4,136 research outputs found

    QDR-Tree: An Efcient Index Scheme for Complex Spatial Keyword Query

    Full text link
    With the popularity of mobile devices and the development of geo-positioning technology, location-based services (LBS) attract much attention and top-k spatial keyword queries become increasingly complex. It is common to see that clients issue a query to find a restaurant serving pizza and steak, low in price and noise level particularly. However, most of prior works focused only on the spatial keyword while ignoring these independent numerical attributes. In this paper we demonstrate, for the first time, the Attributes-Aware Spatial Keyword Query (ASKQ), and devise a two-layer hybrid index structure called Quad-cluster Dual-filtering R-Tree (QDR-Tree). In the keyword cluster layer, a Quad-Cluster Tree (QC-Tree) is built based on the hierarchical clustering algorithm using kernel k-means to classify keywords. In the spatial layer, for each leaf node of the QC-Tree, we attach a Dual-Filtering R-Tree (DR-Tree) with two filtering algorithms, namely, keyword bitmap-based and attributes skyline-based filtering. Accordingly, efficient query processing algorithms are proposed. Through theoretical analysis, we have verified the optimization both in processing time and space consumption. Finally, massive experiments with real-data demonstrate the efficiency and effectiveness of QDR-Tree

    Practical high-throughput content-based routing using unicast state and probabilistic encodings

    Get PDF
    We address the problem that existing publish/subscribe messaging systems, including such commonly used ones as Apache’s ActiveMQ and IBM’s WebSphere MQ, exhibit degraded end-to-end throughput performance in a wide-area network setting. We contend that the cause of this problem is the lack of an appropriate routing protocol. Building on the idea of a content-based network, we introduce a protocol called B-DRP that can demonstrably improve the situation. A content-based network is a content-based publish/subscribe system architected as a datagram network: a message is forwarded hop-by-hop and delivered to any and all hosts that have expressed interest in the message content. This fits well with the character of a wide-area messaging system. B-DRP is based on two main techniques: a message delivery mechanism that utilizes and exploits unicast forwarding state, which can be easily maintained using standard protocols, and a probabilistic data structure to effciently represent and evaluate receiver interests. We present the design of B-DRP and the results of an experimental evaluation that demonstrates its support for improved throughput in a wide-area setting

    Local movement: agent-based models of pedestrian flows

    Get PDF
    Modelling movement within the built environment has hitherto been focused on rather coarse spatial scales where the emphasis has been upon simulating flows of traffic between origins and destinations. Models of pedestrian movement have been sporadic, based largely on finding statistical relationships between volumes and the accessibility of streets, with no sustained efforts at improving such theories. The development of object-orientated computing and agent-based models which have followed in this wake, promise to change this picture radically. It is now possible to develop models simulating the geometric motion of individual agents in small-scale environments using theories of traffic flow to underpin their logic. In this paper, we outline such a model which we adapt to simulate flows of pedestrians between fixed points of entry - gateways - into complex environments such as city centres, and points of attraction based on the location of retail and leisure facilities which represent the focus of such movements. The model simulates the movement of each individual in terms of five components; these are based on motion in the direction of the most attractive locations, forward movement, the avoidance of local geometric obstacles, thresholds which constrain congestion, and movement which is influenced by those already moving towards various locations. The model has elements which enable walkers to self-organise as well as learn from their geometric experiences so far. We first outline the structure of the model, present a computable form, and illustrate how it can be programmed as a variant of cellular automata. We illustrate it using three examples: its application to an idealised mall where we show how two key components - local navigation of obstacles and movement towards points of global locational attraction - can be parameterised, an application to the more complex town centre of Wolverhampton (in the UK West Midlands) where the paths of individual walkers are used to explore the veracity of the model, and finally it application to the Tate Gallery complex in central London where the focus is on calibrating the model by letting individual agents learn from their experience of walking within the environment

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    Data Assimilation for Agent-Based Simulation of Smart Environment

    Get PDF
    Agent-based simulation of smart environment finds its application in studying people’s movement to help the design of a variety of applications such as energy utilization, HAVC control and egress strategy in emergency situation. Traditionally, agent-based simulation is not dynamic data driven, they run offline and do not assimilate real sensor data about the environment. As more and more buildings are equipped with various sensors, it is possible to utilize real time sensor data to inform the simulation. To incorporate the real sensor data into the simulation, we introduce the method of data assimilation. The goal of data assimilation is to provide inference about system state based on the incomplete, ambiguous and uncertain sensor data using a computer model. A typical data assimilation framework consists of a computer model, a series of sensors and a melding scheme. The purpose of this dissertation is to develop a data assimilation framework for agent-based simulation of smart environment. With the developed data assimilation framework, we demonstrate an application of building occupancy estimation which focuses on position estimation using the framework. We build an agent based model to simulate the occupants’ movement s in the building and use this model in the data assimilation framework. The melding scheme we use to incorporate sensor data into the built model is particle filter algorithm. It is a set of statistical method aiming at compute the posterior distribution of the underlying system using a set of samples. It has the benefit that it does not have any assumption about the target distribution and does not require the target system to be written in analytic form .To overcome the high dimensional state space problem as the number of agents increases, we develop a new resampling method named as the component set resampling and evaluate its effectiveness in data assimilation. We also developed a graph-based model for simulating building occupancy. The developed model will be used for carrying out building occupancy estimation with extremely large number of agents in the future
    • …
    corecore