926 research outputs found

    Voice pathologies : the most comum features and classification tools

    Get PDF
    Speech pathologies are quite common in society, however the exams that exist are invasive, making them uncomfortable for patients and depending on the experience of the clinician who performs the assessment. Hence the need to develop non-invasive methods, which allow objective and efficient analysis. Taking this need into account in this work, the most promising list of features and classifiers was identified. As features, jitter, shimmer, HNR, LPC, PLP, and MFCC were identified and as classifiers CNN, RNN and LSTM. This study intends to develop a device to support medical decision, however this article already presents the system interface.info:eu-repo/semantics/publishedVersio

    Cry-Based Classification of Healthy and Sick Infants Using Adapted Boosting Mixture Learning Method for Gaussian Mixture Models

    Get PDF
    We make use of information inside infant’s cry signal in order to identify the infant’s psychological condition. Gaussian mixture models (GMMs) are applied to distinguish between healthy full-term and premature infants, and those with specific medical problems available in our cry database. Cry pattern for each pathological condition is created by using adapted boosting mixture learning (BML) method to estimate mixture model parameters. In the first experiment, test results demonstrate that the introduced adapted BML method for learning of GMMs has a better performance than conventional EM-based reestimation algorithm as a reference system in multipathological classification task. This newborn cry-based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a feature vector for cry patterns of newborn infants. In binary classification experiment, the system discriminated a test infant’s cry signal into one of two groups, namely, healthy and pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% and a true negative rate of 86.96% which show the ability of the system to correctly identify healthy and diseased infants, respectively

    Detección automática de la enfermedad de Parkinson usando componentes moduladoras de señales de voz

    Get PDF
    Parkinson’s Disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. This disorder mainly affects older adults at a rate of about 2%, and about 89% of people diagnosed with PD also develop speech disorders. This has led scientific community to research information embedded in speech signal from Parkinson’s patients, which has allowed not only a diagnosis of the pathology but also a follow-up of its evolution. In recent years, a large number of studies have focused on the automatic detection of pathologies related to the voice, in order to make objective evaluations of the voice in a non-invasive manner. In cases where the pathology primarily affects the vibratory patterns of vocal folds such as Parkinson’s, the analyses typically performed are sustained over vowel pronunciations. In this article, it is proposed to use information from slow and rapid variations in speech signals, also known as modulating components, combined with an effective dimensionality reduction approach that will be used as input to the classification system. The proposed approach achieves classification rates higher than 88  %, surpassing the classical approach based on Mel Cepstrals Coefficients (MFCC). The results show that the information extracted from slow varying components is highly discriminative for the task at hand, and could support assisted diagnosis systems for PD.La Enfermedad de Parkinson (EP) es el segundo trastorno neurodegenerativo más común después de la enfermedad de Alzheimer. Este trastorno afecta principalmente a los adultos mayores con una tasa de aproximadamente el 2%, y aproximadamente el 89% de las personas diagnosticadas con EP también desarrollan trastornos del habla. Esto ha llevado a la comunidad científica a investigar información embebida en las señales de voz de pacientes diagnosticados con la EP, lo que ha permitido no solo un diagnóstico de la patología sino también un seguimiento de su evolución. En los últimos años, una gran cantidad de estudios se han centrado en la detección automática de patologías relacionadas con la voz, a fin de realizar evaluaciones objetivas de manera no invasiva. En los casos en que la patología afecta principalmente los patrones vibratorios de las cuerdas vocales como el Parkinson, los análisis que se realizan típicamente sobre grabaciones de vocales sostenidas. En este artículo, se propone utilizar información de componentes con variación lenta de las señales de voz, también conocidas como componentes de modulación, combinadas con un enfoque efectivo de reducción de dimensiónalidad que se utilizará como entrada al sistema de clasificación. El enfoque propuesto logra tasas de clasificación superiores al 88  %, superando el enfoque clásico basado en los Coeficientes Cepstrales de Mel (MFCC). Los resultados muestran que la información extraída de componentes que varían lentamente es altamente discriminatoria para el problema abordado y podría apoyar los sistemas de diagnóstico asistido para EP

    Intra- and Inter-database Study for Arabic, English, and German Databases:Do Conventional Speech Features Detect Voice Pathology?

    Get PDF
    A large population around the world has voice complications. Various approaches for subjective and objective evaluations have been suggested in the literature. The subjective approach strongly depends on the experience and area of expertise of a clinician, and human error cannot be neglected. On the other hand, the objective or automatic approach is noninvasive. Automatic developed systems can provide complementary information that may be helpful for a clinician in the early screening of a voice disorder. At the same time, automatic systems can be deployed in remote areas where a general practitioner can use them and may refer the patient to a specialist to avoid complications that may be life threatening. Many automatic systems for disorder detection have been developed by applying different types of conventional speech features such as the linear prediction coefficients, linear prediction cepstral coefficients, and Mel-frequency cepstral coefficients (MFCCs). This study aims to ascertain whether conventional speech features detect voice pathology reliably, and whether they can be correlated with voice quality. To investigate this, an automatic detection system based on MFCC was developed, and three different voice disorder databases were used in this study. The experimental results suggest that the accuracy of the MFCC-based system varies from database to database. The detection rate for the intra-database ranges from 72% to 95%, and that for the inter-database is from 47% to 82%. The results conclude that conventional speech features are not correlated with voice, and hence are not reliable in pathology detection

    An Investigation of Multidimensional Voice Program Parameters in Three Different Databases for Voice Pathology Detection and Classification

    Get PDF
    Background and Objective Automatic voice-pathology detection and classification systems may help clinicians to detect the existence of any voice pathologies and the type of pathology from which patients suffer in the early stages. The main aim of this paper is to investigate Multidimensional Voice Program (MDVP) parameters to automatically detect and classify the voice pathologies in multiple databases, and then to find out which parameters performed well in these two processes. Materials and Methods Samples of the sustained vowel /a/ of normal and pathological voices were extracted from three different databases, which have three voice pathologies in common. The selected databases in this study represent three distinct languages: (1) the Arabic voice pathology database; (2) the Massachusetts Eye and Ear Infirmary database (English database); and (3) the Saarbruecken Voice Database (German database). A computerized speech lab program was used to extract MDVP parameters as features, and an acoustical analysis was performed. The Fisher discrimination ratio was applied to rank the parameters. A t test was performed to highlight any significant differences in the means of the normal and pathological samples. Results The experimental results demonstrate a clear difference in the performance of the MDVP parameters using these databases. The highly ranked parameters also differed from one database to another. The best accuracies were obtained by using the three highest ranked MDVP parameters arranged according to the Fisher discrimination ratio: these accuracies were 99.68%, 88.21%, and 72.53% for the Saarbruecken Voice Database, the Massachusetts Eye and Ear Infirmary database, and the Arabic voice pathology database, respectively

    Application of Pattern Recognition Techniques to the Classification of Full-Term and Preterm Infant Cry

    Get PDF
    Objectives: Scientific and clinical advances in perinatology and neonatology have enhanced the chances of survival of preterm and very low weight neonates. Infant cry analysis is a suitable noninvasive complementary tool to assess the neurologic state of infants particularly important in the case of preterm neonates. This article aims at exploiting differences between full-term and preterm infant cry with robust automatic acoustical analysis and data mining techniques. Study design: Twenty-two acoustical parameters are estimated in more than 3000 cry units from cry recordings of 28 full-term and 10 preterm newborns. Methods: Feature extraction is performed through the BioVoice dedicated software tool, developed at the Biomedical Engineering Lab, University of Firenze, Italy. Classification and pattern recognition is based on genetic algorithms for the selection of the best attributes. Training is performed comparing four classifiers: Logistic Curve, Multilayer Perceptron, Support Vector Machine, and Random Forest and three different testing options: full training set, 10-fold cross-validation, and 66% split. Results: Results show that the best feature set is made up by 10 parameters capable to assess differences between preterm and full-term newborns with about 87% of accuracy. Best results are obtained with the Random Forest method (receiver operating characteristic area, 0.94). Conclusions: These 10 cry features might convey important additional information to assist the clinical specialist in the diagnosis and follow-up of possible delays or disorders in the neurologic development due to premature birth in this extremely vulnerable population of patients. The proposed approach is a first step toward an automatic infant cry recognition system for fast and proper identification of risk in preterm babies
    • …
    corecore