544 research outputs found

    Induction Motor Stator Faults Diagnosis by a Current Concordia Pattern Based Fuzzy Decision System

    No full text
    International audienceThis paper deals with the problem of detection and diagnosis of induction motor faults. Using the fuzzy logic strategy, a better understanding of heuristics underlying the motor faults detection and diagnosis process can be achieved. The proposed fuzzy approach is based on the stator current Concordia patterns. Induction motor stator currents are measured, recorded and used for Concordia patterns computation under different operating conditions, particularly for different load levels. Experimental results are presented in terms of accuracy in the detection motor faults and knowledge extraction feasibility. The preliminary results show that the proposed fuzzy approach can be used for accurate stator fault diagnosis if the input data are processed in an advantageous way, which is the case of the Concordia patterns

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Induction Motor Bearing Failure Detection and Diagnosis: Park and Concordia Transform Approaches Comparative Study

    No full text
    International audienceThis paper dealswith the problem of bearing failure detection and diagnosis in induction motors. Indeed, bearing deterioration is now the main cause of induction motor rotor failures. In this context, two fault detection and diagnosis techniques, namely the Park transform approach and the Concordia transform, are briefly presented and compared. Experimental tests, on a 0.75 kW two-pole induction motor with artificial bearing damage, outline the main features of the aforementioned approaches for small- and medium-size induction motors bearing failure detection and/or diagnosis

    Induction Machine Diagnosis using Stator Current Advanced Signal Processing

    No full text
    International audienceInduction machines are widely used in industrial applications. Safety, reliability, efficiency and performance are major concerns that direct the research activities in the field of electrical machines. Even though the induction machines are very reliable, many failures can occur such as bearing faults, air-gap eccentricity and broken rotor bars. Therefore, the challenge is to detect them at an early stage in order to prevent breakdowns. In particular, stator current-based condition monitoring is an extensively investigated field for cost and maintenance savings. In fact, several signal processing techniques for stator current-based induction machine faults detection have been studied. These techniques can be classified into: spectral analysis approaches, demodulation techniques and time-frequency representations. In addition, for diagnostic purposes, more sophisticated techniques are required in order to determine the faulty components. This paper intends to review the spectral analysis techniques and time-frequency representations. These techniques are demonstrated on experimental data issued from a test bed equipped with a 0.75 kW induction machine. Nomenclature O&M = Operation and Maintenance; WTG = Wind Turbine Generator; MMF = Magneto-Motive Force; MCSA = Motor Current signal Analysis; PSD = Power Spectral Density; FFT = Fast Fourier Transform; DFT = Discrete Fourier Transform; MUSIC = MUltiple SIgnal Characterization; ESPRIT = Estimation of Signal Parameters via Rotational Invariance Techniques; SNR = Signal to Noise Ratio; MLE = Maximum Likelihood Estimation; STFT = Short-Time Fourier Transform; CWT = Continuous Wavelet Transform; WVD = Wigner-Ville distribution; HHT = Hilbert-Huang Transform; DWT = Discrete Wavelet Transform; EMD = Empirical Mode Decomposition; IMF = Intrinsic Mode Function; AM = Amplitude Modulation; FM = Frequency Modulation; IA = Instantaneous Amplitude; IF = Instantaneous Frequency; í µí± ! = Supply frequency; í µí± ! = Rotational frequency; í µí± ! = Fault frequency introduced by the modified rotor MMF; í µí± ! = Characteristic vibration frequencies; í µí± !"# = Bearing defects characteristic frequency; í µí± !" = Bearing outer raceway defect characteristic frequency; í µí± !" = Bearing inner raceway defect characteristic frequency; í µí± !" = Bearing balls defect characteristic frequency; í µí± !"" = Eccentricity characteristic frequency; í µí± ! = Number of rotor bars or rotor slots; í µí± = Slip; í µí°¹ ! = Sampling frequency; í µí± = Number of samples; í µí±¤[. ] = Time-window (Hanning, Hamming, etc.); í µí¼ = Time-delay; í µí¼ ! = Variance; ℎ[. ] = Time-window

    An Assessment on the Non-Invasive Methods for Condition Monitoring of Induction Motors

    Get PDF
    The ability to forecast motor mechanical faults at incipient stages is vital to reducing maintenance costs, operation downtime and safety hazards. This paper synthesized the progress in the research and development in condition monitoring and fault diagnosis of induction motors. The motor condition monitoring techniques are mainly classified into two categories that are invasive and non-invasive techniques. The invasive techniques are very basic, but they have some implementation difficulties and high cost. The non-invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associated to invasive methods. This book chapter reviews the various non-invasive condition monitoring methods for diagnosis of mechanical faults in induction motor and concludes that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are best suitable for the diagnosis of small fault signatures associated to mechanical faults. Recommendations for the future research in these areas are also presented

    Estimation of bearing fault severity in line-connected and inverter-fed three-phase induction motors

    Get PDF
    Producción CientíficaThis paper addresses a comprehensive evaluation of a bearing fault evolution and its consequent prediction concerning the remaining useful life. The proper prediction of bearing faults in their early stage is a crucial factor for predictive maintenance and mainly for the production management schedule. The detection and estimation of the progressive evolution of a bearing fault are performed by monitoring the amplitude of the current signals at the time domain. Data gathered from line-fed and inverter-fed three-phase induction motors were used to validate the proposed approach. To assess classification accuracy and fault estimation, the models described in this paper are investigated by using Artificial Neural Networks models. The paper also provides process flowcharts and classification tables to present the prognostic models used to estimate the remaining useful life of a defective bearing. Experimental results confirmed the method robustness and provide an accurate diagnosis regardless of the bearing fault stage, motor speed, load level, and type of supply.CAPES (process BEX552269/2011-5)National Council for Scientific and Technological Development (grant #474290/2008-3, #473576/2011-2, #552269/2011-5, #307220/2016-8

    Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Recently, research concerning electrical machines and drives condition monitoring and fault diagnosis has experienced extraordinarily dynamic activity. The increasing importance of these energy conversion devices and their widespread use in uncountable applications have motivated significant research efforts. This paper presents an analysis of the state of the art in this field. The analyzed contributions were published in most relevant journals and magazines or presented in either specific conferences in the area or more broadly scoped events.Riera-Guasp, M.; Antonino-Daviu, J.; Capolino, G. (2015). Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Transactions on Industrial Electronics. 62(3):1746-1759. doi:10.1109/TIE.2014.2375853S1746175962

    State of the art and trends in the monitoring, detection and diagnosis of failures in electric induction motors

    Get PDF
    Producción CientíficaDespite the complex mathematical models and physical phenomena on which it is based, the simplicity of its construction, its affordability, the versatility of its applications and the relative ease of its control have made the electric induction motor an essential element in a considerable number of processes at the industrial and domestic levels, in which it converts electrical energy into mechanical energy. The importance of this type of machine for the continuity of operation, mainly in industry, is such that, in addition to being an important part of the study programs of careers related to this branch of electrical engineering, a large number of investigations into monitoring, detecting and quickly diagnosing its incipient faults due to a variety of factors have been conducted. This bibliographic research aims to analyze the conceptual aspects of the first discoveries that served as the basis for the invention of the induction motor, ranging from the development of the Fourier series, the Fourier transform mathematical formula in its different forms and the measurement, treatment and analysis of signals to techniques based on artificial intelligence and soft computing. This research also includes topics of interest such as fault types and their classification according to the engine, software and hardware parts used and modern approaches or maintenance strategies

    Induction Machine Stator Fault Tracking using the Growing Curvilinear Component Analysis

    Get PDF
    Detection of stator-based faults in Induction Machines (IMs) can be carried out in numerous ways. In particular, the shorted turns in stator windings of IM are among the most common faults in the industry. As a matter of fact, most IMs come with pre-installed current sensors for the purpose of control and protection. At this aim, using only the stator current for fault detection has become a recent trend nowadays as it is much cheaper than installing additional sensors. The three-phase stator current signatures have been used in this study to observe the effect of stator inter-turn fault with respect to the healthy condition of the IM. The pre-processing of the healthy and faulty current signatures has been done via the in-built DSP module of dSPACE after which, these current signatures are passed into the MATLAB® software for further analysis using AI techniques. The authors present a Growing Curvilinear Component Analysis (GCCA) neural network that is capable of detecting and follow the evolution of the stator fault using the stator current signature, making online fault detection possible. For this purpose, a topological manifold analysis is carried out to study the fault evolution, which is a fundamental step for calibrating the GCCA neural network. The effectiveness of the proposed method has been verified experimentally
    corecore