55 research outputs found

    Going hyperspectral: the 'unseen' captured?

    Get PDF
    All objects, name them soil, water, trees, vegetation, structures, metals, paints or fabrics, create a unique spectral fingerprint. A sensor determines these fingerprints by measuring reflected light, most of which registers in wavelengths, or bands, invisible to humans. This is what the crime scene investigation (CSI) television programs have popularized how DNA or fingerprints can be used to solve crimes. Similarly, forest CSI of “seeing” the trees in the deep high mountain tropical forest is now a major focus in the air and spaceborne hyperspectral sensing technology and in other different applications such as agriculture, environment, geology, transportation, security, and several others. The availability of sub-meter resolution colour imagery from satellites coupled with internet based services like Google Earth and Microsoft Virtual Earth have resulted in an enormous interest in remote sensing among the general public. The ability to see one’s home or familiar landmarks in an image taken from hundreds of kilometers above the earth elicits wonder and awe. Deciding where, when, what and how to sense or measure the DNA of individual trees from the air or space is a crucial question in the sustainable development and management of our Malaysian tropical forest ecosystems. However, to monitor, quantify, map and understand the content and nature of our forest, one would ideally like to monitor it everywhere and all the time too. This is impossible, and consequently, forest engineers must select relatively very high to high near to real time resolution sensors with the ability to transcend boundaries, capabilities, features and interfacing realms for such measurement. The dynamic interplay of these elements is precisely coordinated by signaling networks that orchestrate their interactions. High-throughput experimental and analytical techniques now provide forest engineers with incredibly rich and potentially revealing datasets from both air and spaceborne hyperspectral sensors (also known as imaging spectrometers). However, it is impossible to exhaustively explore the full experimental and operational hyperspectral sensors available in the market out there and so forest engineers must judiciously choose which one is the best to perform and fulfill their project objectives and missions. The complexity and high-dimensionality of these systems makes it incredibly difficult for forest engineers and other users alone to manage and optimize sensing processes. In order to add or derive value from a hyperspectral remotely sensed image several factors such as resolution, swath, and signal to noise ratio, amongst others need to be considered. A grand challenge for the forest engineer’s scientific discovery in the 21st Century is therefore, to devise very high real-time ultra-spatial and spectral air and space borne sensors that automatically measure and adapt sensing operations in large-scale and economical systems with the unseen captured. This lecture therefore focuses on the emerging theory, origin of the hyperspectral sensors, research, practice, limitations and identifies future challenge and outlook of hyperspectral sensing systems in the quest towards a sustainable Malaysian forestry context and other different applications to capture the “unseen”. It is quite certain that advances in hyperspectral remote sensing and more sophisticated analytical methods will resolve any “unseen” issues in time with the best approach of transcending boundaries and interfacing remote sensing data with precise information from the field plots. Unfortunately, as a relatively new analytical technique, the full potential of air and spaceborne hyperspectral imaging has not yet been realized in Malaysi

    Flaring and pollution detection in the Niger Delta using Remote Sensing

    Get PDF
    Merged with duplicate record 10026.1/6553 on 28.02.2017 by CS (TIS)Abstract Through the Global Gas Flaring Reduction (GGFR) initiative a substantial amount of effort and international attention has been focused on the reduction of gas flaring since 2002 (Elvidge et al., 2009). Nigeria is rated as the second country in the world for gas flaring, after Russia. In an attempt to reduce and eliminate gas flaring the federal government of Nigeria has implemented a number of gas flaring reduction projects, but poor governmental regulatory policies have been mostly unsuccessful in phasing it out. This study examines the effects of pollution from gas flaring using multiple satellite based sensors (Landsat 5 TM and Landsat 7 ETM+) with a focus on vegetation health in the Niger Delta. Over 131 flaring sites in all 9 states (Abia, Akwa Ibom, Bayelsa, Cross Rivers, Delta, Edo, Imo, Ondo and Rivers) of the Niger Delta region have been identified, out of which 11 sites in Rivers State were examined using a case study approach. Land Surface Temperature data were derived using a novel procedure drawing in visible band information to mask out clouds and identify appropriate emissivity values for different land cover types. In 2503 out of 3001 Landsat subscenes analysed, Land Surface Temperature was elevated by at least 1 ℃ within 450 m of the flare. The results from fieldwork, carried out at the Eleme Refinery II Petroleum Company and Onne Flow Station, are compared to the Landsat 5 TM and Landsat 7 ETM+ data. Results indicate that Landsat data can detect gas flares and their associated pollution on vegetation health with acceptable accuracy for both Land Surface Temperature (range: 0.120 to 1.907 K) and Normalized Differential Vegetation Index (sd ± 0.004). Available environmental factors such as size of facility, height of stack, and time were considered. Finally, the assessment of the impact of pollution on a time series analysis (1984 to 2013) of vegetation health shows a decrease in NDVI annually within 120 m from the flare and that the spatio-temporal variability of NDVI for each site is influenced by local factors. This research demonstrated that only 5 % of the variability in δLST and only 12 % of the variability in δNDVI, with distance from the flare stack, could be accounted for by the available variables considered in this study. This suggests that other missing factors (the gas flaring volume and vegetation speciation) play a significant role in the variability in δLST and δNDVI respectively

    Flow-3D CFD model of bifurcated open channel flow: setup and validation

    Get PDF
    Bifurcation is a morphological feature present in most of fluvial systems; where a river splits into two channels, each bearing a portion of the flow and sediments. Extensive theoretical studies of river bifurcations were performed to understand the nature of flow patterns at such diversions. Nevertheless, the complexity of the flow structure in the bifurcated channel has resulted in various constraints on physical experimentation, so computational modelling is required to investigate the phenomenon. The advantages of computational modelling compared with experimental research (e.g. simple variable control, reduced cost, optimize design condition etc.) are widely known. The great advancement of computer technologies and the exponential increase in power, memory storage and affordability of high-speed machines in the early 20th century led to evolution and wide application of numerical fluid flow simulations, generally referred to as Computational Fluid Dynamics {CFD). In this study, the open-channel flume with a lateral channel established by Momplot et al (2017) is modelled in Flow-3D. The original investigation on divided flow of equal widths as simulated in ANSYS Fluent and validated with velocity measurements

    YOUMARES 8 – Oceans Across Boundaries: Learning from each other

    Get PDF
    This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presenters’ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research

    Current Air Quality Issues

    Get PDF
    Air pollution is thus far one of the key environmental issues in urban areas. Comprehensive air quality plans are required to manage air pollution for a particular area. Consequently, air should be continuously sampled, monitored, and modeled to examine different action plans. Reviews and research papers describe air pollution in five main contexts: Monitoring, Modeling, Risk Assessment, Health, and Indoor Air Pollution. The book is recommended to experts interested in health and air pollution issues

    YOUMARES 8 – Oceans Across Boundaries: Learning from each other

    Get PDF
    This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presenters’ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research

    Socio-economic Impacts—Fisheries

    Get PDF
    Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly

    YOUMARES 9 - The Oceans: Our Research, Our Future

    Get PDF
    This open access book summarizes peer-reviewed articles and the abstracts of oral and poster presentations given during the YOUMARES 9 conference which took place in Oldenburg, Germany, in September 2018. The aims of this book are to summarize state-of-the-art knowledge in marine sciences and to inspire scientists of all career stages in the development of further research. These conferences are organized by and for young marine researchers. Qualified early-career researchers, who moderated topical sessions during the conference, contributed literature reviews on specific topics within their research field
    corecore