constant

channel case is due to the channel fluctuations that disturb the orthogonality of the

STBC. Similar to Fig.3.12, the error propagation caused by the errors in decision feed-
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Fig. 3.11: BEP Performance of 4× 4 rate-3/4 STBC with QPSK under 3BTW Channel

back is still the main reason for the performance degradation in an actual STBC system.

We use PSAM in Fig. 3.12 to remedy this problem. The simulation is carried out under

a fast fading Jakes’ channel with ωdTB = 0.2. Again, the simulation under a block-wise

constant channel matches the theoretical performance perfectly, and the loss caused by

the symbol-to-symbol fluctuation of the channel is within 1dB even under high SNR.

PSAM is still more preferable than a DF system for STBC when the block length is not

very large.
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Fig. 3.12: BEP performance of 4 × 4 rate-3/4 STBC with QPSK under Jakes’ channel model using

PSAM

3.5 Summary

We presented a SBS channel estimation receiver for space-time block coded systems.

A simple, closed-form expression for its BEP is obtained, showing clearly the dependence

of the BEP on the channel estimation MSE. We simulated the receiver under the more

realistic assumption that the channel is constant over only a symbol period, and fluc-

tuates from one symbol period to the next. The simulations validate the theoretical

performance prediction, and verify that the accuracy of the latter prediction depends on

the fade rate ωdTs.
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Chapter 4

STBC Communication System with

Receive Antenna Selection

In this chapter, we present receive antenna selection combining schemes for wireless

communication systems with STBC. As channel estimation is compulsory at the receiver

for coherent detection of STBC systems, we make use of the estimated SNR as the

selection criteria for receive antenna selection. Based on this estimated SNR criterion,

we propose STBC systems with selection combining at the receiver, which choose one

or several branches with the maximum or the maximum several estimated SNR’s. We

analyze the performance and develop closed-form BEP expressions with PSK modulation

for such systems. Comparing to those results in the literature, both space-time block

coding and channel estimation are considered, and the results are explicit in that they

show direct BEP dependence on the MSE of estimator and the system parameters chosen.

We also show that the selection combining with STBC achieves full diversity provided by

both transmit and receive multiple antennas. With the calculated BEP performances, it

is found that the proposed selection combining schemes are efficient means to maintain

a simple receiver structure with tolerable performance loss from MRC.
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4.1 Introduction

Diversity reception techniques are well known for enhancing the performance of

wireless communication systems [81, 82]. The commonly used linear diversity com-

bining techniques include selection combining, maximum ratio combining , equal gain

combining , etc. Selection combining, which chooses one branch according to certain

criteria, named single selection combining (SSC) , is the simplest realization at the re-

ceiver. It avoids high power consumption. A commonly used criterion for selection

combining is the SNR. Generalized selection combining (GSC) schemes, which combine

several branches with most significant SNR, was proposed to bridge the performance gap

between the SSC and MRC/EGC [83–87]. In [83], the authors present a GSC scheme

that chooses the best two and three branches according to the SNR criteria and analyze

the performance for binary signaling over i.i.d. Rayleigh fading channels. In [84], the

mean output SNR for GSC over Rayleigh fading channels is obtained in a closed form.

The authors also extended their work in [85] for non-i.i.d. channels. A unified approach

for GSC is proposed in [86], where both moment generating function (MGF) and p.d.f.

of the SNR are obtained in exact closed-form for performance evaluation. Another GSC

scheme that selects those links whose SNR exceeds a preset threshold is proposed in

[87]. The performance analysis of selection combining schemes over independent or cor-

related Nakagami- m channels can be found in [88–91]. All these literatures assume

perfect SNR knowledge at the receiver. In [92], the performance of binary DPSK with

selection combining is analyzed over Rayleigh fading channels, where the CSI is unknown

at the receiver. Recently in [93], the authors use a channel estimation receiver, and ob-

tain an estimation-error-dependent closed-form symbol error probability expression for

2-D constellation with selection combining.

To the best of authors’ knowledge, not much work has been done on selection

combining for STBC systems. In [94], SSC is proposed for Alamouti’s STBC and the

BEP is presented in an unsolvable integral form. In [95], an upper bound for the BEP
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of STBC with GSC is presented by releasing the integral limits in [94] for the ordered

statistics. The performance analysis in [95] gives an exact closed-form expression for

Alamouti’s STBC. However, perfect CSI is assumed at the receiver in both [94] and [95].

In our previous works in Chapter 3, we developed a symbol-by-symbol channel es-

timation receiver structure for STBC systems, and obtained its BEP expressions with

PSK modulations for MRC under non-selective Rayleigh fading channels. The results

clearly show the dependence of BEP on the mean-square error (MSE) of the estima-

tor. In this chapter, we extend our receiver structure to selection combining. In this

receiver, by knowing the channel estimates, the receiver chooses one or several branches

with the largest amplitudes of channel estimate for selection combining. We investigate

the selection combining schemes for the case of conventional single-input-multi-output

(SIMO) system, Alamouti’s STBC system, and generalized STBC systems. Particularly,

closed-form BEP expressions are obtained for SSC and GSC for SIMO system, SSC and

dual selection combining (DSC) for Alamouti’s STBC system, and SSC for generalized

STBC with two receive antennas. The results explicitly show that the BEP performances

depend on the MSE of estimator and the system parameters chosen.

4.2 System Model and Receiver Structure

Consider a MIMO communication system with MT -Tx and NR-Rx, in which, the

received signals from NC antennas with the most significant estimated SNR are selected

and combined for decoding. The system employs a P ×MT generalized complex orthog-

onal STBC S. The definition of orthogonal STBC follows that in section 3.2. Similar to

that in Chapter 3, the MT ×NR channel matrix is denoted as H(m) for the m - th block

interval. In order to coherently detect the transmitted symbols, estimation of channel

matrix, Ĥ(m), must be made before the decoding. Let ĥil(m) be the channel estimate
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of hil(m) available at the receiver and

γ̂l = Es

∑MT

i=1
|ĥil(m)|2/N0 (4.1)

be the instantaneous estimated output SNR at the l - th receive antenna, where Es =

E0/MT is the energy per symbol. For the sake of simplicity and clarity of the analysis,

we assume Es = E0/MT instead of (3.5) in this chapter and hereafter. Arranging {γ̂l}NR
l=1

in a decreasing order as

γ̂1:NR
≥ γ̂2:NR

≥ · · · ≥ γ̂NR:NR
≥ 0, (4.2)

the receiver then selects and combines those branches with {γ̂l:NR
}NC

l=1 for decoding. As

only NC out of NR receive antennas are actually used for decoding, define HT (m) of size

MT ×NC as the effective transmission channel matrix that consists of CSI from transmit

antennas to those selected NC receive antennas. Denoting the m - th (m = 0, 1, 2...)

transmitted signal block as S(m), the effective received signal can be written in matrix

form as

R(m) = S(m)HT (m) + N (m). (4.3)

Each entry rpl(m) of the P × NC received matrix R(m) is the received signal on the

l - th selected receive antenna at the p - th symbol slot of the m - th block, and N (m) is

the P ×NC noise matrix, whose entries npl(m) are i.i.d., zero-mean, complex, Gaussian

random variables due to AWGN at the p - th symbol slot on the l - th receive antenna

with E[n∗p′l′(m
′)npl(m)] = δpp′δll′δmm′N0.

In order to make combining decision from the ordered statistics (4.2), CSI of all

links contained in H(m) must be estimated. We use PSAM [76] for channel estimation.

A PSAM frame contains one pilot block and (Lf −1) STBC data blocks. With the time

index m starting from zero, the (m = qLf )- th block is a pilot block, where q = 0, 1, 2....

We choose the q-th pilot block as an MT ×MT diagonal matrix S̃P (qLf ) that lasts for
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MT symbol durations, i.e., each transmit antenna sends known PSK symbols in turn to

sound the channels while the remaining ones keep silent during the pilot time. Assume

each diagonal entry of S̃P is a PSK signal with energy EP . After receiving the pilot block,

the receiver removes the known signal S̃P from the received signal R̃P by calculating

Yq = [S̃†P (qLf )S̃P (qLf )]−1S̃P (qLf )R̃P (qLf ) = H(qLf ) + Ñ . (4.4)

By assuming P ' MT , it can be shown that Yq is a noisy observation of the channel

matrix H(qLf ), and each entry yil,q, i = 1 . . .MT , l = 1 . . . NR of Yq can be expressed

in the form yil,q = hil(qLf ) + ñil,q, where {ñil,q}q is a set of i.i.d. zero mean complex

Gaussian random variables with variance E−1
P N0. Define ỹil(m) = [yil,q]

[[m/Lf ]]+Lp

q=[[m/Lf ]]−Lp+1
as

the array storing the 2Lp nearest pilot information of the m - th block, where [[·]] denotes

the floor operation. The channel estimate ĥil(m) is then given by

ĥil(m) = w†(m)ỹil(m), i = 1...MT , l = 1...NR, (4.5)

where w(m) = Ξ−1p(m), Ξ = E[ỹil(m)ỹ†il(m)] and p(m) = E[hil(m)ỹ†il(m)]. Note that

the (l1, l2) - th entry of Ξ is

Ξ(l1, l2) =

 R(0) + E−1
P N0/2, l1 = l2

R(l1 − l2), l1 6= l2
, l1, l2 = 1...2Lp (4.6)

while the l1 - th entry of vector p(m) is

p(m, l1) = R([[[m/Lf ]] + Lp − l1 + 1]Lf −m). (4.7)

With MMSE channel estimation, each hil(m) is a Gaussian random variable with

mean ĥil(m), and variance 2σ2
e(m), conditioned on channel measurements available at

the receiver. Note that the MSE’s 2σ2
e(m) defined as

2σ2
e(m) = E[|hil(m)− ĥil(m)|2] = R(0)− pT (m)w(m) (4.8)

are identical for all channels due to the i.i.d. channel assumption.
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Fig. 4.1: System model of STBC with selection combining

After the channel estimation process described above, a channel estimation matrix

Ĥ(m) on H(m) is now known to the receiver. The receiver now decides a MT ×NC sub-

matrix ĤT (m) of Ĥ(m) that maximize the Frobenius norm ||ĤT (m)||2. The effective

received signal in (4.3) is then sent to a symbol-by-symbol decoder defined by

ŝk(m) = arg
sk

max
k=1...K

Re[zk(m)s∗k(m)], (4.9)

where zk(m) = Tr[R†(m)BkĤT (m) + Ĥ†
T (m)A†

kR(m)]. This detector is not optimum

with imperfect channel estimation but computationally the simplest for implementation.

The system model for STBC with selection combining with PSAM channel estimation

and the receiver structure are illustrated in Fig. 4.1.

4.3 Performance Analysis of STBC with Selection

Combining

The BEP depends on the quantity P (Re {zke
−jα} < 0|sk =

√
Es,Λ), where Λ =

{ỹil(m)}MT ,NR

i,l=1 is the set containing the channel information from the pilot sequence, and

α is some angle. Hereafter we drop the time index m for simplicity. It has been shown
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in Chapter 3 that

P (Re
{
zke

−jα
}
< 0|sk =

√
Es,Λ) = or ∼= Q


√√√√√λkEs cos2 α

MT∑
i=1

NC∑
l=1

|ĥil|2

ρkEsσ2
e + N0

2

 , (4.10)

where ρk and λk are constants determined by the STBC used. The equal sign holds

for those STBC designs where S†S is proportional to an identity matrix. Otherwise,

(4.10) still gives a very good approximation to the BEP evaluation though not exact.

For simplicity, we use equal sign hereafter. However, it should be noted that not all

STBC’s have exact BEP expressions as mentioned. The values of ρk and λk for different

STBC designs can be found in Table 3.1 and Table 3.2. Now rewrite (4.10) in a simple

form as

P (Re
{
zke

−jα
}
< 0|sk =

√
Es,Λ) = Q


√√√√βk

NC∑
l=1

γ̂l:NR

 , (4.11)

where βk = 2λk cos2 α/[ρk(1 − η)γ̄s + 1], η = 1 − σ2
e/R(0) and γ̄s = 2EsR(0)/N0 is

the mean SNR per symbol per receive antenna. The equivalent estimated output SNR

per symbol at the output of the selection combiner, γ̂s,out = 2Es||HT ||2/N0 is the

summation of the first NC quantities from the order statistics (4.2), i.e.,

γ̂s,out =

NC∑
l=1

γ̂l:NR
. (4.12)

To evaluate the BEP , we average the quantity in (4.11) over the estimated SNR as

Fk(α) =

∫ ∞

0

Q
(√

βkγ
)
fγ̂

s,out
(γ)dγ. (4.13)

The probability in (4.13) only provides the BEP evaluation for a single symbol sk. Hence,

it must be averaged over all K transmitted symbols. Given that all symbols are equally
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likely, define the BEP function P(α) as

P(α) =
1

K

K∑
k=1

Fk(α). (4.14)

And the BEP for PSK signaling is given as in (3.39-3.41). As discussed in Chapter 3,

hil(m) is a Gaussian random variable with mean ĥil(m), and variance 2σ2
e(m), condi-

tioned on channel measurements available at the receiver. Furthermore, ĥil(m) is itself

a Gaussian random variable with mean zero and variance [R(0)−σ2
e ] [62]. The instanta-

neous estimated SNR at the l - th receiver γ̂l defined in (4.1) thus has a χ2 -distribution

with 2MT degrees of freedom with mean

γ̄ = E[γ̂l] = Es · 2MT (R(0)− σ2
e)/N0 = ηMT γ̄s = ηγ̄0. (4.15)

The p.d.f. and c.d.f of γ̂l are respectively given by [79]

fγ̂l
(γ) =

MMT
T

γ̄MT (MT − 1)!
γMT−1e−MT γ/γ̄ (4.16)

and

Fγ̂l
(γ) = 1− e−

MT γ

γ̄

MT−1∑
n=0

1

n!

(
MTγ

γ̄

)n

. (4.17)

Consequently, the joint p.d.f of the maximum NC estimated SNR {γ̂l:NR
}NR

l=1 is [86]

fγ̂1:NR
,γ̂2:NR

,··· ,γ̂NC :NR
(γ̂1:NR

, γ̂2:NR
, · · · , γ̂NC :NR

)

= NC !

(
NR

NC

)
[Fγ̂l

(γ̂NC :NR
)]NR−NC

NC∏
l=1

fγ̂l
(γ̂1:NR

)

where γ̂1:NR
≥ γ̂2:NR

≥ · · · ≥ γ̂NR:NR
.

(4.18)
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The MGF of the total combined SNR
∑NC

l=1 γ̂l:NR
is given by

M(s) =

∞∫
0

∞∫
γNC :NR

· · ·
∞∫

γ2:NR

e
s

NCP

l=1
γl:NR

fγ1:NR
,γ2:NR

,··· ,γNC :NR
(γ̂1:NR

, γ̂2:NR
, · · · , γ̂NC :NR

)

dγ̂1:NR
dγ̂2:NR

· · · dγ̂NC :NR
.

(4.19)

With this MGF, the BEP function P(α) in (4.14) can be obtained as

Fk(α) =

∫ π/2

0

M(
βγ

2 sin2 θ
)dθ. (4.20)

The closed form solution for the NC - fold integral in (4.19) cannot be obtained, as

there are γ̂l:NR
’s in the lower limit of the integral interval. Numerical approaches must

be taken for the BEP calculations. In [95], the authors obtained a performance upper

bound by replacing all the γ̂l:NR
in the integral limits in (4.19) by zeros. Here we consider

special cases where the equation (4.20) has an exact closed-form expression.

4.3.1 Single selection combining

In single selection combining, the receiver selects the branch with maximum esti-

mated SNR for decoding. By substituting NC = 1 in (4.18), the p.d.f. of the maximum

SNR, γ̂1:NR
can be written as

fγ̂1:NR
(γ) = NR [Fγ̂l

(γ)]NR−1 fγ̂l
(γ). (4.21)

4.3.1.1 One Transmit Antenna( MT = 1)

As we mentioned earlier, the conventional 1Tx system is a special case of STBC

with S = [s1]. In a SIMO system, each γ̂l is Rayleigh distributed. The distribution of
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maximum estimated SNR, γ̂1:NR
is

fγ1:NR
(γ) =

NR

γ̄

NR−1∑
n=0

(
NR − 1

n

)
(−1)ne−

(n+1)γ
γ̄ . (4.22)

For 1-Tx case, ρk = λk = 1, thus βk = β = 2 cos2 α/[(1 − η)γ̄s + 1] for all k = 1...K in

(4.11). The MGF of p.d.f. in (4.22) is readily evaluated as

Mfγ1:NR
(s) =

NR−1∑
n=0

(
NR − 1

n

)
(−1)nNR

1 + n− sγ̄
. (4.23)

Substituting (4.23) in (4.20), we have

P(α) = NR

NR−1∑
n=0

(
NR − 1

n

)
(−1)n

n+ 1
G1(

βγ̄

2n+ 2
), (4.24)

where the function Gn(·) is defined as [96]

Gn(c) =
1

π

π/2∫
0

(
1 +

c

sin2 θ

)−n

dθ =
1

2

[
1− µ(c)

n−1∑
k=0

(
2k

k

)(
1− µ2(c)

4

)k
]

(4.25)

and

µ(c) =

√
c

1 + c
. (4.26)

For γ̄ � 1, (4.24) can be approximated as

P(α) ' (2NR − 1)!!

2

(
1

βγ̄

)NR

, (4.27)

which is obtained by expanding (4.24) using Taylor’s series. The expression in (4.27)

indicates that the system achieves the full diversity provided by the NR receive antennas

though only one branch is selected for decoding.

4.3.1.2 Alamouti’s STBC ( MT = 2)

Consider a 2-Tx and NR - Rx communication system with Alamouti’s STBC

scheme, where ρk = 2, λk = 1 for all k = 1...K, then βk = β = 2 cos2 α/[2(1− η)γ̄s + 1]
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in (4.11). With MT = 2, each γ̂l is a χ2 -distributed random variable with four degrees

of freedom. The distribution of maximum estimated SNR is

fγ̂1:NR
(γ) = NR

[
1− e−

2γ
γ̄

(
1 +

2γ

γ̄

)]NR−1 [
4γ

γ̄2
e−

2γ
γ̄

]
. (4.28)

The MGF of (4.28) is

Mγ̂1:NR
(s) =

∞∫
0

esγfγ̂1:NR
(γ)dγ

= NR

NR−1∑
n1=0

n1∑
n2=0

(
NR − 1

n1

)(
n1

n2

)
(−1)n1(n2 + 1)!

(
1

n1 + 1− 0.5γ̄s

)n2+2

.

(4.29)

The mean output of the maximum estimated SNR can then be evaluated from the MGF

as

γ̄out =
d

ds
Mγ̂1:NR

(s)|s=0

=
NRγ̄

2

NR−1∑
n1=0

n1∑
n2=0

(
NR − 1

n1

)(
n1

n2

)
(−1)n1(n2 + 2)!

(
1

n1 + 1

)n2+3

.
(4.30)

By substituting (4.28) in (4.13), the BEP function can be obtained in a closed-form as

P(α) = NR

NR−1∑
n1=0

n1∑
n2=0

(
NR − 1

n1

)(
n1

n2

)
(−1)n1(n2 + 1)!(n1 + 1)−n2−2Gn2+2(

βγ̄

4n1 + 4
),

(4.31)

where Gn(·) is as defined in (4.25). Under high SNR condition γ̄ � 1, (4.31) can be

approximated by

P(α) ' 2NR−1

2NR∏
n=1

(2n− 1) ·
(

1

βγ̄

)2NR

. (4.32)

Similar to (4.27), (4.32) shows that full diversity can asymptotically be achieved for SSC

system with Alamouti’s STBC.
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4.3.1.3 Generalized STBC with Dual Receive Diversity ( NR = 2)

For a generalized STBC of size P × MT , MT transmit antennas are deployed at

the transmitter. The estimated SNR γ̂l is a χ2 -distributed random variable with 2MT

degrees of freedom as defined in (4.16). By substituting (4.16) and (4.17) in (4.21), the

p.d.f. of the maximum γ̂l is

fγ̂1:NR
(γ) =

MTNR

(MT − 1)!γ̄
e−

MT γ

γ̄

(
MTγ

γ̄

)MT−1
[

1− e−
MT γ

γ̄

MT−1∑
n=0

1

n!

(
MTγ

γ̄

)n
]NR−1

.

(4.33)

This p.d.f. expression is too complex to get a closed-form MGF expression. Numerical

calculation must be performed for BEP evaluation. To obtain a closed form solution for

the generalized STBC with SSC, we consider the case where there are only two receive

antennas, which is later shown to be the case having comparable performance to MRC

schemes. With NR = 2, the MGF of the p.d.f. in (4.33) is

Mγ̂1:NR
(s) = 2

[(
1− sγ̄

MT

)−MT

−
MT−1∑
n=0

(
MT + n− 1

n

)
1

2MT +n

(
1− sγ̄

2MT

)−MT−n
]
.

(4.34)

The mean estimated output SNR is

γ̄out = 2γ̄

[
1−

MT−1∑
n=0

(
MT + n− 1

n

)
1

2MT +n+1

(
1 +

n

MT

)]
. (4.35)

The closed form expression for the BEP is

Fk(α) = 2GMT
(
βkγ̄

2MT

)−
MT−1∑
n=0

(
MT + n− 1

n

)
2−MT−n+1GMT +n(

βkγ̄

4MT

). (4.36)

When γ̄ � 1, this BEP expression can be approximated as

Fk(α) '
M2MT−1

T

2MT∏
n=1

(2n− 1)

2MT !(MT − 1)!

(
1

βkγ̄

)2MT

, (4.37)
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which again shows that the diversity order achievable is determined by the total number

of transmit and receive antennas for SSC with generalized STBC.

4.3.2 Generalized Selection Combining

In GSC, the combiner selects NC receive antennas with most significant estimated

SNR out of NR receive antennas. The general solution is given in (4.18) and (4.19).

Here, we illustrate the following 1-Tx and 2-Tx cases where closed-form expressions can

be obtained.

4.3.2.1 One Transmit Antenna ( MT = 1)

According to (4.15), the estimated mean SNR of the proposed MMSE channel

estimation receiver degrades from actual SNR proportionally to the coefficient η. For

this case, the MGF of combined SNR in (4.19) reduces to [86]

Mγ̂GSC
(s) = (1− sγ̄)−NC+1

NR∏
n=NC

(
1− sγ̄NC

n

)−1

= (1− sγ̄)−NC+1

NR−NC∑
n=0

(−1)n
(

NR

NC

)(
NR−NC

n

)
1 + n

NC
− sγ̄

.

(4.38)

The mean estimated output SNR has a simple expression as [84, 86]

γ̄out = E[γ̂GSC ] = NC γ̄

(
1 +

NR∑
n=NC+1

1

n

)
. (4.39)

By taking the inverse Laplace transformation of (4.38), the p.d.f of combined SNR is

fγGSC
(γ) =

(
NR

NC

)[
γNC−1e−γ/γ̄

γ̄NC (NC − 1)!
+

1

γ̄

NR−NC∑
n1=1

(
(−1)NC+n1−1

(
NR −NC

n1

)(
NC

n1

)NC−1

·e−(γ/γ̄)

[
e−(n1γ/NC γ̄) −

NC−2∑
n2=0

1

n2!

(
−n1γ

NC γ̄

)n2
])]

.

(4.40)
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Substituting (4.40) in (4.20), the BEP can be written as [86]

P(α) =

(
NR

NC

)
[GNC

(c1)+

NR−NC∑
n1=1

(−1)NC+n1−1

(
NR −NC

n1

)(
NC

n1

)NC−1

·

(
NC

n1 +NC

G1(c2)−
NC−2∑
n2=0

(
−n1

NC

)n2

Gn2+1(c1)

)], (4.41)

where c1 = βγ̄/2, c2 = βNC γ̄/[2(n1+NC)]. Similarly, we have a high-SNR approximation

for (4.41) as

P(α) ' (2NR − 1)!!

2NNR−MT
C NC !

(
1

βγ̄

)NR

. (4.42)

4.3.2.2 Alamouti’s STBC with Dual Selection Combining ( MT = NC = 2 )

For Alamouti’s STBC, the p.d.f. of the combination of the NC branches with

maximum estimated SNR is not readily available in closed form. By observing the fact

that the χ2 distribution with four degrees of freedom is the same as the Nakagami-2

distribution, one can refer to [88–91] for an MGF of the combined γ̂GSC . However, the

MGF expression therein is still too complex for BEP evaluation. The results in [86]

indicate that with fixed number of total receive antennas, increasing NC from one to

two gives the maximum gain from single selection combining. Here in this dissertation,

we investigate the performance for this dual selection combining, i.e., NC = 2. By

substituting MT = NC = 2 in (4.16) and (4.18), the p.d.f. of γ̂GSC for Alamouti’s STBC

is

fγDSC
(γ) =

2NR(NR − 1)

γ̄2
e−

2γ
γ̄

(
2γ3

3γ̄2
+

NR−2∑
n1=1

n1∑
n2=0

(
NR − 2

n1

)(
n1

n2

)
(−1)n1(n2 + 1)!

nn2+3
1[

(2n1γ − (n2 + 2)γ̄) + e−
n1γ

γ̄

(
(n2 + 2)γ̄ +

n2+1∑
n3=0

(n1γ)n3+1

γ̄n3(n3 + 1)!
[n2 − 2n3]

)])
.

(4.43)
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The mean output of the combined estimated SNR is

γ̄out = γ̄NR(NR − 1)

(
1 +

NR−2∑
n1=1

n1∑
n2=0

(
NR − 2

n1

)(
n1

n2

)
(−1)n1

(n2 + 1)!

nn2+3
1[

n1 −
n2 + 2

2
+

2(n2 + 2)

(n1 + 2)2
+

n2+1∑
n3=0

2nn3+1
1 (n3 + 2)(n2 − 2n3)

(n1 + 2)n3+3

])
.

(4.44)

With the available p.d.f. in (4.43), the BEP can be expressed as

P(α) =
NR(NR − 1)

2

(
G4(

βγ̄

4
) +

NR−2∑
n1=1

n1∑
n2=0

(
NR − 2

n1

)(
n1

n2

)
(−1)n1

(n2 + 1)!

nn2+3
1

2n1G2(
βγ̄

4
)− 2(n2 + 2)G1(

βγ̄

4
) + 4(

n2 + 2

n1 + 2
)G1(

βγ̄

2n1 + 4
)+

n2+1∑
n3=0

4nn3+1
1 (n2 − 2n3)

(n1 + 2)n3+2
Gn3+2(

βγ̄

2n1 + 4
)



.

(4.45)

The BEP function in (4.45) still has an approximation when γ̄ � 1

P(α) ' B ·
(

1

βγ̄

)MT NR

, (4.46)

where B is a constant which depends on the system parameters. In general, (4.46)

indicates that the selection combining with STBC can achieve the full diversity order

MTNR asymptotically. This achievable full diversity is only determined by the number

of transmit antennas MT and the number of receive antennas NR. It is independent

from the number of antennas chosen for combining NC .

4.4 Numerical Results and Discussion

We choose Lf = 10 and Lp = 5 for PSAM . With EP = E0 and P ' MT , as one

pilot block is inserted into the data stream for every ten blocks, there is a 10% loss
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Fig. 4.2: BEP Performance of 1-Tx system with single selection combining

in bandwidth efficiency. The BEP is thus plotted against γb = (11/10)γ̄0/ log2M for

compensation. BEP performances with perfect CSI are also plotted for comparison by

setting all channel estimation MSE to zero.

4.4.1 Single Selection Combining

Fig. 4.2 shows the BEP performance of SIMO system with SSC. This figure shows

that the performance gap between the systems with imperfect and perfect CSI increases

proportionally with the number of receive antennas NR. When NR = 2, this gap is less

than 1dB, while the performance loss of SSC from MRC is within 2dB, which indicates
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Fig. 4.3: Performance comparison between MRC and SSC systems for Alamouti’s STBC with BPSK

that SSC is an efficient way for decoding with simple receiver structure.

Fig. 4.3 shows the BEP performance of SSC for Alamouti’s STBC under Jakes’

fading channel with normalized block fade rate ωdTB = 0.002. Similar to the results

in Fig. 4.2, the performance gap between the systems with imperfect and perfect CSI

increases with the number of receive antennas. From Fig. 4.2 and Fig. 4.3, one can

observe that the performance improvement is significant when the number of receive

antennas is increased from one to two. However, further increase, from two to four, gives

relatively small gain. Therefore, we can come to a conclusion that the dual diversity

( NR = 2) is the most efficient scheme for SSC, because, it provides limited loss from
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Fig. 4.4: Performances QPSK and 8PSK modulation with SSC and Alamouti’s STBC

MRC, while having a simple receiver structure.

Fig. 4.4 shows the BEP performance of SSC for Alamouti’s STBC with QPSK and

8PSK under fast fading channel ( ωdTB = 0.1). As the channel estimator does not track

the channel when it fades fast, the resulting greater MSE of estimation increases the per-

formance gap between the systems with imperfect and perfect CSI. The approximations

under high SNR for Alamouti’s STBC with SSC in (4.32) are also plotted for compar-

ison. Under high SNR, the BEP performance is dominated by the term (βγ̄)−MT NR as

indicated in (4.46). Those approximations in (4.27), (4.32), (4.37), and (4.42) give the

asymptotic BEP limits achievable by the selection combining systems.
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Fig. 4.5: Performance comparison among different STBC’s with two receive antennas and SSC

Fig. 4.5 shows the BER performance of SSC for generalized STBC with two receive

antennas under relatively fast fading channel ( ωdTB = 0.01). The 4×3 and 4×4 STBC

with rate 3/4 are used for 3Tx and 4Tx respectively. The parameters for the 4×4 STBC

are ρk = 3, λk = 1, and ρk = 2.5, λk = 1 for the 4 × 3 STBC, for all k = 1...K. For

the 4× 3 rate-3/4 STBC, the computed BEP performance is an approximation but very

close to the actual one, as shown in Chapter 3. As different STBC requires different

coherent time to satisfy the block-wise constant channel assumption, the BEP’s are

plotted according to the normalized fade rate ωdTS to make fair comparisons. For a MT

-Tx system with P ×MT STBC, the performance plotted is actually under a block-wise
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Fig. 4.6: Performance comparison of different STBC’s against channel fade rate

constant fading channel with ωdTB = PωdTS. When the number of receive antennas

are fixed, increasing the number of transmit antennas from one to two gives the largest

gain, while increasing from three to four gives limited gain. However, in all cases, the

performance gap between the imperfect and perfect CSI is same.

Fig. 4.6 compares the performance of SSC for different STBC schemes with two

receiver antennas against the channel fade rate. Real designs with four and eight an-

tennas proposed in [17] are used, where ρk = 4, λk = 1 for 4-Tx and ρk = 8, λk = 1 for

8-Tx case, respectively. Although STBC with larger size has better performance under

slow fading since it employs more transmit antennas, the performance degrades rapidly
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Fig. 4.7: Performance of GSC with 1-Tx and 4-Rx

after some threshold and becomes worse than those with less transmit antennas. Under

fast-fading, the less be the STBC size, the better the performance would be. One can

expect that such thresholds would appear earlier as the ωdTS increase under a realistic

system where channel fluctuates from symbol to symbol.

4.4.2 Generalized selection combining

Fig. 4.7 shows the BER performance of GSC for the SIMO system with 1Tx and

4Rx. With the total number of receive antennas fixed, the improvement in BEP perfor-

mance is significant when NC is increased from one to two. However, the increase of NC
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Fig. 4.8: Performance of Alamouti’s STBC with dual selection combining

from NR − 1 to NR (MRC) gives a very limited gain.

Fig. 4.8 shows the BEP performances of Alamouti’s STBC when NC is fixed to

two. Increasing the number of receive antennas from two to three gives significant gain.

This verifies the conclusion that with NC fixed, increasing the total number of receive

antennas from NC to NC +1 gives the best gain per additional branch. It is also exhibited

in Fig. 4.8 that the performance loss of DSC from MRC increases as NR increases.

The mean output estimated SNR’s for single and dual selection combining against

the total number of receive antenna NR are shown in Fig. 4.9. The real designs with four

antennas [17] is used for 4Tx and its results are obtained by numerical approaches, while
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Fig. 4.9: Mean output of the estimated SNR with single and dual selection combining

others are calculated from their exact expressions in (4.30), (4.35), (4.39) and (4.44).

It is interesting to find that the more the transmit antennas are used, the less the

estimated output SNR would be. This suggests that introducing STBC into a selection

combining system can reduce the power consumption in decoding considerably while the

performance is improved by the transmit diversity gain.

4.5 Summary

In this chapter, we presented the performance analysis of STBC communication sys-

tems with selection combining and imperfect channel estimation. The selection criterion
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is based on the estimated SNR obtained from channel estimation. As the channel esti-

mation is imperfect, the BEP results depend on both SNR and estimation MSE. Exact

closed-form BEP expressions are derived for (a) general selection combining with single

transmit antenna (b) single and dual selection combining for Alamouti’s STBC (c) single

selection combining for generalized STBC with more than two transmit antennas. The

approximations of BEP under high SNR show that the selection combining schemes can

achieve full diversity provided by the total available number of receive antennas, while

maintaining simple receiver structures. The numerical results show that receive selection

combining exhibits limited performance loss compared with MRC schemes.
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Chapter 5

STBC Communication System with

Transmit Antenna Selection

In this Chapter, we present transmit antenna selection scheme for wireless commu-

nication systems with STBC. We make transmit antenna selection based on knowledge of

estimated channel state information. The transmitter chooses the one or several anten-

nas for STBC transmission by knowing the estimated SNR. We analyze the performance

and obtain an upper bound for TAS system with PSK modulation. Specifically, an exact

closed-form BEP expression is developed for single receiver antenna systems. With the

analytical performance results, it is found that the achievable diversity of the proposed

TAS system is determined by the total number of transmit and receive antennas, while

independent of the number of antennas selected.

5.1 Introduction

Independent of space-time coding, transmit antenna selection has long been known

as an efficient way to exploit diversity at the transmitter side. With multiple antennas

available at the transmitter, the performance can be improved by injecting more transmit
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energy into the channels with better channel gains. The discussion in [97] concludes the

optimal weight assignment problem over Rayleigh fading channels, where all antennas

transmit the same symbol. The power allocation discussion in [97] simplifies to transmit

antenna selection (TAS) when all the channels have identical estimation error, i.e., all

the transmission power is assigned to the one channel that has the maximum channel

gain. TAS with Alamouti’s STBC is proposed in [98], where the antennas are so chosen

such that the channel Frobenius-norm is maximized. However, the performance analysis

in [98] is not in an explicit form. In [99], the authors investigate the TAS for Alamouti’s

STBC with perfect CSI and obtain an exact BEP expression for binary signaling. TAS

schemes with space-time trellis codes are reported in [100] and [101].

In our previous work in Chapter 3, we have set up a symbol-by-symbol channel

estimation STBC receiver structure, and obtained its BEP expressions with PSK mod-

ulations under non-selective Rayleigh fading channels. Based on the results therein, we

extend the above system by introducing TAS at the transmitter in this chapter. We

first propose a TAS system based on estimated SNR for STBC over a MIMO channel

model. In such a system, the receiver indicates to the transmitter which antennas are

to be chosen for STBC transmission according to the estimated SNR. Exact closed-form

BEP expressions are presented for multi-input-single-output (MISO) systems as well as

dual-input-multi-output (DIMO). Comparing to those results in the literature, our re-

sults here take account of both space-time block coding and channel estimation. The

results explicitly show that the BEP performance depends on the MSE of estimator and

the system parameters chosen.

5.2 System Model

Consider a MIMO communication system with MX -Tx and NR -Rx illustrated in

5.1. A generalized complex orthogonal STBC S of size P × MT is employed, where
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Fig. 5.1: STBC system with transmit selection and imperfect channel estimation using PSAM

MX ≥ MT . Prior to the transmission of each data block, the transmitter is indicated

by the receiver to choose MT out of the total of MX available transmit antennas with

best estimated channel gain for transmission. Denote hil(m) as the fading gain from the

i-th transmit to l-th receive antenna, during the m-th block interval. All the links are

spatially independent from one another but with identical distribution. Each hil(m) has

an autocorrelation function as in (2.42)

R(∆m) = E[x(m)xT (m+ ∆m)] = σ2 J0(∆mωdTs),

As the transmitter actually choose MT antennas for transmission, we define the

active channel matrix of size MT × NR as HT , which is a sub-matrix containing MT

rows of the complete channel matrix HX = {hil}MX ,NR

i,l=1 . Now the received signal matrix

of the m-th(m = 0, 1, 2...) transmitted signal block S(m) is

R(m) = S(m)HX(m) + N (m). (5.1)

Each entry rpl(m) of the P ×NR received matrix R(m) is the received signal on the

l - th receive antenna at the p - th symbol slot of the m - th block. N (m) is the P ×NR

noise matrix, whose entries npl(m) ’s are i.i.d., zero-mean, complex, Gaussian r.v.’s due to
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AWGN at the p - th symbol slot on the l - th receive antenna with E[n∗p′l′(m
′)npl(m)] =

δpp′δll′δmm′N0.

The system adopts PSAM for channel estimation. The basic PSAM setups are

the same as that introduced in section 4.2. After the channel estimate matrix Ĥ is

acquired, the received signal is then sent to a decoder defined in (4.9) with zk(m) =

Tr[R†(m)BkĤT (m) + Ĥ†
T (m)A†

kR(m)]. With PSK modulation, the BEP is dependent

on the quantity P (Re {zke
−jα} < 0|sk =

√
E0/MT , ĤT ), which has been shown in

Chapter 3 to be equal or closely approximated by

P (Re
{
zke

−jα
}
< 0|sk =

√
E0/MT , ĤT ) = Q

(√
βkγ̂TAS/MT

)
, (5.2)

where βk = 2λk cos2 α/[ρk(1− η)γ̄0/MT + 1], η = 1− σ2
e/R(0), γ̄0 = 2E0R(0)/N0 is the

mean SNR per symbol per receive antenna, and γ̂TAS = E0||ĤT ||2/N0 is the equivalent

estimated output SNR per symbol at the receiver. To evaluate the BEP performance,

one must average the quantity in (5.2) over the estimated SNR as

Fk(α) =

∫ ∞

0

Q
(√

βkγ
)
fγ̂TAS

(γ)dγ. (5.3)

Similarly, we define the BEP function P(α) as in 4.14 and the BEP for PSK signaling

is given as in (3.39-3.41).

If perfect CSI is available at the transmitter, HT is chosen to consist of the maximum

MT rows of HX according to the quantity
∑NR

l=1 |hil|2, i = 1...MX . In the implementation

of this transmit selection scheme, the selection decision of transmit antennas must be sent

to the transmitter before data transmission. Thus the channel estimation based on which

the receiver decides the antenna selection can only be made with previously received

pilots. Another channel estimation ĥ′il(m) based on only those Lp pilots previously

received, i.e., ỹ′
il(m) = {yil,q|[[m/Lf ]]− Lp + 1 ≤ q ≤ [[m/Lf ]]}, must be made right after

the receipt of the (m−1) - th data block. Therefore the receiver actually makes channel

estimation twice, one for antenna selection based only on previously received pilots, one
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for STBC decoding after receiving the data blocks and necessary pilot blocks. Similarly,

conditioned on ỹ′
il(m), hil(m) is a Gaussian random variable with mean ĥ′il(m) and

variance 2σ′2e(m). Theoretically, we have σ′2e > σ2
e for a continuously changing channel

so that the TAS decisions are less reliable compared to the case if PSAM estimation is

available for TAS. However in this dissertation, we assume that the TAS decision based

on ĥ′il(m) is the same as if the PSAM estimation is known, for the sake of analytical

simplicity.

5.3 Performance Analysis of STBC with TAS

In the system model defined above, once acquainted with the channel estimation,

the receiver indicates to the transmitter which MT antennas to choose based on the esti-

mated SNR, through a delay-less, error-free reverse link. We define the estimated SNR

contributed by the i - th transmit antenna as γ̂i =
∑NR

l=1E0|ĥil|2/MTN0, i = 1...MX ,

which is a χ2 -distributed random variable with 2NR degrees of freedom with p.d.f

fγ̂i
(γ) =

NNR
R

γ̄NR(NR − 1)!
γNR−1e−NRγ/γ̄, (5.4)

where

γ̄ = E[γ̂i] = NRE0[R(0)− σ2
e ]/MTN0 = NRηγ̄0/MT , i = 1...MX . (5.5)

The γ̂i has a c.d.f. given by

Fγ̂l
(γ) = 1− e−

MT γ

γ̄

MT−1∑
n=0

1

n!

(
MTγ

γ̄

)n

. (5.6)

The transmitter then chooses the first MT antennas from the ordered statistics

γ̂1:MX
≥ γ̂2:MX

≥ · · · ≥ γ̂MX :MX
of {γ̂i}MX

i=1 for STBC transmission. The joint p.d.f of the
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maximum MT estimated SNR {γ̂i:MX
}MX

i=1 is [86]

fγ̂1:MX
,γ̂2:MX

,··· ,γ̂MT :MX
(γ̂1:MX

, γ̂2:MX
, · · · , γ̂MT :MX

)

= MT !

(
MX

MT

)
[Fγ̂l

(γ̂MT :MX
)]MX−MT

MT∏
l=1

fγ̂l
(γ̂1:MX

)

where γ̂1:MX
≥ γ̂2:MX

≥ · · · ≥ γ̂MT :MX
.

(5.7)

The BEP function P(α) can be calculated with

Fk(α) =

∞∫
0

∞∫
γMT :MX

· · ·
∞∫

γ2:MX

∫ π/2

0

e
βkγ

2 sin2 θ

MTP

l=1
γ̂l:MX ·

fγ1:MX
,γ2:MX

,··· ,γMT :MX
(γ̂1:MX

, γ̂2:MX
, · · · , γ̂MT :MX

)dθdγ̂1:MX
dγ̂2:MX

· · · dγ̂MT :MX
,

(5.8)

or alternatively, using the MGF,

Fk(α) =

∫ π/2

0

M(
βγ

2 sin2 θ
)dθ. (5.9)

We first derive a closed-form upper bound for (5.3), and then solve (5.8). We obtain

closed-form solutions for the special cases when NR = 1 or MT = 1.

5.3.1 An Upper Bound for BEP

As the quantity
∑MT

i=1 γ̂i:MX
denotes the summation of the most significant MT out

of the set {γ̂i:MX
}MX

i=1 of size MX , the following inequality always holds

MT∑
i=1

γ̂i:MX
≥ MT

MX

MX∑
i=1

γ̂i:MX
. (5.10)

Substituting (5.10) into (5.2), we have

P (Re
{
zke

−jα
}
< 0|sk =

√
E0/MT ,Λ) ≤ Q

(√
βk||ĤX ||2/MX

)
. (5.11)

Then following the argument in Chapter 3, an upper bound can be obtained as

Fk(α) ≤ GMXNR
(βkηγ̄0/2MX), (5.12)
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where the function Gn(·) is as defined in (4.25)

Gn(c) =
1

2

[
1− µ(c)

n−1∑
k=0

(
2k

k

)(
1− µ2(c)

4

)k
]
, µ(c) =

√
c

1 + c
. (5.13)

The expression in (5.12) is further bounded by the Chernoff inequality given by

Fk(α) < 1
2

(1 + βkηγ̄0/MX)−MXNR . (5.14)

The Chernoff bound in (5.14) clearly shows that the full diversity order MXNR

is achieved for TAS/STBC systems. The diversity order achievable is determined by

the total number of transmit and receive antennas, while independent of the number of

transmit antennas chosen for STBC transmission.

5.3.2 Exact BEP Analysis for TAS Systems

5.3.2.1 System with Single Receive Diversity when NR = 1

In some communication scenario, it is difficult to deploy multiple antennas at the

receiver side, e.g., due to the size of receiver. This is often the case with downlinks in

a communication system. In this section, we derive a closed-form BEP expression for

TAS STBC systems with single receive antenna, so that the spatial diversity is provided

by the transmit side. With NR = 1, each γ̂i in (5.4) has a Rayleigh distribution. The

problem now becomes choosing the maximum MT from MX Rayleigh random variables.

According to the results in [86], the MGF of the estimated combined SNR is

Mγ̂GSC
(s) = (1− sγ̄)−MT +1

MX∏
n=MT

(
1− sγ̄MT

n

)−1

= (1− sγ̄)−MT +1

MX−MT∑
n=0

(−1)n
(

MX

MT

)(
MX−MT

n

)
1 + n

MT
− sγ̄

.

(5.15)

94



5.3. PERFORMANCE ANALYSIS OF STBC WITH TAS

from which the mean estimated output SNR can be derived as as

γ̄out = MT γ̄

(
1 +

MX∑
n=MT +1

1

n

)
. (5.16)

The p.d.f is obtained by inverse Laplace transformation of 5.15

fγTAS
(γ) =

(
MX

MT

)[
γMT−1e−γ/γ̄

γ̄MT (MT − 1)!
+

1

γ̄

MX−MT∑
n1=1

(
(−1)MT +n1−1

(
MX −MT

n1

)

·
(
MT

n1

)MT−1

e−(γ/γ̄)

[
e−(n1γ/MT γ̄) −

MT−2∑
n2=0

1

n2!

(
−n1γ

MT γ̄

)n2
])]

.

(5.17)

Substituting (5.17) into (5.3), one gets the BEP function as

Fk(α) =

(
MX

MT

)[
GMT

(c1) +

MX−MT∑
n1=1

(−1)MT +n1−1

(
MX −MT

n1

)(
MT

n1

)MT−1

·

(
MT

n1 +MT

G1(c2)−
MT−2∑
n2=0

(
−n1

MT

)n2

Gn2+1(c1)

)]
,

(5.18)

where c1 = βγ̄/2, c2 = βMT γ̄/[2(n1 +MT )] and Gn(c) is as defined in (5.13). When SNR

is high enough so that γ̄ � 1, we have a high-SNR approximation for (5.18) as

Fk(α) ' (2MX − 1)!!

2MMX−MT
T MT !

(
1

βγ̄

)MX

, (5.19)

which is obtained by expanding (5.18) into a polynomial series and dropping those

higher order moments. This approximation shows that the full diversity order MX is

achieved asymptotically for any number of selected antennas, which is consistent with

the conclusion drawn from the upper bound in (5.14).

5.3.2.2 System with Dual Transmit Diversity when MX = 2,MT = 1

According to the preliminary numerical results in section 5.4, it will be found that

TAS with conventional 1Tx transmission outperforms the STBC with the same number

of transmit antennas without TAS. We derive a closed-form BEP expression for a com-
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munication system with multiple receive and two transmit antennas, from which one is

chosen for data transmission, i.e., MX = 2 and MT = 1. Following (5.4) to (5.7), the

p.d.f. of the maximum γ̂1:MX
is

fγ̂1:MX
(γ) =

2NR

(NR − 1)!γ̄
e−

NRγ

γ̄

(
NRγ

γ̄

)NR−1
[

1− e−
NRγ

γ̄

NR−1∑
n=0

1

n!

(
NRγ

γ̄

)n
]
. (5.20)

The MGF of the (5.20) is

Mγ̂1:NR
(s) = 2

[(
1− sγ̄

NR

)−NR

−
NR−1∑
n=0

(
NR + n− 1

n

)
1

2NR+n

(
1− sγ̄

2NR

)−NR−n
]
.

(5.21)

The BEP function is then evaluated as

P (α) = 2GNR
(
βγ̄

2NR

)−
NR−1∑
n=0

(
NR + n+ 1

n

)
2−NR−n+1GNR+n(

βγ̄

4NR

). (5.22)

When γ̄ � 1, this BEP function can be approximated as

P (α) '
N2NR−1

R

2NR∏
n=1

(2n− 1)

2NR!(NR − 1)!

(
1

βγ̄

)2NR

. (5.23)

Consistent with (5.19), (5.23) again shows that the diversity order achievable for a TAS

system is determined by the total number of transmit and receive antennas available.

5.4 Numerical Results and Discussion

The BEP performance results are illustrated in Fig. 5.2-5.9. The system parameters

are chosen as Lf = 10 and Lp = 3. With EP = E0 and P ' MT , as one pilot block is

inserted into the data stream every ten blocks, there is an around-10% loss in bandwidth

efficiency. The BEP is thus plotted against γb = (10/9)γ̄0/ log2M for compensation. Fig.

5.2 and Fig. 5.3 shows the performance gain with transmit selection as the number of

available transmit antenna increases from the necessary MT . BEP performances of TAS

with Alamouti’s STBC are shown in Fig. 5.2. BEP performances with perfect CSI are
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Fig. 5.2: Performance of Alamouti’s STBC with transmit antenna selection

also plotted for comparison by setting σ2
e = 0. As the number of transmit antennas

increases from two to three to provide a redundant antenna for TAS, considerable gain

is achieved. Specifically, more than 5-dB gain is provided by the extra antenna at BEP

level 10−4. Further gain can be obtained by increasing the number of transmit antennas.

However, the gain also tends to diminish with MX . The 4× 4, rate-3/4 STBC design in

[47, 48] is used for illustration in Fig. 5.3. Similar to Fig. 5.2, maximum gain is achieved

when there is one additional transmit antenna to choose from, i.e., MX = 5,MT = 4,

but the gain is not as large as that with Alamouti’s STBC. The gain is around 3dB

at BEP level 10−6. As MX increases, although the transmitter has more antennas to
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Fig. 5.3: Performance of the 4× 4, rate 3/4 STBC with transmit antenna selection

choose from, the gain becomes more and more limited.

In practice, the total number of transmit antenna cannot be arbitrarily large. We

compare the BEP performances of different STBC’s in Fig. 5.4 when the number of

transmit antennas is fixed to four, while in Fig. 5.5 when the number of transmit

antennas is fixed at eight. It is interesting to find that in both scenarios, the less active

transmit antennas chosen, the better the performances would be. In another word, 1Tx

transmission is the optimum choice as it injects all transmission energy into the best

channel, while STBC’s allocate the energy (almost) uniformly onto each channel. The

phenomenon in Fig. 5.4 and Fig. 5.5 indicates that the transmit antenna selection is a
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Fig. 5.4: Performance comparison among different STBC’s with four transmit antennas for selection

more efficient way to utilize the transmit diversity as long as the reverse link is available.

As the conventional system with one active transmit antenna is shown to be the-

oretically the best choice for TAS system and it is indicated in Figs. 5.2-5.4 that one

extra antenna for selection gives the largest gain, we plot the theoretical performance

with two available and one active transmit antenna. The theoretical performances of

Alamouti’s STBC without TAS are also plotted for comparison. It is shown that as the

number of receive antennas increases, the gain from non-TAS system becomes more and

more limited. The approximation (5.23) shows good match to the BEP performance

under high SNR.
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Fig. 5.5: Performance comparison among different STBC’s with eight transmit antennas for selection

However, we have made two assumptions in our analysis. First, the channels are

assumed to be block-wise constant; and secondly, we assume the TAS decisions are from

the same PSAM channel estimation used for decoding. As addressed in the previous

section, compared to the channel estimates for decoding, the channel estimation for TAS

is less accurate and thus it is more likely to make mistakes on antenna selection, which

eventually lowers the output SNR at the receiver and degrades the BEP performance. It

would be of interest to know how the performance would degrade in practice when the

two assumptions are invalid. The performance of Alamouti’s STBC with four available

antennas for transmit and one receive antenna are plotted in Fig.5.7. The theoretical
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Fig. 5.6: Performance comparison between 1Tx/TAS and 2Tx/MRC systems with two transmit anten-

nas

performances are calculated with the normalized block fade rate ωdTB = 0.002. It is

shown that the theoretical performance is very close to the one when perfect CSI is

available. The upper bound is around 2-dB above the actual theoretical performance,

and the high-SNR approximation given in (5.19) gives a asymptotic upper limit of the

BEP performance and matches the theoretical BEP performance very well for γb > 15dB.

Simulation results under both symbol-wise constant channel with ωdTS = 0.001 and

symbol-wise constant channel with ωdTB = 0.002 are presented to show how the two

assumptions affect the theoretical prediction from actual one. As the channel fluctuates

from symbol to symbol, the orthogonality of received signal is disturbed. Therefore the
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Fig. 5.7: Theoretical and simulation performances of Alamouti’s STBC with four transmit antennas

and one receive antenna

performance would be worse than that under a block-wise constant channel. However,

under a slow fading channel ωdTS = 0.001, the performance loss of symbol-wise constant

channel from the performance of block-wise constant channel is minor and within half-

dB. Hence the around 1-dB gap between the simulation with block-wise constant and

theoretical prediction is due to the error decision on antenna selection. However, the

theoretical BEP still gives a good prediction of the actual performance with a no more

than 2-dB error.

Fig.5.8 shows the theoretical and simulation performances for a system with two

transmit antennas. Two schemes are adopted for comparison, 1Tx/TAS that chooses the
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Fig. 5.8: Performances comparison of TAS and STBC with two available transmit antennas

better link for transmission, and Alamouti’s STBC without TAS. The simulations are

conducted under a relatively fast symbol-wise constant fading channel with ωdTS = 0.02.

The actual BEP performance of the 1Tx/TAS system tends to deviate from theoretical

prediction more and more as the SNR increases, which indicates that the error due to

erroneous TAS is dominant under high SNR. However, the 1Tx/TAS still exhibits better

performance than the 2-Tx STBC system while having a simpler receiver structure. This

validates the conclusion that in a TAS system, the less dispersed energy allocated onto

the available links, the better the performance would be.

We extend our simulation to a system with four available transmit antennas under
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Fig. 5.9: Performances comparison of TAS and STBC with four available transmit antennas

slow fading environments in Fig. 5.9. The simulation results show that using MT = 1

with TAS is around 1-dB better than that using 4-Tx STBC without TAS. Different from

Fig.5.8, now using Alamouti’s 2-Tx STBC with TAS is no worse than that with 1-Tx

transmission. This can be explained from two causes. First, it has been shown in both

Chapter 3 and Fig. 5.7 that a fading channel with normalized fade rate ωdTs = 0.001

is slow enough to be called block-wise constant fading, i.e., the continuously changing

channel does not disturb the orthogonality of received STBC much, so that the Alam-

outi’s STBC does not suffer much loss from the symbol-wise fading channel. Second,

compared to Fig.5.8, the 1-Tx system now has two more antennas to select from. How-
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ever, it is also more likely for the system to make TAS mistake by not selecting the most

significant antenna. With Alamouti’s STBC, the system chooses the best two antennas

out of four for transmission. Even if the channel estimator interchanges the order of

the best two branches, the resultant performance would be unchanged. It is less likely

to make decision mistakes compared to 1-Tx system with TAS, which explains why the

2-Tx/TAS system is even slightly better than 1-Tx/TAS system when MX increases to

four. However, it is shown the performances are almost identical with a gap less than

half a dB, i.e., these two systems have comparable performances. The 1-Tx/TAS sys-

tem is still preferable in practice as it has simpler system structure and is more robust

against fast-fading channel.

5.5 Summary

In this chapter, we presented the performance analysis for STBC with transmit

antenna selection. The selection rule is based on the estimated SNR obtained from

channel estimation. As the channel estimation is imperfect, the BEP results are depen-

dent on both SNR and estimation MSE. Exact closed-form BEP expressions are derived

for generalized orthogonal STBC. The numerical results show that when the transmit-

ter is informed which subset of transmit antennas to choose for transmission, one active

transmit antenna exhibits better performance than that of STBC’s.
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Chapter 6

Constellation Design for Unitary

Space-Time Modulation

In Chapter 2, we surveyed the channel capacity in an MIMO system. In this chapter,

we first investigate the optimal constellation properties that achieve capacity, which in

turn leads to the concept of unitary space-time modulation (USTM). In USTM, every

data block is treated as one constellation and can be decoded both with or without

channel state information as long as the channel is piece-wise constant. We then focus

our work on the constellation design problem for differential USTM (DUSTM). We

propose two new algorithms to improve the DUSTM constellation over the cyclic codes

initially proposed for DUSTM.

6.1 Unitary Space-Time Modulation

6.1.1 Constellations that Achieve Capacity

Consider the system over P symbol periods. Each receiver antenna responds to

each transmitter antenna through a statistically independent fading coefficient that is
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constant. We assume that the fading coefficient changes to a new independent realization

every P symbol periods. The transmission equation then is as presented in (2.5). The

conditional probability density of the received signals given the transmitted signal is:

p (R|S) =
exp

(
−Tr

{[
IP + (ρ/MT ) SSH

]−1
RRH

})
πPNR detNR

[
IP + (ρ/MT ) SSH

] , (6.1)

where IP denotes the P × P identity matrix and “Tr” denotes “trace”.

The channel is completely described by this conditional probability density. Note

that the propagation coefficients do not appear in this expression. Although the received

signals are conditionally Gaussian, the transmitted signals only affect the covariance of

the received signals, in contrast to the classical additive Gaussian noise channel where

the transmitted signals affect the mean of the received signals.

Further, let Φ and Ψ be P × P and MT × MT unitary matrices, we get some

properties as below:

p
(
R|SΨH

)
= p(S) p(ΦR|ΦS) = p(R|S). (6.2)

In the system above, each channel use (consisting of a block of P transmitted symbols)

is independent of every other, and (6.1) is the conditional probability density of the

output R, given S. Thus, data can theoretically be transmitted reliably at any rate less

than the channel capacity, where the capacity is the least upper bound on the mutual

information between R and S, or

C = sup
p(S)

I (R; S) (6.3)

subject to the average power constraint (2.4), and where

I(R; S) = E log
p(R|S)

p(R)
=

∫
dS p(S)

∫
dRp(R|S) log

{
p(R|S)∫

dS̃p(S̃)p(R|S̃)

}
. (6.4)

Thus, C is measured in bits per block of P symbols. And it is always convenient to

normalize C by dividing by P .
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In [25], Hochwald etc. came to such conclusion:

Proposition 6.1 The signal matrix that achieves capacity can be written as S = ΦV ,

where Φ is a P × P isotropically distributed unitary matrix, and V is an independent

P×MT real, nonnegative, diagonal matrix. Furthermore, we can choose the joint density

of the diagonal elements of V to be unchanged by rearrangements of its arguments.

There is no point in making the number of transmitter antennas greater than the

length of the coherence interval. In a very real sense, the ultimate capacity of a multiple-

antenna wireless link is determined by the number of symbol periods between fades.

This is somewhat disappointing since it severely limits the ultimate capacity of a rapidly

fading channel. For example, in the extreme case where a fresh fade occurs every symbol

period, only one transmitter antenna can be usefully employed. Strictly speaking, one

could increase capacity indefinitely by employing a large number of receiver antennas,

but the capacity appears to increase only logarithmically in this number—not a very

effective way to boost capacity.

The transmitted signals that achieve capacity are mutually orthogonal with respect

to time among the transmit antennas. The constituent orthonormal unit vectors are

isotropically distributed and statistically independent of the signal magnitudes. This re-

sult provides insight for the design of efficient signaling schemes, and it greatly simplifies

the task of determining capacity, since the dimensionality of the optimization problem

is equal only to the number of transmitter antennas.

When the coherence interval becomes large compared to the number of transmit

antennas, the normalized capacity approaches the capacity obtained as if the receiver

knew the propagation coefficients. The magnitudes of the time-orthogonal signal vectors

become constants that are equal for all transmitter antennas. In this regime, all of the

signaling information is contained in the directions of the random orthogonal vectors,

the receiver learns the propagation coefficients, and the channel becomes similar to the

classical Gaussian channel.
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6.1.2 Unitary Space-Time Modulation

The conclusion in the previous section indicates that when the duration of the

coherence interval is significantly greater than the number of transmitter antennas (

P >> MT ), setting the diagonal elements of V to: v1 = v2 = · · · = vMT
=
√
P attains

capacity.

Taking all these results, we define unitary space-time modulation to be the transmis-

sion of S =
√
PΦ, where ΦHΦ = I [26]. And it is also proved that unitary space-time

modulation is also optimal for any fixed P > MT/2, as ρ → ∞. And now the system

model (2.5) can be re-written as:

R =

√
ρ

MT

SH + N =

√
ρP

MT

ΦH + N . (6.5)

6.1.2.1 ML Receiver for USTM

Now consider the ML reception of a constellation of L signals employing unitary

space-time modulation,

Sl =
√
PΦl l = 1, . . . , L, (6.6)

where {Φl, l = 1, . . . , L} are P ×MT complex matrices satisfying ΦHΦ = I.

Channel Unknown to the Receiver Recall the conditional probability density func-

tion of received signal (6.1), then the maximum-likelihood decoding becomes [28]:

Φml = arg max
Φl∈{Φ1,...,ΦL}

p (R|Φl) = arg max
Φl∈{Φ1,...,ΦL}

tr{RHΦlΦ
H
l R}. (6.7)

The ML receiver seeks to maximize the energy contained in the MTNR inner products

that comprise ΦH
l R.
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Channel Known to the Receiver When H is known to the receiver

p(R|S, H) =
1

πPNR
exp

(
−tr{(R−

√
ρ/MT SH)(R−

√
ρ/MT SH)H}

)
(6.8)

and the maximum-likelihood decoding becomes

Φml = arg min
Φl∈{Φ1,...,ΦL}

Tr
{

(R−
√
ρP/MTΦlH)(R−

√
ρP/MTΦlH)H

}
. (6.9)

6.1.3 Differential Unitary Space-Time Modulation

Although channel state information is not necessary, the unitary space-time modu-

lation discussed in the previous chapter assumes a piece-wise constant channel to work

properly. It is natural to extend this scheme to a differential one to adapt to a continu-

ously changing channel, just like the differential PSK in single-antenna unknown-channel

systems.

6.1.3.1 System Model

Recall the system set up in section 2.1.1. We further normalize the complex

baseband notation as: at time p we transmit the complex symbols spi on antennas

i = 1, ...,MT , and we receive rpl on receiver antennas l = 1, ..., NR. The action of the

channel is modeled by

rpl =
√
ρ

MT∑
i=1

hilspi+npl p = 0, 1, ...P ;n = 1, ..., NR. (6.10)

Here hil is the complex-valued fading coefficient between the i-th transmitter antenna

and the l-th receiver antenna at time p. The fading coefficients are assumed to be

independent with respect to i and l, and are CN(0, 1) -distributed. The additive noise

at time p and receiver antenna l is denoted by npl, and is independently, identically

CN(0, 1) distributed , with respect to both p and l.The realizations of hil, i = 1, ...,MT ,

l = 1, ...,MT , are known neither to the transmitter nor the receiver. The transmitted
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symbols are normalized to obey:

E

[
MT∑
m=1

|spi|2
]

= 1, (6.11)

where E denotes expectation. Equations (6.10) and (6.11) ensure that ρ is the expected

SNR at each receiver antenna, independently of the number of transmitter antennas MT .

Equivalently, the total transmitted power does not depend on MT .

We assume that the fading coefficients change continuously according to a model

such as Jakes’ [34]. While the exact model for the continuous fading is unimportant,

we require the fading coefficients to be approximately constant for overlapping blocks of

P ≥ 2 symbol periods. We have some freedom to choose P , but it generally cannot be

larger than the approximate coherence time (in symbols) of the fading process.

6.1.3.2 Differential Transmission and Reception

Assume a data sequence of integers z1, z2, . . . with zt ∈ {0, . . . , L − 1} is to be

transmitted. Each zt corresponds to a constellation matrix from the constellation set

{Φl}, l = 0, . . . , L − 1.The transmitter sends the symbol stream S1,S2, . . ., which is

determined by the following fundamental differential encoding rule [29],

St = ΦztSt−1 t = 1, 2, . . . , (6.12)

where S0 = IMT
.

At the receiver, the demodulator receives a stream R0,R1,R2 . . . where Rt is an

MT ×NR matrix. The consecutive received signal matrices can be written as

Rt−1 =
√
ρSt−1H + Nt−1 (6.13)

Rt =
√
ρStH + Nt. (6.14)
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Since the noise matrices remain invariant statistically after multiplying by unitary ma-

trices, equation (6.14) can be written as

Rt = ΦztRt−1 +
√

2N ′
t, (6.15)

where N ′
t is an MT×NR matrix of additive independent CN(0, 1) noise. Equation (6.15)

shows the 3-dB performance loss in effective SNR compared to the coherent detection.

The maximum-likelihood detector for differential space-time modulation is given by

ẑt = arg min
l=0,...,L−1

||Rt −ΦlRt−1||, (6.16)

where || · || is the Frobenius norm which is defined as ||A|| =
√
tr(AHA). The Chernoff

upper bound on the pairwise probability of error Pll′ is given by

Pll′ = {choose Φl′|Φl transmitted}

≤ 1
2

MT∏
m=1

[1 + ρ2

1+2ρ
σm(Φl −Φl′)]

−NR
,

(6.17)

where σm(Φl − Φl′) is the m-th singular value of (Φl − Φl′). Then the constellation

design rule is to maximize the diversity product ζ

ζ = min
0≤l≤l′≤L−1

ζll′ =
1

2
min

0≤l≤l′≤L−1
| det(Φl −Φl′)|1/MT . (6.18)

We will elaborate on this diversity product rule in section 6.1.4.

6.1.3.3 Constellation Design for DUSTM (Cyclic Code)

In [29], a simple scheme to generate a group-structure constellation, which is called

cyclic codes, has been proposed. The cyclic code is defined as:

Φl = diag
[
ejθLk1l, ejθLk2l, . . . , ejθLkMT

l
]
l = 0, 1, . . . L, (6.19)

where θL = 2π/L. By doing exhaustive search, values of {k1, k2, . . . , kMT
} are found

to maximize the diversity product. Since this constellation is group structured, i.e.,

the product of two constellation signals is also within the constellation set, we have
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Fig. 6.1: Diversity product sample ζ0l′ when MT = 4, L = 16

ζ0l′ = ζl(l+l′). Thus, instead of computing all the L(L− 1)ζll′ s, only (L− 1) are needed.

A sample of ζ0l′ is shown in Figure 6.1.

Because of the group-structure property, the encoding at the transmitter becomes

very easy, since only summation of the constellation subscript is needed to calculate the

transmitting matrix.

Another characteristic of a cyclic code is that it is diagonal, i.e., only one antenna

transmits at any given time. One power amplifier can be switched among the antennas.

But this amplifier must deliver MT -times the power it would otherwise deliver if there

were an array of MT amplifiers simultaneously driving the other antennas. Consequently,
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this amplifier needs to have a larger linear operating range than an amplifier array would.

Amplifiers with a larger linear range are often expensive to design and build. It may

therefore occasionally be desirable to have all MT antennas transmitting simultaneously

at low power.

6.1.4 Constellation Design Criteria for DUSTM

In single-antenna systems, the constellation is designed to maximize the minimum

distance between the two signals. For the unitary space-time modulation, the constel-

lation signals are no longer as simple as complex values, e.g. the MPSK constellations,

but complex matrices. The distance definition between two matrices is not unique. For

example, the Euclidean distance between matrices A and B of the same size MT ×NR

is defined by:

d = ||A−B|| =

√
tr[(A−B)H(A−B)] =

√√√√MT∑
m=1

NR∑
n=1

|amn − bmn|2, (6.20)

where || · || is denoted as Frobenius norm or Euclidean norm.

Next, we will derive a criterion for optimal constellation design for differential uni-

tary space-time modulation discussed in the previous section.

The pairwise probability Pl,l′ of mistaking Vl for V ′
l (∀l, l′ ∈ ZL, l 6= l′) or vice

versa for the ML demodulator has a closed-form expression of [26, 29]:

Pl,l′ = P{ choose Vl′|Vl transmitted } = P{ choose Vl|Vl′ transmitted }

=
1

2π

π/2∫
0

MT∏
m=1

[
cos2 θ + 1− sgn(σ2

m)

cos2 θ + ρ2

4(1+2ρ)
σ2

m + 1− sgn(σ2
m)

]NR

dθ,
(6.21)

where σm
def
= σm(Vl − Vl′) represents the m-th singular value of the MT ×MT difference

matrix Vl−Vl′ for m = 1, 2...,MT , and the function sgn() is the signum function. Then
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the pairwise probability of error Pl,l′ has the Chernoff upper bound [26, 29]:

Pl,l′ ≤
1

2

MT∏
m=1

[
1 +

ρ2σ2
m

4(1 + 2ρ)

]−NR

. (6.22)

We assume that the L transmitted unitary signals are equally probable a priori. Then,

the performance of a general constellation consisting of unitary space-time signals can

be measured by the following Chernoff union bound on the block probability of error Pe

[28, 29],

Pe = 1
L

L−1∑
l=0

prob{error|Vltransmitted} ≤ 2
L

L−2∑
l=0

L−1∑
l′=l+1

Pll′

≤ 1
L

L−2∑
l=0

L−1∑
l′=l+1

MT∏
m=1

[
1 + ρ2σ2

m

4(1+2ρ)

]−NR

= 1
L

L−2∑
l=0

L−1∑
l′=l+1

[
1 +

MT∑
m=1

ρ̃mEm

]−NR

,

(6.23)

where

ρ̃
def
=

ρ2

4(1 + 2ρ)
(6.24)

and

Em = Em(Vl − Vl′)
def
=

∑
1≤i1<···<im≤MT

m∏
k=1

σ2
ik

(Vl − Vl′) (6.25)

for m = 1, 2, . . . ,MT . It is seen from (6.23) that the Chernoff bound on the pairwise

probability of error Pl,l′ is small when the terms Em for all m = 1, 2, . . . ,MT are large.

The Chernoff bound (6.23) on the block probability of error Pe is small when the terms

Em(Vl − Vl′) are large for all m = 1, 2, . . . ,MT and for all 0 ≤ l < l′ ≤ L − 1. Now,

we want to introduce some quantities that are closely related to the evaluation of the

pairwise probability of error and the block probability of error.

For any two MT ×MT unitary matrices V1 and V2, we define MT quantities that

reflect the dissimilarity between the two matrices as follows [102]:

Dm(V1,V2) =
1

2

(
Em(V1 − V2)(

MT

m

) )1/(2m)

. (6.26)
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For any given MT × MT unitary signal constellation V of size L, namely, V ={
Vl|V H

l Vl = IMT
, l ∈ ZL

}
, we may define the following MT quantities that reflect the

minimum dissimilarity between any two different unitary signals in V as follow:

ξm(L,V ) = min
0≤l<l′≤L−1

Dm(Vl,V l′) m = 1, 2, . . . ,MT . (6.27)

In the extreme cases of m = 1 and m = MT , the quantities ξm(L,V ) are, respectively,

δ(L,V )
def
= ξ1(L,V ) =

1

2
√
MT

min
0≤l<l′≤L−1

(
MT∑
m=1

σ2
m(Vl − Vl′)

)1/2

(6.28)

and

ς(L,V )
def
= ξMT

(L,V ) =
1

2
min

0≤l<l′≤L−1

(
MT∏
m=1

σ2
m(Vl − Vl′)

)1/2MT

. (6.29)

In [29], the quantity ς(L,V ) is called the diversity product of the constellation V , which

is represented in terms of the minimum among the products of the squared singular

values for all difference signal matrices. Analogously, we may call δ(L,V ) the diversity

sum of constellation V , since it is represented in terms of the minimum among the sums

of the squared singular values for all difference signal matrices.

In [102], the MT quantities defined by (6.27) are shown to possess the following

properties:

Proposition 6.2 For any given MT ×MT unitary signal constellation V of size L, the

nonnegative quantities ξm(L,V ) given by (6.27) for m = 1, 2, . . . ,MT and L ≥ 2 satisfy

the following conditions.

• For each m = 1, 2, . . . ,MT − 1, ξm(L,V ) ≥ ξm+1(L,V )

and for each m = 2, . . . ,MT − 1, ξ2m
m (L,V ) ≥ ξm+1

m+1(L,V )ξm−1
m−1(L,V )

• If 2 ≤ L ≤ 2MT
2 + 1, then ξm(L,V ) ≤

√
L

2(L−1)
for all m = 1, 2, . . . ,MT
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In the case m = 1, the above inequality holds with equality if and only if any two

distinct matrices in V have the same normalized Euclidean distance and that the

sum of all the L signal matrices in V is an MT ×MT all-zero matrix.

• If 2MT
2 + 1 ≤ L ≤ 4MT

2, then ξm(L,V ) ≤ 1√
2

for all m = 1, 2, . . . ,MT

• If L > 4MT
2, then ξm(L,V ) < 1√

2
for all m = 1, 2, . . . ,MT

Proposition 6.2 actually gives an upper bound for both the diversity sum and di-

versity product.

According to (6.23) and (6.26), the Chernoff bound on the pairwise probability of

error Pll′ is small when the dissimilarity quantities Dm(V1,V2) for all m = 1, 2, . . . ,MT

are large. Therefore, when the minimum-dissimilarity quantities ξ(L,V ) of the signal

constellation V , defined by (6.27), are large for all m = 1, 2, . . . ,MT , the Chernoff

bound (6.23) on the block probability of error Pe becomes small correspondingly, at

any SNR ρ. Moreover, it is easy to see that the diversity product, i.e., ξ(L,V ), is

crucial for the performance of the unitary space–time constellations at high-SNR ρ,

while the diversity sum, i.e., ξ(L,V ), is at low-SNR ρ (see also [29, 64]). For the sake

of simplicity, we shall only consider to design the unitary signal constellation V with

diversity sum (6.28) and diversity product (6.29) as large as possible. If the unitary

signal constellation V has the largest possible diversity product (6.29), we call it a

diversity-product-optimal constellation. Respectively, when a constellation has largest

possible diversity sum (6.28), then it is diversity-sum-optimal constellation. And if the

diversity product and the diversity sum converges, which means all the MT quantities

ξm(L,V ) are identical, then we say that the constellation is sub-optimal. And when all

the MT quantities ξm(L,V ) achieve the upper bound in Proposition 6.2, we can safely

say the constellation is optimal.
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For the convenience of analysis, we define a diversity product function as:

ςl,l′
def
=

1

2
(| det(Vl − Vl′)|)1/MT =

1

2

(
MT∏
m=1

σ2
m(Vl − Vl′)

)1/2MT

(6.30)

and respectively, diversity sum function:

δl,l′
def
=

1

2
√
MT

||Vl − Vl′||F =
1

2
√
MT

(
MT∑
m=1

σ2
m(Vl − Vl′)

)1/2

. (6.31)

In the following, we focus on methods to find optimized constellation with criteria of

diversity product.

6.1.5 A Revisit of Cyclic Designs

Recall the cyclic design in (6.19). With the simple diagonal cyclic design, the

quantity | det(Φl −Φl+∆l)| can be readily evaluated as

| det(Φl −Φl+∆l)| =

∣∣∣∣∣
MT∏
m=1

(ejlk1mθL − ej(l+∆l)k1mθL)

∣∣∣∣∣ = 2MT

MT∏
m=1

| sin(∆lk1mθL/2)|. (6.32)

Then the diversity function is simplified to

ζl,l+∆l =
1

2
| det(Φl −Φl+∆l)|1/MT =

MT∏
m=1

| sin(∆lk1mπ/L)|1/MT . (6.33)

It is clear from (6.33) that the diversity product function depends only on ∆l, i.e.,

ζl,l+∆l = ζl′,l′+∆l = ζ∆l. (6.34)

Furthermore, we have the symmetry property

ζ∆l =

MT∏
m=1

| sin(∆lk1mπ/L)|1/MT =

MT∏
m=1

| sin(k1mπ −∆lk1mπ/L)|1/MT = ζL−∆l. (6.35)

When ∆l = L/2 and k1m = even, we have ζL/2 = 0, so that k1m can only take the odd

values from 0 to (L− 1). The exhaustive search of maximum diversity product now can

be significantly simplified. Assume L is a even number. Then from 0 to (L−1), there are
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L
2

odd integers in total; and (L
2
−1) iterations of comuputation of (6.33) are needed due to

the symmetry property. According to the diversity product function expression (6.33),

the problem now is to choose MT elements from a set of size L to form a non-ordered

set {k1m}MT
m=1.

We denote the algorithm complexity by the number of real multiplications, which

is the dominant part when comparing to summation computation. A complex multi-

plication is equivalent to four real multiplications. To compute the diversity product

in (6.33) for an eligible constellation set, (L
2
− 1)(MT − 1) real multiplications must be

performed. We adopt the following algorithm to go through all the non-ordered sets

with size MT , whose element is chosen from the size- L/2 set:

Improved algorithm for cyclic constellation search:
for k11 = 1 : 2 :  L

for k12 = k11 : 2 :  L...
for k1MT

= k1(MT−1) : 2 : L
2

Calculate the diversity product;
...

The improved complexity is now (L
2
− 1)(MT − 1)Q(MT , L/2), where

Q(MT , L) =
L∑

n1=1

n1∑
n2=1

· · ·
nMT−1∑
nMT

=1

nMT
. (6.36)

6.2 Constellation Design for Unitary Space-Time

Modulation

So far we have reviewed the constellation design criterion for DUSTM. Also intro-

duced is the cyclic constellation design brought forward by Hochwald [29] in their original

paper on DUSTM. The cyclic constellation enjoys the simplicity of both encoder and

decoder due to its group structure. However, its diagonal structure also suggests that

only one antenna is working at any given time slot. This indicates that the cyclic codes
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may not be efficient at exploiting the space and time diversities. In the following, we

will propose two new constellation design algorithms that outperform the cyclic code

while with limited increase in computational complexity.

6.2.1 DUSTM Constellation Designs Based on Rotation Ma-

trices (Scheme I)

6.2.1.1 Constellation Construction

In this section, a differential unitary space time modulation scheme with MT trans-

mit and NR receive antennas is considered. L = 2p is the size of unitary signal constel-

lation and j =
√
−1 is the imaginary unit. θL is defined as θL = 2π/L.

For a given set of integers K = {k11, k12, . . . , k1MT
; k2} ∈ Z, we construct the

constellation as follows:

Φl =


ejθLk11 · · · 0

...
. . .

...

0 · · · ejθLk1MT


l

[Rpq(k2θL)]l, l = 0...L− 1, (6.37)

where Rpq(θ) is a rotation matrix defined as:

Definition 6.1 A matrix is defined as a rotation matrix when: the (p,p) and (q,q)

elements of Rpq(θ) are equal to cos θ for p 6= q, and all other diagonal elements are

unity, and the (p,q) element is equal to sin θ, the (q,p) element is equal to − sin θ, and

all other off-diagonal elements are zero.

For example, when MT = 2 :

R12(θ) =

 cos θ sin θ

− sin θ cos θ

 (6.38)
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when MT = 4, p = 1, q = 3

R13(θ) =


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 . (6.39)

Clearly, there are MT (MT − 1) possible rotation matrices with different (p, q).

Proposition 6.3 A rotation matrix as defined in Definition 6.1 has the properties below:

i) Rl(θ) = R(lθ)

ii) R(θ + π) = −R(θ),Rpq(−θ) = Rqp(θ) = R′
pq(θ)

iii) R(θ) ·R(θ) = IMT

In implementation, we randomly choose a possible rotation matrix. For any given

constellation size of L, we search for a certain set of values K = {k11, k12, . . . , k1MT
; k2}

which maximizes the diversity product ζ. When k2 = 0, it is exactly the same with

the diagonal cyclic scheme proposed in [29]. And for the MT = 2 case, the resulting

diversity products are the same with the scheme presented in [102, 103].

6.2.1.2 Simplification to the Search Algorithm

Let’s take a more detailed look at the algorithm. A constellation signal takes the

form as below, assuming p = 1, q = 2 for the rotation matrix without loss of generality:

Φl = diag
[
ejk11θL , ejk12θL , ..., ejk1MT

θL
]l · [Rpq(k2θL)]l

=



ejlk11θL cos(lk2θL) ejlk11θL sin(lk2θL) · · · · · · 0

−ejlk12θL sin(lk2θL) ejlk12θL cos(lk2θL)
. . . . . .

...
...

. . . ejlk13θL
. . .

...
...

. . . . . . . . .
...

0 · · · · · · · · · ejlk1MT
θL


.

(6.40)
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Thus:

| det(Φl −Φl+∆l)|

=
∣∣ejlθL(k11+k12)[1− (ej∆lθLk11 + ej∆lθLk12) cos k2∆lθL + ej∆lθL(k11+k12)]

∣∣
·
∣∣∣∣MT∏
m=3

(ejlk1mθL − ej(l+∆l)k1mθL)

∣∣∣∣
=
∣∣[1− (ejθ∆lk11 + ejθ∆lk12) cos k2θ∆l + ejθ∆l(k11+k12)]

∣∣ · 2MT−2
MT∏
m=3

| sin(θ∆lk1m/2)|.

(6.41)

And then the diversity product function could be written as:

ζl,l+∆l = 1
2
| det(Φl −Φl+∆l)|1/MT

=
∣∣[1− (ejθ∆lk11 + ejθ∆lk12) cos k2θ∆l + ejθ∆l(k11+k12)]

∣∣1/MT 2
1− 2

MT

MT∏
m=3

| sin(θ∆lk1m/2)|1/MT ,

(6.42)

where θ∆l = ∆lθL. We can see that the diversity product only affects the subscript

difference of two constellations ∆l. That is:

ζl,l+∆l = ζl′,l′+∆l = ζ∆l. (6.43)

Thus only (L-1) computations of diversity product function are needed to find the di-

versity product. Furthermore, we have:

ζ∆l = 2
− 2

MT

∣∣[1− (ej∆lθLk11 + ej∆lθLk12) cos k2∆lθL + ej∆lθL(k11+k12)]
∣∣ · ∣∣∣∣MT∏

m=3

| sin(∆lθLk1m/2)|1/MT

∣∣∣∣
= 2

− 2
MT

∣∣[1− (ej∆lθLk11 + ej∆lθLk12) cos k2∆lθL + ej∆lθL(k11+k12)]∗
∣∣ · ∣∣∣∣MT∏

m=3

| sin(∆lθLk1m/2)|1/MT

∣∣∣∣
= 2

− 2
MT

∣∣[1− (e−j∆lθLk11 + e−j∆lθLk12) cos k2∆lθL + e−j∆lθL(k11+k12)]
∣∣

·
∣∣∣∣MT∏
m=3

| sin(π −∆lθLk1m/2)|1/MT

∣∣∣∣
= 2

− 2
MT

∣∣[1− (ej(L−∆l)θLk11 + ej(L−∆l)θLk12) cos k2(L−∆l)θL + ej(L−∆l)θL(k11+k12)]
∣∣

·
∣∣∣∣MT∏
m=3

| sin((L−∆l)θLk1m/2)|1/MT

∣∣∣∣
= ζL−∆l.

(6.44)
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This indicates that the diversity product function is symmetric, same as the property

of cyclic codes we have discussed. The computations of diversity product function is

further reduced to (L
2
− 1) just as in the cyclic designs.

And if ∆l = L/2 and k1m,m = 3...L − 1 is an even integer, the second term of

(6.42),

∣∣∣∣MT∏
m=3

(1− ej∆lk1mθL)

∣∣∣∣ , will become zero. The diversity product function equals

to zero means the two constellation signals are the same. For generality, we restrict

all k1m,m = 1...L − 1 to be odd integers. With this assumption, we find that when

∆l = L
2
, k2 = odd, (6.42) becomes:

ζl,l+∆l = 2
− 2

MT

∣∣[1− (ej∆lθLk11 + ej∆lθLk12) cos k2∆lθL + ej∆lθL(k11+k12)]
∣∣1/MT

·
MT∏
m=3

| sin(∆lθLk1m/2)|1/MT

= 2
− 2

MT

∣∣[1− (ejπk11 + ejπk12) cos k2π + ejπ(k11+k12)]
∣∣1/MT ·

MT∏
m=3

| sin(∆lθLk1m/2)|1/MT

= 0.

(6.45)

To calculate the diversity product for an eligible constellation set according to (6.42),

(L
2
−1)(MT +3) real-number multiplications are needed. By adopting a similar algorithm

to that presented in page 119, there are totally
(

L
2

3
)

possible combinations of k11, k12

and k2; Q(MT − 2, L/2) possible combinations for k13, k14, ...k1MT
. So the total number

of necessary multiplications is 2
(

L
2

)4
(MT + 3)Q(MT − 2, L/2).

6.2.1.3 Comparison with Space-Time Block Codes

The main characteristic of this Scheme I is that it has non-group constellation

structure. Most constellation designs such as the cyclic codes presented in [64] and [29]

have group constellation structure. The orthogonal STBC designs proposed in [18] and

[19] also have non-group constellation structure. Take the well-known Alamouti’s STBC
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Table 6.1: Diversity products of different constellation design schemes

when MT = 2 for example, the signal constellation can be written as in [15, 17]

ϕ =


 x1 x2

x∗2 −x∗1

 |x1, x2 ∈ {
1√
2
e2jkπ/m|k = 0, . . . ,m}

 , (6.46)

where each signal is a m-PSK signal. Then the diversity product could be written as:

ζ = min
l,l′

1
2
|det(Vl − Vl′)|1/MT

= min
l,l′

1
2

∣∣∣∣∣∣det

 x1 x2

x∗2 −x∗1

−

 x3 x4

x∗4 −x∗3

∣∣∣∣∣∣
1/2

= min
l,l′

1
2

(|x1 − x3|2 + |x2 − x4|2)1/2
= 1√

2
sin
(

π
m

)
.

(6.47)

And for this orthogonal case, L = m2 since each signal matrix contains two m-PSK

signals. Some of the diversity products of different schemes are illustrated in Table 6.1.
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6.2.2 DUSTM Constellation Designs Based on Full-Rotation

Matrices (Scheme II)

6.2.2.1 Constellation Construction

We introduce another matrix to make the diversity product function ζll′ to distribute

more evenly. First, we define a full-rotation matrix for an arbitrary even number MT as

follows:

RFMT
(θ) =


RF 2(θ) · · · 0
...

. . .
...

0 · · · RF 2(θ)


MT×MT

. (6.48)

The RFMT
(θ) still keeps some properties of the rotation matrix such as:

i) RF l
MT

(θ) = RFMT
(lθ)

ii) RFMT
(θ + π) = −RFMT

(θ),RFMT
(−θ) = RF ′

MT
(θ)

iii) RFMT
(θ) ·RFMT

(θ) = IMT

Similarly, we re-define our DUSTM constellations as:

Φl =


ejθLk11 · · · 0
...

. . .
...

0 · · · ejθLk1MT


l

· [RFMT
(k2θL)]l, l = 0 . . . L− 1. (6.49)

For any given constellation size of L, we search for a certain set of value K =

{k11, k12, . . . , k1MT
; k2} which maximizes the diversity product ζ. When k2 = 0, it is

exactly the same as the diagonal cyclic scheme proposed in [29].
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6.2.2.2 Simplification to the Search Algorithm

Similar to what we have discussed in previous sections, in this case, the diversity

product function could be finally written as:

ςl,l+∆l = 1
2
| det(Φl −Φl+∆l)|1/MT

=
∏
m

[1− (ej∆lθLk1m + ej∆lθLk1(m+1)) cos k2∆lθL + ej∆lθL(k1m+k1(m+1))]

where 0 ≤ m ≤ L− 1,m = even,

(6.50)

which indicates that ζl,l+∆l = ζl′,l′+∆l = ζ∆l. Similar to the proposed Scheme I, only

(L− 1) computation of diversity product function needed to find the diversity product

ζ for a general candidate constellation rather than L(L−1)
2

. Again, we can prove that

ζ∆l = ζL−∆l. For the selection of k1m and k2, we have:

Proposition 6.4 If L is an even number, K = {k11, k12, . . . , k1MT
; k2} must take either

of following form to yield a positive diversity product:

i) {k1m = even, k2 = odd}

ii) {k1m = odd, k2 = even} where m = 1, 2, ...,MT .

According to (6.50),
(

L
2

)
8MT−1 real multiplications are needed to find the diversity

product for a eligible constellation set. From Proposition 6.4, we can conclude that only(
L
2

) (
5L
2
− 1
)

real multiplications are needed to find the diversity product for a eligible

constellation. And there are 2
(

L
2

)MT +1
possible combinations for k11, ..., k1MT

; k2. The

algorithm complexity becomes 2
(

5L
2
− 1
) (

L
2

)MT +2
. Compared to the former designs,

the computation complexity increases considerably as MT is now in the exponent.

In practice, we also find that if the algorithm is further simplified to the following

form, it can still yields the optimal diversity product:

Φl = diag[ejθLk11l, ejθL(k11+2)l, . . . , ejθL(k11+MT−2)l, ejθLk12l, ejθL(k12+2)l, . . . , ejθL(k12+MT−2)l]

· [RFMT
(lk2θL)] ,

(6.51)
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Table 6.2: Comparison of Diversity products of Scheme II against cyclic codes

where k11 and k12 are restricted to odd integers, and k2 is an even integer ranging from

0 to L/2. Thus only 3 parameters are included and the complexity of algorithm is now

significantly reduced to L4

32

(
5L
2
− 1
)
, which is no longer dependent on MT .

But when the constellation number is odd, unfortunately, we have to check all the

possible K = {k11, k12, . . . , k1MT
; k2} combinations.

6.2.2.3 Comparison with Former Designs

Comparison of diversity products between proposed and cyclic-codes is presented

in Table 6.2.

In Proposition 6.2, an upper bound has been proposed for all the MT quantities

defined in (6.26), among which the diversity sum defined in (6.28) is the largest. The
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Table 6.3: Diversity product and diversity sum of the proposed constellation

diversity sums of the proposed constellations are shown in Table 6.3.

Fig. 6.2 gives sample comparisons of the diversity product function for cyclic codes

and the proposed method. Due to the symmetric property, only half of the distributions

are plotted.

With our new method, the diversity product function distribution becomes more

even and thus make the diversity product larger. Optimally, we would like the distribu-

tion to be uniform. However, as there is no systematic approach to construct uniformly

spaced sub-space, we can only try to make the distribution as flat as possible.

Moreover, the improved Scheme II in 6.51 reduces the complexity of search algo-

rithm so much, such that it is faster than the improved cyclic search process, especially
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Fig. 6.2: Diversity product function distribution with constellation size L = 16

when MT gets large. Fig. 6.3 clearly shows the complexity marked by the number of

real multiplications for all the algorithms mentioned in this chapter. Before simplifica-

tion, Scheme II is the most complex. However, the improved algorithm in 6.51 gives

the least complexity and simpler than the cyclic code with respect to both MT and L.

Especially it is immune to the increase of MT while others keep exponential dependence

on MT . Although we take the number of real multiplication as the criterion of algorithm

complexity, it is not so accurate as there are summation and comparison operations in-

volved. In Table 6.4, we give a more intuitional comparison in the form of searching time

on computer. It is clearly shown that Scheme II provides both the shortest run-times
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Fig. 6.3: Demonstration of algorithm complexities

Table 6.4: Run-time comparison of algorithms (All data are in seconds and based on Matlab simulations

using a P4 2.4G desktop with 512M RAM)
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and the best diversity products. Especially when MT and L become relatively large,

Scheme II costs at most several minutes while the other two need hours or even days to

complete the search. It is noted that Table 6.4 only gives a measure of the complexity of

different algorithms. The detailed run-time data depends on the computer specification

and efficiencies in the Matlab programming.

It can be found from the diversity product plots that the mutual distance between

two constellation matrices are different. Normally if an error occurs under high SNR

condition, the transmitted signal is most likely to be decoded as those constellations

nearest to it. It is then natural to set partition for all the constellation into groups.

By adopting the idea of gray coding or trellis coded modulation (TCM) , coding gain

can be attained for BEP performances. As this is not the main interest of our work, we

neglect the possible gain from such TCM/DUSTM systems. Related works can be found

in [104, 105] and the references therein. We only focus on the symbol error probability

(SEP) performance in the next section.

6.3 Numerical Results and Discussion

The newly proposed schemes have been shown to have smaller diversity products

over the cyclic constellations. In this section, we will illustrate the performance gain of

the newly proposed schemes over the cyclic one. Rayleigh fading channels with Jakes’

model are adopted for fading simulation. We assume the fading process is symbol-wise

constant in a realistic sense. Also as Scheme II always generates the same or better

diversity product results compared to the Scheme I, we concentrate our simulations on

Scheme II only.

As the theory of USTM/DUSTM requires the channel to be block-wise constant, we

then first illustrate the SEP performance under slow fading channels with ωdTs = 0.001.

As Scheme II generates the same constellation results as the cyclic codes when M =
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Fig. 6.4: SEP of DUSTM with MT = 2 and L = 5, 7, 9

Fig. 6.5: SEP of DUSTM with MT = 2 and L = 8, 16, 32, 64
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Fig. 6.6: SEP of DUSTM with MT = 2 under fast fading

Fig. 6.7: SEP of DUSTM with MT = 4, L = 4, 32, 64
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Fig. 6.8: SEP of DUSTM with MT = 8, L = 8, 32, 64

Fig. 6.9: SEP of DUSTM with L = 64 under fast fading
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2, L = 3, 4, thus the performances would be the same. So that plotted in Fig. 6.4 and Fig.

6.5 are the SEP performance with constellation size greater than four. It is clear from

both figures that the proposed new constellations attain 1-3dB gain against the cyclic

code with SNR around 20dB. The best 3-dB gain is achieved when M = 2, L = 16, 32.

As the SNR increases, this gain becomes more and more obvious. This validates the

proposition that the diversity product design criterion is high-SNR oriented while the

diversity sum design criterion is low-SNR oriented. With the diversity product list in

Table 6.2, it can be also concluded that a slight increase in diversity product may result

in a relatively significant improvement in performance. The search procedure for better

constellation designs is worthwhile.

Fig. 6.6 demonstrates the performance when the channel fades as rapidly as

ωdTs = 0.1. As DUSTM adopts differential detection and assumes block-wise con-

stant channel, both conditions are not met under fast-fading channel. We can expect

that the performance would seriously degrade under such a fast-fading channel. Obvious

performance floors are observed as SNR increases. As the new Scheme II has a lower

floor, the gain is quite significant under high SNR.

Plotted in Fig. 6.7 and Fig. 6.8 are the SEP performance with four and eight

transmit antennas, respectively. Similarly, 1-3dB gains are achieved for all cases.

As demonstrated in Chapter 3, the most significant limitation of space-time coding

is that it requires longer coherence time as the number of transmit antennas increases,

and USTM is not an exception. Especially for differential encoding and decoding, the-

oretically this coherence time is required to be doubled to enable differential decoding.

We expect that under a fast-fading scenario, the less transmit antennas, the better the

performance would be. Fig. 6.9 demonstrates the performances of DUSTM with MT = 4

and MT = 8 under a fade-rate of ωdTs = 0.1. For the sake of fairness, the constellation

sizes are chosen to be L = 8 and L = 64, respectively, so that both schemes transmit six

bits over eight symbol periods. It is clear in Fig. 6.9 that the performances of MT = 4
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case are far better than those of MT = 8. Not only it has a lower error floor, but the

floor appears later than that of MT = 8 case. In both cases, the SEP value of floor is

halved by adopting the proposed Scheme II.

6.4 Summary

In this chapter, we first introduce the development of coherent and differential uni-

tary space-time modulation. Based on the orthogonal structure of signal matrices, we

then introduce the derivation of its constellation design criteria. As there are no sys-

tematic ways to achieve optimality in general, people normally choose to use some sub-

optimal easy-to-construct yet efficient constellation for implementations. In the original

paper where USTM/DUSTM was proposed, the author also put forward a simple code

called cyclic code for constellation generation. As the signal matrix is always diagonal

for all possible constellation, i.e., only one antenna is active at one time, cyclic code

is obviously not the best solution for USTM/DUSTM. Based on this cyclic code, we

propose two constellation schemes that outperform the cyclic one in diversity product

criteria. We studied the diversity product properties in detail and then simplified the

constellation search process significantly while achieving higher diversity products. Sim-

ulations are carried out to show the performance gain of the newly proposed schemes

over the cyclic codes.
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Chapter 7

Conclusions and Proposals for

Future Research

7.1 Conclusions

The research work in this dissertation includes: performance analysis of MIMO

communication systems with imperfect channel estimation, and constellation designs

for unitary space-time modulation.

MIMO systems that employ multiple antennas at both transmit and receive sides

have been a hot topic for the past few years. Some recent techniques like turbo coding

have brought the utilization of a single link very close to Shannon limits of channel

capacity. To achieve more capacity required by the next generation communication, one

must create multiple links between a terminal and a base station, which is fulfilled by

MIMO systems. Among those MIMO techniques, STBC has attracted much research

interest for its simple receiver structure using only linear processing.

As channel state information is necessary at the receiver for coherent STBC decod-

ing, joint channel estimation and STBC detection must be performed in implementation.

In our work, we proposed a MMSE channel estimation-based STBC receiver structure,
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which can be applied to either decision-directed estimation or pilot-symbol assisted mod-

ulation. Based on the receiver structure, we derived the optimum maximum-likelihood

STBC decoder. However, as the optimum receiver is too computationally complex, we

then proposed a sub-optimal simple receiver structure, where each symbol in the STBC

can be decoupled and decoded independently. With the receiver structure and channel

models, we analyzed the BEP performance of such STBC systems. Exact closed-form

BEP expressions are obtained for generalized orthogonal STBC systems, which show

direct dependence on the MSE of the channel estimation and signal-to-noise ratio. Ex-

tensive simulations have been carried out for the proposed system. Simulation results

show that our theoretical results give a very good prediction.

We then extend our work to STBC systems with selection combining at the receiver

with imperfect channel estimation. Selection combining has long been known as an ef-

fective diversity technique which can reduce the power consumption at receiver when

doing decoding. Based on the channel estimation available at the receiver, the decoder

chooses received signal from the best one or several antennas with maximum estimated

SNR for decoding. BEP performances are derived in closed-form for such STBC sys-

tems with channel estimation and selection combining. Moreover, we also contribute

to adaptive transmit antenna selection with STBC. By setting up a reverse link, the

receiver can indicate to the transmitter which antennas have the best link qualities for

transmission based on channel estimation. BEP performances in exact closed-form are

developed for such systems. Both theoretical and simulation results show that selection

combining and transmit selection techniques are efficient yet simple in implementation

while achieving the full diversity order of the MIMO systems.

Contribution has also been made to constellation designs for differential unitary

space-time modulation. A simple constellation search algorithm was proposed to look

for code designs that outperform the existing cyclic design for unitary space-time mod-

ulation.
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In summary, our works focus on the MIMO application perspective where chan-

nel estimation is necessary for coherent space-time decoding. All the systems proposed

are implementation-feasible and can easily be integrated with other coding or modula-

tion techniques such as: turbo-coding, OFDM, and UWB, etc., for the next-generation

communication systems.

As MIMO is a bandwidth-efficient technique compatible with most other emerging

communication techniques, it is predictable that most high-speed wireless application

will use MIMO in the future.

7.2 Proposals for Future Research

The performance analysis of MIMO systems using STBC presented in this disser-

tation basically assumes the channels are i.i.d Rayleigh fading channel. One straight

found extension is to employ other channel models such as Nakagami-m model. One

would also be interested in the STBC performance when the channels are independent

but not identically distributed, or even correlated. So far, there are quite a lot works

that have been done in this area, but most of these works leads to SEP expressions with

unsolvable integrals, where numerical means must be taken. Although a closed-form

BEP expression is not likely to be obtainable for every scenario, we can still extend the

STBC performance analysis.

Previously in this dissertation, we have extended the preliminary work on BEP

performance analysis with MRC in Chapter 3 by introducing selection combining and

transmit selection into the system in Chapter 4 and Chapter 5, respectively. The results

therein show that both selection combing and transmit selection are efficient ways to

employ transmit and receive diversities, while independent of STBC. It is also found

that so far not much work has been done for STBC system with selection combining or

transmit selection. It is still worthwhile to explore more on this topic. Possible directions
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are as follows. First, we can improve or simplify the selection rule. Since we use the

estimated SNR as the selection criterion, channel estimations must be performed before

the transmission or before the data decoding, even for those channels not selected. It is

of interest to know how much loss would be involved if we choose to use some less-optimal

schemes such as switch diversity or threshold-testing technique. Second, in Chapter 4

and Chapter 5, we have assumed i.i.d. channel model. If the channels are non-i.i.d or

even correlated, what is the optimum transmitter and receiver structure to minimize

the BEP? We expect such a problem would result in a power-allocation strategy at the

transmitter, and weighted summation of the received signals at the receiver to form

the decoding metric. Then, what is the optimum (or sub-optimum if optimum is not

applicable) rule to determine the tap weights in both problems? How much can the

performance be improved so that such systems are desirable? All these questions are

still open and worthy of further investigation.

Seven years have passed since the debut of space-time coding in 1998. The space-

time coding technique is entering its maturing phase. Now people are keen on what we

can really do with space-time. The research interests are shifting from physical layer

design to cross-layer design for MIMO. A hot topic now is MIMO in wireless networks.

The cross-layer design tends to optimize the MIMO system together with the data-link,

network layers, or even up to the application layer as a whole. It tries to make use of

MIMO for packet scheduling, QoS controlling, or constructing a cooperative network,

and so on.

In a wireless network, there are multiple nodes capable of both transmitting and

receiving signals. Different from the conventional wired network, they share the same

free space and same bandwidth for transmission. The transmissions must be carefully

scheduled to minimize interference. What we currently do is, as shown in Fig. 7.1(a),

when a source node wants to transmit, it first mutes all the adjacent antennas, and

then transmits. A question that has attracted quite a lot of research interests is: can
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Fig. 7.1: Examples of relay diversity: (a) No relay; (b) Half-rate scheme with one relay node; (c) Half-

rate scheme with multiple relay nodes; (d) Full-rate scheme with two relay nodes.

we use those silent nodes to help the source, so that we can get some gain from such

cooperations? This leads to the concept of cooperative networks, and we term the gain

obtained as relay gain, which is a particular kind of diversity gain. Early investigations

on relay diversity topic include those of Sendonaris [106–108]and those of Laneman

[109, 110]. Some examples of relay diversity are illustrated in Fig. 7.1(b)-(d), where we

assume a node can be either receiving or transmitting, but not simultaneously. Normally

the relay transmission is divided into two phases, like in scheme (b)[109–111]. During

the first phase, the source transmits and both the relay and destination listen. And

during the second phase, the relay re-transmits the received signals received in the first

phase in either a decode-and-forward or an amplify-and-forward manner. Alternatively,

if more idle relay nodes are available, they can help to transmit the same message or even

cooperate to use space-time block coding, as in (c). Of course, STBC transmission would

require negotiation and accurate synchronization among all the relay nodes. The cost

for both schemes (b) and (c) is that the data rate is halved since the transmission is split

into two phases. A full-rate scheme is shown as in (d)[112]. Two relay nodes are used,

relay one listens at even slots and re-transmits at odd slots; similarly, relay two listens at
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Fig. 7.2: Selection relay diversity: (a) Synchronized two-phase transmission; (b) Multi-hop selection

transmission with power schedule or beamforming.

odd while transmit at even time slots. Thus the system is like what we have mentioned

in Chapter 1, the delay diversity. But clearly this relay scheme would perform better

than delay diversity, since the delayed copies are by turns from two different nodes, so

that more diversity gain is expected.

All those schemes (b)-(d) in Fig. 7.1 need the nodes to be accurately synchronized

for cooperation. Based on the result we have, I would like to propose a selection relay

scheme as in Fig. 7.2, where the best relay is chosen from a bunch of them for cooperation

with the source. Some foreseeable advantages are that, first, it allows simpler transmit-

receive structure compared to STBC system while with comparable performance as we

have seen in Chapter 5. Secondly, it does not need the accurate synchronization as

in Fig. 7.1. If the source-to-relay channel is good, we can even reduce the transmis-

sion power at phase 1. In other words, in phase one, the source can be dedicated to

the transmission to relay and ignore the destination; and the destination decodes only

based on the information from the relay node and treats the received signal in phase

1 as interference. An antenna array can also be deployed at the transmitter to allow

STBC transmission. Then the result we obtained in Chapter 5 can be directly applied
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to such systems. Alternatively, the antenna array at the source can also be used for

beamforming. In phase 1, the source dedicates most of its transmission power towards

the selected relay node. Then the source-to-destination channel can be ignored as in (b),

and the problem becomes a routing problem. The selected relay node can even adopt

a ”store-and-forward” strategy so that synchronization is almost unnecessary, just like

the conventional multi-hop packet network. The cost of such a network is, channel

state information of all the links inside the network must be broadcast to all possible

source nodes (as we can intentionally add relay nodes to the network to improve the

throughput, some nodes can be pure relay nodes), so that the source can independently

generate an optimal route for the data transmission. This CSI spreading can be done

by either a TDD or an FDD system. In [113], the authors discussed this problem and

make some comparisons between the two systems. They suggested a FDD system using

analog modulation to quickly feed back the information. This technique can be also used

to spread the CSI to the whole network. All those problems discussed in this section

are still developing; people are trying to find different ways to exploit the so-called relay

diversity for different scenarios. MIMO from a network view is a hot topic for the time

being, and without doubt, there are still plenty of things to be explored.
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