71,839 research outputs found

    FAST : a fault detection and identification software tool

    Get PDF
    The aim of this work is to improve the reliability and safety of complex critical control systems by contributing to the systematic application of fault diagnosis. In order to ease the utilization of fault detection and isolation (FDI) tools in the industry, a systematic approach is required to allow the process engineers to analyze a system from this perspective. In this way, it should be possible to analyze this system to find if it provides the required fault diagnosis and redundancy according to the process criticality. In addition, it should be possible to evaluate what-if scenarios by slightly modifying the process (f.i. adding sensors or changing their placement) and evaluating the impact in terms of the fault diagnosis and redundancy possibilities. Hence, this work proposes an approach to analyze a process from the FDI perspective and for this purpose provides the tool FAST which covers from the analysis and design phase until the final FDI supervisor implementation in a real process. To synthesize the process information, a very simple format has been defined based on XML. This format provides the needed information to systematically perform the Structural Analysis of that process. Any process can be analyzed, the only restriction is that the models of the process components need to be available in the FAST tool. The processes are described in FAST in terms of process variables, components and relations and the tool performs the structural analysis of the process obtaining: (i) the structural matrix, (ii) the perfect matching, (iii) the analytical redundancy relations (if any) and (iv) the fault signature matrix. To aid in the analysis process, FAST can operate stand alone in simulation mode allowing the process engineer to evaluate the faults, its detectability and implement changes in the process components and topology to improve the diagnosis and redundancy capabilities. On the other hand, FAST can operate on-line connected to the process plant through an OPC interface. The OPC interface enables the possibility to connect to almost any process which features a SCADA system for supervisory control. When running in on-line mode, the process is monitored by a software agent known as the Supervisor Agent. FAST has also the capability of implementing distributed FDI using its multi-agent architecture. The tool is able to partition complex industrial processes into subsystems, identify which process variables need to be shared by each subsystem and instantiate a Supervision Agent for each of the partitioned subsystems. The Supervision Agents once instantiated will start diagnosing their local components and handle the requests to provide the variable values which FAST has identified as shared with other agents to support the distributed FDI process.Per tal de facilitar la utilització d'eines per la detecció i identificació de fallades (FDI) en la indústria, es requereix un enfocament sistemàtic per permetre als enginyers de processos analitzar un sistema des d'aquesta perspectiva. D'aquesta forma, hauria de ser possible analitzar aquest sistema per determinar si proporciona el diagnosi de fallades i la redundància d'acord amb la seva criticitat. A més, hauria de ser possible avaluar escenaris de casos modificant lleugerament el procés (per exemple afegint sensors o canviant la seva localització) i avaluant l'impacte en quant a les possibilitats de diagnosi de fallades i redundància. Per tant, aquest projecte proposa un enfocament per analitzar un procés des de la perspectiva FDI i per tal d'implementar-ho proporciona l'eina FAST la qual cobreix des de la fase d'anàlisi i disseny fins a la implementació final d'un supervisor FDI en un procés real. Per sintetitzar la informació del procés s'ha definit un format simple basat en XML. Aquest format proporciona la informació necessària per realitzar de forma sistemàtica l'Anàlisi Estructural del procés. Qualsevol procés pot ser analitzat, només hi ha la restricció de que els models dels components han d'estar disponibles en l'eina FAST. Els processos es descriuen en termes de variables de procés, components i relacions i l'eina realitza l'anàlisi estructural obtenint: (i) la matriu estructural, (ii) el Perfect Matching, (iii) les relacions de redundància analítica, si n'hi ha, i (iv) la matriu signatura de fallades. Per ajudar durant el procés d'anàlisi, FAST pot operar aïlladament en mode de simulació permetent a l'enginyer de procés avaluar fallades, la seva detectabilitat i implementar canvis en els components del procés i la topologia per tal de millorar les capacitats de diagnosi i redundància. Per altra banda, FAST pot operar en línia connectat al procés de la planta per mitjà d'una interfície OPC. La interfície OPC permet la possibilitat de connectar gairebé a qualsevol procés que inclogui un sistema SCADA per la seva supervisió. Quan funciona en mode en línia, el procés està monitoritzat per un agent software anomenat l'Agent Supervisor. Addicionalment, FAST té la capacitat d'implementar FDI de forma distribuïda utilitzant la seva arquitectura multi-agent. L'eina permet dividir sistemes industrials complexes en subsistemes, identificar quines variables de procés han de ser compartides per cada subsistema i generar una instància d'Agent Supervisor per cadascun dels subsistemes identificats. Els Agents Supervisor un cop activats, començaran diagnosticant els components locals i despatxant les peticions de valors per les variables que FAST ha identificat com compartides amb altres agents, per tal d'implementar el procés FDI de forma distribuïda.Postprint (published version

    On Repairing Reasoning Reversals via Representational Refinements

    Get PDF
    Representation is a fluent. A mismatch between the real world and an agent’s representation of it can be signalled by unexpected failures (or successes) of the agent’s reasoning. The ‘real world ’ may include the ontologies of other agents. Such mismatches can be repaired by refining or abstracting an agent’s ontology. These refinements or abstractions may not be limited to changes of belief, but may also change the signature of the agent’s ontology. We describe the implementation and successful evaluation of these ideas in the ORS system. ORS diagnoses failures in plan execution and then repairs the faulty ontologies. Our automated approach to dynamic ontology repair has been designed specifically to address real issues in multi-agent systems, for instance, as envisaged in the Semantic Web

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS
    corecore