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Quantum Information Processing Approaches in

Classical Systems

Sean Andrew Lanham, M.S.E.

The University of Texas at Austin, 2019

Supervisor: Robert W. Heath Jr.

The engineering problem of building scalable quantum computers has

prompted the development of a rich theory modeling the evolution of quantum

systems as well as techniques to preserve quantum information in the presence

of noise. Such techniques offer systems-level approaches to the problem of ro-

bustly encoding and preserving information and, as a result, see applicability

in a wide variety of architectures for computing systems. In this thesis, we visit

the mathematical underpinnings of quantum information and apply strategies

inspired by quantum information processing to two non-quantum systems to

demonstrate advantage. We first describe the construction of a quantum emu-

lation device, an analog electronic system with the same mathematical struc-

ture as a gate-based quantum computer, and introduce novel time-domain

information encoding methods to increase the computational capacity of the

device. We confirm the sustained performance of the improved system by suc-

cessfully transforming emulated states by randomly selected quantum gates.
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We then visit similarities between quantum information processing and signal

processing in the noncoherent wireless communication setting, the latter being

an environment characterized by a lack of instantaneous channel knowledge.

We describe the theoretical underpinnings of the noncoherent communication

environment from both an information theoretic and signal processing perspec-

tive. This leads us to propose a multi-antenna space-time code construction

based on a family of quantum error correcting codes known as stabilizer codes.

For this code, we derive the optimal decoder in Rayleigh and Ricean fading

and benchmark the its performance against coherent and differential coding

at comparable rates.
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Chapter 1

Introduction

Quantum computers are expected to exhibit computational speedups

compared to digital processors by leveraging advantageous properties of quan-

tum systems. For example, using the property of linear state superposition, a

maximum of 2n binary states can be represented and processed simultaneously

using an n-qubit quantum system. This gives rise to a notion of “quantum

parallelism,” which is exploited to reduce the number of manipulations re-

quired to arrive at a solution [17]. Using these ideas, quantum algorithms

have been proposed to tackle problems believed to be computationally hard,

such as factoring [79] and unstructured search problems [25], demonstrating

lower computational complexity than standard approaches with digital com-

puters.

Quantum systems also behave in ways that confound attempts to ap-

ply standard information processing methods. For example, another important

property of quantum systems is that outside interaction with the system arising

from a measurement or observation causes its state to change. Because of this,

the state of a quantum system is never known with certainty, and approaches

to processing quantum information cannot assume explicit access to this infor-
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mation. From an engineering vantage point, this feature of quantum systems

typically places limitations on possible processing and information preserva-

tion methods, requiring new approaches to address these issues. The theory of

quantum error correction, for example, provides many ingenious methods for

recovering quantum information with only statistical knowledge of the state

of a noisy system or the noisy channel that corrupted it.

Current approaches to quantum computing rely on the careful manip-

ulation of quantum physical systems. Examples include photonic computing

systems [70], trapped ion systems [30], and superconducting systems [77]. The

state preparation and manipulation required to perform reliable computational

processing with such systems remains a daunting engineering task. They are

extremely sensitive to the effects of noise arising from small interactions with

the external environment. These degrading effects gradually accumulate, lead-

ing to a process known as decoherence, which typically corresponds to a loss

of quantum information [62]. This issue is further compounded by the “no-

cloning” theorem, which states that an identical copy of a quantum system

cannot be reliably constructed, preventing information preservation through

redundancy.

Interestingly, the mathematical framework underpinning a quantum

system can be found, or engineered, in systems behaving according to classi-

cal physics. Gate-based quantum computers, in particular, possess a Hilbert

space mathematical structure similar to some non-quantum, or classical, sys-

tems [47,80]. Motivated by this insight, we focus on analyzing classical systems
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with the aim of identifying advantages similar to those presented by true quan-

tum information processing systems. We present extensions of an information

encoding approach for an analog electronic system termed a quantum emula-

tion device, first presented in [47]. In this classical system, properties such as

linear superposition are still exhibited, while the overall robustness to noise

of the system improves with respect to important metrics when compared

to true quantum computing systems. Our new encoding method extends on

previously developed frequency-domain encoding methods, allowing emulated

qubits to be encoded in the time-domain and significantly increasing the com-

putational capacity of a device with minimal impact to overall performance.

These results are confirmed with a prototype implementation of the device.

Additionally, we focus on a mathematical similarity between the situ-

ation of preserving quantum information traveling through a channel, during

which the state of both the system and the channel cannot be exactly deter-

mined, and a wireless cellular noncoherent communication system, which is

characterized by a lack of instantaneous channel knowledge at both the trans-

mitter and receiver. In the classical setting, we adapt a quantum error correct-

ing code, designed to preserve quantum information without requiring state

or channel knowledge, to the wireless setting, modifying the design to make

use of the additional information afforded in the non-quantum regime. The

result is a space-time code designed for the noncoherent multi-antenna com-

munication setting. We construct the codebook taking into account insights

from noncoherent communication signal processing and information theory.
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The thesis is organized as follows. Section 2 introduces concepts from

quantum information that are important for understanding the design of our

classical systems. We focus particularly on a class of quantum error correct-

ing codes known as stabilizer codes, since they feature prominently in later

sections. In Section 3 we detail the mathematical framework of the quantum

emulation device, presenting a time-domain emulated qubit encoding method

termed time-bin encoding. We also detail an implementation of the device on a

printed circuit board and characterize its processing performance for time-bin

qubits. In Section 4 we motivate the introduction of a novel multi-antenna

space-time code by summarizing the existing results on the noncoherent ca-

pacity of a communication channel in more detail, focusing on results for

fast-fading and at finite blocklength. In Section 5 we review noncoherent

signaling approaches based on those capacity results, integrating important

signal processing considerations such as receiver complexity, power efficiency,

and codebook design. Finally, in Section 6 we fully describe the requisite

ideas that lead to the design of a noncoherent space-time code based on a

quantum error correcting code. We describe the maximum likelihood decoder

for the Rayleigh and Ricean fading setting and provide simulations for the

code’s performance against comparable coherent and noncoherent approaches

in Rayleigh fading.

The following notation is used in this paper. We use bold lower case

letters a to denote column vectors, and bold upper case letters A to denote

matrices. We use non-bold letters to denote scalars. We denote the element in
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the ith row and kth column of a matrix A by [A]i,k. In general we denote the

k× k identity matrix by Ik. The 2× 2 identity matrix is used so often that we

drop the subscript, i.e. I2 = I. We use tr(A) to denote the trace, det(A) the

determinant, AT the transpose, and A∗ the conjugate transpose. For positive

semi-definite matrices, A
1
2 denotes the matrix square root. We use |a| to

denote the absolute value of a scalar. We use E(·) to denote expectation. We

use ⊗ to denote the tensor product when acting on vector spaces (i.e. C2⊗C2)

and to denote the Kronecker product when acting on vectors or matrices. We

use NC(µ,Σ) to denote a complex circularly symmetric normal distribution

with mean µ and covariance Σ. If A = cB where c > 0, we write A ∝ B. The

indicator function of a subset [a, b] of the real numbers is denoted 1[a, b](x).

Function composition is represented using ◦, where f ◦ g(x) = f(g(x)). The

vector space of complex valued square integrable functions defined on the

interval [a, b] is L2[a, b].

5



Chapter 2

Review of Quantum Information

In this chapter we review some material from quantum information

processing. We begin by introducing general systems of qubits, or quantum

bits, that are the natural generalization of a bit in quantum computing. We

continue with a definition of an important measure of distance between quan-

tum states. We then turn to quantum gates, the fundamental objects used to

manipulate quantum systems. Finally, we describe stabilizer codes, a powerful

class of quantum error correcting codes which will feature in our space-time

code construction in Section 6.

2.1 Quantum States, Measurements, and Fidelity

A qubit represents the state of a two-level quantum system, such as

the polarization of a photon, and is the most elementary example of quantum

state. A qubit is represented as a state vector q = [α, β]T ∈ C2 with

q∗q = |α|2 + |β|2 = 1 (2.1)

Portions of this review appeared in Lanham, S. Andrew, et al. “A Noncoherent Space-
Time Code from Quantum Error Correction.” 2019 53rd Annual Conference on Information
Sciences and Systems (CISS). IEEE, 2019. Authors contributed equally.
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by convention. Equipping C2 with the standard inner product 〈q,p〉 = q∗p

leads us to define a qubit state as an element of a two-dimensional complex

Hilbert space. In discrete time, the evolution of a closed quantum system is

unitary. That is to say, qn+1 = Uqn, where U ∈ C2×2 with U∗U = I. The con-

cept of applying unitary operators (which is possible to good approximation)

comes up often in quantum computing and will be used in this paper [62].

In general, the act of measuring, or observing, a quantum state causes

the system to change. An important class of quantum measurements are

projective measurements. Projective measurements are defined in terms of an

observable, a Hermitian operator M on of the system of interest [62]. Let m

denote an eigenvalue of M and let Pm be the projector onto the m eigenspace.

The observable M can thus be orthogonally diagonalized as

M =
∑
m

mPm , (2.2)

where PnPm = 0 when n 6= m. The outcome of “measuring the observable

M” is an eigenvalue m. If ψ is a quantum state, then the probability of

measuring m is given by p(m) = ψ∗Pmψ [62]. Given that the outcome m

occurs, the system after measurement collapses to the state Pmψ/
√
p(m) [62].

It turns out that projective measurements, coupled with unitary evolution,

fully describe general quantum measurements [62].

A notable feature of quantum measurement is that the global phase

of a state is not observable. If x = [α, β]T and y = ejθ[α, β]T , then, for a

measurement in all possible bases, the distributions of outcomes for x and y are

7



the same. For this reason, one often works with density matrices. A state q can

be represented by its density matrix Q = qq∗. All of our previous formalism

can be represented analogously. A state Q that evolves by the unitary U

becomes the state UQU∗. The Born rule for projective measurements says

that a state Q evolves to PmQPm/p(m) with probability p(m) = Tr(PmQPm).

Density matrices additionally provide a convenient way to describe quantum

systems that have classical uncertainty. If a system is prepared in the state ψi

with probability pi, then the system is represented by the density matrix [62]

Q =
∑
i

piψiψ
∗
i . (2.3)

This example can be extended to the case in which the prepared state has a

continuous distribution and ensures that measurement probabilities are prop-

erly modeled. A state with a rank-one density matrix is known as a pure

state and corresponds to the case of no classical uncertainty about the pre-

pared state. A state with a higher-rank density matrix is known as a mixed

state [62].

Systems of many qubits can be represented as extensions of a single-

qubit system. Any normalized vector in C2n is a valid multi-qubit state vector.

States which are expressible as the Kronecker product of n single-qubit states

are called separable states. The vector space of separable states is C2⊗C2 · · ·⊗

C2. For example, if q1 and q2 are single-qubit systems, the two qubit composite

system is given by q1 ⊗ q2. Analogously, if Q1 and Q2 are density matrix

representations of two systems, the composite system has a density matrix of

8



Q1⊗Q2. States which do not admit this decomposition are said to be entangled

states. Any positive semidefinite operator with a trace equal to unity is a valid

density operator. In multi-qubit systems, observables and measurements are

simply defined in the relevant higher dimensional space.

The fidelity provides a notion of distance between quantum states [62].

The fidelity function F (Q1,Q2) ∈ [0, 1] is a symmetric function of its density

matrix arguments. It is defined, for general mixed states as F (Q1,Q2) =

tr((Q
1
2
1 Q2Q

1
2
1 )

1
2 ) [62]. A low fidelity implies that states are “far apart,” and

the fidelity is equal to unity if its arguments are the same. The fidelity between

two pure states is

F (q1,q2) = |q∗1q2|. (2.4)

The fidelity between a pure state q and a mixed state Q is F (q,Q) =
√

q∗Qq.

The fidelity can be used to induce a metric on states, d, via d(Q1,Q2) =

arccos(F (Q1,Q2)) [62].

2.2 Quantum Gates

Gate-based quantum computers use quantum gates to transform quan-

tum information. Quantum gates can act on a single qubit or on multiple

qubits. In the single-qubit case, any unitary transformation of a single qubit

is a valid quantum gate acting on that qubit [62]. Multi-qubit gates trans-

form states comprised of multiple qubits, and are also encompassed by unitary

transformations of the form U ∈ C2n×2n , U∗U = I2n , n > 1. A special class

of multi-qubit gates are controlled -U gates, which act on two qubits. In a
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controlled gate operation, one qubit acts as a control qubit, and the gate U

is applied to the target qubit. The general form of a controlled-U gate on a

two-qubit system q⊗ p, with control qubit q and target qubit p is

cU =


1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U10

 (2.5)

Sequences of quantum gates are used to manipulate quantum information in

the pursuit of a computational solution to a problem.

A universal set of quantum gates is a set of gates for which it is possible

to express any unitary operation as a sequence of elements from that set. One

such set of universal quantum gates consists of two single-qubit quantum gates

and one controlled gate, namely,

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 ejπ/4

)
, cX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.6)

where the cX gate is known as the controlled-NOT gate [62].

2.3 Stabilizer Codes

Stabilizer codes are a class of quantum error correcting codes designed

to protect against a wide range of quantum errors [24]. Their design is based

on special properties of a matrix group defined for matrices of size 2n × 2n.

We briefly summarize their construction.

The n-qubit Pauli group, Pn, is the set of operators in C2n×2n that can

be written as a tensor product of n of the 2× 2 Pauli matrices I,X,Y,Z, up

10



to a scalar multiple of α ∈ {±1,±j}, where

X =

(
0 1
1 0

)
, Y =

(
0 −j
j 0

)
, Z =

(
1 0
0 −1

)
. (2.7)

The group multiplication operation is defined as standard matrix multiplica-

tion. Elements of Pn are unitary and are either Hermitian or skew-Hermitian.

Thus, they are orthogonally diagonalizable, with eigenvalues ±1 or ±j. Any

two Pauli operators either commute or anti-commute. A stabilizer group, S,

is a commutative (Abelian) subgroup of Pn that does not contain the negative

of the identity element, −I2n . Closure under the group multiplication oper-

ation implies that elements of S must have α = 1. Thus, elements of S are

Hermitian operators with eigenvalues equal to ±1.

A stabilizer code C(S) is defined as the subspace of C2n formed by the

intersection of +1 eigenspaces of the operators in S. An efficient description

of the group S is in terms of its generators. A set GS of generators of S is a set

of elements of Pn such that every element of S is a product of elements in GS.

A generator set GS is called independent if the set obtained by removing an

element from GS fails to generate all elements of S. If S is a stabilizer with an

independent generator containing n− k elements, it can be shown that C(S)

is a 2k dimensional vector space [62]. Furthermore, we also have that a state

ψ ∈ C(S) if and only if Snψ = ψ for all Sn ∈ GS. Letting si denote complex

constants and vi an orthonormal basis for C(S), a general codeword for C(S)

can be written as

x =
2k−1∑
i=0

sivi , with
2k−1∑
i=0

|si|2 = 1. (2.8)

11



A codeword is thus an arbitrary unit vector in C(S).

There are several criteria that can be used to determine which quan-

tum errors a stabilizer code can correct. A simple approach, which we adopt,

is as follows. Consider a set of error operators E ⊂ Pn. Each error E ∈ E

either commutes or anticommutes with each generator of the stabilizer group.

A sufficient condition for the stabilizer code to correct the errors in E is for

each E ∈ E to possess a unique commutation relationship with respect to the

elements of GS. Thus the stabilizer construction guarantees that each error

Ek ∈ E maps the code space C(G) bijectively to a 2k dimensional subspace of

C2n . Furthermore, the uniqueness of the commutation relationships guarantees

that different errors map C(G) to different error subspaces εk. Formally, εk is

the image of Ek restricted to C(G) (i.e. εk = {y ∈ C2n| ∃ x ∈ C(G) with y =

Ekx}) and a unique commutation relationship guarantees that εk ∩ εj = ∅

when i 6= j. The error subspaces are uniquely identified during decoding by

a syndrome (analogous to a classical syndrome), which are generated by per-

forming projective measurements on the received state. In stabilizer coding,

the syndromes are the eigenvalues associated with the outcome of the projec-

tive measurements applied during decoding.

It should be stated that this criterion is sufficient but not necessary;

the stabilizer formalism naturally lends itself to degenerate quantum codes,

where multiple errors yield the same syndrome and are correctable by the

same operation. Consider a correctable error E and some V ∈ S. Both EV

and E will have the same commutation relations with respect to the stabilizer

12



generators, and thus both EV and E map an encoded state to the same

subspace. Indeed, for x ∈ C(G) we have EVx = Ex; namely, the effect of the

errors on the codeword is exactly the same.

In the quantum setting, the stabilizer decoding process consists of per-

forming projective measurements on the received state.The measurement ob-

servables are the stabilizer generators. This process projects the state into

an intersection of the +1 or −1 eigenspaces of each S ∈ G(S). Thus, after

the measurements the state collapses into one of the error subspaces εk, and

the syndromes resulting from the measurement identify the subspace. The

error correction conditions guarantee that the application of a correction (e.g.,

the error operator itself) for any correctable error yielding the measured syn-

drome recovers the encoded state [24] [62]. This process demonstrates that

a stabilizer code that can correct errors in a set E can correct an arbitrary

linear combination of correctable errors [24]. The projective measurements

annihilate error operators that are not consistent with the measured commu-

tation relationship. For example, consider the state y = (cjEj + ckEk)t with

t ∈ C(S). If G ∈ GS anti-commutes with an error Ej but commutes with Ek

and a measurement of G returns a 1 (corresponding to a commutation), the

state after measurement is ŷ = (I + G)y = Ekt.

As we have detailed in this section, quantum error correcting codes like

stabilizer codes include inventive encoding and decoding methods to account

for the inherent system design limitations in quantum information processing.

For example, both the no-cloning theorem and the projective measurement

13



process of observing a quantum state restrict quantum information processing

approaches in a manner not found in a classical setting. Therefore, as we adapt

these approaches to a classical setting, we leverage the fact that the limita-

tions do not carry over and modify our analysis to account for the additional

available information. In all of our designs, the key modifications we make to

the standard quantum information processing approaches leverage techniques

that go beyond what is possible in the quantum setting. Furthermore, our ac-

cess to tools like nondestructive measurements and multiple copies of a state

render the modified quantum information processing techniques more effective

than they are when applied to true quantum systems.
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Chapter 3

Quantum Emulation

Motivated by the difficulties in manipulating quantum physical systems

for computing tasks, various architectures have been proposed for quantum

computers, including gate-based [16], measurement-based [73], and quantum

annealing systems [45]. Current quantum computing systems feature less than

100 qubits, and successful computation requires extremely careful isolation

from environmental noise effects. The state of development has been termed

the era of “noisy intermediate scale quantum computing” [67].

Extending on the work of [47], we have developed a prototype emulation

approach to gate-based quantum computing based on an analog signal process-

ing architecture. As we demonstrate in this section, the analog signal models

in both the frequency domain and time-bin approaches are mathematically

equivalent to the state of a multi-qubit gate-based quantum computer, pre-

senting an opportunity to construct a system capable of manipulating quantum

information using cheaper technology with access to more robust engineering

Portions of this chapter appeared in La Cour, Brian R., S. Andrew Lanham, and Corey
I. Ostrove. “Parallel Quantum Computing Emulation.” 2018 IEEE International Confer-
ence on Rebooting Computing (ICRC). IEEE, 2018. Authors contributed equally to these
portions.
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approaches. The model includes a scheme for initializing emulated quantum

states, addressing and manipulating qubits with gate operations, and measur-

ing the quantum state with outcomes determined by the Born rule [47]. This

approach captures many advantages of quantum computers such as quantum

parallelism and linear superposition without the need for substantial environ-

mental isolation.

The quantum emulation device architecture is implemented using com-

binations of analog adders, multipliers, and filters with switching networks

controlled by a digital microcontroller. In this section, we describe the math-

ematical representation of a gate-based quantum computer using an analog

signal-based representation, revisiting the frequency-domain representation

to motivate the system design approach. We then visit methods to encode

information-carrying qubits in the time-domain, manipulate them, and we fi-

nally describe the hardware implementation used to realize the operations.

Finally, we characterize the system performance with time-bin qubits using

a slightly modified version of the fidelity performance metric tailored to the

analog setting of our system.

3.1 Encoding Qubits in the Frequency Domain

In the signal-based quantum computing representation, a single-qubit

system is defined as the vector space spanned by a pair of complex-valued func-

tions in the vector space L2[0, T ). In particular, the standard computational
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basis functions for qubit k are defined as

φωk
0 (t) = ejωkt (3.1a)

and

φωk
1 (t) = e−jωkt (3.1b)

These basis elements are indexed using a binary representation, with φωk
0 (t)

representing the 0 state of a qubit, and φωk
1 (t) representing the 1 state. Using

the convention established in Equation (2.1) that the amplitudes defining the

state of a qubit are normalized, the emulated representation of a single-qubit

state [α, β]T becomes

ψ(t) = αφω0
0 (t) + βφω0

1 (t). (3.2)

As described in Section 2, an n-qubit system lies in a vector space

defined as the tensor product of the individual qubit systems. We introduce

the convention that in an n-qubit quantum state, ω0 < ω1 < . . . < ωn−1.

Furthermore, we assume that the functions are defined only on the interval

of the longest period, giving T = 2π
ω0

. A basis element for an emulated multi-

qubit state is thus given as a product of n emulated single-qubit basis states.

We extend the binary indexing to these n-qubit basis states by defining the

index for a basis state to be x = [xn−1 . . . x0], where xi designate the binary

values corresponding to the basis states of the individual qubits. An emulated

multi-qubit basis state is thus

φx(t) = φωn−1
xn−1 · . . . · φω1

x1
(t) · φω0

x0
(t)

= exp

[
n−1∑
i=0

j(−1)xiωit

]
.

(3.3)
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In terms of the underlying analog signals defined in (3.1a) and (3.1b), the

multi-qubit basis states are complex sinusoids with frequencies given as the

sum and differences of the individual qubit basis frequencies. To avoid overlaps

of sums and differences, it is sufficient to assume an octave-spacing scheme for

individual qubit bases, where ωk+1 ≥ 2ωk for all k. The bandwidth utilization

of the emulation device thus grows exponentially in the number of qubits. A

multi-qubit quantum state can now represented as a linear combination of

basis states. Letting x return the binary representation of an integer i, the

analog signal is given as

ψ(t) =
2n−1∑
i=0

αiφx(i)(t). (3.4)

To complete the Hilbert space representation of the quantum emulation device,

we endow the space with an inner product. The inner product between two

emulated quantum states ϕ(t) and ψ(t) is

〈ϕ(t), ψ(t)〉 =
1

T

∫ T

0

ϕ∗(t)ψ(t)dt (3.5)

The inner product is the output of a low-pass filter acting on the product of

signals ϕ∗(t)ψ(t). Under this inner product, any pair of distinct basis signals

φx(t) and φx′(t) is orthonormal.

3.1.1 Gate Operations on Frequency Encoded Qubits

To achieve arbitrary gate-based transformations on emulated quantum

states, a universal set of gates must be implemented. The prototype quantum

emulation device supports arbitrary single-qubit unitary transformations and
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the controlled-NOT gate, which constitutes a universal set of gates. The pro-

cess of applying single-qubit quantum gates on frequency encoded qubits is

described in detail in [47], and we briefly review it here. A general state ψ(t)

as in Equation (3.4) can first be decomposed along qubit k,

ψ(t) = ejωktψ
(k)
0 (t) + e−jωktψ

(k)
1 (t), (3.6)

where ψ
(k)
0 (t) and ψ

(k)
1 (t) constitute the partial projections of ψ(t) onto the

zero and one state of qubit k. These two signals can be formed using networks

of multipliers and bandpass filters as described in [47]. A single-qubit gate of

the form

U =

(
U00 U01

U10 U11

)
(3.7)

is applied to an emulated state by constructing the signal

ψ′(t) = [U00e
jωkt + U01e

−jωkt]ψ
(k)
0 (t)

+ [U10e
jωkt + U11e

−jωkt]ψ
(k)
1 (t).

(3.8)

Similarly, for a two-qubit controlled-gate operation, we let ψ
(k`)
00 (t), ψ

(k`)
01 (t),

ψ
(k`)
10 (t), and ψ

(k`)
11 (t) denote the result of applying two projection operators as

described in [47] onto control qubit k and target qubit `, where the subscript

denotes the state of the qubit for that projection. Since controlled gates apply

only to the portion of the state where the control qubit is 1, a controlled gate

cU =


1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U11

 (3.9)
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is realized in the emulation device by creating the signal

ψ′(t) = ψ
(k`)
00 (t) + ψ

(k`)
01 (t) + [U00e

jω`t + U01e
−jω`t]ψ

(k`)
10 (t)

+ [U10e
jω`t + U11e

−jω`t]ψ
(k`)
11 (t).

(3.10)

3.2 Encoding Qubits in the Time Domain

Encoding qubits in the time domain affords a lower implementation

overhead than the frequency-domain encoding methods described above while

still allowing for frequency defined qubits. This significantly increases the

number of available qubits at the cost of slower gate times. In this new encod-

ing approach, the emulated quantum state for m time domain qubits spans

M = 2m periods of length T , where T is the length of a frequency-domain en-

coded state. We now describe this encoding of m qubits in the time domain,

which we term time-bin encoding, and show how both time-bin and frequency-

based encoding can be used concurrently in constructing emulated quantum

states.

The basis for a time-bin encoded qubit is defined using an m period

time-shift operator Sm : L2(X) 7→ L2(X), where X ⊆ R, that imposes a shift

of mT . Specifically,

(Smψ)(t) = ψ(t−mT ) (3.11)

with the convention that (S0
mf)(t) = f(t) and (S1

mf)(t) = (Smf)(t) = f(t −

mT ). Using this notation, we define a basis for a single (m = 1) time-bin

encoded qubit k as a pair of shift operators mapping L2[0, 2mT ] to itself. The
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operators act on the function ϕ(t) = u(t)− u(t− T ), yielding

ϕ0(t) = (S0
1ϕ)(t) = u(t)− u(t− T ) (3.12a)

and

ϕ1(t) = (S1
1ϕ)(t) = u(t− T )− u(t− 2T ). (3.12b)

Arbitrary single-qubit states of the form ψ = [α, β]T obtain an emulated

representation

ψ(t) = αϕ0(t) + βϕ1(t)

= α(S0
1ϕ0)(t) + β(S1

1ϕ0)(t).
(3.13)

The inner product between arbitrary time-bin encoded single-qubit em-

ulated states ψ(t) and φ(t) is defined to be

〈φ(t), ψ(t)〉 =
1

T

∫ MT

0

φ∗(t)ψ(t)dt. (3.14)

Returning to multi-qubit states, we define the basis element for the binary

state y of a time-bin encoded m-qubit state as the tensor product of the bases

of the individual qubits. In this case, we define the tensor product space as

the space generated by the bilinear function composition operator ◦. Letting

y = [ym−1, . . . , y0], where again yi are the binary values corresponding to the

state of qubit i for that basis element, we have

ϕy(t) = ϕym−1(t)⊗ ϕym−2(t)⊗ . . .⊗ ϕy0(t) (3.15a)

= (S
ym−1

2m−1 ◦ Sym−2

2m−2 . . . ◦ Sy00 )ϕ0(t). (3.15b)
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Multi-qubit time-bin states are thus a 2m length sequence of DC signals. Let-

ting y(i) serve as a binary representation of an integer i, we have

ψ(t) =
2m−1∑
y=0

αy(i)ϕy(i)(t). (3.16)

The inner product between two multi-qubit states retains the form of Equation

(3.14), where φ(t) and ψ(t) are taken to be multi-qubit emulated systems. This

completes the Hilbert space description of time-bin encoded quantum states.

3.2.1 Gate Operations on Time Encoded Qubits

Gate-based transformations of time-bin encoded qubits proceed in a

manner similar to frequency domain gate processing. An m-qubit time-bin

encoded quantum state ψ(t) admits the following decomposition along a qubit

k:

ψ(t) = ψ
(k)
0 (t) + ψ

(k)
1 (t) (3.17)

Letting b = [bm−1bm . . . b0], the projected states are

ψ
(k)
0 (t) =

∑
b:bk=0

αbϕb(t) (3.18a)

ψ
(k)
1 (t) =

∑
b:bk=1

αbϕb(t) . (3.18b)

Each projection is a subsequence containing half the signals of the original

time-domain sequence, and a value of zero elsewhere. With a single-qubit gate

defined as in Equation (3.7), and defining b̄k = [bm−1, . . . bk+1bk−1, . . . b0], that

is, an m − 1 bit binary index with the target qubit k’s index removed, the
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result of a gate operation on qubit k is given as

ψ′(t) =
∑
b̄k

(
U00α[b̄k,bk=0](t) + U01α[b̄k,bk=1](t)

)
ϕ[b̄k,bk=0](t)

+
∑
b̄k

(
U10α[b̄k,bk=0](t) + U11α[b̄k,bk=1](t)

)
ϕ[b̄k,bk=1](t)

(3.19)

A controlled gate operation of the form given in Equation (3.9) with control

qubit k and target qubit ` is realized in the following manner. Letting b̄k` be

the binary sequence b with bk and b` removed, we have

ψ′(t) =
∑
b̄k

α[b̄k,bk=0]ϕ[b̄k,bk=0](t)

+
∑
b̄k`

(
U00αb̄k` + U01αb̄k`

)
ϕb̄k`

∣∣∣
bk=1,b`=0

(t)

+
∑
b̄k`

(
U10αb̄k` + U11αb̄k`

)
ϕb̄k`

∣∣∣
bk=1,b`=1

(t).

(3.20)

3.2.2 Hybrid Emulated States

Emulated states consisting of both time-bin and frequency encoded

qubits can be constructed and manipulated as well, exercising the advantages

of each approach in tandem. These states exist in a vector space constructed

as the tensor product of a time-bin system and a frequency encoded system.

A basis element for the tensor product space of m time-bin qubits and n

frequency-based qubits is represented as

ϕy(t)⊗ φx(t) = S
ym−1

2m−1 ◦ Sym−2

2m−2 . . . ◦ Sy00

(
exp

[
n−1∑
i=0

j(−1)xiωit

])
(3.21)

where y and x are the binary indices of the basis elements as defined in Sec-

tions (3.2) and (3.1). In this case, the tensor product is interpreted as the
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action of the operator ϕy(t) = Sy(t) on the function φx(t). It can be verified

once again that this map is bilinear and hence constitutes a valid tensor prod-

uct. With this interpretation, a hybrid time-frequency based quantum state

is represented as

ψ(t) =
∑
b

∑
v

αb,v(ϕv(φb(t))) . (3.22)

3.3 System Design and Performance

In this section we describe the hardware and firmware platform used

to develop a prototype of the quantum emulation device. We constructed

the device using standard analog electronic components controlled first by

National Instruments analog and digital output modules on breadboards, and

then with an STM32F4 series microcontroller, with all components mounted

on printed circuit boards. The resultant two frequency qubit system is capable

of generating arbitrary input states and manipulating them with single-qubit

and controlled gate operations, with additional hardware for time-bin qubit

processing.

3.3.1 Signal Generation and Capture

The system uses a dual-rail implementation of complex valued signals,

where real and imaginary components are distinct and routed separately. Input

emulated states ψ(t) are generated by a pair of Texas Instruments DAC8831

digital-to-analog converters (DACs) operating at sample rate fs = 94, 000 Hz

using the serial peripheral interface (SPI), one for the real component and
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one for the imaginary component. The DACs operate in a bipolar configura-

tion detailed in Figure 3.1. First, one period of the input signal is generated

digitally. This signal is related to its analog counterpart (Equation (3.4)) by

{ψ[n]}K−1
n=0 = ψ(nT ) (3.23)

where ω0 = 2π(1000), T = 1/fs and K = 2πfs
ω0

. The digital samples are then

converted into a 16-bit representation and transmitted serially to the DAC8831

devices using circular direct memory access (DMA) buffers to output multi-

ple periods, if desired. The data converters perform the analog conversion,

generating ψ(t).

Transformations ψ′(t) of input states ψ(t) are captured with a pair of

ADS8634 analog-to-digital converters (ADCs), depicted in Figure (3.2), after

the application of either one gate or one controlled gate and analyzed using

a modified fidelity metric based on the inner product of the sampled input

and transformed signals. The ADCs use successive approximation registers

controlled again by an SPI interface and operate at the same sample rate fs as

their DAC counterparts. The captured transformed signal is a sampled version

of its analog counterpart in the same manner as was seen in Equation (3.23)

for the generated signal, that is, {ψ′[n]}K−1
n=0 = ψ′(nT ).

Since the transformed and noise corrupted signal ψ′(t) is not normal-

ized, we define the fidelity using a modification of Equation (2.4). We let ψ̃

and ψ′ denote the two K-length sampled sequences in CK to be compared.
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The fidelity is then defined as

F (ψ̃,ψ′) =
|ψ̃∗ψ′|(

||ψ̃||2
)(
||ψ′||2

) (3.24)

This normalizes each received signal and the fidelity retains its interpretation

as a measure of the closeness between emulated states, taking values on the

interval [0, 1].

Emulated quantum states that include m time-bin qubits are generated

and captured by outputting M = 2m distinct signals of K samples each. In our

implementation, this is achieved in a manner similar to the case with no time-

bin qubits, except now the sampled input sequence is defined as {ψ[n]}KM−1
n=0 .

The initial state after digital to analog conversion assumes the form given by

Equation (3.22).

3.3.2 Time-Bin Gate Implementation

The time-bin gates described in Section 3.2.1 are implemented using

a network of analog multiplier and adder components, along with an Analog

Devices AD5724, (Figure (3.3)), to generate the DC gate coefficients. Unlike

in the frequency-domain qubit setting, where analog processing is employed

to create projected states corresponding to the states of the target qubit, the

projected time-bin signals ψ
(k)
0 (t) and ψ

(k)
1 (t) are constructed without analog

processing of ψ(t). Instead, directly generate the projected signals ψ
(k)
0 [n]

and ψ
(k)
1 [n] digitally, each projection a subsequence of the full time-domain

sequence.
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A time-bin gate is applied in five stages. In the first stage, the signals

ψ
(k)
0 (t) and U00 are simultaneously generated and multiplied together with a

network of AD826ANZ four quadrant multipliers, with the output U00ψ
(k)
0 (t).

For the next three stages, the process is repeated with the pairs U10 and ψ
(k)
0 (t),

U01 and ψ
(k)
1 (t), and U11 and ψ

(k)
1 (t). Finally, in the fifth stage, the signals

captured in stages 1-4 are regenerated and added together with the AD633

device. The sum corresponds to the transformed state ψ′(t), as defined in

Equation (3.19), which is resampled digitally. The circuitry performing the

time-bin processing is depicted in Figure (3.4)

3.3.3 Time-Bin Gate Performance

The fidelity measurements we report here were conducted for emulated

quantum states using the fidelity metric defined in Equation (3.24), where ψ′

is the sampled emulated state after a gate-based transformation and ψ̃ is the

expected emulated output for that same transformation. We performed fidelity

measurements for single-qubit gate transformations of emulated states with

two frequency defined qubits and m time-bin qubits, applying one thousand

randomly selected gates to the computational zero state, with the target qubit

selected randomly as well. We calculated the average fidelity of the output to

an ideal, simulated transformation. The results are plotted below for m = 1

to m = 9 time-bin qubits. The plots demonstrate that time-bin qubits can be

added and processed with relatively little effect on the overall fidelity for up

to five time-bin qubits, offering the computational advantage of more qubits
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with little sacrifice to performance. The processing time, however, increases

exponentially with each additional time-bin qubit.
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Figure 3.1: First of two schematic diagrams depicting the signal I/O. This
figure depicts the bipolar ADC configuration. Only one ADC is depicted in
the figure, but there are two in the prototype device, for real and imaginary.
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Figure 3.2: Second of two schematic diagrams depicting the signal I/O. This
figure depicts the bipolar DAC configuration. Only one DAC is depicted in
the figure, but there are two in the prototype device, for real and imaginary.
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Figure 3.3: First of two schematic diagrams depicting the time-bin gate circuit.
This figure depicts DAC that generates the DC coefficients for Uij. The DC
outputs of this DAC connect to the time-bin processing circuitry in the next
figure.
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Figure 3.4: Second of two schematic diagrams depicting the time-bin gate
circuit. This figure depicts time-bin processing circuitry. The AD826ANZ
circuits perform four quadrant multiplication, and the AD633JN performs
addition
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Figure 3.5: Average fidelity performance comparing emulation device output
to simulated output for a random single-qubit gate applied to a randomly
selected qubit in a hybrid emulated system with two frequency defined qubits
and m time-bin qubits. The initial state is the computational zero state, and
gates are chosen uniformly randomly by the Haar measure on U(2).
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Figure 3.6: Average fidelity performance comparing emulation device output
to simulated output for a random single-qubit controlled gate applied to a
randomly selected qubit in a hybrid emulated system with two frequency de-
fined qubits and m time-bin qubits. The initial state is the computational zero
state, and gates are chosen uniformly randomly by the Haar measure on U(2).
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Chapter 4

Noncoherent Capacity Results

In the next two sections, we will analyze the information theoretic

characterization and signal processing approaches for a constrained wireless

communication setting called noncoherent communication. This will motivate

the introduction of a stabilizer quantum error correcting code as a wireless

communication signaling approach and invite a consideration of the similar-

ities between quantum information and classical information. The structure

of the adapted quantum code bears resemblance to the capacity-achieving ap-

proaches for the class of wireless classical communication channels reviewed in

the next two sections, so the results presented here serve to provide context

for the performance results in the final section.

Noncoherent wireless communication is characterized by a lack of chan-

nel state information (CSI) at both the transmitter and the receiver. While

CSI is typically desirable for communication at high data rates, in certain sce-

narios its acquisition incurs excessive complexity or overhead, and the channel

cannot be accurately estimated. This situation is encountered in various 5G

paradigms. For example, channel estimation is difficult in high-mobility envi-

ronments such as in high-speed trains or between aerial networks, where the
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Doppler effect limits the coherence time of the channel [21, 99]. Similar lim-

itations may be encountered in latency constrained environments, where the

maximum blocklength is limited to ensure quick decoding, or in networks uti-

lizing frequency hopping, which transmit sporadically at different times and

frequencies [68,88].

The objectives of 5G extend well beyond the enhancement of mo-

bile broadband, additionally targeting massive machine-type communication

(mMTC) and ultra reliable low-latency communication (URLLC) [3]. mMTC

is characterized as communication in extremely dense networks of devices,

for example, internet of things (IoT) networks communicating relatively small

payloads intermittently and with high power efficiency [10]. URLLC refers to

the transmission of data with stringent latency constraints at low error rates,

which will enable 5G applications requiring mission-critical communication

events such as autonomous vehicle networks [75]. These environments create

extremely constrained communication scenarios, forcing the consideration of

parameters such as blocklength and channel coherence time in extreme operat-

ing regions. Servicing demand for these new paradigms will require a thorough

analysis of communication networks in nonstandard settings and motivates a

reconsideration of noncoherent communication approaches.

4G systems have already partially addressed the demand for communi-

cation in fast fading and latency constrained scenarios. For example, the LTE-

Advanced standard provides support for both low and high mobility users, with

coverage for speeds up to 500 km/h [2]. The standard also provisions codes
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with blocklengths as short as 100 symbols [1, Sec. 5.1.3]. Such efforts indicate

a growing focus on restricted communication settings, and the objectives of

5G will target similar operating regimes with increased demands on reliable

and high density communication. 5G networks will extend and advance these

efforts by providing even greater reliability in these conditions.

In the past few years, researchers have made significant efforts toward

creating analytical tools that capture all the tradeoffs between rate, reliability

and latency in these settings. One such tool is the maximal channel coding rate,

which integrates coherence time Nc, taken to be an integer number of symbol

periods in a block fading model, blocklength, taken to be an integer multiple

of the coherence time, N = `Nc, signal to noise ratio (SNR), where SNR

= ρ, and probability of error pe in the characterization of a communication

environment [18]. For a symbol constellation of size M , the maximal coding

rate can be expressed as

R∗(`,Nc, pe, ρ)

= sup

(
log(M)

`Nc

: a code exists for (`,Nc, pe, ρ)

)
.

(4.1)

Closed form expressions for R∗ have not been found for even the simplest

channel models, hinting at the difficulty of such a characterization, but many

known results can be cast in terms of the maximal channel coding rate in

various asymptotic regimes. The maximal channel coding rate provides a

backdrop for the multifarious capacity results that exist for fading channels.

We now visit some capacity expressions using this framework.
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In this section, we set the stage to review the applicability of nonco-

herent signaling methods by visiting foundational capacity results for resource

constrained environments. We make use of the maximal channel coding rate

expression introduced above to introduce the results in the literature in a uni-

fied manner. We focus almost entirely on the frequency-flat setting, since most

analysis in the literature is in this area.

4.1 Block Fading Models

For the purposes of narrowband modeling, it is extremely useful to take

a time-varying baseband channel impulse response hb(t) and sample it at sym-

bol rate T to obtain h[n]. A useful discretized model for the frequency flat

channel is the block-fading model. In block-fading, the sampled channel im-

pulse response h[n] is assumed to be constant for Nc symbol periods, and then

change independently to a new realization, where Nc is an integer. Given the

maximum Doppler frequency νM in a channel experiencing Doppler shift, the

coherence time is typically taken to be Tc = 1
2νM

, satisfying the proportional-

ity relation Tc ∝ 1
νM

. The additional adjustment factor of 1
2

is chosen because

it unifies the channel estimation minimum mean-squared error (MMSE) for

the block-fading model with that of a continuous fading process with a rect-

angular Doppler spectrum [34]. In this way, the coherence time Tc of the

continuous-time channel response can be converted to a coherence block of

Nc = Tc
T

symbols for a discrete channel. This widely assumed model is the

basis for many of the information-theoretic results for the noncoherent com-
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munication environment [58, 97]. The assumptions of the model can also be

relaxed to admit slightly different scenarios. For example, some block-fading

models feature continuous variation within coherence blocks, but with hard

transitions to independent values across blocks [52]. Others consider channels

with correlations between separate channel realizations [44].

We can leverage the block fading model to derive the coherence interval

of systems in motion. For example, consider a vehicle in communication with

a stationary base station where the relative velocity between the two is 60km
h

.

A signal at approximately the carrier frequency fc = 4 GHz will experience a

maximum Doppler shift of νM = fcv/c ≈ 222 Hz. The corresponding coherence

time is Tc = 1
2νM
≈ 2.25ms. For a symbol period of T = 5µs, the coherence

block is Nc = Tc/T = 450 symbols.

If we increase the velocity to 450km
hr

, a situation reflective of air-to-

ground or air-to-air communication, the coherence time reduces to Nc ≈ 58

symbols. At these velocities, the channel estimation overhead becomes much

more pronounced and may merit a consideration of a noncoherent approach.

Similarly, operation at higher carrier frequencies increases the intensity of the

Doppler effect, also reducing the coherence time of the channel. This is espe-

cially prevalent at millimeter wave frequencies, where approaches that avoid

estimating the channel at every coherence block have been explored [72,89].
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4.2 Noncoherent SISO Capacity Results in Rayleigh Fad-
ing

By far the most widely studied model in the noncoherent communi-

cation setting is the frequency flat block Rayleigh fading channel, often used

to model a rich scattering communication environment. Numerical results for

the ergodic capacity of such a setting were obtained first in the 1990’s by

exploiting the symmetry of Gaussian distributed matrices to simplify the mu-

tual information expression. The capacity was numerically computed using

the Blahut-Arimoto algorithm for the cases of one transmit and one receive

antenna (Nt = Nr = 1), Nc ≥ 1 [58]. This result corresponds to the regime

lim
`→∞

R∗(`,Nc, pe = 0, ρ), (4.2)

as do all ergodic capacity results in block fading. Notably, in this limit error-

free communication is possible, so pe can be made arbitrarily small. The

SISO ergodic capacity-achieving input distribution of the block fading Rayleigh

channel was later explored in more depth for the case of independent fading

per symbol (Nc = 1), where it was found to always be discrete with finite

support, reducing to an on-off signaling scheme for low-SNR communication

(ρ → 0) [4]. Analysis of the ergodic capacity at low SNR for a block-fading

Rayleigh channel continued with [71] under peak constraints, where it was

shown that capacity growth is quadratic with SNR in this region, indicating

poor power efficiency at very low SNR. A high-SNR analysis of the block

fading model found that for Nc = 1, the ergodic capacity grows only double-
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logarithmically in the SNR; that is,

lim
ρ→∞

lim
`→∞

R∗(`,Nc = 1,pe, ρ)

= log2(log(ρ)) + O(1)
(4.3)

highlighting a similar power inefficiency of noncoherent communication in this

region [51]. However, further analysis considered a Rayleigh fading process

with a Gauss-Markov evolution to more accurately delineate the SNR region

in which this asymptotic behavior is observed, finding that the double logarith-

mic growth rate results largely from the assumption of extreme, temporally in-

dependent, channel variation [20]. Because wireless channels are underspread,

almost all communication systems operate in regions of slow channel varia-

tion, and in this case, increases in SNR continue to yield a logarithmic, rather

than doubly logarithmic, growth in capacity. Nonetheless, the findings of [20]

indeed confirm that for channels in which the fading variability is more signif-

icant than the noise, communication becomes extremely power inefficient.

Low SNR capacity characterizations were also considered in the SISO

setting with applications to wideband channels. Initial results on the asymp-

totic behavior of the wideband capacity were established in the 1960s, where

it was found that the noncoherent wideband capacity for Rayleigh fading is

the same as the capacity of the wideband AWGN channel in the limit of large

bandwidth [41]. The capacity-achieving distribution for such channels was

later shown to rely on “flash signaling,” characterized by the kurtosis of the

input distribution growing unboundedly with the bandwidth [90]. With maxi-

mum constraints imposed on the kurtosis or on the power, the capacity in the
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limit of bandwidth can instead be shown to be zero [60,90].

To more accurately model realistic systems and avoid overly “peaky”

signaling, noncoherent characterizations of capacity at low SNR continued to

focus on settings with constraints on peak signal power or the kurtosis of the

input distribution, in addition to the average signal power constraints. For

example, an analysis at low SNR revealed that frequency shift-keying meth-

ods achieve the capacity up to a second order Taylor expansion of capacity, a

result that also holds for the MIMO setting [82]. For block Rayleigh fading

models with constraints on the fourth moment, the capacity growth at low

SNR was again shown to be quadratic, indicating a slower growth than the

linear growth observed in coherent channels for SNRs near zero [71]. Essen-

tially, the lack of perfect channel knowledge has tremendous impact on the

power efficiency in high noise (or low-power) environments, and it is largely

ineffective to communicate noncoherently in this region, except in situations

where the channel estimation overhead is negligible [90,98]. At the same time,

naive channel estimation strategies are typically unreliable in this setting as

well; it may simply be impossible to attain anything resembling perfect chan-

nel state information at the receiver (CSIR). Low SNR analyses were also

performed substituting block fading models for Gauss-Markov models to bet-

ter understand slow time variation, where the capacity growth was also found

to be either linear or quadratic in the SNR, depending on the power constraint

imposed on the transmitter. [76].

Moving on from the wideband setting, the quasi-static capacity of the
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noncoherent Rayleigh communication channel corresponds to the regime where

` = 1 and Nc →∞, i.e.

lim
Nc→∞

R∗(` = 1, Nc, pe, ρ) (4.4)

Unsurprisingly, the capacity in this situation is equal to the capacity when the

channel is perfectly known, since any channel estimation incurs a negligible

overhead [58]. However, recent work has explored the capacity for commu-

nication over a single coherence interval, i.e., an analysis of R∗ for Nc < ∞

and ` = 1, which can also be regarded as a quasi-static regime, though at

finite blocklength [94]. A different analysis must ensue for codes with finite

blocklengths because for many models of interest, such as the AWGN environ-

ment, communication with vanishing probability of error is not possible. One

reason for this can be explained using the concept of information stability. An

information stable channel is characterized as a channel whose information

density

i(s;y) = log2

(
fs,y(s;y)

fs(s)fy(y)

)
(4.5)

does not deviate from the mutual information I(s;y) in the limit of large

blocklength. That is,

lim
Nc→∞

1

Nc

i(s;y) = lim
Nc→∞

1

Nc

I(s;y) (4.6)

For finite blocklengths, this relation does not hold, and the information den-

sity may fluctuate around the mutual information I(s;y) = E[i(s;y)]. Thus

the channel capacity must instead be characterized using the statistics of the
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information density rather than the mutual information. Furthermore, a tar-

get probability of error must specified, since error-free communication is no

longer possible.

Defining the variance of the information density to be

V = var[i(s; y)], (4.7)

the maximum spectral efficiency is newly defined by admitting a maximum

tolerable probability of decoding error pe and adding terms that capture the

backoff from the asymptotic capacity. The expression is

R

B
= C −

√
V

Nc

Q−1(pe) + O

(
logNc

Nc

)
(4.8)

where Q−1 refers to the Gaussian Q function and C is the capacity of the

channel in the limit of blocklength [65]. Due to the O( logNc

Nc
) factor in the

expression, Equation (4.8) is still most accurate for large blocklengths. How-

ever, this expression provides a more accurate view of the achievable spectral

efficiency for channels with finite blocklengths and has led to a surge of new

results in information theory. The result of Equation (4.8) can be applied

in the characterization of a quasi-static noncoherent channel with ` = 1 and

Nc < ∞ [66]. For both SISO and MIMO communication in Rayleigh fad-

ing, even at finite blocklength, the asymptotic outage capacity was shown to

effectively serve as a proxy for the finite blocklength outage capacity, indicat-

ing that outage events are the main impediment to high-rate communication

in the quasi-static regime [94]. This also establishes the continued effective-
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ness of codes mitigating against outage events at finite blocklengths, such as

space-time codes.

4.3 Noncoherent MIMO Capacity Results in Rayleigh
Fading

We now turn to a treatment of the capacity of a multiantenna com-

munication setup. The work of Marzetta and Hochwald provided the first

thorough treatment of the noncoherent ergodic capacity of multiple antenna

channels with Nt transmit antennas and Nr receive antennas, giving numerical

results for selected values of Nt, Nr ≥ 1, Nc ≥ 1 at all SNRs and characterizing

the signaling structure for the general case. Zheng and Tse, building on this

initial work, characterized the noncoherent ergodic capacity for a Rayleigh

fading channel in the high SNR regime for Nc

2
≥ Nt + Nr [97]. These results

correspond to

lim
`→∞

lim
ρ→∞

R∗(`,Nc, pe = 0, ρ) (4.9)

and the given capacity expression is

R∗ = Nt(1−
Nt

Nc

) log(ρ) + O(1). (4.10)

The double logarithmic growth in the capacity at high SNR discussed for SISO

Rayleigh fading was also reestablished for the multiantenna setting with ex-

treme temporal channel variation. Moreover, the addition of antennas at either

transmitter or receiver was found not to improve this asymptotic behavior [51].

However, the previous discussion of the interplay between channel variability
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and noise also applies here, and for most SNRs of interest in underspread

wireless communication channels, the high SNR capacity of a noncoherently

communicating multiantenna system is given by Equation (4.10).

Another important result for the noncoherent MIMO communication

environment extends the high-SNR capacity expression in Equation (4.10) to

the case when Nt ≤ min{Nr, bNc

2
c}, allowing for an analysis of the ergodic

capacity for cases when Nc ≤ Nt +Nr [95]. The capacity in this situation is

R∗ = Nt(1−
Nt

Nc

) log(ρ) + c+ o(1) (4.11)

where c is given as in [95, Eq. 9]. This is useful for capacity analysis of com-

munication systems with large receive arrays. The capacity results above were

expanded upon by further asymptotic characterizations for non-block fading

models in narrowband channels, where it was shown that for Rayleigh fading

channels with correlated variation within an interval Nc, but independence be-

tween intervals, and covariance matrix of rankQ, the capacity is lower bounded

at high SNR by

R∗` = T ∗(1− T ∗Q/Nc) log(ρ) + O(1) (4.12)

where T ∗ = min{Nr, Nt, bNc/(2Q)c} [52]. These results point to the over-

all usefulness of multiple antennas in increasing the capacity in noncoherent

communication environments at high SNR.

Many of the wideband analyses performed in the SISO regime extend

to the MIMO setting. For example, the capacity growth rates at low SNR are

similar but can be improved upon by adding more antennas. In both block
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fading and Gauss-Markov fading, the capacity of a wideband channel at low

SNR increases linearly with the number of receive antennas and quadratically

with the number of transmit antennas [76, 92]. Since peak power constraints

are imposed on individual antennas, the addition of more transmit antennas

under an average power constraint allows for signaling schemes with higher

kurtosis. Initially, it was believed that only one transmit antenna should

be used for low SNR signaling, but later analyses derived signaling using all

transmit antennas [82].

4.4 Other Noncoherent Capacity Results

Computing the capacity of a noncoherent channel is typically intractable

without significant simplifications, and for this reason results for channels other

than the Rayleigh fading are sparse. However, there are analyses applicable to

entire classes of stochastic channel models characterizing global properties of

the input distribution in various operating regions. For example, it has been

discovered that for most communication in low SNR environments, the optimal

input distribution is discrete with finite support [38]. Another general treat-

ment of the noncoherent capacity, this one applying to underspread wide-sense

stationary uncorrelated scattering (WSSUS) channels, as given in [19], estab-

lishes that coarse bounds for the channel capacity can be determined based

only on the channel scattering function and peak-power constraints, growing

tighter as the operating bandwidth grows.

Returning to specific channel models, some results characterizing the
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tradeoff between spectral efficiency and bit-energy in the SISO noncoherent

Rician fading channel have been obtained in the low-SNR limit, where first-

order approximations of the capacity are accurate [26, 27]. Similarly, general

properties of the capacity-achieving input distribution in Ricean fading, such

as the cutoff rate, have been analyzed [50].

In the next section, we continue our analysis by reviewing noncoherent

signaling approaches inspired by the capacity-achieving input distributions de-

tailed in this section. Often, the capacity-achieving input distribution must

either be significantly modified or otherwise be very crudely approximated

to satisfy system and signal processing limitations which do not fully factor

into the information-theoretic characterization of a communication link. Fur-

thermore, the enticing spectral efficiency implied by such capacity-inspired

approaches may give rise to undesirable secondary effects like highly ineffi-

cient decoders. We outline how the literature has addressed these concerns,

first presenting the capacity-inspired signaling and then visiting modifications

and alternative approaches.
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Chapter 5

Noncoherent Signaling

Having established the known capacity results for noncoherent commu-

nication in a variety of environments, we now visit the signaling approaches

associated with these capacity expressions and comment on their realizabil-

ity from a signal processing perspective. We focus on signaling that is both

inspired by the capacity-achieving distributions and informed by signal pro-

cessing concerns such as receiver complexity. We focus on signaling in the fast

fading regime, where channel estimation is either impossible or potentially

suboptimal. Since many results for the capacity are asymptotic in SNR, we

focus on signaling in the high and low asymptotic SNR regions separately.

5.1 SISO Signaling in Rayleigh Fading

The SISO fading setting with additive noise can be mathematically

modelled by the equation

y =
√
ρhx+ n. (5.1)

where y,x, and n are all Nc × 1 length vectors. Consider the information

carrier of the channel, the input x. Depending on the SNR characteristics of a

fading channel, it is useful to consider it in terms of its magnitude and direc-
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tion components x = |x|x̂. From the perspective of achieving capacity, each

component is differently emphasized in the two SNR regimes. This represents

a departure from the capacity behavior of non-fading AWGN channels, where

the capacity-achieving input distribution is the same with SNR. In contrast,

for the low SNR regime in frequency flat fading, the information carried by

the input is encoded in the magnitude of x, and the signaling structure resem-

bles on-off keying. As the coherence time grows, the symbol energy becomes

more evenly distributed across the coherence interval, until energy is evenly

distributed in each time interval [4]. As ρ → ∞, to contrast, the information

is entirely carried in the unit vector x̂. This is because the noise can essen-

tially be neglected at high SNR, thus the effect of the channel is to rotate x̂

by a global phase constant and scale by some magnitude. This can be seen

by observing that h = |h|ejθh , giving y ≈ |h|ejθhx. Since magnitude and

global phase do not affect information encoded in the unit vector, information

is perfectly preserved. We now visit signaling approaches derived from these

insights in more depth.

As previously mentioned, capacity at extremely low SNRs is achieved

by arbitrarily increasing the maximum power, or peak, of the “on” signal as

the SNR decreases. Since realistic signaling includes some sort of constraint on

the peak power, approaches based on peaky signaling must take these power

constraints into account, which significantly changes the attainable rates of

the system, especially in wideband channels [90]. Power limitations of the

communication hardware are typically accounted for in the form of a fourth

50



moment constraint, a per-antenna power constraint, a peak power constraint,

or a peak to average power ratio constraint. Notably, introducing these con-

straints prevents communication at the minimum bit energy to noise ratio Eb

N0

as ρ→ 0 [60].

Noncoherent signaling for the low SNR setting includes M-ary frequency

shift keying (MFSK), since it is known to achieve the first order capacity expan-

sion at low SNR [41,64]. MFSK has also been found to be optimal for certain

continuous-time time-varying fading models [86]. In wideband settings, MFSK

can be combined with on-off keying to achieve peaky signaling in both time

and frequency, subject to appropriate power constraints [28]. At high SNR,

by contrast, signaling reverts to single-antenna unitary modulation, where a

packing of Nc × 1 complex vectors is chosen as the codebook [58]. Decoding

for these codebooks is exponential in the rate, as the correlation between the

received signal and each vector in the codebook must be calculated. In con-

trast to this high complexity decoding, channel estimation and equalization is

extremely simple and accurate in high SNR SISO communication, rendering

noncoherent approaches unpopular in the single antenna setting.

5.2 MIMO Signaling in Rayleigh Fading

We now visit signal processing approaches in the Rayleigh faded MIMO

setting. This situation is modelled by

Y =

√
ρ

Nt

HX +N (5.2)
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where X ∈ CNt×Nc , H ∈ CNr×Nt , and Y ,N ∈ CNr×Nc . As in the SISO

setting, the capacity is achieved using different signaling methods at high SNR

than at low SNR, so we visit each case separately. Generally, the capacity-

achieving approach at high SNR is unitary space-time coding (USTC), while

at low SNR, it is better to use peaky orthogonal signaling, such as MFSK or

on-off keying.

In the low SNR setting, the suboptimality of treating channel estimates

as perfect was established from an information-theoretic standpoint [71]. Ini-

tially, it appeared that low SNR operation should always revert to signaling

with a single transmit antenna [36], but by integrating peak power constraints

and removing assumptions on the capacity-achieving signal structure, it was

later proven that additional transmit antennas can be employed to improve

communication. Specifically, the peak power constraint typically applies per-

antenna, which does not preclude the opportunity for more total power to be

transmitted by using more antennas under an average power constraint. The

optimal signaling uses all available transmit antennas, performing best when

the codewordsX ∈ CNt×Nc are chosen to be rank-1 matrices, and the approach

is termed space-time rank-one orthogonal modulation (STORM) [82]. We ex-

amine the performance of this approach in comparison to one that estimates

the channel at low SNR in Figure (5.1). The choice of rank-one codewords can

be interpreted as a way to reduce the number of unknown path gains fromNrNt

to Nr, which can be used to lessen the implicit channel estimation overhead.

The resulting modulation resembles MFSK, but with an on-off keying modi-
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fication, since a transmission of zero power is a valid symbol. For extremely

low SNRs the approach reverts to a simple on-off keying, as is optimal for

that setting [71]. The transmission of rank-one space-time codewords benefits

from full correlation in both the transmit and receive antenna structures [9].

Receiver designs optimized for low SNR focus on parameters besides capac-

ity such as pairwise error probability [9] and receiver complexity. Receiver

structures for FSK based signaling have been proposed that reduce the com-

plexity by leveraging the fast Fourier or Hadamard transform [82]. Another

structure exploits a relation between the pairwise error probability and the

Kullbeck-Liebler divergence to inform the design of space-time constellations

based on the latter quantity between conditional distributions [11]. Codes us-

ing transmit beamforming were also proposed for correlated Rayleigh fading

at low SNR [81].

Code designs for the high-SNR environment rely on a markedly different

structure than the peaky orthogonal signaling discussed so far for low SNR.

As was established in [58] the capacity-achieving signaling code matrix X is

the product of an isotropically distributed unitary Nt ×Nc matrix Ψ and an

independent Nt ×Nt real, nonnegative diagonal matrix V , that is X = VΨ.

A random matrix is isotropically distributed if its probability density is not

changed when it is multiplied by a unitary matrix. One of the first noncoherent

code designs exploited knowledge of this structure and attempted to emulate

it tractably. Termed unitary space-time coding (USTC), the constellation

consists of L semi-unitary Nt × Nc matrices {Φj}Lj=1 all scaled by the same
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factor
√
Nc [35]. While the decoding complexity of initial USTC designs are

exponential in the rate and number of transmit antennas, the decoding is

relatively simple, a contrast to Gaussian signaling that achieves capacity for

unfaded additive noise channels. An early unitary space-time codebook design

used tight frames based on the discrete Fourier transform as codewords, leading

to block-circulant correlated codes [36]. Followup analysis of the high SNR

capacity demonstrated that the transmit matrix X is distributed uniformly

on the Grassmann manifold, that is, the set of M dimensional subspaces of

CT , and presented a sphere packing argument in this geometric setting [97].

These two results led to intense focus on codebook designs as packings on the

Grassmann manifold, and many of the approaches we visit are based on this

intuition.

Approaches using Grassmannian packings focus on optimizing the dis-

tance between points on the Grassmann manifold with respect to some dis-

tance metric. The metric used depends on the objective, which is typically

some measure of diversity. Diversity arises in minimizing the pairwise error

probability between two codewords. The sum and product diversity are de-

fined based on expressions that appear in the Chernoff bound on probability

of symbol decoding error in the noncoherent setting: Let U1 and U2 be two

codewords in a space-time code and d2
i be the squared singular values of the

product U ∗1U2. Then the product diversity is defined as

Dprod = Πj(1− d2
j) (5.3)
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and is useful for minimizing the bit error probability at high SNR [35], while

the sum diversity is defined as

Dsum =
∑
j

(1− d2
j) (5.4)

and is better suited to minimize the bit error probability at low SNR [29].

Interestingly, when the space-time codewords are points on the Grass-

mann manifold, the sum diversity is intimately related to a metric known as

the chordal distance on this space. Maximizing sum diversity therefore reduces

to a problem of finding maximally separated points with respect to this metric.

Codebook designs based on the chordal distance can be found in [5, 8, 36, 96].

Similarly, space-time codes designed for low probability of error at high SNR

are designed to minimize the product diversity (e.g. [32, 35]). Other codes

use different metrics to design codes. For example, observing that codebooks

designed with respect to the chordal distance do not guarantee full diversity

space-time codes, [59] proposed a design based on a different metric on the

Grassmann manifold inspired from the asymptotic union bound. Some full di-

versity designs occur entirely in the geometric setting, potentially sacrificing a

unitary codebook [63,93]. Other code designs move away from the focus on di-

versity, instead leveraging transformations to create unitary codes. Examples

include an approach leveraging the Cayley transform to transform dispersion

codes into unitary codes [31], and an exponential map transforming space-time

codes into unitary codebooks [46], though these codes do not guarantee full

diversity.
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Grassmannian Differential
Alamouti

(Coherent)
STORM-FSK

Optimal SNR Region High High Moderate Low
Receiver Complexity High Moderate Low Low

Coherence Time Short Short/Medium Long Short
Supportable Rates High Low High Low

Table 5.1: A summary of the performance of the MIMO noncoherent and
coherent signaling approaches discussed. We examine the performance of each
approach by characterizing where it attains its best performance with respect
to reliability.

Receiver complexity varies for these approaches. Unitary space-time

coding itself is exponential in both the encoding and the decoding, though

this is improved to a polynomial encoding in [36]. Many other codes dis-

cussed require the generalized likelihood ratio test, which jointly calculates

the likelihood ratio of both channel and data [5,9,46,91]. This can also place

a significant computational burden on the receiver. Other approaches simply

use a maximum likelihood (ML) estimator simplified by the assumption of

Rayleigh fading [59]. Many approaches exploit special structure of the code-

book to reduce complexity and improve performance, such as the block circu-

lant property [36], orthogonal designs (which effectively estimate the channel

explicitly) [85,96], Gray coding [14], and Reed-Muller coding [7, 8].

5.3 Differential Coding

Differential codes deviate from the signaling structures considered so far

in that they do not rely on any particular statistical distribution of the fading

in their construction, but only on the fading coherence. While extremely fast
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fading may not provide enough coherence for differential encoding to excel,

there is no reliance on channel estimates, which can reduce training overhead

and complexity at the receiver. Lack of dependence on the channel statistics,

however, means that differential codes do not resemble the capacity-achieving

structures considered thus far. In differential coding, information is instead

encoded in the relationship between successive transmissions. Numerous con-

structions exist for both the SISO and the MIMO setting.

Historically, SISO differential codes were used in early cellular stan-

dards such as IEEE IS-54 and certain voice-band modems, eventually falling

into disuse in favor of approaches leveraging channel estimation. Almost all

SISO differential codes are generalizations of differential phase shift keying,

and so we focus on the multiantenna setting. Multi-antenna communication

renewed interest in differential coding, leading to the design of differential

codes exploiting the capacity and reliability improvements of MIMO. Differ-

ential coding is more recently being considered in the URLLC paradigm for

vehicular communication [23]. Because they rely on channel coherence, differ-

ential codes appear to be better suited for moderate to high SNR communi-

cation and moderate to slow fading from a reliability perspective. We explore

this prospect in the simulations of Figure 5.2.

Differential codes require the channel to be as close to constant as

possible over many time slots, since information is encoded in a sequence of

transmissions. Thus, fast fading environments can create challenging condi-

tions for differential coding. Conversely, short blocks of differential codes may
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indeed provide a useful alternative to long channel estimation times, but dif-

ferential codes generally benefit from as long of a coherence time as possible.

Reliability of differential signaling, however, may be further degraded by the

presence of carrier frequency offset since the mismatch causes slow phase shifts

over time. Doubly differential codes have been proposed to mitigate the ef-

fects of the carrier offset [54]. Lastly, many of the receiver structures proposed

for differential codes rely on an assumption of Rayleigh fading, restricting the

generality of the coding approaches. Motivated by these considerations, we re-

view multi-antenna differential code constructions in the context of reliability

and complexity.

An early reintroduction of differential coding in the context of multi-

ple antennas was put forth by Hochwald and Sweldens, who presented con-

structions inspired by the capacity-achieving construction for the noncoherent

MIMO setting in flat Rayleigh fading [37]. Differential codebook design was

shown to have a fundamental connection to matrix groups, inspiring the design

of a multitude of algebraically constructed differential codes [33,39,40,48,78].

In a manner similar to unitary space-time code designs, differential codebooks

were also designed using maps such as the Cayley Transform to map dispersion

matrices to codewords. The decoding approach in [13] reduces the exponential

decoding complexity of this approach to a polynomial overhead.

A separate class of MIMO differential codes is based specifically on or-

thogonal space-time coding structures. Early approaches to differential coding

by Jafarkhani and Tarokh built upon generalized orthogonal designs, a special
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family of matrices, resulting in differential codes for any number of anten-

nas and an impressive linear decoding complexity in number of antennas and

rate [43, 84]. Compared to coherent approaches, however, the rate of these

codes appears limited. Rates have been improved for codes leveraging this

structure, though it sacrifices the linear decoding complexity [57].

Generally, the bit error rate of differential codes based on space-time

code structures incur a performance loss of about 3dB with respect to the bit

error rate compared to coherent approaches due to the lack of channel esti-

mates [42]. We confirm the presence of this performance gap in the moderate

to high-SNR simulation results presented in Figure (5.2) by comparing the

differential approach to the coherent Alamouti space-time code. The gap can

be tightened by using larger differential codes spanning over more coherence

intervals, but the increase in code size is reflected in the growing receiver com-

plexity [22]. Many proposals for receiver design consider sacrificing optimality

in exchange for reducing this exponential overhead [12,53,69,74]. Further re-

sults on the bit error performance of multiantenna differential approaches are

given in [61,87].
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Figure 5.1: Bit error rates for the Alamouti code versus a noncoherent ap-
proach at low to moderate SNR. The first approach is the 2 × 2 Alamouti
code with pilot power boosting and least squares channel estimation. For the
second approach, we use the noncoherent rank-1 space-time codes designed
for low SNR environments (STORM), as reported in [82]. In URLLC, the use
of space-time coding can be justified by the fact that for a given target error
probability pe at finite blocklength, the rate that is sacrificed by using diver-
sity in place of maximum multiplexing is negligible given the capacity backoff
experienced from the short packet size [18]. The rate is half a bit per channel
use.
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Figure 5.2: Bit error rates for the Alamouti code and two noncoherent ap-
proaches at moderate to high SNR. The effects of improved channel estimates
become evident at higher SNR, and the Alamouti code gives the best perfor-
mance. The 3dB gap between the differential code and the Alamouti code
observed in [43] is pronounced. USTC is performed using a Grassmannian
packing of the appropriate size. This particular packing is not optimized with
respect to the product diversity and thus does not perform well.
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Chapter 6

Space-Time Code Design

In this section, we present a space-time code construction for the non-

coherent MIMO communication environment. The section is based on joint

work with Travis Cuvelier and Corey Ostrove appearing in [49]. The approach

leverages a Grassmannian packings as the codebook, adapting a quantum error

correcting code to map codewords to a space-time code matrix. The design

yields a codebook structurally similar to the high-SNR capacity achieving

codebook, in the sense that it is a Grassmannian packing. However, while we

use both techniques from quantum error correcting codes and Grassmannian

packings, our approach to the coding problem is novel. We view the nonco-

herent channel for a specific MIMO architecture through the lens of quantum

errors. We consider the transmitted symbol as a quantum state and design a

code to reconstruct that state at the receiver. Our use of Grassmannian frames

occurs in a completely different dimension than in [8] and [97] and is derived

from the problem of finding quantum states that are maximally separated with

respect to the fidelity metric.

Portions of this chapter appeared in Lanham, S. Andrew, et al. “A Noncoherent Space-
Time Code from Quantum Error Correction.” 2019 53rd Annual Conference on Information
Sciences and Systems (CISS). IEEE, 2019. Author T.C. Cuvelier contributed the maximum
likelihood decoding rule in Rayleigh fading.
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6.1 System Model

We consider a specific canonical received signal model for noncoherent

wireless communication [58] [97]. The system has NTX = NRX = 2 antennas

at both the transmitter and receiver. We assume a narrowband model with

a single-tap MIMO channel H ∈ C2×2. We assume a channel coherence time

of T = 4 channel uses. The transmitted, received, and additive noise signals

are denoted by the complex 2× 4 matrices T, Y, and N, respectively, where

the columns correspond to the time instants in the the coherence interval. We

take N to be a complex Gaussian random matrix with independent, identi-

cally distributed entries such that [N]i,j ∼ NC(0, σ2
n). We initially assume a

Rayleigh fading model where the entries of H are independent and identically

distributed with [H]i,j ∼ NC(0, 1). Finally, we assume that H is constant over

the coherence interval but that the channel realizations at different coherence

intervals are independent. This model would be most appropriate for a fre-

quency hopping system in an environment with rich scattering. The received

signal over the coherence interval is now given by

Y = HT + N. (6.1)

Using the standard vectorization identity, letting y = vec(Y), t = vec(T),

n = vec(N), and H = I⊗ I⊗H we can write (6.1) as

y = Ht + n . (6.2)

This particular form of the channel model is amenable to the design of a sta-

bilizer code. We now motivate the the application of quantum error correcting
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codes in this setting by observing that the communication channel at infinite

SNR can be decomposed into a linear combination of Pauli group elements.

The vectorized channel matrix H highlights the coherence of the chan-

nel coefficients over time and admits a basis decomposition in the Pauli basis

P3 of the form

H = I⊗ I⊗ (c0I + c1X + c2Z + c3Y)

= c0E0 + c1E1 + c2E2 + c3E3

(6.3)

where

c0 = ([H]1,1 + [H]2,2)/2 (6.4a)

c1 = ([H]1,2 + [H]2,1)/2 (6.4b)

c2 = ([H]1,1 − [H]2,2)/2 (6.4c)

c3 = j([H]1,2 − [H]2,1)/2 (6.4d)

and E0 = I ⊗ I ⊗ I, E1 = I ⊗ I ⊗ X, E2 = I ⊗ I ⊗ Z, E3 = I ⊗ I ⊗ Y.

Defining c = [c0, c1, c2, c3]T we have c ∼ NC(0, I4/2). The error operators

characterizing this channel form the set E = {E0,E1,E2,E3}. This process

is analogous to the quantum concept of channel discretization, in which a

channel with a continuous set of possible realizations is equivalent to one that

randomly applies a discrete set of error operators.

6.2 Code Construction

We now form a stabilizer group satisfying the required conditions for

correcting errors introduced by operators in this set. The operators S0 =

64



X⊗ Z⊗X and S1 = X⊗X⊗ Z satisfy the necessary commutation relations

to form a set of stabilizer generators, as summarized in Table 6.2.

Commutation Relationships
S0 S1

E0 C C
E1 C A
E2 A C
E3 A A

Table 6.1: Summary of commutation relations between stabilizer and error
operators. C denotes commutation and A denotes anti-commutation

Because they commute, the stabilizer operators admit a partially in-

tersecting +1 eigenspace, which has a two-dimensional basis spanned by the

vectors

v0 =
[
1 0 0 −1 0 1 1 0

]T
(6.5a)

v1 =
[
0 −1 −1 0 −1 0 0 1

]T
(6.5b)

We use these vectors to form a mapping that encodes two arbitrary complex

numbers into a space-time code word. Given a complex vector s = [s1, s2]T

from a general codebook, we produce the vectorized space-time codeword by

applying an encoding operator C =
[
v0, v1

]
∈ C8×2 giving

t = Cs. (6.6)

We assume that the symbol energy is normalized, i.e. s∗s = 1. This assump-

tion coupled with the definition of C guarantees that t∗t = 4 which gives an
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average power of unity over the coherence interval. The corresponding 2 × 4

code matrix for a codeword can be represented with the inverse vectorization

operator vec−1 : C8 7→ C2×4,

T = vec−1(Cs), (6.7)

or

T =

[
s1 −s2 −s2 s1

−s2 −s1 s1 s2

]
.

This code is a generalized complex orthogonal design and provides full diversity

[42].

The symbol vector s can be viewed as an information carrying qubit,

which we wish to preserve via the stabilizer encoding. Using the interpretation

of a qubit as a 1-dimensional subspace of C2, we assume that symbol vectors

s are drawn uniformly from a constellation C. We choose our constellations

as Grassmannian line packings in C2 [83]. This choice is motivated in the

following sections.

6.3 Decoding in Rayleigh Fading Channels

In this setting of quantum-inspired classical coding, we can dispense

with the ideas of quantum measurement and syndrome decoding in favor of

the more familiar method of maximum likelihood (ML) inference. While our

decoding process is based on computing the ML rule, it does lend itself to a

quantum mechanical interpretation.
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If we assume the encoded symbol s is drawn uniformly from some con-

stellation C, the maximum a posteriori rule reduces to the canonical ML prob-

lem of finding ŝ such that

ŝ = arg max
s∈C

fs|y(s|y) = arg max
s∈C

fy|s(y|s) . (6.8)

We begin by defining the following projection operators:

P0 = (I + S0)(I + S1)/4 (6.9a)

P1 = (I + S0)(I− S1)/4 (6.9b)

P2 = (I− S0)(I + S1)/4 (6.9c)

P3 = (I− S0)(I− S1)/4 . (6.9d)

Note that P0 is the projector onto the code space and P0 +P1 +P2 +P3 = I is

the identity. The receiver computes the four corresponding projections of the

received vector y onto the code space and the three error subspaces to obtain

P0y = c0t + P0n (6.10a)

P1y = c1E1t + P1n (6.10b)

P2y = c2E2t + P2n (6.10c)

P3y = c3E3t + P3n , (6.10d)

where the c0, c1, c2, and c3 are as defined in (6.4) and we have used the fact

that PkEk = EkP0. Since the projectors in (6.9) sum to identity, the vectors in

(6.10) are sufficient statistics for y. Recall that c = [c0, c1, c2, c3]T ∼ NC(0, I/2)

and is independent of the noise.
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The receiver now carriers out error correction on the projected vectors.

The receiver applies a unitary correction operator Ek to each projection Pky

and obtains

z0 = c0t + n (6.11a)

z1 = c1t + E1P1n (6.11b)

z2 = c2t + E2P2n (6.11c)

z3 = c3t + E3P3n . (6.11d)

Since the Pk are orthogonal projection operators, the projected and

corrected noise vectors, EkPkn, are mutually independent. Following from

this, the commutation relationships and unitarity of the correction operators

imply that the resulting noise vectors are identically distributed with EkPkn ∼

NC(0, σ2
nP0) for all k. Since t = Cs, projections of the zk onto the column

space of C are sufficient to estimate s. Letting nk = C∗EkPkn/(2
√

2), and

letting ĉk =
√

2ck the receiver computes

qk =
C∗zk

2
√

2
= ĉks + nk , for k ∈ {0, 1, 2, 3} . (6.12)

The nk are independent and identically distributed with nk ∼ NC(0, σ2
nI/2).

The scaled-identity covariance follows from the fact that P0C = C, since the

columns of C are by definition in the code, and that C∗C ∝ I.

We now concatenate the qk into the vector q = [qT0 , qT1 , qT2 , qT3 ]T and

reformulate our maximum likelihood problem as

ŝ = arg max
s
fq|s(q|s). (6.13)
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Given the transmit symbol s, q is a Gaussian random vector. We define

w = [ĉT ,nT0 ,n
T
1 ,n

T
2 ,n

T
3 ]T so that w ∼ NC(0,Σ), where

Σ =

[
I4 04×8

08×4
σ2
n

2
I8

]
. (6.14)

Defining the matrix M ∈ C8×12 via

M =
[
(I4 ⊗ s) I8

]
, (6.15)

we have

q = Mw. (6.16)

Thus, q ∼ NC(0,Q), where Q = MΣM∗. It can be shown that

Q = I4 ⊗
(

ss∗ +
σ2
n

2
I2×2

)
. (6.17)

It turns out that the second definition of Q is useful in simplifying the likeli-

hood function.

Assuming that Q is invertible, the likelihood function can be written

as

fq|s(q|s) =
exp(−q∗Q−1q)

π8det(Q)
. (6.18)

Using the property of determinants of Kronecker products yields det(Q) =

det(ss∗ + σ2
n

2
I2×2)4. Since, by assumption s∗s = 1, we have det(Q) = [(1 +

σ2
n

2
)σ

2
n

2
]4, which is constant in s. Furthermore, using the Kronecker product
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definition it is clear that Q−1 = I4×4 ⊗ (ss∗ + σ2
n

2
I2×2)−1. Designating Us =

(ss∗ + σ2
n

2
I2×2)−1 and calculating the inverse explicitly yields

Us =
1

σ2
n

2
(1 + σ2

n

2
)

[
|s2|2 + σ2

n

2
−s1s

∗
2

−s2s
∗
1 |s1|2 + σ2

n

2

]
, (6.19)

which allows us to (finally) write down an explicit decision rule. Substituting

(6.18) into (6.13) and using the simplifications in (6.19) and the preceding

paragraph motivate the decision rule

ŝ = arg min
s∈C

q∗(I4×4 ⊗Us)q . (6.20)

We simplify further by noting that, since s is normalized,

Us ∝
σ2

2
I2 + (I2 − ss∗) . (6.21)

Thus, using (6.21), (6.20) can be written

ŝ = arg max
s∈C

3∑
k=0

q∗kss
∗qk = arg max

s∈C
s∗

3∑
k=0

(qkq
∗
k)s . (6.22)

This form of the decoding rule lends itself to a quantum mechanical

interpretation. We interpret q̂kq̂
∗
k = qkq

∗
k/tr(qkq

∗
k) as normalized density

operators. We consider the mixed state, Ψ formed from drawing the states

q̂kq̂
∗
k with respective probabilities

pk =
tr(qkq

∗
k)

3∑
i=0

tr(qiq∗i )

. (6.23)
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This yields the density matrix

Ψ =

3∑
i=0

qiq
∗
i

3∑
i=0

tr(qiq∗i )

, (6.24)

which is the same matrix that appears on the right hand side of (6.22) up to

a positive scale factor. Thus, using the definition of fidelity (cf. 2.1) it can

be seen that the ML detection rule consists of finding the input state that

maximizes the fidelity with respect to Ψ, or, more explicitly,

ŝ = arg max
s∈C

F (Ψ, ss∗). (6.25)

We used the fact that maximizing the fidelity is the same as maximizing its

square. We discuss our choice of constellation set C in the following section.

6.3.1 Qubit Symbol Constellation

The detection rule in (6.22) motivates our choice of the Grassmannian

frame for our qubit constellation. Consider the expectation

B = E

[
3∑

k=0

qkq
∗
k | s

]
= 4ss∗ + 2σ2

nI2 (6.26)

and consider the function Rs(̂s) = sBs∗ − ŝBŝ∗, where s 6= ŝ. This is the

expected value of the difference between computing the statistic in (6.22) on

the transmitted symbol as opposed to another, not transmitted symbol. We

expect that the dominant error will occur when Rs(̂s) is minimized over all s

and ŝ. We therefore seek a constellation set with the maximal minimum Rs(̂s).
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Since the transmit symbols are normalized, the definition of Rs(̂s) indicates

that for a N -point constellation encoding log2(N) bits we should select the set

given by

Ĉ = min
C={s∈C2|s∗s=1},|C|=N

max |̂s∗s|2 (6.27)

This indicates that we should choose our constellation as a Grassmanian pack-

ing [83] [56]. Furthermore, in the quantum picture, this is akin to choosing

input states that are maximally far apart with respect to a metric induced by

fidelity.

6.4 Decoding in Ricean Fading Channels

In some communication settings, one or more of the multipath terms

dominate the received signal, typically due to the presence of a line-of-sight

path between transmitter and receiver. This scenario is captured by the Ricean

fading model, where the MIMO channel matrix H can be decomposed into

the sum of a deterministic line-of-sight channel matrix HLOS and a scattering

matrix Hw with NC(0, 1) distributed entries [34]. The Rice factor K determines

the prevalence of each of these components, giving the channel model

H =

√
K

1 + K
HLOS +

√
1

1 + K
Hw. (6.28)

Denoting the line-of-sight matrix HLOS = µ, we define a set of terms similar

to Equation (6.4) for each component matrix, which will feature in our final
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Pauli basis decomposition of H. Those terms are

m0 = ([µ]1,1 + [µ]2,2)/2, w0 = ([Hw]1,1 + [Hw]2,2)/2 (6.29a)

m1 = ([µ]1,2 + [µ]2,1)/2, w1 = ([Hw]1,1 + [Hw]2,2)/2 (6.29b)

m2 = ([µ]1,1 − [µ]2,2)/2, w2 = ([Hw]1,1 + [Hw]2,2)/2 (6.29c)

m3 = j([µ]1,2 − [µ]2,1)/2, w3 = j([Hw]1,1 + [Hw]2,2)/2. (6.29d)

Assimilating constant factors into gLOS = 1
2

√
K

1+K
and gw = 1

2

√
1

1+K
, , we let

ci = gLOSmi + gwwi for i = 0, . . . , 3. The Pauli basis decomposition of the

vectorized equivalent Ricean channel model is given as

H = I⊗ I⊗ (c0I + c1X + c2Z + c3Y) . (6.30)

As expected, the error operators remain identical to those characterizing the

Rayleigh fading model, E = {E0,E1,E2,E3}, indicating the compatibility of

our stabilizer code construction for the Ricean fading setting. However, the

distribution of the scalar constants changes, which will modify the maximum-

likelihood decoding rule. We aggregate the variables ci, mi, and wi into the vec-

tors c,m,w, which satisfy c = m + w. We observe that c ∼ NC(gLOSm, g2
wI4).

Because the code construction for the Ricean fading setting is identical

to that of Rayleigh fading, we begin from the reformulated maximum likelihood

problem given in Equation (6.13), which uses the decoded symbol vectors to

compute the most likely received data. Letting ĉ =
√

2c and nk as before,

we observe that the mean of w = [ĉ,n0,n1,n2,n3] has changed such that

w ∼ NC(µw,Σ) where

µw =

[
gLOSm
08×1

]
(6.31)
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The covariance matrix Σ in turn becomes

Σ =

[
g2
wI4 04×8

08×4
σ2
n

2
I8

]
(6.32)

Letting q = Mw with M defined as in Equation (6.15) and Q = MΣM∗,

we have q ∼ NC(µw,Q), and the new likelihood function tailored to Ricean

fading is given as

fq|s(q|s) =
exp (−(q− µw)Q−1(q− µw))

π8det(Q)
(6.33)

We see that the Ricean line-of-sight matrix manifests as a non-zero mean ad-

justment in the likelihood maximization problem, while the Rice factor mani-

fests in both of the statistics of q. Carrying through the minimization yields a

slight modification to the rule proposed for Rayleigh fading in Equation (6.22),

namely, letting mk = [mk,mk]
T for k = {0, . . . , 3},

ŝ = arg max
s∈C

s∗
3∑

k=0

(qk − gLOSmk) (qk − gLOSmk)
∗ s. (6.34)

In this context, the maximum likelihood problem can be viewed as a compu-

tation maximizing the fidelity between a candidate input symbol and a mixed

state comprised of mean-adjusted received symbols (qk− gLOSmk). This pres-

ence of the mean does not change the considerations of Section 6.3.1, and we

can continue to choose symbols that form a Grassmannian packing.

6.5 Simulation Results and Conclusions

In this section, we present simulation results to demonstrate the per-

formance of the noncoherent space-time code presented in Section 6.3. We
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have considered Grassmannian packings of size N = 4 and N = 8 in C2 with a

Rayleigh fading environment. Specifically, we used the Grassmanian packings

listed on [55].

We compare the stabilizer-based, non-coherent construction with a co-

herent scheme based on the Alamouti code (for 2 × 2 systems) at spectral

efficiency rates of r = 1/2 and r = 1 bits/channel use [6]. Channel estima-

tion is first performed by transmitting the symbols [1, 1]T/
√

2 and [1,−1]T/
√

2

and solving for an estimate of H at the receiver. We then use the Alamouti

scheme to transmit one space time symbol s ∈ C2 over the remaining two

channel uses in the coherence interval. We encode in s two binary phase-shift

keying (BPSK) symbols for the rate r = 1/2 approach and two quadrature

phase-shift keying (QPSK) symbols for the rate r = 1 approach.

Similarly, we compare to an approach using differential unitary group

codes, as outlined in [39]. At both r = 1/2 and r = 1, the first two channel

uses are used for the 2×2 reference matrix, and no information is transmitted.

With the next two channel uses we transmit a single differentially encoded

2 × 2 matrix drawn from an appropriately sized constellation. For r = 1/2,

this constellation is a group code over the QPSK constellation; specifically, we

encode over the 2 × 2 Pauli group elements. For r = 1, this constellation is

a dicylic group code generated over 16-PSK. The transmit symbols in both

sets of comparisons are appropriately normalized so that the transmit power

is constant over the four transmissions.
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Figure 6.1: Bit error rate for various packings. We simulated 10 million channel
realizations (assumed to be coherent for four instances each). For SNRs with
bit error rates lower than 10−6, we simulated 100 million channel realizations.
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Chapter 7

Conclusion

In this thesis, we have proposed applications of quantum information

processing methods to classical systems. The mathematical similarity between

quantum mechanical systems and certain classical systems presents the oppor-

tunity to modify and apply processing based on quantum error correction and

gate-based quantum computing to demonstrate advantageous performance in

classical systems. The advantage can arise by leveraging properties of classi-

cal systems to accurately emulate quantum information, as in the case of the

quantum emulation device, or it can arise from treating classical information

in a manner similar to quantum information, as in the case of the space-time

code design.

This invites a further analysis of the relationship between classical in-

formation and quantum information, as well as a look at the properties of

the physical systems used to encode such information. In our construction

of the quantum emulation device, we created an analog system capable of

representing and processing normalized state vectors for multi-qubit systems.

More work is needed to understand the key limitations in using such a clas-

sical system to process emulated quantum states, and how these limitations
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arise. For example, the noise characteristics of a classical analog system are

significantly different from those of a quantum system. Scalability of such sys-

tems is also an important concern, as the dimension of a quantum state space

scales exponentially in the number of qubits. Nevertheless, there may exist

intermediate-scale settings or environments in which it is advantageous to use

analog signals instead of quantum systems to process information. It will be

important to identify such regimes and explore the possibility of using system

design concepts from the mature analog signal processing industry to improve

computational performance.

This thesis also presented an adaptation of a quantum error correcting

code for the noncoherent wireless mobile communication setting with com-

petitive bit error rates. This gives some insight into the interplay between

quantum information preservation methods and wireless communication pro-

tocols that operate with only statistical channel characterizations rather than

instantaneous channel knowledge. The space-time code exhibits many desir-

able properties in wireless communication, such as full diversity and robust

performance in a variety of statistical channel models. It also has an encoding

structure resemblant to a Grassmannian signaling scheme, a capacity-achieving

approach in noncoherent environments. Future work is needed to extend the

code into a family of designs for different multiantenna system configurations

and to analyze the resultant performance across channel parameters discussed

in Chapter 4, such as block-length and coherence time, with further simulations

to confirm the performance. Work is also needed to analyze the code with re-

78



spect to new results in finite-blocklength information theory with applications

to emerging demands for low-latency and highly reliable communication.
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