611 research outputs found

    Energy Efficiency and Sum Rate when Massive MIMO meets Device-to-Device Communication

    Full text link
    This paper considers a scenario of short-range communication, known as device-to-device (D2D) communication, where D2D users reuse the downlink resources of a cellular network to transmit directly to their corresponding receivers. In addition, multiple antennas at the base station (BS) are used in order to simultaneously support multiple cellular users using multiuser or massive MIMO. The network model considers a fixed number of cellular users and that D2D users are distributed according to a homogeneous Poisson point process (PPP). Two metrics are studied, namely, average sum rate (ASR) and energy efficiency (EE). We derive tractable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas and density of D2D users for a given coverage area.Comment: 6 pages, 7 figures, to be presented at the IEEE International Conference on Communications (ICC) Workshop on Device-to-Device Communication for Cellular and Wireless Networks, London, UK, June 201

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Energy Efficiency and Sum Rate Tradeoffs for Massive MIMO Systems with Underlaid Device-to-Device Communications

    Full text link
    In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple-output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.Comment: 30 pages, 10 figures, Submitte

    On the hopping pattern design for D2D discovery with invariant

    Full text link
    In this paper, we focus on the hopping pattern design for device-to-device (D2D) discovery. The requirements of hopping pattern is discussed, where the impact of specific system constraints, e.g., frequency hopping, is also taken into consideration. Specifically speaking, we discover and utilize the novel feature of resource hopping, i.e., "hopping invariant" to design four new hopping patterns and analyze their performance. The hopping invariant can be used to deliver information for specific users without extra radio resources, and due to the connection between hopping invariant and resource location, receiver complexity can be significantly reduced. Furthermore, our schemes are designed to be independent of discovery frame number, which makes them more suitable to be implemented in practical systems
    corecore