
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Facilitating Agent Communication through Detecting, Diagnosing
and Refining Ontological Mismatch

Citation for published version:
McNeill, F, Bundy, A & Walton, C 2004, 'Facilitating Agent Communication through Detecting, Diagnosing
and Refining Ontological Mismatch' Proceedings of the KR2004 Doctoral Consortium, AAAI Technical
Report.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the KR2004 Doctoral Consortium, AAAI Technical Report

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/facilitating-agent-communication-through-detecting-diagnosing-and-refining-ontological-mismatch(adbe559c-b9e7-4502-8555-eec6490897e5).html


Facilitating Agent Communication Through Detecting, Diagnosing and
Refining Ontological Mismatch

Fiona McNeill, Alan Bundy, Chris Walton

Abstract
The development of the semantic web makes
the facilitation of agent communication an is-
sue of increasing importance. It is often as-
sumed that agents are using the same ontol-
ogy and hence can understand one another,
but the dynamic and distributed nature of the
semantic web can mean that this is not al-
ways a valid assumption. We describe a sys-
tem that can dynamically discover some on-
tological mismatches between agents during
communication and then rene them, to en-
able communication to proceed successfully
between these agents.

1 Introduction
We are exploring the situation in which an agent
(which we refer to as the main agent, though the
system is distributed) is attempting to achieve goals by
forming and executing plans in a given domain. The
main agent will form plans to achieve the goals which
it is given based on its understanding of the world.
Each plan step will be executed through interaction
with other agents: for example, a plan step (Buy
Ticket) may be executed through locating and
communicating with a ticket-selling agent. The main
agent initially makes the assumption that these other
agents have the same ontology as it, and thus the
conditions under which the main agent believes an
action is executable will match the conditions under
which the other agents will perform it. Additionally,
this assumptions entails that the effects of a given
action being performed will match the main agent�’s
expectations of the effects. It is very useful to make
such assumptions, as this allows one to form plans
based on one�’s understanding of the world.

However, because ontologies are dynamic and
are regularly updated, leading to agents having differ-
ent versions of the same ontology, and also because
users can take an off-the-shelf ontology and the adapt
it for their particular needs, we often nd that other
agents may have ontologies that are similar but are

slightly out of sync. This can lead to plan execution
failure, since the other agents have expectations of the
world that do not match the main agent�’s expectations.

We use the word ontology to mean the whole of
the agent�’s understanding of the world. This includes
both the general information about the kinds of things
that exist, the signature, and the specic details
for each case, the theory. The signature contains
information such as: names of predicates, arity of
predicates, the type hierarchy, and so on. The theory
contains rules, facts, types of individuals and so on.
In our system, we use agents who have ontologies
represented in the Knowledge Interchange Format
(KIF) [3]. KIF was chosen because it is a recog-
nised representation format for agent ontologies, and
because it is extremely expressive, supporting full
rst-order logic. The expressiveness of KIF allows us
to investigate the problem of renement in as broad
and complete a way as possible.

A key concept of the semantic web is the auto-
mated processing of ontological knowledge by agents
and services. [1] outlines how these are central to
the role of the semantic web, and how they require
ontological matching to perform appropriately. How-
ever, the nature of the semantic web means that strict
controls on these ontologies are impractical: it must
allow for, amongst other things, partial information,
erroneous information and the evolution of ontologies
[6]. All of these requirements cause difculties for
agent communication. Our approach is a way of
dealing with these ontological mismatches without
enforcing tight ontological controls on agents. It is
intended to automatically solve a subset of the many
problems surrounding ontology mapping, merging and
alignment, which are all essential for communication
in multi-agent systems. It allows agents to learn
about the area in which they are currently active, and
thus be more capable of acting successfully within it,
without receiving any extraneous information. This is
particularly useful in complex and dynamic domains,
where a complete and up-to-date representation of the
entire domain may be intractable or undesirable.



The ontology mismatch is highlighted by a par-
ticular error in the theory, which will usually indicate
an error in the underlying signature. Once this sig-
nature error has been rened, the parts of the theory
which included instantiations of this signature error
must also be rened. This will include the original
theory error, but also, in most cases, other theory
errors. For example, the main agent may have Money
represented in its signature as a unary predicate
(Money ?Amount), whereas the agent with which
it is interacting may have this represented as a binary
predicate (Money ?Amount ?Currency). This
error will come to light through an instantiation of the
signature in the theory: perhaps the main agent uses
(Money 10) where (Money 10 Dollars) is
expected. In this particular example, diagnosing the
appropriate signature renement is not particularly
difcult; if another agents put a question to the main of
the form: (Money 10 Dollars), the main agent
can examine what questions it expected to be asked
(i.e. what preconditions need to be fullled for the
action to be performed), and explore the relationship
between them and the question actually asked. In this
case, it will discover that (Money 10 Dollars)
is related to (Money 10). It can discover the type
of the extra argument by searching its ontology for
type information about dollars or, if it has none,
by asking the other agent for this type information.
However, in this case the theory renement is rather
more problematical. It is clear that each instantiation
of this ontological object must have an extra argument,
and it is clear what the type of this argument must be,
but it is not clear what the specic instantiation should
be. If we know that the there are three instances of
type Currency: Dollars, Sterling and Euros, we will, in
most cases, be able to say no more than:
(Money Agent-1 10)

(Money Agent-1 10 ?Currency),
?Currency = Dollars,Sterling,Euros
That is, we may know what the possible instantiations
are but not which one is valid in this particular case.
Even this we cannot be certain about, as there may
be other possible instantiations of Currency that we
do not currently know about. If there is sufcient
information to perform theory renement, this may
then lead to more complex plans. For example, if the
main agent has money 50 Euros and it knows that
money 10 Dollars will be required, then some
kind of conversion action will need to be part of the
new plan.

The system we describe is not intended to be a
complete solution to the problem of ontology mis-
match. Rather, it is designed to provide a set of tools
for rening particular kinds of ontological mismatches
which can be expected to be frequently encountered.

2 Related Work
This work draws on many elds of research, including
work in planning, abstraction techniques and machine
learning. Of particular interest are the elds of belief
revision and ontology mapping. Considerable work has
been done in the related eld of Ontology Mapping,
surveyed by Kalfoglou and Schorlemmer [5]. This sub-
ject is explored in relation to Semantic Web Services in
[2] and [11]. The former has strong correlations to the
theory renement part of the task, but differs from the
main focus of our project, which centres on rening on-
tologies syntactically (signature renement) rather than
purely semantically (theory renement). The main dif-
ference with the latter is that ontology mapping usually
assumes that one has complete access to the ontologies
one is attempting to map, whereas we are attempting
this with the partial information that can be extracted
from plan failure and from putting specic questions to
other agents. We believe that in the kind of scenario we
are envisaging, where disparate agents are interacting
in a loosely controlled environment, it is not reason-
able to believe that agents will be either willing to or
capable of revealing their entire ontologies for others to
inspect. Rather, this information must be gathered by
putting precise questions to agents. Our work is there-
fore similar to this body of work as far as performing
renements are concerned, but the diagnosis aspects,
which are the central part of this project, are very dif-
ferent. As mentioned above, we do not claim to have
produced a general solution to the problem with which
we are dealing, but rather a system that can solve this
problem in certain situations. Likewise, there is no full
solution for automated general ontology mapping, and
the techniques used in this eld are not guaranteed to
be sufcient or complete.

3 Refinement System
Figure 1 illustrates the architecture of our system [7, 8].
There are four main aspects of this system: planning,
agent communication, diagnosis and renement imple-
mentation. Of these, the planning and agent commu-
nication systems are kept as simple as possible and are
both built, to some extent, on work by others. The plan-
ning system uses the FF planner, and the agent commu-
nication system is built on top of Linda, a Prolog agent
platform. The diagnosis and renement implementa-
tion systems are the focus of our work.

The ow of execution in our system is as follows:
1. The main agent sends its ontology, together with

the goal, to a planner.
2. The planner produces a plan for achieving the goal

which consists of a list of actions. This is sent, to-
gether with the original representation of the on-
tology, to a plan-deconstructor [9]. The purpose
of this component is to provide a justication for
each plan step, in the form of the underlying rule
for that step, together with a justication for each
of its preconditions. This is necessary so that



External Agents

3

PI Agent

Planning System

Diagnosis

Refinement

Deconstructor

Planner

5

42

1

Figure 1: Architecture and interaction of the dynamic
ontology renement system.

when plan failure occurs, this can be linked back
to the relevant area of the ontology.

3. The plan, annotated with a justication for each
step, is returned to the main agent and execution
begins. This execution occurs in an agent com-
munication system, where the main agent can lo-
cate the agents with which it needs to interact. If
failure occurs, the main agent can refer to the jus-
tication of that plan step and nd a general area
within the ontology where the error occurs. Fur-
ther agent communication is then used to diagnose
the precise ontology mismatch.

4. The diagnosis and information about how it
should be rened is passed to the renement sys-
tem. This system corrects the error and passes the
corrected part of the ontology back to the main
agent, which updates its ontology accordingly.

5. The process now begins again, with the main
agent forming plans on the basis of an ontology
which is likely to be more reliable.

The cycle will continue until the ontology is suf-
ciently accurate for the goal to be achieved.

3.1 Diagnosing the Problem
When the plan fails, the justication for the plan step
is referred to. This justication for an action contains
the rule that explains the action. Additionally, there
will be information as to why that rule should have
been applicable in the particular situation; that is, an
explanation as to why each of the preconditions was
believed to be true. The rule itself may be incorrect, or
any of the preconditions may be erroneously believed
to be true. If a precondition is not true, this may be a
representational (signature) problem: perhaps it has
the wrong name, the wrong arity, and so on, or it may
be a theory problem. If the rule is incorrect, this will
mean there is a problem either with the preconditions
of the rule or with its postconditions.

Much information can be obtained by observing
the point of failure, as illustrated in Figure 2. For
example, did failure occur immediately after a request
was made to another agent? Or did the other agent
put some queries to the main? If there were queries,
were any of them surprising? The main would expect
to be asked about some of its preconditions, so that
the other agent could verify that they were correct
before performing the action. However, the main
would not expect to be asked about anything that did
not exactly match one of its preconditions, thus such a
query would be deemed surprising. Analysing queries,
particularly surprising ones, can provide much infor-
mation about potential failure. If there were no queries,
then it is clearly not a response by the main that led
to failure. Perhaps the other agent had unexpected
preconditions that were not fullled, or preconditions
that the main shared that were not fullled; not all of
these will be veried through queries. If there were
queries that were expected, then the main�’s answer to
one of these was probably inadequate. If there were
surprising queries then perhaps there is a missing
precondition for the rule. Alternatively, this query may
be related in some way to a precondition, but differ
from it either from a signature point of view (incorrect
arity, naming, argument order, etc.), or from a theory
point of view (incorrectly instantiated).

3.2 Refinement Techniques
In order to develop rules for the kinds of renements
that might be necessary, we are considering the kinds
of changes that may have been made to the ontology.
We are assuming that changes to an ontology are
methodical and sensible and not random. So, for
example, detail may be added to a predicate by adding
an extra argument, or removed by amalgamating
several predicates into one supertype predicate. We
are assuming that names will be changed to a sub- or
supertype, or possibly a sibling type, but not randomly
to an unrelated name. We make these assumptions



Diagnositic Input:

Surprising Question List
Question List
Action,

Have any questions
been asked?

Diagnostic possiblities:

Preconditions falsely
believed to be fulfilled

Missing preconditions
Wrong agent contacted

Where any of these
questions surprising?

Analyse how replies
to expected questions
could have led to 

failure

Analyse how this
question is surprising

to an expected question
and whether it relates

YES NO

YES
NO

Figure 2: Diagnosis

because we believe that this is the approach that
most people will take to altering ontologies, and also
because this gives us a basis from which to develop our
system. The nature of the system, the fact that there
is an unlimited number of ways in which ontologies
may be altered, means that we cannot be sure that
we will be able to nd an appropriate renement. In
some situations, renement will be impossible. It
is, nevertheless, still worthwhile pursuing such an
approach, because it will enable renement in a large
number of situations where appropriate interaction
would otherwise prove impossible.

We have developed rules for generalising and
specialising an ontology, based on abstraction and
anti-abstraction techniques. These abstractions and
anti-abstractions are developed from the main types
of abstractions identied by Giunchiglia and Walsh in
their survey of abstractions [4]. In order to give a taste
of the kinds of techniques we are using, we outline
some of these below:

1. Predicate anti-abstractions
A single predicate is divided into some number of
sub-predicates:
e.g. (Money ?X) maps to (Dollars ?X),
(Euros ?X).

2. Domain anti-abstractions
Constants and function symbols are divided up
into different cases:
e.g. (Money ?X European) maps to (Money
?X Euros), (Money ?X Sterling).

3. Propositional anti-abstractions
Extra arguments are added to predicates:

e.g. (Money ?X) maps to (Money ?X
Dollars), (Money ?X Sterling).

4. Precondition anti-abstractions
Preconditions can be added to rules:
e.g. (At Station) (Can-buy Ticket)
maps to (Money ?X) (At Station)

(Can-buy Ticket)

Other kinds of errors we have identied include adding
new types and predicates, altering the type hierarchy
by adding new subtypes, supertypes or siblings, and
misordered arguments. In some cases there may be no
signature error: a fact may have the correct predicate
name, the correct type and order of arguments, and so
on, but simply be incorrect. In this case we use the
Shapiro Algorithm, based on Shapiro�’s work [10] on
detecting errors, to identify the cause of this. This will
involve chaining back through the justication to see
when this fact came to be believed. If it came to be
believed because it was a postcondition of a past rule,
we must investigate whether this rule is incorrect.

Of the four types or renement described above,
predicate and precondition anti-abstraction produce
no problems in theory renement. However, domain
and propositional anti-abstractions can be difcult to
implement in the theory, due to the uncertainty over
how to instantiate the extra or incorrect arguments.
Abstraction type renements produce far fewer prob-
lems with theory renement, since removing detail
from a theory is much less problematical than adding
detail to a theory.

4 Conclusions and Future Work
We have described a system that enables an agent to
patch its own ontology in order to successfully interact
with other agents who may have ontologies and
ontology representations that differ somewhat from its
own. We describe some of the types of renement that
we are able to diagnose and correct, and justify why
we expect these renements to cover a large number
of ontological mismatches.

A working system that can perform the tasks de-
scribed above is almost fully implemented. Most of
what has yet to be done is focused on communication
between the subsystems, which are themselves already
in place. This involves automated translation between
the different ontological representations required for
the various subsystems.

In order to demonstrate the applicability of this
system, we intend to identify several off-the-shelf
ontologies that have not been developed by us, run
agents using different versions of this ontology (where
updating of the ontology has gone on between ver-
sions), and show that they can use these techniques to
facilitate communication.



There is a great deal of future work that we would like
to explore with this system. An obvious improvement
would be to increase the range of ontological errors
that could be identied and patched, and to explore
the possibility of using this or a similar system
with different ontological representations. With any
representation that is as expressive as KIF (i.e. full
rst-order), we anticipate that this will be a fairly sim-
ple process, which would probably just involve some
translation. However, many popular representations
for agent ontologies, such as OWL, are considerably
less expressive. In such cases, we anticipate that
the theory behind how to identify and correct errors
would remain the same, but the kinds of renements
we would expect to encounter would be somewhat
different.

Another interesting avenue for future work would
be to introduce some way of remembering past
renements and using this information in making
deductions about future renements. This would
be very useful for problems such as identifying
anomalous agents, who differ more from other agents
than they do from each other: we may not want to
rene our ontology to match theirs. Also, we have
made the assumption in this system that the main
agent is always submissive and willing to change
its ontology to t in with others. It would be in-
teresting to explore a more sophisticated situation,
where the main agent was willing to adapt in some
situations and not in others; how it could be decided
between agents which one was the authority, and so on.

Finally, we have to some extent motivated the
project by discussing its relevance to the semantic
web. Although we believe that the theory behind the
system is indeed highly relevant to any situation where
disparate agents from different sources are attempting
to interact successfully, the system as it stands is prob-
ably not ready to be used directly on the semantic web,
mostly due to the ontological restrictions we place on
the agents with whom communication can take place
(for example, that they have KIF ontologies). We
would very much like to make the system more robust
and able to deal with a wider range of circumstances,
to create a system that can be used immediately in
situations such as those encountered on the semantic
web.

References
[1] Tim Berners-Lee, James Hendler, and Ora Las-

sila. The semantic web, May 2001. Scientic
American.

[2] Mark H. Burstein. Ontology mapping for dy-
namic service invocation on the semantic web.
In Proceedings of Semantic Web Services Sym-
posium, 2004 AAAI Spring Symposium Series,
March 2004.

[3] M. R. Genesereth and R. E. Fikes. Knowledge
Interchange Format, Version 3.0 Reference Man-
ual. Technical Report Logic-92-1, Stanford, CA,
USA, 1992.

[4] F. Giunchiglia and T. Walsh. A theory of abstrac-
tion. Artificial Intelligence, 56, 1992.

[5] Yannis Kalfoglou and Marco Schorlemmer. On-
tology mapping: the state of the art. The Knowl-
edge Engineering Review, 18:1:1�–31, 2003.

[6] Marja-Riitta Koivunen and Eric Miller. W3c
semantic web activity. In Proceedings of the
Semantic Web Kick-Off Seminar in Finland,
November 2001.

[7] F. McNeill, A. Bundy, and M. Schorlemmer. Dy-
namic ontology renement. In Proceedings of
ICAPS’03 Workshop on Plan Execution, Trento,
Italy, June 2003.

[8] F. McNeill, A. Bundy, and C. Walton. Diagnos-
ing and repairing ontological mismatches. In Pro-
ceedings of the second starting AI Researchers’
symposium, Valencia, Spain, August 2004.

[9] Fiona McNeill, Alan Bundy, Chris Walton, and
Marco Schorlemmer. Plan execution failure anal-
ysis using plan deconstruction, December 2003.
http://planning.cis.strath.ac.uk/plansig/index.php
?page=past22.

[10] Ehud Y. Shapiro. Algorithmic Program Debug-
ging. The MIT Press, 1982.

[11] Nuno Silva and Joao Rocha. Ontology mapping
for interoperability in semantic web. 2003.


