147 research outputs found

    Review on Heart Disease Prediction System using Data Mining Techniques

    Get PDF
    Data mining is the computer based process of analyzing enormous sets of data and then extracting the meaning of the data. Data mining tools predict future trends, allowing business to make proactive, knowledge-driven decisions. Data mining tools can answer business questions that traditionally taken much time consuming to resolve. The huge amounts of data generated for prediction of heart disease are too complex and voluminous to be processed and analyzed by traditional methods. Data mining provides the methodology and technology to transform these mounds of data into useful information for decision making. By using data mining techniques it takes less time for the prediction of the disease with more accuracy. In this paper we survey different papers in which one or more algorithms of data mining used for the prediction of heart disease. Result from using neural networks is nearly 100% in one paper [10] and in [6]. So that the prediction by using data mining algorithm given efficient results. Applying data mining techniques to heart disease treatment data can provide as reliable performance as that achieved in diagnosing heart disease

    An Extensive Investigation on Coronory Heart Disease using Various Neuro Computational Models

    Get PDF
    The diagnosis of heart disease at the early time is important to save the life of people as it is absolutely annoying process which requires extent knowledge and rich experience. By and large the expectation of heart infections in conventional method for inspecting reports, for example, Electrocardiogram-ECG, Magnetic Resonance Imaging- MRI, Blood Pressure-BP, Stress tests by medicinal professionals. Presently a-days a huge volume of therapeutic information is accessible in restorative industry in all maladies and these truths goes about as an incredible source in foreseeing the coronary illness by the professionals took after by appropriate ensuing treatment at an early stage can bring about noteworthy life sparing. There are numerous systems in ANN ideas which are likewise contributing themselves in yielding most elevated expectation precision over medical information. As of late, a few programming devices and different techniques have been proposed by analysts for creating powerful decision supportive systems. More over many new tools and algorithms are continued to develop and representing the old ones day by day. This paper aims the study of such different methods by researchers with high accuracy in predicting the heart diseases and more study should go on to improve the accuracy over predictions of heart diseases using Neuro Computing

    Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    Get PDF
    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan

    Identifying Lung Cancer Using CT Scan Images Based On Artificial Intelligence

    Get PDF
    Lung cancer appears to be the common reason behind the death of human beings at some stage on the planet. Early detection of lung cancers can growth the possibility of survival amongst human beings. The preferred 5-years survival rate for lung most cancers sufferers will increase from 16% to 50% if the disease is detected in time. Although computerized tomography (CT) is frequently more efficient than X-ray. However, the problem regarded to merge way to time constraints in detecting this lung cancer concerning the numerous diagnosing strategies used. Hence, a lung cancer detection system that usage of image processing is hired to categorize lung cancer in CT images. In image processing procedures, procedures like image pre-processing, segmentation, and have extraction are mentioned intimately. This paper is pointing to set off the extra precise comes approximately through making use of distinctive improve and department procedures. In this proposal paper, the proposed method is built in some filter and segmentation that pre-process the data and classify the trained data. After the classification and trained WONN-MLB method is used to reduce the time complexity of finding result. Therefore, our research goal is to get the maximum result of lung cancer detection

    Statistical Analysis with Machine and Neural Learning-Based Model on Cardiovascular Diseases and Stroke Prediction

    Get PDF
    Several risk factors, such as hypertension, hyperlipidemia, and an irregular heart rhythm, make an early diagnosis of cardiovascular disease challenging. Reducing cardiac risk calls for precise diagnosis and therapy. Clinical practice in the healthcare business is likely to evolve in tandem as a result of advancements in machine learning. Therefore, scientists and doctors need to acknowledge machine learning's significance. The fundamental purpose of this research is to a reliable analyzing Risk Factors for Cardiovascular Disease method that makes use of machine learning. Classifying well-known cardiovascular datasets But, on the other hand, is a job for state-of-the-art machine learning techniques and neural network algorithms. Several statistical and visualization indicators were used to assess the efficacy of the suggested approaches and to determine the optimal machine-learning and neural-network approach. Using these modeling methods acquired high and accurate accuracy on stroke and heart disease prediction

    CODUSA - Customize Optimal Donor Using Simulated Annealing In Heart Transplantation.

    Get PDF
    In heart transplantation, selection of an optimal recipient-donor match has been constrained by the lack of individualized prediction models. Here we developed a customized donor-matching model (CODUSA) for patients requiring heart transplantations, by combining simulated annealing and artificial neural networks. Using this approach, by analyzing 59,698 adult heart transplant patients, we found that donor age matching was the variable most strongly associated with long-term survival. Female hearts were given to 21% of the women and 0% of the men, and recipients with blood group B received identical matched blood group in only 18% of best-case match compared with 73% for the original match. By optimizing the donor profile, the survival could be improved with 33 months. These findings strongly suggest that the CODUSA model can improve the ability to select optimal match and avoid worst-case match in the clinical setting. This is an important step towards personalized medicine

    Mechanisms of action of sacubitril/valsartan on cardiac remodeling : a systems biology approach

    Get PDF
    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post-infarct remodeling. The new wonder drug in heart failure management, Sacubitril/Valsartan, rejuvenates the heart by preventing its dilation. Using data from myocardial infarction and heart failure samples, we generated a mathematical model to better understand how Sacubitril/Valsartan modulates pathological heart resize and the combined effect of the drug. Our analysis revealed that Sacubitril/Valsartan mainly acts by blocking both, cell death and the pathological makeover of the outer-membrane of the cardiac cells. These two major processes occur after a heart attack. Most importantly, we discovered a core of 8 proteins that emerge as key players in this process. A better understanding of the mechanism of novel cardiovascular drugs at the most basic level may help decipher future therapies and indications
    corecore