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Feature selection (FS) is essential in medical area; however its process becomes complicated 21 

with the presence of censoring which is the unique character of survival analysis. Most 22 

survival FS methods are based on Cox's proportional hazard model, though machine learning 23 

classifiers (MLC) are preferred. They are less employed in survival analysis due to censoring 24 

which prevent them from directly being used to survival data. Among the few work that 25 

employed MLC, Partial logistic artificial neural network with auto-relevance determination 26 

(PLANN-ARD) is a well-known method that deals with censoring and perform FS for 27 

survival data. However it depends on data replication to handle censoring which leads to 28 

unbalanced and biased prediction results especially in highly censored data. other methods 29 

cannot deal with high censoring as well. Therefore, in this paper a new hybrid FS method is 30 

proposed which presents a solution to high level censoring. It combines support vector 31 

machine, neural network, and K nearest neighbor classifiers using simple majority voting and 32 

a new weighted majority voting method based on survival metric to construct a multiple 33 

classifier system (MCS). The new hybrid FS process uses MCS as a wrapper method and 34 

merges it with iterated feature ranking filter method to further reduce features. Two 35 

endovascular aortic repair (EVAR) datasets containing 91 % censored patients collected from 36 

two centers were used to construct a multicenter study to evaluate the performance of the 37 

proposed approach. The results showed the proposed technique outperformed individual 38 

classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian 39 

information criterions and Least absolute shrinkage and selector operator in p-values of the 40 

log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is 41 

more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting 42 

patients' future follow up plan.  43 
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1. Introduction 46 

Feature selection (FS), model Selection (MS), and variable reduction and 47 

transformation are important topics in data mining; especially when dealing with real medical 48 

datasets of large size. FS methods search for a reduced number of variables that have the 49 

ability to improve prediction using a selection criterion. However, feature reduction and 50 

transformation convert data into a new domain capable of compressing the necessary 51 

information needed for classification in a reduced number of new variables. MS chooses one 52 

optimal (or more) model from a number of candidate models formed from either several 53 

classifiers or the same one but with different parameters. It can be considered as FS when the 54 

purpose is to choose between several subsets of variables generated during MS. Variable 55 

reduction and transformation techniques tend to lower the classifier's complexity and speed 56 

up the classification task. In addition, they enhance generalization and prevent over-fitting 57 

[1].  Clinicians need them to build a reduced predictive model in order to decrease the effort 58 

and time needed to measure the unnecessary variables.   59 

FS methods are divided into filter, wrapper, and embedded methods. However, 60 

recently, many researches focused on merging two or more techniques to form a new class of 61 

FS technique known as hybrid FS. The main reason for doing this is that the hybrid method 62 

has the joined advantages of these FS approaches. It also enables the construction of better 63 

reduced predictive model.  64 

The literature review revealed that many FS related papers were for standard data. 65 

However, this process becomes more complicated for survival data due to the presence of 66 

censoring. Censoring is the main characteristic differentiating survival data from standard 67 
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supervised data. Censoring means that for some patients the event of interest (such as death, 68 

recurrence of a disease) did not occur during the study period. The censored patient cannot be 69 

ignored in building a predictive model, as this might result in biased predictions especially 70 

when there is a large amount of censored patients in the data [2]. Among the work done for 71 

censored survival data, most of them were focused on using forward, backward, step wise, 72 

penalized and shrinkage variable selection with Cox proportional hazard model, though  73 

machine learning classifiers (MLC) are more favored as they consider complex relations and 74 

non-linearity existed in the data during the modeling process, which is not the case in 75 

statistical methods [3]. However, they are less used in survival analysis due to the fact that 76 

censoring makes them less capable to be directly used for survival data [4, 5]. Therefore, the 77 

censoring problem should be handled first. MLC that dealt with censoring to improve 78 

survival models include Artificial Neural Network (ANN) [6, 7] , naïve Bayes and decision 79 

tree [4], and Bayesian networks [8]. However, they were not employed to do FS in survival 80 

analysis.   81 

Some work was done for FS in survival analysis using MLC; among them is the well-82 

known partial logistic artificial neural network with auto relevance determination [9] 83 

(PLANN-ARD). This method performs FS with Bayesian framework; however, it handles the 84 

censoring issue by dividing observation time into time intervals and repeating patients to 85 

these intervals. The main drawback of this method is that this repetition will lead to 86 

unbalanced model and biased prediction results especially with highly censored data. 87 

Moreover, increase in data examples will increase the complexity and the training time of the 88 

predictive model, which is not preferred. Therefore, in this paper a hybrid FS is proposed that 89 

presents a solution to censoring without data repetition. It can be used with any standard 90 

MLC rather than only with neural network as the PLANN-ARD. Others used Cox's model to 91 
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perform FS, then used MLC to construct predictive models such as SVM [10]. Others 92 

wrapped FS around Bayes classifiers [5, 11] or KNN [12]. In [13], the authors use chi-square 93 

test to  determine the association  between variables and survival times of  lung cancer and select the 94 

most related variables to construct an ANN model. The main drawback of this method is the 95 

way to deal with censoring which is using only uncensored patients and ignoring censored 96 

cases, or considering censored patients as event free, which is not applicable for high 97 

censored datasets like EVAR datasets used in this work. 98 

Recently, the concept of multiple classifiers system (MCS) raises interests among 99 

many researchers in the machine learning field. Wolpert has mentioned in [14] that there is no 100 

single classifier ideal for all classification tasks; as each one has its area of competency [15, 101 

16]. Therefore, MCS is advantageous. It merges the outputs of multiple classifiers using a 102 

fuser in order to improve predictions. Though, care must be taken to prevent generating of 103 

unstable models in which predictions are sensitive to any changes in the training data used to 104 

build it [16]. Several fusion methods are available in the literature such as bagging, boosting, 105 

voting and stacking. Authors in [17-21]  applied them to classify Alzheimer disease and 106 

fMRI images.  They were used in [22-24] in order to predict cardiovascular diseases and 107 

protein fold. Moreover, FS techniques were combined with them to predict brain glioma, 108 

hepatitis, diabetes, liver disorder, breast cancer, tumors, cardiovascular diseases and protein 109 

fold [25-30]. 110 

Generally all the above fusion methods produce similar results [31, 32]. Many 111 

researchers prefer majority voting fusion algorithm due to its simplicity [33, 34]. Majority 112 

voting can be classified into simple and weighted methods. Simple Majority voting approach 113 

usually improves predictions results, however it treats all classifiers equally; it does not put attention 114 

to classifiers that have higher impact on classification and generalization. Weighted majority voting 115 
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approach overcomes this drawback by allowing each classifier in the pool to have a weight equivalent 116 

to its performance. Higher weights are given to those that have greater contribution to prediction 117 

results. The total weights should be equal to one in order to construct a proper weight distribution. In 118 

this paper, first simple majority voting was used to construct an MCS. Afterwards, a 119 

weighted majority voting method was developed based on survival analysis metric to build 120 

the MCS in order to improve the predictions of the simple voting method. This system can be 121 

used for censored survival data type.  122 

Endovascular aortic aneurysm repair (EVAR) operation has recently become the 123 

preferred surgical route by doctors and patients for handling abdominal aortic aneurysm [35]. 124 

Long lasting surveillance is important after EVAR [36]. It is expensive and has low 125 

standardizations [37] and its optimization is needed. Several approaches are available with 126 

limitations in the techniques used to select the optimal timing or modality [38]. More 127 

frequent observations would expose patients to a huge amount of radiations and contrast 128 

nephropathy which is unsafe [39]. Moreover, some complications that need to be examined 129 

for treatment could be missed between follow up sessions [40]. A re-intervention might be 130 

required for some patients after EVAR. Distinguishing between those who have higher 131 

probability to surgical re-intervention (high-risk patients) and those who most likely will not 132 

need it (low-risk patients) is essential. It will enable doctors to put patients into appropriate 133 

future follow up observation plans. High risk patients would be monitored more frequently 134 

than low risk ones, leading to the long-lasting effectiveness of the surveillance system. 135 

The aim of this paper is to offer a solution to censoring of high level available in the 136 

two EVAR datasets available in this study without deleting, ignoring, or considering censored 137 

patients as event free which are common methods to handle censoring. The solution also does 138 

not depend on data repetition which increases training data and consequently training time 139 
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and complexity of the predictive model. It also prevents the construction of unbalance and 140 

biased predictive models.  The proposed method can be used with any MLC. This solution is 141 

used in the hybrid feature selection technique which combines filter and wrapper approaches 142 

along with feature reduction and transformation to remove unnecessary variables in the 143 

highly censored EVAR datasets in order to produce a final stable predictive model that avoids 144 

bias. Moreover, this paper adopts MLC techniques to deal with censorship instead of the 145 

traditional statistical models such as Cox's proportional hazard model which is commonly 146 

used in the medical area to model survival data and deal with censorship [41]. In addition, 147 

this paper uses MCS instead of an individual classifier for cross-center prediction, where a 148 

stable predictive model was built with the EVAR data from one medical center to predict the 149 

risk of re-intervention on patients in another center. They are equivalent to taking several 150 

clinics diagnosis opinions which may result in a more accurate final decision. Two MCSs are 151 

constructed, the first used simple majority voting for prediction, and the other used a new 152 

weighted majority voting based on a survival metric to be used with censored survival data 153 

type. The proposed weighted majority voting method gives different weights to each 154 

classifier according to its performance which consequently enhances the prediction results 155 

shown later in the results section. 156 

2. Materials and Methodology 157 

2.1 Datasets Description  158 

Patients that had the EVAR surgery in two separate vascular centers located in the UK were 159 

monitored from 2004 till 2010. The first center is located in St George hospital in London 160 

and the other in Leicester. The morphological variables were collected from computed 161 

tomography (CT) images of the thoracic inlet to the level of the common femoral artery 162 

bifurcation. Images have slice thickness of 0.625 or 1.25 mm. Morphological features were 163 
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collected for patients and used in this work as they have greater effect on aortic complications 164 

than physiology features. This judgment was reliable with earlier proof that the main factor of 165 

endograft failure is patient anatomy rather than co-morbidity [40, 42, 43]. Both datasets 166 

contain 45 attributes with 457 and 286 patients, respectively, after removing the ones with 167 

missing values. Patient numbers that actually re-experienced the EVAR surgery are 40 and 26 168 

for Center 1 and 2 correspondingly. Details of the datasets can be found in a previous 169 

publication [44].  Kaplan Meier (KM) curves were plotted for both centers as shown in 170 

Figure 1. More details about KM method can be found in [45].  171 

 172 

Figure 1 173 

2.2 Factor Analysis 174 

FA examines the underlying structure of the data. It considers that data attributes are 175 

generated from linear combination of unseen (unmeasured) variables called factors. They 176 

consist of two parts; unique and common. Unique factor refers to unique variance of one seen 177 

(measured) variable, while common factors express common variances between observed 178 

ones. Generally, features that are not correlated to any factor could be deleted. These selected 179 

observed variables could be used to build a predictive model [46].  180 

2.3 Multiple Classifiers System 181 

An MCS gathers powers of each learning algorithm in order to outperform the performance 182 

of each single classifier. In the medical field, it is equivalent to taking the opinion of several 183 

doctors to reach a more confident final decision. Sometimes, ensemble classifiers' results are 184 

not as good as the performance of the best individual classifier in the pool. However, it 185 
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prevents the chance of poor decisions that might be taken with a particular inappropriately 186 

chosen model [33] .   187 

An MCS has two topologies; serial and parallel.  In the serial topology, classifiers are 188 

connected in series following some sorting over them. If the first classifier predictions are not 189 

accurate enough, the next stronger classifier will be used. Classifiers are added iteratively 190 

according to their order until predictions are finally enhanced [47]. On the other hand, in 191 

parallel connection, the same variables are used to construct all classifiers in the pool, and the 192 

final prediction is determined based on outputs of each single classifier independently. 193 

Parallel topology is the most common way used to connect classifiers [48], so it is adopted in 194 

this paper.  195 

 196 

 197 

2.4 The Proposed Algorithm 198 

The algorithm consists of 7 steps. Fig. 2 shows the steps of the algorithm and the three main 199 

areas of contribution in the proposed approach highlighted in blue colour (feature selection, 200 

uncesoring, and classification) along with their interactions. 201 

 STEP 1 is FA which is made after both Kaiser-Meyer-Olkin and Bartlett's tests to 202 

determine if FA is need for Center 1 or not. The number of factors used for FA was 203 

initially determined by performing a scree plot which shows the eigenvalues 204 

accompanied with latent factors listed in descending order versus the number of factors. 205 

Features not related to any latent factors are deleted using communality value which 206 

is part of the variance generated from common variables. 207 
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 STEP 2 is cross validation and permutation. It splits the Center 1 data into five folds, 208 

each separate four of which is called outer training folds. They were used for FS 209 

process. These folds were shuffled five times.  210 

 STEP 3 is the first stage feature selection (FSFS) step which is done in two phases, 211 

stepwise feature model selection and feature ranking (FR). In the former, each outer 212 

training fold uses stepwise searching strategy that swifts between backward and 213 

forward searches to reduce the number of features. It eliminates one variable at a time 214 

iteratively. Each eliminated variable is inserted in a subset called "visited". It will be 215 

given another chance to re-enter the search space. After adding or deleting a variable 216 

from every outer training fold, it is shuffled and re-split five times to get the average 217 

of the p-value of predictions, which is the criterion for FS. The model with the 218 

smallest average p-value is the one chosen. This is repeated until all the variables are 219 

visited. Five outer reduced models will be generated at the end of this stage. Usually, 220 

in model selection only one model is chosen to win. However, this does not take 221 

consideration of the uncertainty in all or some of the candidate models. Therefore, in 222 

this paper all variables appeared in the five models were used in the FR phase and 223 

ranked according to their frequency distribution.   224 

 STEP 4 is the uncensoring step in which observation time variable was used to split 225 

patients of each training fold into three groups; high risk, low risk, and censored  226 

groups. In step 3, low and high risk groups were used to construct two Bayesian 227 

networks called low lowB and high 
highB  networks after removing the observation 228 

time variable. They were used to uncensor every patient of the censored group by 229 

comparing him or her to the internal configuration of each network highp  and lowp  230 
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using likelihood information. More details about the uncensoring technique could be 231 

found in the researchers’ previous work [49]. 232 

 233 

Each variable Vi represents a node in this network that may be connected to a higher 234 

parent node ( ) and lower child node. They are directed acyclic graph (DAG) 235 

networks given a symbol  meaning that nodes are connected in only one direction 236 

from parent to children nodes. The Bayesian networks were learned with Hill 237 

climbing structure learning algorithm [50]. The scoring function used for choosing 238 

the structure of the network was minimum description [51]. Parameter learning was 239 

done using maximum likelihood procedure to determine relation between nodes of a 240 

network [52]. 241 

 242 

The likelihood )/( pxc that each censored patient belongs to which network is 243 

calculated using equations (1) and (2) to decide to which group censored patients 244 

belong. 245 
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where; π(Vi) is the parent node to variable Vi, , )(/( ii
high VVP  , and )(/( ii

low VVP   are 248 

the posterior probability of a variable Vi,  given its parents nodes for high and low 249 

Bayesians networks, respectively. 250 
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Afterwards, the posterior probability that outcome predictions that patients belong to 251 

which network given that they are censored (xc) )/( cxOP  in equation (5) is 252 

calculated using equations (3) and (4).  253 
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(5) 257 

Equation (5) is then normalized to ignore the effect of probability of a censored 258 

instance )( cxP  by dividing equation (5) by )(*)/( cc xPxOP   to get equation (6). 259 

)/( c
high xOP + .1)/( c

low xOP                                                      (6) 260 

Lastly, a threshold is used to decide which risk group each censored patient belongs 261 

to. It is called censoring correction threshold ThP  . If )/( c

high xOP is greater than ThP , 262 

then the patient is considered a high risk to do a re-intervention and vice versa. 263 

 264 

 STEP 5 is iterated nested cross validation. Each shuffled version of step 2 after being 265 

uncensored is re-split again into five inner nested folds. Every four inner folds are 266 

used for constructing the MCS which is the sixth step while the remaining one is used 267 

to test it.  268 
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 STEP 6 is the MCS construction step. The proposed MSC system was constructed 269 

using three popular machine learning classifiers; support vector machine (SVM), 270 

multiple layer perceptron (MLP) neural network, and K-nearest neighbor (KNN). 271 

Both SVM and MLP Neural networks are well known as strong classifiers. 272 

Moreover, they can detect the complex and high nonlinearity relations existing in the 273 

datasets [33, 53].  They have been widely used in medical applications [25, 28, 54]. 274 

KNN is a simple, straightforward and highly efficient classifier even with noisy data 275 

[55]. Despite its simplicity, it has shown good performance in medical application 276 

[56, 57]. In this paper, classifiers were built using Weka software [58]. Sigmoid 277 

function was employed for SVM construction. A three layer MLP ANN was 278 

constructed with seven hidden and two output neurons, and sigmoid activation 279 

functions with learning rate 0.3 and momentum 0.2. KNN was built using Euclidean 280 

distance function and K was set to 3. 281 

 282 

Predictions were first combined with simple majority voting which simply gives a final 283 

decision to the class which has the majority of the votes. The average of the p-value of the 284 

log rank test of the predictions was calculated and chosen as a criterion for feature 285 

selection. This procedure is called iterated nested cross validation which produces a 286 

stable model and overcome over-fitting that might occur later. 287 

 288 

Afterwards, a weighted majority voting based on the p-value of the log –rank test survival 289 

metric was developed which can be used for censored survival data type. Prediction of a new 290 

instance is made by multiplying the prediction of each classifier by its weights, then adding 291 

them to select the class with majority vote using (7), where; ci,j is the class value for the ith 292 
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classifier and jth patient, N is the total number of classifiers, wi is the weight for the ith 293 

classifier. 294 

wi

N

i
c jiDecision 





1
,                                                   (7) 295 

The issue here is how to determine the weights given to each classifier. Several methods have 296 

been proposed to calculate them, which is beyond the focus of this paper, however the most 297 

common approach depends on the training errors of each classifier. The weight is usually the 298 

reciprocal of this error. Though, in this paper the average of the p-value Pi of the log rank test 299 

for the training data was chosen instead due to the censoring nature of the datasets.  Since, the 300 

average of the p-value for the training sets has a value that is close to zero, their reciprocal 301 

will be very large, and therefore, the logarithm of the reciprocal average Pval  is usually used 302 

to calculate the weight of each classifier in the pool as shown in (8). These weights are then 303 

normalized in order that their sum is equal to one  304 

)(

1

Pavg
w

i
i                                                                     (8) 305 

 STEP 7 is the iterated filter selection (IFR) step that uses the ranking from step 3 to 306 

further reduce the number of the features used in the predictive model. The process is 307 

similar to the one used in [59]. It starts with the variable of highest score, and then 308 

each feature is added iteratively in order to enhance predictions.  Both FSFS and IFR 309 

steps used the minimum p-value of the log rank test as a criterion for selection. It is 310 

commonly used in the medical field to examine if the risk groups predictions were 311 

separable and distinguishable. A p-value less than the significance level of 0.05 312 

indicates that the risk groups are significantly different. Steps 3 and 7 are considered 313 

as hybrid FS approach. It combines the advantages of filter and wrapper FS methods.  314 
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 Figure 2 315 

2.5 Classification Models and Evaluation Metrics 316 

The evaluation metrics that were employed to test the performance of the final selected model 317 

are discussed below. 318 

 Sensitivity (True positive rate) is the portion of patients that were correctly 319 

classified as one (high risk of re-intervention) and the number of patients that actually 320 

went through re-intervention. 321 

 Log Rank Test is a very popular statistical metric in the medical area. It is used to 322 

examine if any predictive model was capable of differentiating between the risk 323 

groups of patients or separating survival probabilities of patients treated with different 324 

medication. It uses chi squared test [60] to determine a score called p-value. P-value 325 

less than the significance level of 0.05 means that the two risk groups are separable 326 

and discriminative.    327 

 Concordance Index (CI) is a discriminative statistical metric that examines if the 328 

survival estimates of the predictive model are concordant and distinguished. It 329 

calculates the portion of all couples of patients that survival predictions have correct 330 

sorting. Then, divide this part by the summation of all pairs of patients in which the 331 

event of interest had occurred to at least one of them, and that one must have 332 

observation time less than the other [61].  Greater CI values indicate better concordant 333 

predictions.  The maximum value that could be reached is one.     334 

 335 

2.6 Comparative Feature model selection methods 336 

2.6.1 Akaike Information Criterion (AIC) 337 



 Page 16 of 41 

 

It was first introduced by Akaike in 1977 to evaluate the quality of candidates’ models 338 

produced during model selection. AIC measures the distance between each nominated model 339 

and the true model (Kullback Leibler distance).  Therefore, as the distance decreases, the 340 

value of this model increases [62]. The formula shown in equation (8) illustrates how AIC is 341 

calculated. It places a penalty to the number of parameters.  The final model selected is the 342 

one with the minimum AIC.   343 

  KLAIC  2)ln(2 ,                                                    (8) 344 

where; L is the maximum likelihood of the model given the data and K is the number of 345 

parameters in a given model. 346 

 347 

2.6.2 Bayesian information criterion (BIC) 348 

It was first introduced by Schwarz in 1978 [63]. BIC evaluates the quality of each candidate 349 

model as well. Though, it inserts a penalty not only on the number of parameters, but also on 350 

the number of data examples which is not the case in AIC. Therefore, some researches prefer 351 

to use it especially when they have models of different sizes. It is calculated using the 352 

formula shown in equation (9): 353 

)ln(2)ln(2 nKLBIC   ,                                                    (9) 354 

where; L is the maximum likelihood of the model given the data and K is the number of 355 

parameters in a given model, and n is the number of observations. 356 

 357 

2.6.3 Least Absolute Shrinkage and Selection Operator (LASSO) 358 

It was introduced by Robert Tibshirani in 1997 [64]. It is a 1L  penalized estimation method 359 

that shrinks the regression coefficients estimates β of Cox regression model towards zero 360 
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using a tuning parameter λ which gives a penalty on their absolute values. This leads to 361 

removing the irrelevant variables from the predictive model. Shrinkage prevents over-fitting 362 

that may occur due to collinearity of the variables. The β coefficients of the predictive model 363 

are fitted by maximizing penalized partial log likelihood (PPLL) for all data with an absolute 364 

value LASSO penalty λ on β using equation (10): 365 

1
1

)exp(log)()(  



























 

 

n

i

T

j

T

ii

tt

xxPPLL

ij

,                         (10) 366 

where,   is the censor indicator for patient i with variables x. λ ≥ 0 and 
1
 stands for 1L367 

norm. λ equal to zero means no shrinkage and infinity means infinity shrinkage. Penalized R- 368 

software package was used for implementing LASSO. The tuning parameter was selected 369 

using likelihood cross validation optimization method. 370 

 371 

3. Results of the Proposed MCS Hybrid Feature-Model Selection 372 

3.1 Comparing the Results of the Proposed MCS Hybrid Feature-Model Selection 373 

Algorithm with all Features 374 

The common way to select a model with reduced features is to employ the whole dataset. 375 

This may consequently lead to overoptimistic results. Resampling techniques such as K-fold 376 

cross validation, leave one out cross validation, and bootstrapping are used to overcome this 377 

problem and to quantify the quality of the final reduced model on part of the data that were 378 

not used in modeling. However, the latter two methods have high computational cost.  379 

Therefore, in this paper, five-fold iterated nested cross validation were used for the hybrid 380 

feature selection and stable MCS model construction using center 1 data. Center 2 data were 381 

used to assess the performance of the final reduced model. The results of the MCS hybrid feature 382 
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selection based on simple majority voting and weighted majority voting techniques for Center 2 383 

predictions are compared with the full size of the model as shown in Tables 1 and 2. 384 

Table 1 385 

Table 1 shows that the proposed MCS hybrid FS technique based on simple majority voting has 386 

reduced the number of features from 45 to 27, 15 and 7 after all steps of proposed approach. 387 

Moreover, the concordance index (CI) of the full model is 0.6599 which has increased to 0.6630, 388 

0.6657, and finally 0.6793 after hybrid FS steps. The p-value of the log-rank test has been reduced as 389 

well from 0.0331 to 0.0166, 0.0075 and 0.00016 after all steps of the proposed technique, which 390 

indicates an enhancement in the performance of the MCS model with the hybrid FS. Finally, the 391 

sensitivity was enhanced during all steps of the hybrid approach from 0.423 to finally reach 0.808. 392 

Note that, the event of interest in this paper is the risk of re-intervention after the EVAR 393 

surgery. Therefore, uncensored patients that experienced EVAR operation have definitely a 394 

class value of 1, while the rest are censored (their class value are not guaranteed to be 1 or 0). 395 

For this reason, the sensitivity metric was employed for comparing proposed predictive 396 

models. It indicates the ability of the proposed techniques to correctly classify the event of 397 

interest which is the minority class. CI is used as well, as it is a survival metric used for 398 

measuring survival model performance. Both metrics were used together as a predictive 399 

model with both higher CI and sensitivity rates indicate better ability to predict the risk of re-400 

intervention and discriminate between risk groups.   401 

Table 2 402 

Table 2 shows that the proposed MCS hybrid FS approach based on weighted majority voting has 403 

reduced the number of features from 45 to 27, 17 and 6 after all steps of proposed approach. 404 

Moreover, the CI of the full model is 0.6710 which has increased to 0.6762, 0.6793, and finally 405 

0.6808 after the hybrid FS steps, which are greater than that of the unweighted majority voting in 406 
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Table 1 (0.6599, 0.6630, 0.6657, and 0.6793). The p-value of the log-rank test has been reduced as 407 

well from 0.014 to 0.001, 0.0008 and 0.000038 after all steps of the proposed technique, which 408 

indicates an enhancement in the performance of the MCS model based on weighted voting with the 409 

hybrid FS compared to unweighted majority voting which has reached a final p-value of 0.00016. In 410 

addition, the sensitivity has increased from 0.423 to reach 0.7308. 411 

3.2 Comparing the Results of the Proposed MCS Hybrid Algorithm with the 412 

Performance of the Individual Classifiers 413 

In this section, the performances of the MCS hybrid FS algorithm and individual classifiers used to 414 

construct it are compared. As shown in Table 3, the MCS based on simple majority voting, weighted 415 

majority voting , and single classifiers have reduced the feature space to 7,6,5,5,6 for MCS based on 416 

simple majority voting, MCS based on weighted majority voting, and individual SVM, MLP, and 417 

KNN models, respectively. Predictions of Center 2 are used for comparison as it was not used in 418 

constructing and training the predictive model. The MCS based on weighted majority voting has 419 

outperformed the unweighted majority voting in both CI (0.6808 vs. 0.6793) and p-value of the log 420 

rank test (0.000038 vs. 0.00016); however, the later has higher sensitivity (0.808 vs. 0.7308). 421 

Moreover, the MCS hybrid FS approach using unweighted and weighted majority voting methods 422 

outperformed the other individual classifiers in p-value (0.00016 and 0.000038 vs. 0.00085, 0.00073, 423 

and 0.0011). However, the MLP's CI (0.6813) is better than MCS, SVM, and KNN (0.6793 and 424 

0.6808, 0.6776, and 0.6411). 425 

Table 3 426 

3.3 Comparing the Results of the Proposed MCS Hybrid Algorithm with Performance 427 

of Cox's Model Using AIC, BIC and LASSO  428 

In this section, the results of the MCS hybrid feature selection based on simple and weighted majority 429 

voting are compared with the state of art variable selection methods based on the Cox's regression 430 

model which are AIC, BIC and LASSO penalized methods. It is well known that the Cox's output is 431 
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continuous. In order to translate this output to binary representing the risk group, the estimated 432 

parameters of the final reduced model are multiplied by each variable to generate a risk score. A value 433 

above the threshold indicates high risk (class value of 1) and vice versa. The one used for LASSO is 434 

6.7 which is equivalent to mean of the risk score; while for other methods they are 2.4 and 3.1. The 435 

same threshold is applied to Center 2 data. 436 

As shown in Table 4. The number of features of the final MCS model is seven for simple majority 437 

voting and six for weighted voting which are better than 14 for AIC and BIC, but equal or smaller 438 

than seven of LASSO.  For Center 1 prediction, the CI of MCS based on weighted majority voting 439 

(0.7881), which is higher than simple majority voting (0.7521), BIC (0.7624) and LASSO (0.738), but 440 

smaller than AIC (0.7898). All models have p-value lower than 0.0001, which indicates that they are 441 

all capable of separating the two risk groups of Center 1. The sensitivity of MCS model using 442 

unweighted majority voting (0.84) and weighted majority voting (0.87) are greater than that of the 443 

other methods (0.69, 0.38, and 0.714). Moreover, for Center 2 predictions, the proposed MCS 444 

technique beats the other techniques in both the p-value of the log rank test (0.00016 and 0.000038 vs. 445 

0.034, 0.029, and 0.0068) and the CI (0.6793 and 0.6808 vs. 0.6103, 0.630, and 0.6153). The main 446 

advantage in the MCS hybrid FS algorithm appears in the sensitivity results (0.808 and 0.7308 vs. 447 

0.35, 0.23, and 0.5), which indicates that it can correctly classify more patients than did the re-448 

intervention (the event of interest in this study). Thus, it is favored than the other methods. 449 

Table 4 450 

Figures 3 and 4 show the KM curves for the two risk groups predictions of both centers using the 451 

MCS hybrid FS technique based on simple and weighted majority voting compared with KM curves 452 

for the two risk groups predictions of both centers with AIC (Figure 5), BIC (Figure 6) and LASSO 453 

(Figure 7) Cox's models. Figure 3 indicates that the MCS model based on unweighted model 454 

classified 163 and 126 of Center 1 (upper) and Center 2 (lower) patients as high risk, which is 455 

equivalent to 36% and 44% of total Center 1 and Center 2 patients. Moreover, Figure 4 shows that the 456 

MCS model based on simple majority voting model classified 177 and 101 of Center 1 (upper) and 457 
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Center 2 (lower) patients as high risk, which is equivalent to 38 % and 35% of total Center 1 and 458 

Center 2 patients. The classification of the MCS model is better than the prediction of the AIC model 459 

(104 high risk patients equivalent to 23%) for Center 1 (Figure 5 upper)  and (41 high risk patients 460 

equivalent to 14%) for Center 2 (Figure 5 lower), the BIC model in (58 high risk patients equivalent 461 

to 13%) for Center 1 (Figure 6 upper) and (25 high risk patients equivalent to 9%) for Center 2(Figure 462 

6 lower), and the LASSO model (196 high risk patients equivalent to 43%) for Center 1 (Figure 7 463 

upper), and (76 high risk patients equivalent to 26%)  for Center 2 (Figure 7 lower). 464 

Figure 3 465 

Figure 4  466 

Figure 5 467 

Figure 6 468 

Figure 7 469 

4. Discussion 470 

Features that were selected using simple (unweighted) majority voting are the total aneurysm 471 

neck volume, maximum aneurysm neck diameter, diameter of the left common iliac artery 1 472 

and 5 mm below internal iliac ostium,  maximum iliac tortuosity index, diameter of the right 473 

common iliac artery 1mm below Internal iliac ostium, and right common iliac artery non 474 

luminal volume. Moreover, features resulted from weighted voting are the maximum 475 

common iliac aneurysm area, aneurysm neck diameter 10 mm below lowest renal, aneurysm 476 

neck length, common Iliac artery diameter 1 and 5 mm proximal to internal iliac origin, and 477 

right iliac tortuosity index. These features were reviewed by the clinical investigators. They 478 

confirmed that these variables have good face validity in terms of predicting technically 479 

difficult or challenging morphology for endografts currently available. It is well known that 480 

hostile sealing zones both proximally (at the aortic neck) or distally (at the common iliac 481 



 Page 22 of 41 

 

artery) pose considerable technical challenges for durable endograft seal, and therefore it is 482 

plausible that the features selected (aortic neck area; and various aspects of iliac morphology) 483 

might be predictive of poor long-term clinical performance. Predictions using these features 484 

are clinically feasible and make excellent sense. However, weighted majority makes more 485 

sense as it includes neck length which is often thought of by surgeons planning the case [65-486 

67]. Moreover, the concordance index and sensitivity rates are very promising and would 487 

have clinical importance if used prospectively. Also, the assignment of most patients to a low 488 

risk group counts well with clinical practice in which less patients will have re-intervention 489 

over five years [68]. 490 

5. Conclusion 491 

Two datasets (743 patients) were collected from patients undergoing endovascular aortic 492 

surgery over the observation period from 2004 to 2010 in two separate vascular centers 493 

located in the UK (St George and Leicester hospitals). They were capable of building and 494 

validating a multiple classifier predictive model to predict the long-term risk of aortic 495 

complications after EVAR. The paper has offered a successful solution to the high level of 496 

censoring. This solution was used with the proposed hybrid feature model selection approach 497 

to reduce the number of features needed to construct it with censored survival data type. 498 

Moreover, the predictive model may be used for cross-centers prediction as well, as it was 499 

constructed and evaluated by patients of two different centers. The model will enable doctors 500 

to take decisions about future follow up observation plan for each patient. High risk patients 501 

will have to undergo more regular surveillance than low risk patients.  502 

In the proposed technique, the instability that might occur during FS, MS and MCS 503 

construction was reduced using iterated nested cross validation. The uncensoring issue was 504 
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solved using Bayesian networks. Two MCS models were constructed using three popular 505 

machine learning classifiers (SVM, MLP and KNN) combined with simple and weighted 506 

majority voting based on survival analysis metric. Machine learning techniques cannot be 507 

used directly with censored survival data. Therefore, the proposed approach make these 508 

MCSs constructed using machine learning techniques have the ability to be used with 509 

censored survival data. The MCSs constructed were capable of predicting the risk of re-510 

intervention after EVAR. Their performances were compared with both individual classifiers 511 

and the statistical Cox's model. Three well-known model selection techniques called AIC, 512 

BIC and LASSO were used with Cox's regression model for comparison with the MCS 513 

hybrid feature selection approach. The same searching strategy was used for the selection in 514 

AIC and BIC.   515 

The results have shown that MCS using simple and weighted voting outperformed both 516 

individual classifiers and Cox's model selection methods in both p-values and CI expect for 517 

the CI of MLP for Center 2. It successively separated between the risks groups for both 518 

centers as the p-value of the log rank test was less than 0.0001 for Center 1 and 0.00016 and 519 

0.000038 for Center 2 using simple and weighted voting, In addition, the CI has increased 520 

from 0.6559 and 0.6710 to finally reach 0.6793 and 0.6808 with sensitivity of 0.808 and 521 

0.7308 which allows it to be used for cross-center prediction. Moreover, the proposed 522 

technique has a higher sensitivity as compared to other techniques which make it stronger 523 

than the other ones in classifying the long term risk of aortic complications after EVAR for 524 

new patients. Therefore, it can be used by doctors to facilitate the future follow up plan 525 

decision.  Patients with high risk prediction will be more monitored than other ones which 526 

prevent low risk patients to be exposed to excess harmful radiations. 527 
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Table Captions 742 

Table 1: Results of the proposed MCS using Simple Majority Voting on the testing set 743 

(center 2) after the two steps of hybrid feature selection. 744 

Table 2:  Results of the proposed MCS using Weighted Majority Voting on the testing set 745 

(center 2) after the two steps of hybrid feature selection. 746 

Table 3: Performance of the proposed MCS on the testing dataset (center 2) compared with 747 

individual classifiers after hybrid feature selection. 748 

Table 4: Results of the proposed MCS after hybrid feature selection compared with Cox’s 749 

model using AIC, BIC, and LASSO 750 
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Figure Captions 764 

Figure 1.  Kaplan Meier curves for center 1 (Upper) and center 2 (Lower) 765 

Figure 2. Flow chart of the proposed algorithm  766 

Figure 3. Kaplan Meier curves for the two risk groups predictions of (upper)center1 and (lower) 767 

center 2 using the MCS hybrid FS technique based on simple majority voting. 768 

Figure 4. Kaplan Meier curves for the two risk groups predictions of (upper)center1 and (lower) 769 

center 2 using the MCS hybrid FS technique based on weighted majority voting 770 

Figure 5.  Kaplan Meier curves of the predictions of the risk groups for center 1 (Upper) and 771 

center2 (Lower) using Cox’s model with AIC  772 

Figure 6.  Kaplan Meier curves of the predictions of the risk groups for center 1 (Upper) and 773 

center 2 (Lower) using Cox’s model with BIC 774 

Figure 7.  Kaplan Meier curves of the predictions of the risk groups for center 1 (Upper) and 775 

center 2 (Lower) using Cox’s model with LASSO  776 

 777 
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Table 1: Results of the proposed MCS using Simple Majority Voting on the testing set 785 

(center 2) after the two steps of hybrid feature selection 786 

Proposed 

algorithm 

Number of 

features 

p-value 

(Log rank test) 

 

CI (Standard 

Deviation SD)  

Sensitivity 

MCS All 

Features 

45 0.0331  0.6599 (0.0634) 0.423 

MCS FA step 27 0.0166 0.6630 (0.0571) 0.461 

MCS FSFS 

step 

15 0.0075 0.6657 (0.0732) 0.654 

MCS  

IFR step 

7 0.00016 0.6793 (0.0556) 0.808 
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Table 2:  Results of the proposed MCS using Weighted Majority Voting on the testing 797 

set (center 2) after the two steps of hybrid feature selection 798 

Proposed 

algorithm 

Number of 

features 

p-value 

(Log rank test) 

CI(SD) Sensitivity 

MCS All 

Features 

45 0.014 0.6710 (0.0572) 0.423 

MCS FA step 27 0.0010 0.6762 (0.0643) 0.539 

MCS FSFS 

step 

17 0.0008 0.6793(0.0573) 0.615 

MCS IFR step 6 0.000038 0.6808 (0.0528) 0.7308 
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Table 3: Performance of the proposed MCS on the testing dataset (center 2) compared 814 

with individual classifiers after hybrid feature selection  815 

Classifier  

Number of 

final features 

p-value 

(Log rank test) 

CI (SD) Sensitivity 

MCS Simple 

Majority Voting 

7 0.00016 0.6793 (0.0556) 0.808 

MCS Weighted 

Majority Voting 

6 0.000038 

 

0.6808 (0.0528) 

 

0.7308 

SVM 5 0.00039 0.6776 (0.0499) 0.7308 

MLP 5 0.00073 0.6817 (0.0804) 0.7308 

KNN 6 0.0011 0.6411 (0.0628) 0.6538 
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Table 4: Results of the proposed MCS after hybrid feature selection compared with 828 

Cox’s model using AIC, BIC, and LASSO 829 

Technique 

Model 

Size 

p-value 

(Log rank test) 

CI (SD) 

Sensitivity 

Center 

1 

Center  

2 

Center  

1 

Center 

2 

Center  

1 

Center 

 2 

Simple Majority 

Voting MCS  

Hybrid FS 

7 <0.0001 0.00016 

0.7521 

(0.0332) 

0.6793 

(0.0556) 

0.84 0.808 

Weighted 

Majority Voting 

MCS  

Hybrid FS 

6 <0.0001 0.000038 

0.7881 

(0.0337) 

 

0.6808 

(0.0528) 

 

0.87 0.7308 

AIC Cox FS 14 <0.0001 0.034 

0.7898 

(0.0408) 

0.6103 

(0.0725) 

0.69 0.35 

BIC Cox FS 14 <0.0001 0.029 

0.7624 

(0.0465) 

0.630 

(0.0685) 

0.38 0.23 

LASSO 

 Cox FS 

7 <0.0001 0.0068 

0.7382 

(0.0426) 

0.6153 

(0.0864) 

0.714 0.50 

 830 
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831 
Figure 1 (Attallah, O.) Kaplan Meier curves for center 1 (Upper) and center 2 (Lower)  832 

 833 
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 834 

Figure 2 (Attallah, O.)  Flowchart of the proposed algorithm 
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 835 

 836 

Figure 3 (Attallah, O.)  Kaplan Meier curves for the two risk groups predictions of (upper)center1 837 

and (lower) center 2 using the MCS hybrid FS technique based on simple majority voting 838 
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 839 

Figure 4 (O.Attallah) Kaplan Meier curves for the two risk groups predictions of (upper)center1 and 840 

(lower) center 2 using the MCS hybrid FS technique based on weighted majority voting 841 
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 842 

Figure 5 (Attallah, O.)  Kaplan Meier curves of the predictions of the risk groups for center 1 843 

(Upper) and center2 (Lower) using Cox’s model with AIC 844 
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845 
Figure 6 (Attallah, O.)  Kaplan Meier curves of the predictions of the risk groups for center 1 846 

(Upper) and center 2 (Lower) using Cox’s model with BIC 847 
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 848 

Figure 7 (Attallah, O.)  Kaplan Meier curves of the predictions of the risk groups for center 1 849 

(Upper) and center 2 (Lower) using Cox’s model with LASSO 850 


