303 research outputs found

    Dynamic calibration of current-steering DAC

    Get PDF
    The demand for high-speed communication systems has dramatically increased during the last decades. Working as an interface between the digital and analog world, Digital-to-Analog converters (DACs) are becoming more and more important because they are a key part which limits the accuracy and speed of an overall system. Consequently, the requirements for high-speed and high-accuracy DACs are increasingly demanding. It is well recognized that dynamic performance of the DACs degrades dramatically with increasing input signal frequencies and update rates. The dynamic performance is often characterized by the spurious free dynamic range (SFDR). The SFDR is determined by the spectral harmonics, which are attributable to system nonlinearities.;A new calibration approach is presented in this thesis that compensates for the dynamic errors in performance. In this approach, the nonlinear components of the input dependent and previous input code dependent errors are characterized, and correction codes that can be used to calibrate the DAC for these nonlinearities are stored in a two-dimensional error look-up table. A series of pulses is generated at run time by addressing the error look-up table with the most significant bits of the Boolean input and by using the corresponding output to drive a calibration DAC whose output is summed with the original DAC output. The approach is applied at both the behavioral level and the circuit level in current-steering DAC.;The validity of this approach is verified by simulation. These simulations show that the dynamic nonlinearities can be dramatically reduced with this calibration scheme. The simulation results also show that this calibration approach is robust to errors in both the width and height of calibration pulses.;Experimental measurement results are also provided for a special case of this dynamic calibration algorithm that show that the dynamic performance can be improved through dynamic calibration, provided the mean error values in the table are close to their real values

    Digital Beamforming Applications and Demonstrations of an RF System-on-a-Chip

    Get PDF
    EM phased array system bandwidth is conventionally constrained by the use of phase shifters for beamsteering, which results in beam squint and pulse dispersion of wideband signals. Wideband antenna performance can be achieved through the use of element-level true time delay (TTD) units, but this is often impractical due to the complexities associated with TTD analog devices. The continued improvement of high-speed analog-to-digital converters (ADC) and digital-to-analog converters (DAC) places digital signal conversion at the element level. This allows TTD beamsteering to be accomplished digitally via a combination of integer-sample delays and fractional-sample delay finite impulse response (FIR) filters, enabling support for wideband communication and radar imaging operating modes. As phased array systems rely on matched channel characteristics, accurate system calibration is paramount for optimum performance. Narrowband systems which implement beamforming via attenuators and phase shifters often employ lookup tables (LUT) containing a set of correction commands to be superimposed on the desired steering operation. These are commonly dependent on current and desired system characteristics, such as operating frequency, steering direction, power level, and/or temperature conditions. In contrast, wideband systems require higher fidelity compensation techniques capable of correcting imbalanced and dispersive channel effects from element-level electronics. This dissertation examines deterministic and adaptive beamforming techniques and provides solutions to the aforementioned challenges by contributing the development and demonstration of a wideband digital beamformer with equalization on an RF system-on-a-chip (RFSoC). Performance metrics of the testbed match or exceed current publications of RFSoC based demonstrations. The RFSoC is a unique, state-of-the-art, highly integrated device that incorporates a field programmable gate array (FPGA), high speed ADCs and DACs with a system-on-a-chip (SOC) architecture onto the same silicon fabric. As much of the digital and analog RF circuitry is now integrated into a single package, these devices are revolutionizing radar and communication systems, reshaping phased array system design strategies. This enabling technology facilitates the development of compact all-digital arrays, massively increasing the available degrees of freedom in system control, a paradigm shift in industry and engineering communities. The beamformer testbed is demonstrated on a sub-Nyquist-sampled 1.6 GHz S-band phased array system implemented using a Xilinx 8-channel 4 GSPS RFSoC. To enable TTD digital beamsteering, each channel is compensated via a conjugate symmetric fractional-sample delay FIR filter bank. By modifying the TTD filter structure to support complex coefficients, channel equalization is integrated with the fractional-sample delays to compensate undesired channel characteristics. To confirm the efficacy of this approach, results are provided for uncalibrated and calibrated system operation. Anechoic chamber measurements are presented as well as the FPGA floorplans showing RFSoC device utilization for both uncalibrated and calibrated configurations

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Modeling Approaches for Active Antenna Transmitters

    Get PDF
    The rapid growth of data traffic in mobile communications has attracted interest to Multiple-Input-Multiple-Output (MIMO) communication systems at millimeter-wave (mmWave) frequencies. MIMO systems exploit active antenna arrays transmitter configurations to obtain higher energy efficiency and beamforming flexibility. The analysis of transmitters in MIMO systems becomes complex due to the close integration of several antennas and power amplifiers (PAs) and the problems associated with heat dissipation. Therefore, the transmitter analysis requires efficient joint EM, circuit, and thermal simulations of its building blocks, i.e., the antenna array and PAs. Due to small physical spacing at mmWave, bulky isolators cannot be used to eliminate unwanted interactions between PA and antenna array. Therefore, the mismatch and mutual coupling in the antenna array directly affect PA output load and PA and transmitter performance. On the other hand, PAs are the primary source of nonlinearity, power consumption, and heat dissipation in transmitters. Therefore, it is crucial to include joint thermal and electrical behavior of PAs in analyzing active antenna transmitters. In this thesis, efficient techniques for modeling active antenna transmitters are presented. First, we propose a hardware-oriented transmitter model that considers PA load-dependent nonlinearity and the coupling, mismatch, and radiated field of the antenna array. The proposed model is equally accurate for any mismatch level that can happen at the PA output. This model can predict the transmitter radiation pattern and nonlinear signal distortions in the far-field. The model\u27s functionality is verified using a mmWave active subarray antenna module for a beam steering scenario and by performing the over-the-air measurements. The load-pull modeling idea was also applied to investigate the performance of a mmWave spatial power combiner module in the presence of critical coupling effects on combining performance. The second part of the thesis deals with thermal challenges in active antenna transmitters and PAs as the main source of heat dissipation. An efficient electrothermal modeling approach that considers the thermal behavior of PAs, including self-heating and thermal coupling between the IC hot spots, coupled with the electrical behavior of PA, is proposed. The thermal model has been employed to evaluate a PA DUT\u27s static and dynamic temperature-dependent performance in terms of linearity, gain, and efficiency. In summary, the proposed modeling approaches presented in this thesis provide efficient yet powerful tools for joint analysis of complex active antenna transmitters in MIMO systems, including sub-systems\u27 behavior and their interactions

    Smart and high-performance digital-to-analog converters with dynamic-mismatch mapping

    Get PDF
    The trends of advanced communication systems, such as the high data rate in multi-channel base-stations and digital IF conversion in software-defined radios, have caused a continuously increasing demand for high performance interface circuits between the analog and the digital domain. A Digital-to-Analog converter (DAC) is such an interface circuit in the transmitter path. High bandwidth, high linearity and low noise are the main design challenges in high performance DACs. Current-steering is the most suitable architecture to meet these performance requirements. The aim of this thesis is to develop design techniques for high-speed high-performance Nyquist current-steering DACs, especially for the design of DACs with high dynamic performance, e.g. high linearity and low noise. The thesis starts with an introduction to DACs in chapter 2. The function in time/frequency domain, performance specifications, architectures and physical implementations of DACs are brie y discussed. Benchmarks of state-of-the-art published Nyquist DACs are also given. Chapter 3 analyzes performance limitations by various error sources in Nyquist current-steering DACs. The outcome shows that in the frequency range of DC to hundreds of MHz, mismatch errors, i.e. amplitude and timing errors, dominate the DAC linearity. Moreover, as frequencies increase, the effect of timing errors becomes more and more dominant over that of amplitude errors. Two new parameters, i.e. dynamic-INL and dynamic-DNL, are proposed to evaluate the matching of current cells. Compared to the traditional static-INL/DNL, the dynamic-INL/DNL can describe the matching between current cells more accurately and completely. By reducing the dynamic-INL/DNL, the non-linearities caused by all mismatch errors can be reduced. Therefore, both the DAC static and dynamic performance can be improved. The dynamic-INL/DNL are frequency-dependent parameters based on the measurement modulation frequency fm. This fm determines the weight between amplitude and timing errors in the dynamic-INL/DNL. Actually, this gives a freedom to optimize the DAC performance for different applications, e.g. low fm for low frequency applications and high fm for high frequency applications. Chapter 4 summarizes the existing design techniques for intrinsic and smart DACs. Due to technology limitations, it is diffcult to reduce the mismatch errors just by intrinsic DAC design with reasonable chip area and power consumption. Therefore, calibration techniques are required. An intrinsic DAC with calibration is called a smart DAC. Existing analog calibration techniques mainly focus on current source calibration, so that the amplitude error can be reduced. Dynamic element matching is a kind of digital calibration technique. It can reduce the non-linearities caused by all mismatch errors, but at the cost of an increased noise oor. Mapping is another kind of digital calibration technique and will not increase the noise. Mapping, as a highly digitized calibration technique, has many advantages. Since it corrects the error effects in the digital domain, the DAC analog core can be made clean and compact, which reduces the parasitics and the interference generated in the analog part. Traditional mapping is static-mismatch mapping, i.e. mapping only for amplitude errors, which many publications have already addressed on. Several concepts have also been proposed on mapping for timing errors. However, just mapping for amplitude or timing error is not enough to guarantee a good performance. This work focuses on developing mapping techniques which can correct both amplitude and timing errors at the same time. Chapter 5 introduces a novel mapping technique, called dynamic-mismatch mapping (DMM). By modulating current cells as square-wave outputs and measuring the dynamic-mismatch errors as vectors, DMM optimizes the switching sequence of current cells based on dynamic-mismatch error cancelation such that the dynamic-INL can be reduced. After reducing the dynamic-INL, the non-linearities caused by both amplitude and timing errors can be significantly reduced in the whole Nyquist band, which is confirmed by Matlab behavioral-level Monte-Carlo simulations. Compared to traditional static-mismatch mapping (SMM), DMM can reduce the non-linearities caused by both amplitude and timing errors. Compared to dynamic element matching (DEM), DMM does not increase the noise floor. The dynamic-mismatch error has to be accurately measured in order to gain the maximal benefit from DMM. An on-chip dynamic-mismatch error sensor based on a zero-IF receiver is proposed in chapter 6. This sensor is especially designed for low 1/f noise since the signal is directly down-converted to DC. Its signal transfer function and noise analysis are also given and con??rmed by transistor-level simulations. Chapter 7 gives a design example of a 14-bit current-steering DAC in 0.14mum CMOS technology. The DAC can be configured in an intrinsic-DAC mode or a smart-DAC mode. In the intrinsic-DAC mode, the 14-bit 650MS/s intrinsic DAC core achieves a performance of SFDR>65dBc across the whole 325MHz Nyquist band. In the smart-DAC mode, compared to the intrinsic DAC performance, DMM improves the DAC performance in the whole Nyquist band, providing at least 5dB linearity improvement at 200MS/s and without increasing the noise oor. This 14-bit 200MS/s smart DAC with DMM achieves a performance of SFDR>78dBc, IM

    On-Chip Analog Circuit Design Using Built-In Self-Test and an Integrated Multi-Dimensional Optimization Platform

    Get PDF
    Nowadays, the rapid development of system-on-chip (SoC) market introduces tremendous complexity into the integrated circuit (IC) design. Meanwhile, the IC fabrication process is scaling down to allow higher density of integration but makes the chips more sensitive to the process-voltage-temperature (PVT) variations. A successful IC product not only imposes great pressure on the IC designers, who have to handle wider variations and enforce more design margins, but also challenges the test procedure, leading to more check points and longer test time. To relax the designers’ burden and reduce the cost of testing, it is valuable to make the IC chips able to test and tune itself to some extent. In this dissertation, a fully integrated in-situ design validation and optimization (VO) hardware for analog circuits is proposed. It implements in-situ built-in self-test (BIST) techniques for analog circuits. Based on the data collected from BIST, the error between the measured and the desired performance of the target circuit is evaluated using a cost function. A digital multi-dimensional optimization engine is implemented to adaptively adjust the analog circuit parameters, seeking the minimum value of the cost function and achieving the desired performance. To verify this concept, study cases of a 2nd/4th active-RC band-pass filter (BPF) and a 2nd order Gm-C BPF, as well as all BIST and optimization blocks, are adopted on-chip. Apart from the VO system, several improved BIST techniques are also proposed in this dissertation. A single-tone sinusoidal waveform generator based on a finite-impulse-response (FIR) architecture, which utilizes an optimization algorithm to enhance its spur free dynamic range (SFDR), is proposed. It achieves an SFDR of 59 to 70 dBc from 150 to 850 MHz after the optimization procedure. A low-distortion current-steering two-tone sinusoidal signal synthesizer based on a mixing-FIR architecture is also proposed. The two-tone synthesizer extends the FIR architecture to two stages and implements an up-conversion mixer to generate the two tones, achieving better than -68 dBc IM3 below 480 MHz LO frequency without calibration. Moreover, an on-chip RF receiver linearity BIST methodology for continuous and discrete-time hybrid baseband chain is proposed. The proposed receiver chain implements a charge-domain FIR filter to notch the two excitation signals but expose the third order intermodulation (IM3) tones. It simplifies the linearity measurement procedure–using a power detector is enough to analyze the receiver’s linearity. Finally, a low cost fully digital built-in analog tester for linear-time-invariant (LTI) analog blocks is proposed. It adopts a time-to-digital converter (TDC) to measure the delays corresponded to a ramp excitation signal and is able to estimate the pole or zero locations of a low-pass LTI system
    • …
    corecore