589 research outputs found

    Delay test for diagnosis of power switches

    Get PDF
    Power switches are used as part of power-gating technique to reduce leakage power of a design. To the best of our knowledge, this is the first work in open-literature to show a systematic diagnosis method for accurately diagnosingpower switches. The proposed diagnosis method utilizes recently proposed DFT solution for efficient testing of power switches in the presence of PVT variation. It divides power switches into segments such that any faulty power switch is detectable thereby achieving high diagnosis accuracy. The proposed diagnosis method has been validated through SPICE simulation using a number of ISCAS benchmarks synthesized with a 90-nm gate library. Simulation results show that when considering the influence of process variation, the worst case loss of accuracy is less than 4.5%; and the worst case loss of accuracy is less than 12% when considering VT (Voltage and Temperature) variations

    Leakage Current Analysis for Diagnosis of Bridge Defects in Power-Gating Designs

    Get PDF
    Manufacturing defects that do not affect the functional operation of low power Integrated Circuits (ICs) can nevertheless impact their power saving capability. We show that stuck-ON faults on the power switches and resistive bridges between the power networks can impair the power saving capability of power-gating designs. For quantifying the impact of such faults on the power savings of power-gating designs, we propose a diagnosis technique that targets bridges between the power networks. The proposed technique is based on the static power analysis of a power-gating design in stand-by mode and it utilizes a novel on-chip signature generation unit, which is sensitive to the voltage level between power rails, the measurements of which are processed off-line for the diagnosis of bridges that can adversely affect power savings. We explore, through SPICE simulation of the largest IWLS’05 benchmarks synthesised using a 32 nm CMOS technology, the trade-offs achieved by the proposed technique between diagnosis accuracy and area cost and we evaluate its robustness against process variation. The proposed technique achieves a diagnosis resolution that is higher than 98.6% and 97.9% for bridges of R ≳ 10MΩ(weak bridges) and bridges of R ≲ 10MΩ (strong bridges), respectively, and a diagnosis accuracy higher than 94.5% for all the examined defects. The area overhead is small and scalable: it is found to be 1.8% and 0.3% for designs with 27K and 157K gate equivalents, respectively

    Scan-Chain Intra-Cell Aware Testing

    Get PDF
    This paper first presents an evaluation of the effectiveness of different test pattern sets in terms of ability to detect possible intra-cell defects affecting the scan flip-flops. The analysis is then used to develop an effective test solution to improve the overall test quality. As a major result, the paper demonstrates that by combining test vectors generated by a commercial ATPG to detect stuck-at and delay faults, plus a fragment of extra test patterns generated to specifically target the escaped defects, we can obtain a higher intra-cell defect coverage (i.e., 6.46% on average) and a shorter test time (i.e., 42.20% on average) than by straightforwardly using an ATPG which directly targets these defects

    Evaluation of backtracing based diagnosis algorithms

    Get PDF
    With the growing size and complexity of modern circuits, more algorithms are being developed nowadays for efficient fault diagnosis. Backtracing based diagnosis algorithms are effect-cause approaches that start from the failing outputs of the circuit and try to diagnose fault locations by backtracing lines toward the circuit inputs. In this thesis, general functionality was extracted between backtracing based diagnosis algorithms and implemented as an extension to an existing diagnosis framework. Furthermore, a simple graphical user interface was developed for the extended framework. The extended framework aims at facilitating the implementation and evaluation of different backtracing based diagnosis algorithms. In order to demonstrate its powerfulness, two modern backtracing based diagnosis algorithms were implemented on top of the extended framework. A number of diagnosis experiments on benchmark circuits was carried out in order to evaluate the two implemented algorithms. The experimental tools used and the results obtained are presented

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    Intermittent turn-to-turn winding faults diagnosis in power transformers by the on-load exciting current Park's Vector Approach

    Get PDF
    This paper presents the application of the on-load exciting current Park's vector approach for diagnosing permanent and intermittent turn-to-turn winding faults in operating power transformers. A digital model for the simulation of the behavior of three-phase transformers affected by the presence of winding faults is also proposed. Experimental and simulated results demonstrate the effectiveness of the proposed diagnostic technique, which is based on the on-line monitoring of the on-load exciting current Park's Vector patterns

    EMD/HT-based local fault detection in DC microgrid clusters

    Get PDF

    An efficient logic fault diagnosis framework based on effect-cause approach

    Get PDF
    Fault diagnosis plays an important role in improving the circuit design process and the manufacturing yield. With the increasing number of gates in modern circuits, determining the source of failure in a defective circuit is becoming more and more challenging. In this research, we present an efficient effect-cause diagnosis framework for combinational VLSI circuits. The framework consists of three stages to obtain an accurate and reasonably precise diagnosis. First, an improved critical path tracing algorithm is proposed to identify an initial suspect list by backtracing from faulty primary outputs toward primary inputs. Compared to the traditional critical path tracing approach, our algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to rank the suspects so that the most suspicious one will be ranked at or near the top. Several fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis, fault simulation is performed on the top suspect nets using several common fault models. The difference between the observed faulty behavior and the simulated behavior is used to rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this diagnosis approach is efficient both in terms of memory space and CPU time and the diagnosis results are accurate and reasonably precise
    corecore