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Abstract

EM phased array system bandwidth is conventionally constrained by the use of

phase shifters for beamsteering, which results in beam squint and pulse dispersion

of wideband signals. Wideband antenna performance can be achieved through the

use of element-level true time delay (TTD) units, but this is often impractical due

to the complexities associated with TTD analog devices. The continued improve-

ment of high-speed analog-to-digital converters (ADC) and digital-to-analog convert-

ers (DAC) places digital signal conversion at the element level. This allows TTD

beamsteering to be accomplished digitally via a combination of integer-sample delays

and fractional-sample delay finite impulse response (FIR) filters, enabling support for

wideband communication and radar imaging operating modes.

As phased array systems rely on matched channel characteristics, accurate system

calibration is paramount for optimum performance. Narrowband systems which im-

plement beamforming via attenuators and phase shifters often employ lookup tables

(LUT) containing a set of correction commands to be superimposed on the desired

steering operation. These are commonly dependent on current and desired system

characteristics, such as operating frequency, steering direction, power level, and/or

temperature conditions. In contrast, wideband systems require higher fidelity com-

pensation techniques capable of correcting imbalanced and dispersive channel effects

from element-level electronics.

This dissertation examines deterministic and adaptive beamforming techniques

and provides solutions to the aforementioned challenges by contributing the devel-

opment and demonstration of a wideband digital beamformer with equalization on

an RF system-on-a-chip (RFSoC). Performance metrics of the testbed match or ex-

ceed current publications of RFSoC based demonstrations. The RFSoC is a unique,

state-of-the-art, highly integrated device that incorporates a field programmable gate

xvi



array (FPGA), high speed ADCs and DACs with a system-on-a-chip (SOC) archi-

tecture onto the same silicon fabric. As much of the digital and analog RF circuitry

is now integrated into a single package, these devices are revolutionizing radar and

communication systems, reshaping phased array system design strategies. This en-

abling technology facilitates the development of compact all-digital arrays, massively

increasing the available degrees of freedom in system control, a paradigm shift in

industry and engineering communities.

The beamformer testbed is demonstrated on a sub-Nyquist-sampled 1.6 GHz

S-band phased array system implemented using a Xilinx 8-channel 4 GSPS RFSoC.

To enable TTD digital beamsteering, each channel is compensated via a conjugate

symmetric fractional-sample delay FIR filter bank. By modifying the TTD filter

structure to support complex coefficients, channel equalization is integrated with the

fractional-sample delays to compensate undesired channel characteristics. To confirm

the efficacy of this approach, results are provided for uncalibrated and calibrated sys-

tem operation. Anechoic chamber measurements are presented as well as the FPGA

floorplans showing RFSoC device utilization for both uncalibrated and calibrated

configurations.
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Chapter 1

Introduction

1.1 Background and RFSoC

Phased array systems provide a highly flexible and rapidly controllable method for

interacting with various energy wave domains, such as seismic [1], underwater acous-

tic [2], aeroacoustic [3], and electromagnetic (EM) [4]. This dissertation focuses ex-

clusively on EM waves, although much of the beamforming discussion is relevant to

other applications. The EM spectrum has long been leveraged as a method for con-

veying and extracting information, be it for communications [5], radar tracking [6]

and imaging [7] [8], or signal intelligence [9].

Since their inception, phased array systems have been utilized to interact with

the electromagnetic (EM) spectrum due to their many advantages over single-element

systems. These include graceful degradation, modularity of their design, controllable

degrees of freedom (DOF), rapid steering control, and design flexibility. However,

phased array systems also present many challenges, such as higher system complex-

ity, increased development and fabrication costs, calibration challenges, and inherent

bandwidth limitations depending on steering control implementation. Bandwidth

limitations can be addressed by replacing phase shifters with true time delay (TTD)

units [10] to control the alignment of received signals, although this is often precluded

at the element level by the complexity associated with analog TTD devices. Addi-

tionally, as phased array operation assumes matched channels behavior, inter-channel

variations must be accurate characterized and compensated to enable proper system

performance.

1



In 2017, Xilinx announced the radio frequency system-on-a-chip (RFSoC) product

line, which incorporates a high performance field programmable gate array (FPGA)

together with several gigasample per second (GSPS) data converters and a system-on-

a-chip (SoC) architecture in the same integrated circuit (IC) package. The integration

of multiple analog-to-digital converter (ADC) and digital-to-analog converter (DAC)

channels into the FPGA/SoC device provides a potential footprint reduction of 50%

and power reduction of 75% [11]. In brief, these compact devices were geared towards

the next generation tele-communication industry, such as 5G and 6G, yet they provide

an ideal technology platform for the future of phased array radar for three reasons:

sample synchronization across multiple channels is readily possible, low power con-

sumption, and compact form factor. The latter is especially evident, as traditional

analog up/down conversion circuits are not needed for radar systems in the S-band

owing to the multi-gigasample RF data converters, which enable direct-sampling of in-

cident waveforms. Other researchers have been exploring RFSoC technology for next

generation radar applications, and recent breakthroughs include: bistatic radar [12],

phased array cost reduction [13], data reduction for digital apertures [14], near-field

calibration [15], real-time signal generation [16], or fully-digital radar system devel-

opment [17].

Given the novelty of the RFSoC, few examples of RFSoC-based phased array

systems exist in the current literature. Table 1.1 provides a summary of key perfor-

mance metrics of several publications, discussed further in Chapter 4. This disser-

tation presents the development, implementation, and demonstration of a wideband

sub-Nyquist-sampled beamformer with equalization using an RFSoC. Performance

metrics were chosen to match or exceed those given in current publications. Specif-

ically, the sample frequency and digital bandwidth match the highest given values

of 4 GHz [18] and 80% Nyquist zone [19], respectively. Additionally, the results

presented herein utilize the highest fractional bandwidth of better than 50% and

the highest absolute bandwidth of 1.6 GHz out of the surveyed platforms. It is the
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Table 1.1: Literature Summary

Cost
Reduction

[13]

TTD
Beamformer

[18]

Digital
Beamformer

[19]

IMPACT
[20]

Research
Testbed

Elements 64 16 16 16 8

Architecture
Direct

Conversion
Direct

Sampling
Direct

Conversion
Direct

Conversion
Direct

Sampling

Sample
Frequency

125 MHz 4 GHz 2 GHz 125 MHz 4 GHz

Carrier
Frequency

3 GHz 1 GHz 28 GHz
3.5 GHz
4.9 GHz
9.5 GHz

3 GHz

Bandwidth 8 MHz 100 MHz 800 MHz 500 MHz 1.6 GHz

Notes MVDR Four-Beam
Bandpass
Sampling,
Digital EQ

first RFSoC-based TTD beamformer at full digital bandwidth, the first example of

RFSoC-based sub-Nyquist beamforming, and the first wideband digital equalizer on

an RFSoC.

1.2 Mathematical Notation

Before beginning the discussion on phased arrays, a short discussion on mathematical

notation is merited. Describing phased array systems and adaptive beamforming us-

ing compact mathematical notation inevitably gives rise to the topics of linear algebra

and multivariable calculus. In addition, adaptive algorithms give rise to statistical

analysis using these equations. Potentially further obfuscating mathematical nota-

tion is the use of complex variables to compactly represent signal magnitude and

3



phase. Many adaptive beamforming algorithm derivations seek to optimize system

performance by minimizing system error, requiring matrix derivatives with respect

to complex-valued vectors. A discussion of the optimization of a real valued func-

tion of a complex vector, a situation commonly arising in many adaptive algorithm

derivations, is given by Brandwood [21] and is used extensively in Chapter 3. Some

texts [22], [23], [24] present derivations using strictly real variables resulting in subtle

differences from those that use complex variables [25], [26]. In this dissertation, all

derivations are carried out using complex variables.

The matrix notation in this dissertation follows the conventions used in several

sources [22], [25], [26]. A non-bold, typically lowercase character, such as s, represents

a scalar variable. An exception to this convention occurs in Section 3.3.1, where the

signal power is given by E{|s(k)|2} = S. A lowercase bold character, such as x,

represents a column vector. An N -length vector with enumerated elements xn is

given by

x =



x1

x2

...

xN


. (1.1)

An uppercase bold character, such as A, represents a matrix. An N ×M example

with elements An,m is given by

A =



A1,1 A1,2 · · · A1,M

A2,1 A2,2 · · · A2,M

...
...

. . .
...

AN,1 AN,2 · · · AN,M


. (1.2)
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The variable H is an exception given in Section 4.2, where it is used to represent a

column vector of frequency-domain data. The corresponding time domain column

vector is denoted given by h.

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides a description of phased

array systems, discussing common system components and fundamental control the-

ory. A discussion on the differences between narrowband and wideband performance

is provided along with an exploration of null formation and arbitrary beamshap-

ing. It also touches on direct-sampled beamforming and presents considerations for

sub-Nyquist sampling of received waveforms. Chapter 3 covers adaptive beamform-

ing within the context of this emerging class of digital arrays, providing both the

derivations and comparison of several adaptive beamforming algorithms. Adaptive

algorithm simulations are also included and discussed. Wideband digital beamform-

ing demonstrations are provided in Chapter 4. The RFSoC testbed is covered in detail

as well as the design and implementation of a fractional-sample delay filter bank for

digital TTD support. Simulations and chamber measurement results for uncalibrated

performance are provided. Least-squares calibration techniques and the implementa-

tion of a wideband equalizer are also provided. Various equalization synthesis tech-

niques are discussed in detail and demonstrated through chamber measurements.

1.4 Primary Contribution

For the first time, this dissertation presents the development, implementation, and

demonstration of a wideband sub-Nyquist-sampled beamformer with equalization us-

ing an RFSoC. Sub-Nyquist sampling is the unique concept that allows the a true-time

delay based beamformer to operate in the S-band, and this sampling approach is made
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possible by the multi-gigasample RF data converters on the same substrate as the

FPGA, which enable direct-sampling of incident waveforms. Sub-Nyquist sampling

is a relatively new concept within the radar community; more importantly, its union

with digital true-time delay beamforming and integrated equalization on an RFSoC

is not available in the current literature.
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Chapter 2

Phased Array Processing

Fundamentally, a phased array system is composed of an array of sensors, a method

for time or phase shifting sensor signals, and a method for splitting and/or combining

sensor signals [4]. The ability to control sensor signal amplitude is a common feature,

and many EM systems also require a method for modulating the signal bandwidth be-

tween baseband frequency and the carrier frequency [27]. In most practical systems,

some level of amplification [28] is required for both transmit and receive. However,

because the focus of this dissertation is the electronic steering of such systems, power

amplifiers (PA) and low noise amplifiers (LNA) will not be discussed further. In the

beamforming demonstrations provided in Chapter 4, frequency conversion is imple-

mented via digital downconversion (DDC) and digital upconversion (DUC) as well

as inherently through aliasing associated with sub-Nyquist-sampled beamforming, a

topic covered in Section 2.7.

Section 2.1 provides a brief overview of common phased array components. Sec-

tion 2.2 discusses the relationship between spatial domain and time domain filtering

and their application to phased array systems. Section 2.3 discusses classical beam-

forming, presenting a mathematical representation of a phased array as the basis

for derivations of narrowband and wideband Fourier beamforming. A comparison of

these two cases is also provided. Methods for deterministic null formation and arbi-

trary beam shaping are provided in Section 2.4 and Section 2.5, respectively. Lastly,

a study of sub-Nyquist-sampled beamforming is presented in Section 2.7, which dis-

cusses beamforming implications for bandpass sampling the incident waveform at the

element level.
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2.1 Phased Array System Components

This section discusses various phased array building blocks, including antenna ele-

ments, signal control techniques, the summation node, and digital downconversion.

Increasingly, digitization is moving closer to the sensor array, with the goal of provid-

ing each channel with its own ADC and DAC [29]. This provides incredible system

flexibility due to the accessibility of individual element signals for digital process-

ing. Applications to digital adaptive beamforming are explored in Chapter 3, and

considerations for ADC sample frequency are presented in Section 2.7.

Figure 2.1: Linear Phased Array

The block diagram given in Figure 2.1 shows an array of sensors, each with individ-

ual complex-valued weight w∗n, a summation node, and a DDC. Although many block

diagrams found in textbooks do not include a method for upconversion or downcon-

version, as it is not fundamentally required in a phased array system, it is common in

EM phased array systems and a relevant part of the digital architecture implemented

in Chapter 4. Frequency shifting can be accomplished via an analog mixer [30] or

numerically in the digital domain [31] via DDC/DUC. Given that this dissertation

focuses more on the receive case in the digital domain, the inclusion of a DDC func-

tional block was deemed prudent. Details for an efficient DDC technique outlined

in [7] is presented in Section 2.1.4.1. Although this scheme was originally planned for
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use in the testbed demonstrations provided in Chapter 4, it was ultimately set aside

in favor of the dedicated DDC hardware within the RFSoC.

2.1.1 Antenna Element

The properties of the antenna elements within an array have a direct impact on the

array performance. Chapter 5 of Hansen [32] provides an overview of several common

phased array elements such as the thin dipole, waveguide slot, and transverse electro-

magnetic (TEM) Horn. These are amongst those covered in Chapter 5 of Mailloux [4]

with the addition of the patch antenna.

Figure 2.2: Patch Antenna Simulation

Because the elements in a phased array are physically fixed when scanning elec-

tronically, one of the primary antenna element design goals is to achieve a wide

embedded element pattern. This minimizes pattern loss over steering angle reducing

loss at the array level. Hence elements are typically designed to be more isotropic,

having low directivity. As an example, Figure 2.2 shows an HFSS model of a patch

antenna polarized in along the x-axis. Its corresponding patterns in the E-plane and

H-plane are given in the left and right plots of Figure 2.3, respectively. Solid lines

show the co-polarization while dashed lines show cross-polarization. The loss at ±45◦

for both planes is on the order of 3 dB.
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Figure 2.3: Patch Antenna Pattern

Additionally, because access to polarimetric data is often advantageous for weather

radar applications [33], dual-polarized elements are beneficial. The University of

Oklahoma (OU) has developed a dual-polarized patch element with wide scan angle

and low cross-polarization [34], which is currently being integrated into a state-of-

the-art all-digital phased array.

2.1.2 Signal Compensation

One of the primary benefits of phased array systems is the Signal-to-Noise Ra-

tio (SNR) improvement achieved by coherently summing correlated signals amongst

uncorrelated noise, where correlation is considered both spatially and temporally.

Coherency is achieved through spatial filtering of element signals via phase shifters,

TTD units, digital filters, or a combination thereof. Adaptive beamforming, covered

in Chapter 3, can be employed to suppress undesired correlated signals and often

requires channel amplitude control.

Digitally-controlled analog phase shifters offering 5.625◦ resolution and attenua-

tors offering 0.5 dB have been quite common on the market for some time now. These

devices provide approximately constant phase shifts and attenuation over frequency,

giving rise to narrowband performance as explored in the following sections. Sec-

tion 2.3.2 outlines the benefits of beamsteering using TTD units as this mitigates

narrowband issues that arise from conventional phase shifters. See Figure 2.10 for
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a comparison of phase shifter and TTD unit behavior in the frequency and time

domains. For all-digital arrays, phase and amplitude control can be accomplished

digitally via either multiplication by a complex value or through filtering.

2.1.3 Summation Node

The summation node is used to combine individual channel signals in receive mode

or split the transmit signal between each channel. A multi-port Wilkinson power

divider [30] is an example of a band-limited analog splitter/combiner. Additionally,

as the design is based on quarter wavelength dimensions, it may be too large for

lower frequency applications. Summation in the digital domain addresses bandwidth

concerns inherent in many analog solutions if channel-level digital control is available.

2.1.4 Digital Downconversion

Downconversion allows received signals to be processed at complex baseband. Al-

though this has historically been implemented via analog mixers, digital processing

techniques are becoming more prevalent. Figure 2.4 shows a signal flow block diagram

for a DDC. A received signal is shifted in frequency, filtered to remove the conjugate

symmetric spectrum, and downsampled. Although the downsampling sub-block is

not necessarily required, it is included here as it is common on many DDC schemes

and architectures.

Figure 2.4: Digital Downconversion Block Diagram
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2.1.4.1 Downconversion

A DDC scheme given in Chapter 3 of Richards [7] is presented here, wherein the

sample frequency Fs, and carrier frequency fc, satisfy the following relationship,

Fs

4
= fc mod

Fs

2
. (2.1)

To aid in the discussion of sub-Nyquist beamforming in Chapter 2.7, an undersam-

pled case where Fc = 3 GHz and Fs = 4 GHz is discussed here. This frequency plan

satisfies Eq. (2.1) as demonstrated by

Fc mod
Fs

2
= 3 GHz mod

4 GHz

2

= 3 GHz mod 2 GHz

= 1 GHz

=
Fs

4
.

(2.2)

The received signal or its conjugate spectrum aliases to Fs
4

in the digital domain,

centering it in the first Nyquist zone. When the real-valued signal is sampled in

an even Nyquist zone, as is the case here, frequency folding places the conjugate

spectrum at Fs
4

and the original spectrum at -Fs
4

.

DDC relies on the frequency shift property of the Fourier transform [35], which

states that a frequency shift of Fa in the function G(F ) corresponds to a phase shift

in the time domain, as given by

F−1{G(F − Fa)} , ej2πFatg(t) . (2.3)

Thus, by multiplying the receive signal by a complex exponential, the original spec-

trum can be shifted from -Fs
4

to complex baseband.
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However, because the received signals are represented as samples in the digital

domain, the right-hand-side (RHS) of Eq. (2.3) should be rewritten in the discrete

domain noting the following sampling relations: the time domain axis t relates to

the sample index m by t = mTs and the continuous time frequency F relates to the

normalized digital frequency f by f = F
Fs

. The sample period and sample frequency

are given by Ts and Fs respectively. Making the appropriate substitutions, the RHS

of Eq. (2.3) can be rewritten as

ej2πFatg(t) = ej2πfamg(mTs) . (2.4)

As we seek to shift the original spectrum from -Fs
4

, the normalized frequency shift

fa is given by

fa =
−Fs

4

Fs

= −1

4
, (2.5)

which, when substituted into the complex exponential term of Eq. (2.4), provides the

following simplification.

ej2π
−1
4
m = e−j

π
2
m = j−m (2.6)

Hence, a conjugate symmetric spectrum centered at -Fs

4
can be shifted to baseband

simply by applying the appropriate sign change and redefining every other signal

sample as a fully imaginary value.

2.1.4.2 Filtering

Following downconversion to baseband, the conjugate symmetric spectrum, which

was located at -Fs

4
, will be split between ±Fs

2
. The 16-tap magnitude response rec-

ommended by Richards [7] is shown in Figure 2.5. If ≈ -35 dB of stopband rejection

is insufficient, a new filter can be designed with the necessary attenuation [36].
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Figure 2.5: DDC Low-pass Filter Magnitude Response

2.1.4.3 Down-sampling

Filtering mitigates the issues of aliasing that arise due to down-sampling. Thus, the

signal can be down-sampled by a factor of two, which spreads the spectrum in the

digital frequency domain.

2.1.4.4 DDC Example

Figure 2.6 shows the signal spectrum magnitude at various stages of the DDC block

diagram given in Figure 2.4 for a 3 GHz-centered, 1000 MHz LFM transmit wave-

form. The upper plot shows the conjugate symmetric transmit spectrum centered

at ±5 GHz. The mid-left plot shows the sub-Nyquist sampled receive signal which

has aliased to ±Fs

4
= ±1 GHz. Downconversion shifts the spectrum to the left by Fs

4
,

wrapping the lower spectrum such that it is split between ±Fs

2
. This is shown along

with the filter magnitude response in the mid-right plot. The lower left plot provides

the filtered downconverted spectrum, showing a reduction in the upper and lower

half-spectrums by about 35 dB. Downsampling by a factor of two reduces the signal

voltage by 6 dB and causes the reduced upper and lower half-spectrums to alias into

the main band. The final baseband spectrum is shown in the lower-right plot, and

comprises up to 80% of the digital frequency domain for which Fs = 2 GHz.
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Figure 2.6: Signal Spectrum: Top: Transmit Spectrum; Mid-Left: Receive Spectrum; Mid-

Right: Downconverted Spectrum, Low-Left: Filtered Spectrum; Low-Right: Down-Sampled

Spectrum

2.2 Spatial and Time Domain Processing

Fourier processing is fundamental to the operation of phased array systems. A phased

array seeks to filter incident signals in the spatial domain such that they can be

coherently processed in the time domain. In the author’s experience, much of the

engineering curriculum is devoted to time domain filtering and the temporal frequency

domain representation of signals. The concept of spatial frequency may not arise until

several semesters after the Fourier transform is introduced. This results in a deeper

intuition of time domain processing as compared to spatial domain processing.

The reason for this may be due to the ease with which time domain analog and

digital filters can be implemented in hardware and explored in a lab environment. The

complexity of a phased array system often precludes its availability in a lab. And the

concepts required for image processing, such as multi-dimensional filtering are best

15



taught upon a background of single-dimensional processing, a foundation more easily

introduced in the time domain than the spatial domain. The ubiquitousness of music

also contributes to a greater intuition in time domain filtering. While spatial filters

have applications in video games, image processing, and optics, the average person

may not interact with these topics to the degree required to develop an intuitive

understanding of spatial filtering.

Fortunately, given the commonality in the underlying mathematics, there is mas-

sive overlap between time domain and spatial domain processing. Some of the deriva-

tions provided in Chapter 3, as applied to adaptive beamforming, are presented in

textbooks focused solely on time domain processing. Concepts such as over-sampling

and under-sampling, the Fourier transform properties, aliasing, and physicality con-

straints are all applicable to both time domain and spatial domain processing. Addi-

tionally, processing wave-based signals with a phased array system inherently involves

both time domain and spatial domain processing, given the fundamental relation be-

tween space in time in the manifestation of wave phenomena.

One constraint in time domain processing not present in spatial domain processing

is that of causality. Temporal sequences have an inherent directional constraint that

is not present in spatial sequences. In the author’s experience, this caused much frus-

tration at the introduction of the concept of negative frequencies. However, negative

frequencies arise naturally in spatial domain processing in an intuitive manner that

is lacking in time domain processing. Interaction with spatial filtering concepts can

clarify the notion of negative frequency and its application in time domain filtering.

2.3 Classical Beamforming

The fundamental intent in phased array beamforming is to determine sensor signal

compensation which causes signals to add coherently for a given steering direction.

Van Veen calls this classical beamforming [37]. To maximize SNR, other beamsteering
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techniques seek to mitigate the effects of directional interferers through deterministic

or adaptive directional nulling [25]. However, the focus in this section is on the

coherent summation of signals for a given direction.

Figure 2.7: Ray Tracing Geometry for 4-Element ULA

Consider the diagram in Figure 2.7, which shows a planewave phase front imping-

ing on a 4-element uniform linear array (ULA) with element spacing d, from angle θ.

Note the additional travel distance to each subsequent element of d sin θ. Given that

EM waves in free space travel at the speed of light c, the phase front propagation

time from element-to-element is given by ∆tθ = d sin θ
c

. Therefore, the time difference

between the first element and element n is given by

∆tn,θ =
(n− 1)d sin θ

c
. (2.7)

The time shift property of the Fourier transform [35] states that a time shift of ta

in the function g(t) corresponds to a phase shift in the frequency domain as given by

F{g(t− ta)} , e−j2πftaG(f) . (2.8)
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This property can be used to succinctly describe the relative phase shift in the fre-

quency domain seen by any element n from any incident angle θ at any frequency f .

This will be referred to as the measured phase response, and is given by

S(θ, n, f) = e−j2πf∆tn,θ

= e−j2πf
(n−1)d sin θ

c

=

[
S1(θ, f) S2(θ, f) · · · SN(θ, f)

]
.

(2.9)

Note that for the reference element n = 1, the relative phase shift is 0◦. The refer-

ence element may be selected arbitrarily and is commonly chosen for mathematical

convenience.
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Figure 2.8: 8-Element ULA Boresight Array Factor

To form the array factor, one sums the tensor given in Eq. (2.9) along the element

dimension to yield a complex-valued response over incident angle and frequency, as

given by

S0(θ, f) =
N∑
n=1

S(θ, n, f) =
N∑
n=1

e−j2πf
(n−1)d sin θ

c , (2.10)

where N is the number elements. Figure 2.8 shows a plot of the magnitude of S0(θ, f)

for an 8-element ULA with element spacing d = λc

2
at fc = 3 GHz, from 2 to 4 GHz.

The main beam at θ = 0◦ indicates that for a planewave incident at mechanical bore-

sight, sensor signals sum coherently without the need for compensation.
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2.3.1 Narrowband Beamforming

Classical narrowband beamforming is accomplished by selecting for each element a

single phase shift with which to compensate the corresponding sensor signals. For

the purposes of this discussion, element weight magnitudes are normalized to unitary.

To minimize steering error over the signal bandwidth, it is prudent to select the

frequency-invariant phase shifts at the waveform center frequency fc. Although this

is commonly defined as the arithmetic mean of fhigh and flow, the geometric mean

results in an accurate steering angle. This distinction is of little consequence except

for wide bandwidths at wide steering angles. The N -element measured phase response

at the center frequency fc is given by

S(θ) =

[
S1(θ) S2(θ) · · · SN(θ)

]
, (2.11)

where

Sn(θ) = e−j2πfc
(n−1)d

c
sin θ . (2.12)

The steered array factor [38] is given by the inner product between the complex

steering weight vector w and the measured phase response S. In this dissertation,

phased array compensation is discussed using the convention found in certain adaptive

filtering texts [25], [39], where the application of the weight vector is given by the

Hermitian transpose, as described by

y(θ) = wHS(θ) =

[
w∗1 w∗2 · · · w∗N

]


S1(θ)

S2(θ)

...

SN(θ)


, (2.13)
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where w∗n = ane
jφn . The variable an = 1 since weight magnitudes are currently con-

strained to unitary. Although merely a labeling convention, this facilitates the adap-

tive beamforming derivations provided in Chapter 3, which rely on complex-valued

matrix calculus. In these derivations, row vectors are typically represented by the

Hermitian transpose of the corresponding column vector. Some texts [23], [24] ap-

pear to focus primarily on real-valued filtering applications and thus use real-valued

functions rather than the more general complex-valued case. Other texts [26] explore

complex-valued filtering using the direct transpose of the filter coefficients rather than

the Hermitian transpose.

The complex inner product in Eq. (2.13) yields the array factor, given by

y(θ) = w∗1S1(θ) + w∗2S2(θ) + · · ·+ w∗NSN(θ) , (2.14)

where

w∗nSn(θ) = e−j(2πfc
(n−1)d

c
sin θ−φn) . (2.15)

The maximum magnitude of Eq. (2.14) is achieved when terms are summed coher-

ently. This occurs for the direction θst at which all sensor signals have the same phase,

a relationship defined by

2πfc
(n− 1)d

c
sin θst − φn = C . (2.16)

The appropriate phase shifts to steer a beam to angle θst are determined by solving

Eq. (2.16) for φn, namely

φn = 2πfc
(n− 1)d

c
sin θst . (2.17)
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Note that the constant C does not impact the relative phase between elements and

can be absorbed into the unknown phase constant of the impinging wave. For math-

ematical ease, C is set to 0.

Thus, the weighting component for element n which steers the main beam to θst

is given by

w∗n = ane
j2πfc

(n−1)d
c

sin θst . (2.18)

Although there is no constraint on amplitude distribution to coherently sum sensor

signals for a single direction of interest, amplitude distributions can serve to reduce

sidelobe levels at the expense of gain, a trade-off deemed beneficial in many receive

cases. Hansen [32] discusses several distributions including the Dolph-Chebyshev,

Taylor One-Parameter, and Taylor n̄ distributions. Additional constraints on the

weight vector w, such as multiple beams or null constraints, can also impact the

amplitude distribution [25]. As these amplitude distributions are not the subject of

this section, classical beamforming is assumed and a uniform distribution applied

to compensation weights. Null formation is discussed in Section 2.4 and adaptive

beamforming in Chapter 3.

2.3.2 Wideband Beamforming

Narrowband beamforming assumes signal bandwidth does not extend appreciably

from the waveform center frequency. Two system bandwidth considerations [40] are

discussed in Sections 2.3.3.1 and 2.3.3.2. Frequency-dependent compensation values

enable wider system bandwidths. Consider the elements of Eq. (2.11) with frequency

variation as given by

Sn(θ, f) = e−j2πf
(n−1)d

c
sin θ . (2.19)
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The wideband antenna pattern is given by

y(θ, f) = wHS(θ, f) =

[
w∗1(f) w∗2(f) · · · w∗N(f)

]


S1(θ, f)

S2(θ, f)

...

SN(θ, f)


, (2.20)

After following the sequence outlined in the previous section, Eq. (2.17) becomes

frequency dependent, as given by

φn(f) = 2πf
(n− 1)d

c
sin θst . (2.21)

Thus, the weighting component for element n which steers the main beam to θst over

frequency is given by

w∗n(f) = ane
j2πf

(n−1)d
c

sin θst . (2.22)

The phase shift necessary to maintain a particular steering angle over frequency is

a linear function of frequency. Solving Eq. (2.21) for θst shows the nonlinear frequency

dependence of steering angle assuming frequency-invariant phase shifting. Compen-

sation phases must track with frequency in order to maintain steering direction for

wideband signals.

θst(f) = sin−1

(
c

2π(n− 1)d

φn
f

)
(2.23)

2.3.3 Narrowband/Wideband Comparison

A comparison of several ideal array factors is given in Figure 2.9. These array factors

are simulated for an 8-element ULA with d = λc

2
at fc = 3 GHz. The left column

corresponds to θst = 15◦, the center column to θst = 30◦, and the right column to

θst = 45◦. The top row shows narrowband beamforming, for which a beam is steered

using frequency-invariant phase shifts provided using Eq. (2.17). The bottom row
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Figure 2.9: Array Factors for 8-Element ULA with d = λc
2 at fc = 3 GHz, Left Column:

Narrowband, Right Column: Wideband, Top Row: θst = 15◦, Middle Row: θst = 30◦, Bot-

tom Row: θst = 45◦

shows wideband beamforming, which is steered using the frequency-variant phase

response described by Eq. (2.21), where 2 GHz ≤ f ≤ 4 GHz.

2.3.3.1 Beam Squint

Note the inaccuracy of the beam position in the top row, which is correct only at the

center frequency fc = 3 GHz. As described by Eq. (2.23), for a phase shift φn given

by Eq. (2.17), beam accuracy progressively degrades with increasing ∆f = |f − fc|.

This phenomena is known as beam squint [41], and becomes more drastic with in-

creasing steering angles. System bandwidth can be approximated by determining

the frequency range over which the main beam response is within 3 dB of the peak

response for the given steering direction [32]. System bandwidth may be asymmetric

about the steering frequency due to the nonlinear nature of Eq. (2.23) coupled with

the array element pattern [4]. Compensation may be required to ensure the 3-dB

system bandwidth is symmetric about the waveform center frequency. Larger arrays

have smaller beamwidths reducing system bandwidth [10].
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Figure 2.10: Compensation Delays for 8-Element ULA with d = λc
2 at fc = 3 GHz, Left

Column: Phase Delays, Right Column: Time Delays, Top Row: θst = 15◦, Middle Row:

θst = 30◦, Right Row: θst = 45◦

In contrast, steering accuracy is maintained in the bottom row. All plots have

frequency-varying sidelobe behavior, which can be mitigated through frequency-dependent

amplitude tapering if required [42]. This is explored further in Section 2.5, which dis-

cusses arbitrary beamshaping. Narrowband and wideband array factors are equivalent

at the center frequency cut f = 3 GHz for a given steering angle. Grating lobes can

be seen at increased steering angles and increased electrical element displacement at

the higher end of the spectrum.

Figure 2.10 shows the unwrapped φn responses used to compute the array factors

in Figure 2.9. As in Figure 2.9, the left column corresponds to θst = 15◦, the center

column to θst = 30◦, and the right column to θst = 45◦. Phase delays are shown in the

top row while the corresponding time delays are shown in the bottom row, computed

using the relation

∆t =
∆φn
360◦

c

f
. (2.24)

Because element 1 was selected as the phase reference, it is not plotted as it has no

associated delay.
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Solid lines show the frequency-invariant φn responses corresponding to the left

column of Figure 2.9. Dashed lines show the frequency-variant φn responses corre-

sponding to the right column of Figure 2.9. The linear phase response produces a

constant time delay, electrically shifting mechanical boresight to the desired steering

direction. Increased steering angles require increased delays as can be seen in the

array geometry given in Figure 2.7.

2.3.3.2 Pulse Dispersion

Conventional phase shifters, commonly used for narrowband beamforming, support

maximum delays of one cycle. When a phase shift of greater than one cycle is required,

it will be wrapped to within 0◦ to 360◦. This results in pulse dispersion, an example

of which is shown in Figure 2.11.
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Figure 2.11: Wrapped and Unwrapped Phase Compensation Demonstrating Pulse Disper-

sion

The top left plot shows six periods of a sinusoid at fc = 3 GHz as received by six

elements spaced d = λc

2
apart. The propagation delay between elements is approx-

imately 0.2 ns for the given incident angle of θ = 37◦. The middle left plot shows

sensor signals when using conventional wrapped phase shifting. Because the relative

delays between element 6 and elements 4 to 1 are greater than one cycle, compensated
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signals are coherent but not fully aligned. The bottom left plot shows sensor signals

when adjustments of greater than one cycle are possible, which results in coherent

and fully aligned sensor signals.

The right column shows signal summation of 30 cycles for the uncompensated,

wrapped phase shifting, and unwrapped phase shifting cases. Wrapped phase shifting

and unwrapped phase shifting both result in a fully collimated response when sensor

signals fully overlap. The ramp times shown in the middle right plot from about

0.33-1.0 ns and 10.33-11.0 ns indicate pulse distortion. This ramp time is known

as the aperture fill time [43] tfill, and corresponds to the phase front propagation

time delay across the array between the first and the last elements. It provides an

estimate of the system bandwidth [43] for a given steering angle, as given by B = 1
tfill

,

although less conservative than the beam squint approach previously discussed [40].

Larger arrays have a larger aperture fill time, decreasing system bandwidth due to

pulse distortion.

2.4 Null Formation

Commonly, it is desirable to spatially cancel interfering signals from a given direction.

This can be accomplished deterministically by applying additional constraints to the

beamforming calculations outlined in Section 2.3. Recall the steered array factor given

in Eq. (2.20): y(θ, f) = w(f)HS(θ, f). The intent of deterministic beamforming is to

solve Eq. (2.20) for w under one or more directional constraints. In the simplest

case, classical beamforming [37] applies a distortionless constraint in the desired look

direction θ0, namely

1 = wHa0

= w∗1 + w∗2e
−jkd sin(θ0) + · · ·+ w∗Ne

−jkdN sin(θ0) ,

(2.25)
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where k = 2πf
c

= 2π
λ

is known as the wavenumber and λ is the wavelength. As this

directional constraint is normalized by the array factor main beam magnitude, the

resulting weight vector magnitude should be normalized to 1
N

. The column vec-

tor a0 = S(θ0) is the array manifold vector [44] for the direction θ0. This vector

provides the complex-valued adjustment as a function of incident angle between an

incident waveform and the element signals due to array geometry. As noted in Sec-

tion 2.3.1, the normalized weight vector which satisfies the above constraint cancels

the complex component of each element such that

w∗n = ejkd(n−1) sin(θ0) . (2.26)

Null constraints, which constrain the array factor to zero for a given look direc-

tion θm, can be added to Eq. (2.25) as given by

[
1 0 · · · 0

]
= wH

[
a0 a1 · · · aM

]
gT = wHC ,

(2.27)

where M is the number of desired nulls. In general, the number of nulls will be such

that C is not square and an explicit matrix inverse will not exist. Godara [45] utilizes

the Moore-Penrose Pseudoinverse [46] C+, defined in Eq. (2.28), to approximate C−1

through the method of least squares.

C+ = CH(CCH)−1 (2.28)

Barata [46] notes that although (CCH)−1 may not exist, the addition of a small

offset term µI removes the singularity associated with the matrix inverse. Thus

(CCH + µI)−1 does exist for all non-vanishing µ, and as such

C+ ≈ CH(CCH + µI)−1 (2.29)
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Hence, the final weight vector is approximated by

wH ≈ uTC+

≈ uTCH(CCH + µI)−1 ,

(2.30)

where µ is chosen to be small compared to CCH . Although each additional null

constraint utilizes system DOFs, degrading the ability to coherently combine signals

in the main beam, this is often a worthwhile trade off given the greater reduction in

spatially correlated interferer energy.

2.4.1 Paley-Wiener Theorem

It is prudent to consider the quality of a prescribed null in how it manifests in the

antenna pattern. The Paley-Wiener theorem [47] is defined as

∫ ∞
−∞

| ln |F (ω)||
1 + ω2

dω <∞ . (2.31)

This criteria is often used to test system causality [35]. As Kak states [48], “If

a square-integrable magnitude function |F (ω)| satisfies the Paley-Wiener condition,

a suitable phase function can be associated with it to give a physically realisable

system.”

Alternatively, any physically realizable system will satisfy the Paley-Wiener the-

orem. Therefore, the antenna pattern for any physical array is constrained by the

Paley-Wiener criteria. In noting that the natural logarithm is undefined for an ar-

gument of zero, one observes that the antenna magnitude response for any physical

phased array system cannot, even in the ideal case, achieve a true null over any

nonzero bandwidth. In practice, system imperfections further degrade null depths

over both spatial frequency and temporal frequency.
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2.5 Arbitrary Beamshaping

Although TTD beamforming completely mitigates beam squint and pulse dispersion,

the resulting array factor remains frequency-variant, as shown in Figure 2.8. Fre-

quency variation in beamwidth can have degrading effects on wideband synthetic

aperture radar (SAR) given the inconsistent illumination area of the imaging target.

An FIR filter bank can be synthesized to mitigate beam squint as well as provide a

frequency-invariant system response using a desired template pattern [42].

We seek an FIR filter for each element whose combined output produces the de-

sired array factor for the given bandwidth. To determine the desired filter responses,

first consider the frequency-dependent array factor for an N -element ULA, as de-

scribed in Eq. (2.10). It is repeated here for reference: S0(θ, f) =
∑N

n=1 Sn(θ, f),

where Sn(θ, f) is defined in Eq. (2.9). The magnitude response of this function is

provided in Figure 2.8. The steered response y(θ, f) is given by the application of a

weight vector w(f) to the measured phase response S(θ, f), as defined in Eq. (2.20).

Rather than determining the weight vector as described in Sections 2.3.1, 2.3.2, or 2.4,

we specify a template pattern which is used as a target for a least-squares optimization

over the desired bandwidth.

By prescribing a desired template array factor yT over frequency and steering

angle, one can determine the element weight vectors w, which minimize the cost

function,

min
w
||Sfwf − yT,f ||22 (2.32)

where Sf , wf , and yT,f are frequency cuts of S[θ, n, f ], w[n, f ], and yT[θ, f ] respec-

tively. The closed form solution to this least squares problem is given by

wf = (SHf Sf )
−1SHf yT,f . (2.33)

29



The frequency domain of the matrix w[n, f ] is populated by solving Eq. (2.33) for

each desired frequency cut. Channel filters can be synthesized using the resulting

weight vectors wn. Filter synthesis of arbitrary frequency responses is covered in

detail in Section 4.2.1.2. The resulting channel filters are denoted by the variable hn.

A beamshaping example steered to θst = -27◦ is given in Figure 2.12. The simu-

lated aperture is an 8-element ULA with element spacing d =
λfmid

2
for an instanta-

neous bandwidth of 1600 MHz centered at 3 GHz. The vertical dashed lines denote the

steering angle while the horizontal dashed lines denote the desired bandwidth. The

template array factor was calculated at flow = 2.2 GHz and applied to a bandwidth

of 2 GHz.
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Figure 2.12: Upper Left: Pattern Template, yT, Upper Right: Pattern Template over

frequency, yT,f , Lower Left: TTD Pattern, Lower Right: Beamshaped Pattern

The upper left plot shows the template pattern across the instantaneous band-

width. The synthesized array factor ỹ = wHS is given in the upper right plot, which

approximately equals the template array factor yT. Subtle variations can be seen

towards the upper end of the band. The beamshaped antenna pattern, determined

by passing the element signals through the synthesized weighting filters hn, is given
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in the bottom right. A TTD wideband antenna pattern is given in the bottom left for

reference. The antenna patterns in the bottom row assume a cos θ element pattern.
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Figure 2.13: Beamshaping Compensation Filters

Figure 2.13 shows the frequency response for each channel filter. Desired filter

responses wn are given by solid traces and the synthesized filter response from the

FIR filters hn are given by dashed traces. Synthesized filters utilized 31 taps. Vertical

dashed lines denote the bandwidth of interest, outside of which filter agreement is

not necessitated. As expected, element tapering is induced in order to maintain

the wider beamwidth as the array becomes electrically smaller at higher frequencies.

Additionally, the center element filters tend to increase in magnitude in order to

maintain a consistent gain across the bandwidth. Figure 2.14 shows the magnitude

and phase error between the desired and synthesized filter responses. Good agreement

is shown within the band of interest, with worst case errors of 0.02 dB and 0.1◦ present

for the edge elements.

To further demonstrate synthesis of an arbitrary response, Figure 2.15 shows a

wideband pattern with the OU logo nulled into the array factor sidelobes. Using

the procedure presented in Section 2.4, separate array factor templates were specified

over frequency containing nulls at prescribed locations. To account for the addi-

tional degrees of freedom (DOF) required for null synthesis, the number elements was

increased to 32. The center of the band, where the ‘O’ and ‘U’ overlap, required
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Figure 2.14: Beamshaping Compensation Filter Error

synthesis of four nulls and the main beam. Good agreement is shown between the

template array factor yT and the synthesized array factor ỹ. The desired channel

weights w contain high transient behavior near the transitions between varying fre-

quency cuts. Thus, there is greater degradation between the synthesized array factor

and the beamshaped antenna pattern shown in the lower right.
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Figure 2.15: Arbitrary Pattern with OU Logo: Upper Left - Pattern Template, yT, Upper

Right - Pattern Template over frequency, yT,f , Lower Left - TTD Pattern, Lower Right -

Beamshaped Pattern
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2.6 Beamforming Summary

In summary of the aforementioned beamforming techniques, Figure 2.16 shows a

comparison of narrowband, wideband, and beamshaped antenna patterns. Frequency

cuts at band edges and center show beam squint in the narrowband case and frequency

varying sidelobe behavior in the wideband case. Antenna patterns in the beamshaping

case show almost complete overlap.
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Figure 2.16: Beamforming Comparison of Phase Shifter, True Time Delay, and Beamshap-

ing Beamforming

2.7 Sub-Nyquist-Sampled Beamforming

The rapid increase in ADC sampling rates has made practical the direct sampling

of incident RF waveforms using an RFSoC, which can serve to reduce system com-

plexity by mitigating the need for analog downconversion. However, given that the

third generation of Xilinx’s UltraScale+ RFSoC line supports ADC sample rates of

up to 5.0 GHz, sampling above the Nyquist frequency is only practical into the lower

portion of the S-band. Waveforms above 2.5 GHz require either some form of down-

conversion or bandpass sampling. Additionally, the proportional relationship between
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sampling frequency and power consumption [49] provides a compelling reason to limit

the ADC sample rate to that which is required for system operation.

Sub-Nyquist sampling, or bandpass sampling, enables digital representation of

bandpass signals sampled below the Nyquist rate. Sampled signals alias from higher

Nyquist zones to within the digital spectrum without requiring frequency conver-

sion [36]. Although this is theoretically valid for arbitrarily high Nyquist zones,

the 3-dB cut off for the RFSoC ADCs used in this dissertation constrains the input

spectrum to 4 GHz. RFSoC devices with broader input frequency ranges could en-

able bandpass sampling of higher frequency carriers, mitigating the need for external

downconversion hardware. As outlined in Section 4.1.2, the beamformer testbed is

designed to operate at a sample frequency of 4 GHz and support a 1.6 GHz bandwidth

centered in the second Nyquist zone at 3 GHz. The sampled waveform aliases into

the first Nyquist zone.

This section discusses the Shannon sampling theorem and presents sub-Nyquist

sampling implications to beamforming. As given in Chapter 14 of [8], the Nyquist

Sampling Theorem answers the question, “how frequently must samples be taken

to adequately represent the analog signal?” Subsection 2.7.1 presents the sampling

theorem and discusses its implications for digitizing carrier-modulated receive wave-

forms, also known as bandpass sampling [36]. Subsection 2.7.3 discusses implications

to phased array beamforming due to time domain aliasing of the receive signals. A

mathematical explanation and simulation results are provided.

2.7.1 Shannon Sampling Theorem

The well known Nyquist sampling theorem, described in several texts [8], [39], [50], is

given by fs > 2Fhigh, where Fhigh is the highest frequency in the waveform of interest.

The variable fs = 2Fhigh is known as the critical sampling frequency [50]. However,
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it has just as profound of implications in the spatial domain as the critical element

spacing for phased arrays [4], [32] is given by

d =
λ

2
. (2.34)

Section 2.2 discusses some of the relationships between the time domain and spatial

domain processing. Following the discussion in Chapter 14 of [8], a band-limited

analog signal xa(t) and its Fourier transform Xa(F ) are presented and compared to

the sampled signal xs(t) and its Fourier transform Xs(F ). The sampled signal can be

derived from the continuous signal through multiplication with an impulse train, as

given by

xs(t) = xa(t)

(
∞∑

n=−∞

δD(t− nTs)

)

=
∞∑

n=−∞

x[n]δD(t− nTs) ,

(2.35)

where xa(nTs) = x[n] and δD(t) is the Dirac delta function. Morrison [50] notes that

a signal which is discrete in one domain has a periodic Fourier transform. Hence,

Xs(F ) is given by

Xs(F ) =
1

Ts

∞∑
k=−∞

Xa(F − kFs) . (2.36)

Figure 2.17 shows a time domain sinc function with bandwidth B = 1 GHz and its

corresponding Rect function Fourier spectrum. The continuous case and two discrete

cases with different sample frequencies are presented. As described by Eq. (2.36),

the Fourier transform shown in the upper right plot is replicated at every integer

multiple of Fs for the middle right and lower right plots. In comparing the two

sampled cases, one can see that as the sample frequency drops, the space between the

spectrum replicas decreases. When the sample frequency is equal to twice the highest

frequency in the original spectrum, Fhigh = B
2

= 500 MHz for the given example, the
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Figure 2.17: Time and Frequency Domain Representation of Continuous and Discrete 1 GHz

Sync Functions at Baseband

spectrums will begin to overlap. This gives rise to the Nyquist sampling theorem,

which ensures no overlap between repeated spectrums. In practice, because the signal

spectrum rolls off more gradually than indicated in the above example, margin must

be added to ensure aliasing does not occur (e.g. fs = 2.5Fhigh [7]).

2.7.2 Sub-Nyquist Sampling

Consider now a sinc function modulated to a carrier frequency Fc = 4 GHz, as shown

in Figure 2.18. The corresponding 1 GHz spectrum is now centered around ±4 GHz.

Sampling at 2Fhigh = 2(Fc + B
2

) = 9 GHz would enable full representation of the sig-

nal at the carrier frequency resulting in a pair of 1 GHz spectral replicas at every

9 GHz.

As demonstrated in Figure 2.17, reducing the sample frequency brings these repli-

cas closer together. Assuming no other spectral content within the signal of interest,

the sample frequency can be reduced well below the Nyquist rate of 9 GHz, until just

before the replicas begin to overlap. This occurs at Fs = B = 1 GHz [8]. Sampling

this modulated signal results in the same discrete samples, assuming coherency, as in
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Figure 2.18: Time and Frequency Domain Representation of Continuous and Discrete 1 GHz

Sync Functions at 4 GHz

Figure 2.17. Hence, as long as the sample frequency is selected to ensure the signal

spectrum replicas do not overlap, the signal of interest can be fully represented from

its discrete samples, regardless of carrier frequency. Care must be taken to ensure

that no other spectral content aliases into the digitized waveform [36]. Hardware

imperfections can make it difficult to ensure spectral content is confined within the

signal of interest in practical systems, requiring great care to be taken when design-

ing such systems. Specifically, nonlinear amplifier effects can manifest in transmit

operation where PAs are commonly run in saturation, causing aliased signal spurs to

degrade the waveform.

2.7.3 Sub-Nyquist-Sampled Beamforming Implications

Spectrum aliasing due to sub-Nyquist sampling affects the relative phase of received

signals, impacting beamforming compensation. This phenomena is also present when

beamforming at complex baseband due to frequency shifting [18]. Consider two dis-

crete signals offset by a given time difference ∆t, which corresponds to a phase dif-

ference ∆φ at a given frequency F . When said signals alias to a new frequency
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Fa, although the relative time difference is unaffected, the relative phase difference

changes to ∆φa due to the new period TFa .

Figure 2.19: Ray Tracing Geometry for 2-Element Array

To further explore this, consider a monochromatic planewave of frequency F de-

fined by

x(t) = cos (2πFt) . (2.37)

And suppose this planewave impinges on a two element array from an arbitrary

angle θ, as shown in Figure 2.19. For mathematical simplicity, the impinging phase

front is defined to have a phase offset of 0◦ at the first array element. The tone

incident on the nearest element can be represented by Eq. (2.37) while the delayed

tone is given by

xd(t) = cos(2πF (t−∆t)) , (2.38)

where ∆t = d sin θ
c

, as described in Section 2.3.

Sampling each signal at the sample frequency Fs yields the following two discrete

functions:

x[m] = cos

(
2π

f

Ts

mTs

)
= cos (2πfm)

(2.39)
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and

xd[m] = cos

(
2π

f

Ts

(mTs −∆t)

)
= cos

(
2πfm− 2π

f

Ts

∆t

)
.

(2.40)

The time domain axis t relates to the sample index m by t = mTs and the continuous

time frequency F relates to the normalized discrete frequency f by F = fFs = f
Ts

.

The sample period and sample frequency are given by Ts and Fs respectively.

Because sinusoids are 2π periodic, if the magnitude of f is greater than 0.5, the

time-varying component of the sinusoidal argument will alias to a new normalized fre-

quency f ′ such that −0.5 ≤ f ′ < 0.5. Aliased representations of Eqs. (2.39) and (2.40)

are given by

x[m] = cos (2πf ′m) (2.41)

and

xd[m] = cos

(
2πf ′m− 2π

f

Ts

∆t

)
. (2.42)

The constant phase term in Eq. (2.42) contains the original discrete frequency f

rather than the aliased frequency f ′.

To align the two receive tones, the first sensor signal must be delayed by the phase

front propagation time between the two elements, namely ∆t. To apply a TTD to

the discrete signal, a delay sample index can be defined as md = m−m0, where the
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delay sample offset m0 = ∆t
Ts

. The delay sample offset will generally not be an integer.

Substituting the delay sample index into Eq. (2.39) yields

x[m] = cos (2πfmd)

= cos (2πf (m−m0))

= cos

(
2πf

(
m− ∆t

Ts

))
= cos

(
2πfm− 2πf

∆t

Ts

)
,

(2.43)

which is equivalent to the second received tone described by Eq. (2.40). As a result,

the two signals can be summed coherently.

Substituting the delayed index md into the aliased signal in Eq. (2.41) yields

x[m] = cos (2πf ′md)

= cos

(
2πf ′m− 2πf ′

∆t

Ts

)
.

(2.44)

Note that the phase offset term in Eq. (2.44) differs from that in Eq. (2.42).

Eq. (2.44) can be further compensated with a correction phase φcorr as given by

x[m] = cos

(
2πf ′m− 2πf ′

∆t

Ts

+ φcorr

)
. (2.45)

Equating the cosine arguments of Eq. (2.42) and Eq. (2.45), one solves for φcorr to

yield

φcorr = −2π
∆t

Ts

(f − f ′)

= −2π∆t(F − F ′) .
(2.46)

This correction phase depends on the difference between the original frequency and

aliased frequency and the time delay ∆t between the current element and reference
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element. Note that pulse distortion should be considered if this correction phase

grows beyond 1 cycle.

2.7.4 Phase Compensation Sign

Frequency folding must also be accounted for in array control for incident signals in

an even Nyquist zone. Figure 2.20 shows two examples for a system with sample

frequency Fs = 4 GHz. The left plot shows the transmitted signal spectrum centered

in the second Nyquist zone (Fs

2
≤ f ≤ Fs); the right plot shows the transmitted signal

spectrum centered in the third Nyquist zone (Fs ≤ f ≤ 3Fs

2
). Under the DDC scheme

outlined in Section 2.1.4, the signal spectrum located at Fs

4
is shifted to baseband

while the that at -Fs

4
is filtered out.
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Figure 2.20: Frequency Folding

In the right plot, the orientation of the yellow baseband signal matches that of the

positive frequency blue transmit signal, while it is reversed in the left plot. Due to

frequency folding from the second Nyquist zone to the first, the conjugate spectrum

ends up shifted to baseband. This manifests as a negation of the phase argument in

the measured phase response, given in Eq. (2.9). This can be mitigated by negating

the command steering angle θst or modifying the DDC to shift the -Fs

4
spectrum

to baseband instead. Either way, steering commands for a system sampling receive

signals at a sub-Nyquist rate must account for frequency folding.
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2.7.5 System Examples

This section presents antenna patterns for a narrowband and wideband system em-

ploying sub-Nyquist sampling. The wideband system is presented with and without

the correction phase discussed in Section 2.7.3. Antenna pattern results are provided

at various stages of the DDC to illustrate the beamsteering effect of each stage.

2.7.5.1 Phase Shifter Sub-Nyquist Sampled Example

The block diagram given in Figure 2.21 shows a narrowband system in which each

channel has an ADC and phase shifter and the DDC is placed after the summation

node. Figure 2.22 shows the frequency-dependent antenna pattern at various stages

of the DDC for an 8-element array steered to θst = -27◦. The incident waveform is

a 1.6 GHz wide chirp centered at 3 GHz and the sample frequency is Fs = 4 GHz.

The vertical dashed line denotes the steering angle and the horizontal dashed lines

denote the waveform bandwidth and the center frequency. The DDC follows the

scheme in Section 2.1.4, in which the spectrum that has aliased to Fs
4

= 1 GHz is

downconverted to baseband.

Figure 2.21: Phase Shifter Compensated System Block Diagram

Figure 2.23 shows an angle cut at θst = -27◦ of the DDC spectrums given in Fig-

ure 2.22. Amplitude variation due to beam squint is readily apparent. The blue

trace corresponds to the upper left plot of Figure 2.22, the red trace to the upper

right plot, the yellow trace to the lower left plot, and the purple trace to the lower

right plot. The asymmetry in the conjugate spectrums is due to the incoherency of
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Figure 2.22: Narrowband Array Factor within DDC

the conjugate symmetric signals in the steering direction. In fact, as discussed in

Section 2.7.4, a main beam appears in the conjugate spectrum at θ = 27◦. Hence,

for the given system parameters, if the incident chirp was centered at 5 GHz instead

of 3 GHz, the resulting phase commands would need to be negated.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Frequency (GHz)

-30

-25

-20

-15

-10

-5

0

5

10

M
a

g
n

it
u

d
e

 (
d

B
)

Rx Sig

DDC Sig

Filt Sig

Dn-Samp Sig

Filter

Figure 2.23: Narrowband Array Factor within DDC

2.7.5.2 TTD Sub-Nyquist Sampled Example

A block diagram for a wideband system without phase correction is given in Fig-

ure 2.24. Relevant system parameters are outlined in Section 2.7.5.1. The TTD units
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are implemented using sinc-based fractional delay FIR filters coupled with integer

sample delays, discussed in detail in Chapter 4.

Figure 2.24: TTD Compensated System Block Diagram

The corresponding DDC patterns are shown in Figure 2.25. Although time shifts

for a beam steered to θst = -27◦ were appropriately calculated using Eq. (2.7), the

resulting patterns show significant steering errors. Note that at θst = -27◦, the pattern

response does not vary over frequency. This indicates that mechanical boresight has

been shifted to the steering direction due to the channel delays, despite the main

beam error. Figure 2.26 shows the steering angle cut corresponding to the plots in

Figure 2.25. Due to TTD signal compensation, conjugate symmetry is present along

the given steering angle.
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Figure 2.25: Wideband Array Factor within DDC - No Phase Correction
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Figure 2.26: Narrowband Array Factor within DDC

2.7.5.3 Wideband Sub-Nyquist Sampled Example

Figure 2.27: TTD Compensated System Block Diagram with Phase Correction

The block diagram is Figure 2.27 shows a TTD system with phase correction. The

corresponding antenna patterns are shown in Figure 2.28 in which the main beam

is appropriately located. The amplitude roll off shown in Figure 2.23 due to beam

squint has now been corrected. The conjugate symmetry shown in Figure 2.26 is

no longer present, as applying the phase correction shifts the conjugate spectrum in

the opposite direction of the main beam. However, as mechanical boresight has been

shifted to the steering angle due to TTD, the spectral response along the θst is flat

in both the primary spectrum and the conjugate spectrum. Applying the TTD in

conjunction with the appropriate phase shift results in a wideband response steered

to the desired direction of θ = -27◦.
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Figure 2.28: Wideband Array Factor within DDC - Phase Correction
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Figure 2.29: Narrowband Array Factor within DDC
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Chapter 3

Adaptive Beamforming

Adaptive beamforming enables array control based on current or recently received sys-

tem data seeking to discriminate between desired and undesired signals. Mozingo [22]

notes that fundamental differences between desired and undesired signals can be ex-

ploited to aid SNR improvement. Spatial and temporal signal information provide

estimates of statistical parameters that can be exploited to improve system perfor-

mance. Often, seeking to enhance the desired signal while simultaneously degrading

interfering signals involves trade-offs. Adaptive theory provides methods by which

one can optimize these goals improving system performance.

In this chapter, Section 3.1 presents the mathematical framework from which

the adaptive algorithms are derived. Array representation is provided for ULA’s as

well as arbitrary geometry. Section 3.2 presents a technique for estimating environ-

ment statistics for use in adaptive algorithms. Several derivations of iterative and

statistically optimum adaptive algorithms are presented in Section 3.3. And finally,

algorithm comparisons and simulations are provided in Section 3.4.

3.1 System Representation

This section presents a mathematical representation of a phased array system from

which adaptive beamforming algorithms can be derived. For the sake of simplicity,

array discussions presented in this chapter pertain to the ULA, for which a steering

direction is fully defined by a single angle θ. Section 3.1.1 provides the framework to

expand array representation and control to 2-dimensional and 3-dimensional arrays.
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Figure 3.1: Linear Array Block Diagram

Figure 3.1 provides a block diagram of a ULA to aid in the discussion of a phased

array mathematical representation. As previously mentioned, this dissertation follows

the convention of using the element weight conjugate w∗n in the mathematical system

representation, as employed in [25] and [39]. As depicted, the array output is given

by

y(k) = wHx(k) , (3.1)

where the weight vector w containing the complex array weights is given by

wH =

[
w∗1 w∗2 · · · w∗N

]
. (3.2)

The receive signal vector x(k), as described by Eq. (3.3), contains the signal

received by each element as a function of time, indexed by k. It is the superposition

of the signal of interest vector xs(k) and the undesired signal vector u(k), which is

comprised of the interference signal vector xi(k) and the noise vector n(k).

x(k) = xs(k) + u(k)

= xs(k) + xi(k) + n(k) .

(3.3)
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The array manifold vector [44] translates an incident signal to the element signals.

It is a subset of the measured phase response described in Eq. (2.9). Therefore,

the signal of interest xs(k) can be represented by the product of the array manifold

vector a0 and the signal s(k) impinging on the array, namely

xs(k) = a0s(k) , (3.4)

where an array manifold vector pertaining to the incident angle θm for an N -element

ULA with element spacing d and wavenumber k is given by

am =



1

e−jkd sin(θm)

...

e−jkdN sin(θm)


. (3.5)

The undesired signal is comprised of the incident interferers and noise received by

the array, as given by

u(k) = xi(k) + n(k) , (3.6)

where

xi(k) =

[
a1 a2 · · · aM

]


i1(k)

i2(k)

...

iM(k)


(3.7)

and

n =



n1

n2

...

nN


. (3.8)
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Elements of the noise vector n(k) are assumed to be uncorrelated zero-mean Gaussian

noise.

3.1.1 Multidimensional Arrays

In order to describe a planar or conformal phased array system, one must modify

the array manifold vector to account for additional dimensions in both arbitrary

element positions and incident angle directions. For a multidimensional array, element

positions are described by x, y, and z components and steering directions require two

angles, typically θ and φ. Consider the directional wavenumber k, which describes

the spatial frequency projected along the direction defined by θ and φ. It can be

described by

k =
2π

λ


sin θ cosφ

sin θ sinφ

cos θ

 = k


sin θ cosφ

sin θ sinφ

cos θ

 . (3.9)

As expected, the magnitude of the directional wavenumber is 2π
λ

= k. If the position

for element n is given by

pn =


pxn

pyn

pzn

 , (3.10)

then the multidimensional array manifold vector can be written as

am =



e−jk
T
θm,φm

p0

e−jk
T
θm,φm

p1

...

e−jk
T
θm,φm

pN


. (3.11)
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Note that for a ULA with element spacing d oriented along the x-axis, for which

φ = 0◦, Eqs. (3.9) and (3.10) reduce to

k = k


sin θ

0

cos θ

 (3.12)

and

pn =


pxn

0

0

 =


nd

0

0

 , (3.13)

respectively. In substituting Eqs. (3.12) and (3.13), Eq. (3.11) simplifies down to

Eq. (3.5) as given by

am =



e−jk0d sin θm

e−jk1d sin θm

...

e−jkNd sin θm


=



1

e−jkd sin θm

...

e−jkNd sin θm


. (3.14)

3.2 Sample Matrix Inversion

As will be shown in Section 3.3, many adaptive algorithms require knowledge of the

array correlation matrix. Gross [25] notes that much of the literature uses the array

covariance matrix instead of the array correlation matrix, which is valid when the

corresponding signals are zero mean. This will be the assumption carried throughout

this chapter. Relevant covariance matrices include the total signal covariance matrix
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Rxx, the desired signal covariance matrix Rss, the undesired signal covariance matrix

Ruu, the interferer covariance matrix Rii, and the noise covariance matrix Rnn, where

Rxx = Rss + Ruu

= Rss + Rii + Rnn .

(3.15)

In practice, because the signal statistics are not known, they must be estimated based

on current array samples [25]. An estimate of the covariance matrix can be computed

by

R̂ =
1

K

K∑
k=1

x(k)xH(k) , (3.16)

where x(k) is an N -element vector containing the kth array sample and K is the num-

ber of samples in the covariance matrix estimate. The sample covariance matrix R̂

can be used in place of the true covariance matrix.

3.2.1 Reed-Mallett-Brennan Rule

Naturally, when estimating the covariance matrix, there is a trade-off between min-

imizing sample size and maximizing accuracy. The Reed-Mallett-Brennan (RMB)

rule [51] provides the following relationship to aid in this trade-off decision.

loss = −10 log10

(
K + 2−N
K + 1

)
(3.17)

where K, as defined in Eq. (3.16), is the number of signal vector x samples and N is

the number of array elements. Eq. (3.17) can be rewritten as

loss = −10 log10

(
(K ′ − 1)N + 2

K ′N + 1

)
(3.18)

where K ′N = K. The RMB rule predicts the loss in dB from the ideal SNR as a

function of the number of elements N and the number of samples K ′N . Figure 3.2
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shows a plot of Eq. (3.18) as a function of the number of elements N for multiple

values of K ′.

Figure 3.2: Loss from optimum response when using covariance matrix estimate

This shows that for K ′ = 2, the sample covariance matrix estimate results in a

loss of about 3 dB as compared to if the true statistics were known. Sensor signals are

assumed to be stationary over the sample period and operation time of the adaptive

array. It should be noted that Eq. (3.18) appears to be valid for values of K ′ > 1

given that values of K ′ < 1 predict lower loss than when K ′ = 1. Additionally, the

K ′ = 1 case does not show the asymptotic response shown for cases of K ′ > 1. This

indicates that the RMB rule should only be applied to sample sizes greater than the

number of array elements N .

3.3 Adaptive Algorithms

The following section provides derivations for several adaptive algorithms. As will

be shown, the Minimum Mean Square Error (MMSE) [25] derivation results in the

Wiener-Hopf equations [26]. Based on the MMSE derivation, the iterative Least Mean

Squares (LMS) [25] and Recursive Least Squares (RLS) [52] algorithms are derived.

Subsequently, the Maximum Signal to Interference/Noise (SINR) [25] and Maximum
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Likelihood (ML) [25] algorithms are presented. And lastly, the Minimum Variance

Distortionless Response (MVDR) [44] and Linearly Constrained Minimum Variance

(LCMV) [44] algorithms are given.

3.3.1 Minimum Mean Squared Error

One way to determine the ideal filter weights wopt is to minimize the mean squared

error (MSE) between the received signal and the desired signal. This is the method

by which the Wiener Filter is derived [26]. Figure 3.3 shows an adaptive array for

which the current desired signal sample is represented by d(k) and the current array

output signal sample, an estimate of the desired signal, is represented by y(k).

Figure 3.3: Adaptive Array Block Diagram

The current error sample is given by

e(k) = d(k)− y(k)

= d(k)−wH
k x(k)

(3.19)
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and the squared error magnitude as

|e(k)|2 = |d(k)− y(k)|2

=
(
d(k)− y(k)

)(
d(k)− y(k)

)∗
=
(
d(k)− y(k)

)(
d∗(k)− y∗(k)

)
= d(k)d∗(k)− d(k)y∗(k)− d∗(k)y(k) + y(k)y∗(k)

= |d(k)|2 − d(k)xH(k)wk − d∗(k)wH
k x(k) + wH

k xxHwk .

(3.20)

Some texts [22], [24] present the squared error assuming real vector values, such that

e(k)2 = d(k)2 − 2d(k)xT (k)wk + wT
k xxTwk, while others [52], [39], [44] present the

more general and applicable complex case given above. Gross [25] obscured the matter

as he appeared to carry complex notation throughout the derivation while combining

the inner and outer terms as if they were real. This resulted in the following equation

|e(k)|2 = |d(k)|2 − 2d(k)xH(k)wk + wH
k xxHwk, which the author of this dissertation

was unable to reconcile.

Given that x(k) and d(k) are nonstationary random processes, the mean of the

squared error, or the MSE, can be found by taking the expectation of Eq. (3.20), as

given by

ξ = E{|e(k)|2}

= E{|d(k)|2} − E{dxH(k)w} − E{d∗wHx(k)}+ E{wHx(k)xH(k)w}

= E{|d(k)|2} − E{dxH(k)}w −wHE{d∗x(k)}+ wHE{x(k)xH(k)}w

= E{|d(k)|2} − rHxd∗w −wHrxd∗ + wHRxxw ,

(3.21)

where because the weight vector w is deterministic, it can be pulled out of the ex-

pectation operator. Note that the time dependence of the weight vector w has been

removed given that Eq. (3.21) describes the mean system response. Rxx represents

the total signal covariance matrix as defined by E{x(k)xH(k)} while rxd∗ represents
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the cross covariance vector between the desired signal and the current signal vector

as defined by E{d∗x(k)}.

The weight vector wopt which minimizes the convex function given by Eq. (3.21)

can be determined by setting the gradient of ξ with respect to the weight vector equal

to zero. As described by Brandwood [21], because ξ is a real valued function of a

complex vector and its Hermitian transpose, the minimum can be found by setting

the gradient equal to zero with respect to either wH or w. Both cases are presented

in Eqs. (3.22) and (3.23) respectively.

∇wHξ = −rxd∗ + Rxxwopt = 0 (3.22)

∇wξ = −r∗xd∗ + (RH
xxwopt)

∗ = 0

= −r∗xd∗ + RT
xxw

∗
opt = 0

(3.23)

Solving Eq. (3.23) for wopt yields

w∗opt = (RT
xx)
−1r∗xd∗

wopt = (RH
xx)
−1rxd∗

= R−1
xx rxd∗ ,

(3.24)

where for a Hermitian matrix, AH = A. Eq. (3.24) clearly matches the solution to

Eq. (3.22) and is the well known Wiener-Hopf equations [26] applied to a spatial filter.

Note that although Eqs. (3.22) and (3.23) have the same solution wopt, ∇wHξ(k) and

∇wξ(k) are themselves conjugates of each other.

In the ideal case, the reference signal d(k) is equal to the desired signal s(k)

impinging on the array. Recalling the definition of the received signal x(k) given in
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Eq. (3.3), and assuming that s(k) is uncorrelated with the undesired interferers and

noise, the cross correlation vector rxd∗ can be rewritten as

rxd∗ = E{s∗(k)x(k)}

= E{s∗(k)(xs(k) + xi(k) + n(k))}

= E{s∗(k)xs(k)}+ E{s∗(k)xi(k)}+ E{s∗(k)n(k)}

= E{s∗(k)a0s(k)}+ 0 + 0

= E{|s(k)|2}a0

= Sa0

(3.25)

where because the array manifold vector a0 is a deterministic quantity, it can be pulled

out of the expectation operator. E{|s(k)|2} = S is the signal power, which for the

purposes of identifying the weight vector w can be taken as an arbitrary constant µ.

This results in

wopt = µR−1
xxa0 , (3.26)

which has the same form as the Applebaum solution [53] given by

wopt = µR−1
nna0 . (3.27)

As will be shown in Section 3.3.4, the Applebaum solution maximizes the Signal to

Noise Ratio (SNR) or the SINR depending on the which covariance matrix is available.

3.3.2 Least Mean Squares Algorithm

The least mean squares (LMS) algorithm seeks to minimize the MSE between the

desired signal and the filtered signal by iteratively manipulating the corresponding

filter weights. A block diagram of an LMS adaptive array is given in Figure 3.4. As

described in Section 9.2 of Hayes [26], the LMS algorithm is an approximation of the
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steepest descent adaptive filter, which minimizes the MSE by taking small iterative

steps along the error function in the direction of steepest descent.

Figure 3.4: LMS Adaptive Array

3.3.2.1 Method of Steepest Descent

Referring back to Eq. (3.24), note that the MMSE algorithm requires an inversion of

the covariance matrix, an operation which is known to have O(n3) complexity [54].

The method of steepest descent iterates to the ideal weight vector in computing the

next weight vector by taking a small step µ along the error surface in the negative

gradient direction away from the current weight vector. Figure 3.5 shows a simulated

MSE surface for two real-valued weights. Because the MSE surface is a quadratic

convex function, there exists a global minimum, towards which the gradient will

always point.

The steepest descent algorithm is described mathematically by

w(k + 1) = w(k)− µ∇wξ (3.28)
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Figure 3.5: LMS MSE Surface

or

w(k + 1) = w(k)− µ∇wHξ . (3.29)

Rewriting Eqs. (3.22) and (3.23) as

∇wξ = rxd∗ −Rxxw(k)

= E{d∗x(k)− x(k)xH(k)w(k)}

= E{(d∗ − xH(k)w(k))x(k)}

= E{e∗x(k)} ,

(3.30)

and

∇wHξ = r∗xd∗ − (Rxxw(k))∗

= E{ex∗(k)} ,
(3.31)

and substituting respectively into Eqs. (3.28) and (3.29) yields

w(k + 1) = w(k) + µE{e∗x} (3.32)
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and

w(k + 1) = w(k) + µE{ex∗} . (3.33)

Both Eqs. (3.32) and (3.33) converge to the ideal weight vector w = R−1
xx rxd∗ , albeit

along different paths.

3.3.2.2 LMS Approximation

The LMS algorithm approximates the expectations in Eqs. (3.32) and (3.33) using

current signal vector sample x(k) and weight vector w(k), as given by

E{e∗x} ≈
(
d∗(k)− xH(k)w(k)

)
x(k) (3.34)

and

E{ex∗} ≈
(
d(k)−wH(k)x(k)

)
x∗(k) , (3.35)

respectively. Thus, the LMS algorithm can be implemented through either of the

following equations.

w(k + 1) = w(k) + µe∗(k)x(k) (3.36)

w(k + 1) = w(k) + µe(k)x∗(k) (3.37)

Note that e(k) = d(k)−wH
k x(k) is known as the a posteriori estimation error [39]

3.3.3 Recursive Least Squares Algorithm

The Recursive Least Squares (RLS) algorithm [39] extends the LMS algorithm, seek-

ing to minimize the squared error recursively. The cost function estimates the MSE ξ

given in Eq. (3.21) using a weighted sum of the previous error samples, as given by

ε(k) =
k∑
i=1

λk−i|e(i)|2 . (3.38)

60



λ is a positive value just below 1 (e.g. λ = 0.998), known as the forgetting factor [52].

When λ = 1, the RLS algorithm is said to be the Ordinary Least Squares algorithm

[25] or the Growing Window RLS algorithm [26]. The weighting function is applied

to each error sample such that the ith sample is scaled by λk−i.

Recall from Section 3.3.1, the weight vector w which minimizes the MSE is

wopt = R−1
xx rxd∗ , as defined in Eq. (3.24). The RLS algorithm approximates the co-

variance matrix Rxx and the cross covariance vector rxd∗ as weighted sums of past

sample-based statistical estimates, as given by

R̂xx(k) =
k∑
i=1

λk−ix(i)xH(i) (3.39)

and

r̂xd∗(k) =
k∑
i=1

λk−ix(i)d∗(i) (3.40)

respectively. Note that Eqs. (3.38) - (3.40) are defined as continuing summations

starting with the first sample of operation. This differs from the sample covariance

matrix estimate given in Section 3.2, which is computed over a block of K samples.

The current statistical estimates in Eqs. (3.39) and (3.40) can be rewritten recur-

sively as functions of the forgetting factor and the current array sample vector x(k),

as given by

R̂xx(k) =
k−1∑
i=1

λk−ix(i)xH(i) + λ0x(k)xH(k)

= λ
k−1∑
i=1

λk−1−ix(i)xH(i) + x(k)xH(k)

= λR̂xx(k − 1) + x(k)xH(k)

(3.41)

and

r̂xd∗(k) = λr̂xd∗(k − 1) + x(k)d∗(k) . (3.42)
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Now that the estimates R̂xx(k) and r̂xd∗(k) are defined, the current weight vector can

be written as w(k) = R̂−1
xx (k)r̂xd∗(k). However, this still requires inverting a matrix.

An alternative method is to rewrite R̂−1
xx (k) in terms of λ and x. A simplified

version of the Sherman Morrison-Woodbury (SMW) theorem [55] defines the inverse

of a matrix of the form in Eq. (3.41) as

(A + zzH)−1 = A−1 − A−1zzHA−1

1 + zHA−1z
, (3.43)

assuming 1 + zHA−1z 6= 0. Making the appropriate substitutions, the inverse of

Eq. (3.41) can be written as

R̂−1
xx (k) = λ−1R̂−1

xx (k − 1)− λ−2R̂−1
xx (k − 1)x(k)xH(k)R̂−1

xx (k − 1)

1 + λ−1xH(k)R̂−1
xx (k − 1)x(k)

. (3.44)

As shown in [25], [39], and [37], it is common to define the gain vector g(k) as

g(k) =
λ−1R̂−1

xx (k − 1)x(k)

1 + λ−1xH(k)R̂−1
xx (k − 1)x(k)

. (3.45)

This allows Eq. (3.44) to be rewritten as

R̂−1
xx (k) = λ−1R̂−1

xx (k − 1)− λ−1g(k)xH(k)R̂−1
xx (k − 1) . (3.46)

At this point, the current weight vector w can be written as

w(k) = R̂−1
xx (k)r̂xd∗(k)

= λR̂−1
xx (k)r̂xd∗(k − 1) + R̂−1

xx (k)x(k)d∗(k) ,

(3.47)
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where r̂xd∗(k) is defined in Eq. (3.42). Substituting Eq. (3.46) into the first term of

Eq. (3.47) yields

w(k) = R̂−1
xx (k − 1)r̂xd∗(k − 1)− g(k)xH(k)R̂−1

xx (k − 1)r̂xd∗(k − 1)

+ R̂−1
xx (k)x(k)d∗(k)

= w(k − 1)− g(k)xH(k)w(k − 1) + R̂−1
xx (k)x(k)d∗(k) .

(3.48)

To further simplify Eq. (3.48), Eq. (3.45) is rewritten as

g(k) =
[
λ−1R̂−1

xx (k − 1)x(k)− λ−1g(k)xH(k)R̂−1
xx (k − 1)

]
x(k)

= R̂−1
xx (k)x(k) .

(3.49)

Substituting Eq. (3.49) into Eq. (3.48) yields the final weight vector relation,

w(k) = w(k − 1)− g(k)xH(k)w(k − 1) + g(k)d∗(k)

= w(k − 1) + g(k)(d∗(k)− xH(k)w(k − 1))

= w(k − 1) + g(k)e∗(k) ,

(3.50)

where e(k) = d(k)−wH(k − 1)x(k) is known as the a priori estimation error [39].

Note the subtle difference from the a posteriori estimation error which is used in the

LMS algorithm.

Table 3.1 summarizes the RLS equations, where P = R̂−1
xx . Because the weight

vector w and covariance matrix inverse P are recursively updated, initialization values

are required. Hayes [26] notes that initial estimates of the covariance matrix and cross

covariance vector can be computed using Eqs. (3.39) and (3.40) and used to determine

values for w and P. Alternatively, w can simply be initialized to a vector of zeros

and P initialized to δ−1I where δ is a small positive constant.
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Table 3.1: RLS Equations

Description Equation

Error Sample e(k) = d(k)−wH(k − 1)x(k)

Gain Vector g(k) = λ−1P(k−1)x(k)
1+λ−1xH(k)P(k−1)x(k)

Weight Vector w(k) = w(k − 1) + g(k)e∗(k)

Covariance Inverse P(k) = λ−1P(k − 1)− λ−1g(k)xH(k)P(k − 1)

3.3.4 Maximum Signal to Interference/Noise Ratio

Another method for determining the optimum weight vector wopt is to maximize the

SINR. This is the basis for the Applebaum beamformer [53]. One must first describe

the desired signal power σ2
s and the undesired signal power σ2

u. The signal power is

defined as

σ2
s = E

[
|wHxs(k)|2

]
= E

[
(wHxs(k))(wHxs(k))H

]
= E

[
wHxs(k)xs(k)Hw

]
= wHE

[
xs(k)xs(k)H

]
w

= wHRssw .

(3.51)

The interference power is given by

σ2
i = E

[
|wHxi(k)|2

]
= wHRiiw

(3.52)

and the noise power is given by

σ2
n = E

[
|wHn(k)|2

]
= wHRnnw .

(3.53)
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As given in Eq. (3.3), the undesired signal is composed of the interference signal and

noise. Therefore, the undesired signal power is defined as

σ2
u = σ2

i + σ2
n

= wHRiiw + wHRnnw

= wHRuuw .

(3.54)

This allows the SINR to be given by

SINR =
σ2
s

σ2
u

=
wHRssw

wHRuuw
. (3.55)

The maximum SINR can be determined by setting the derivative of Eq. (3.55)

with respect to wH equal to zero, as outlined in Chapter 10 of [56]. The result of

optimization is given by

Rssw = SINR · Ruuw

R−1
uuRssw = SINR · w .

(3.56)

As described by [25], Eq. (3.56) is an eigenvector equation where the eigenvectors

and eigenvalues describe weight vectors w and corresponding SINR’s. Therefore, the

maximum SINR can be achieved by selecting as the weight vector wopt the eigenvector

corresponding to the maximum eigenvalue of the Hermitian matrix R−1
uuRss.

Knowing the optimum weight vector wopt, Eq. (3.56) can be rewritten in the form

of Eq. (3.26) and (3.27) such that

wopt =
1

SINR
R−1
uuRssw . (3.57)
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Given that

Rss = E{xsxHs }

= E{(s(k)a0)(s∗(k)aH0 )}

= E{|s(k)|2}a0a
H
0

= Sa0a
H
0 ,

(3.58)

Eq. (3.57) can be modified as follows

wopt =
S

SINR
R−1
uua0a

H
0 w

=
SaH0 wopt

SINR
R−1
uua0

= µR−1
uua0 ,

(3.59)

which is the Applebaum solution [53] for maximizing SINR. If the undesired signals

do not contain spatially correlated interferers (e.g. if xi = 0), then Ruu = Rnn and

maximizing the SINR is equivalent to maximizing the SNR. Unless otherwise noted,

the Applebaum algorithm will refer to Eq. (3.59).

3.3.5 Maximum Likelihood

The Maximum Likelihood optimization method assumes that the noise environment

consists of zero-mean Gaussian noise. The goal is to determine the optimal weight

vector w from the probability density function (PDF) describing the likelihood that

the observed array vector x occurred given that the desired signal vector xs occurred.

Given that the noise vector n is a stationary zero-mean Gaussian random vector with

covariance matrix Rnn = σ2
nI and the array vector x is a stationary Gaussian random
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vector with mean xs = sa0 such that x = xs +n, the joint Gaussian conditional PDF

is given by

p(x|xs) =
1√

2πσ2
n

e

(
−(x−xs)HR−1

nn(x−xs)
)

=
1√

2πσ2
n

e

(
−(x−a0s)HR−1

nn(x−a0s)
)
.

(3.60)

The intent is to maximize Eq. (3.60), which is accomplished by maximizing the

argument within the exponent. The log-likelihood function solves for this argument

as given by

L[xs] = − ln[p(x|xs)]

= c+ (x− a0s)
HR−1

nn(x− a0s) ,

(3.61)

where c = − ln
(

1√
2πσ2

n

)
, which is independent of s and x. There exists a signal esti-

mate ŝ that maximizes Eq. (3.61) which can be determined by setting the derivative

with respect to s∗ equal to 0.

∂L

∂s∗
=

∂

∂s∗

(
c(x− a0s)

HR−1
nn(x− a0s)

)
=

∂

∂s∗

(
xHR−1

nnx− s∗aH0 R−1
nnx− sxHR−1

nna0 + (ss∗)aH0 R−1
nna0

)
= 0− ∂

∂s∗

(
s∗aH0 R−1

nnx
)
− ∂

∂s∗

(
sxHR−1

nna0

)
+

∂

∂s∗

(
(ss∗)aH0 R−1

nna0

)
= −aH0 R−1

nnx−
( ∂
∂s

(
sxHR−1

nna0

))∗
+ ŝaH0 R−1

nna0

= −aH0 R−1
nnx−

(
xHR−1

nna0

)∗
+ ŝaH0 R−1

nna0

= −aH0 R−1
nnx− aH0 R−1

nnx + ŝaH0 R−1
nna0

= −2aH0 R−1
nnx + 2ŝaH0 R−1

nna0

(3.62)
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Note that Eq. (5) of Brandwood [21] states that ∂
∂z
f(z, z∗) =

(
∂
∂z∗
f(z, z∗)

)∗
. Set-

ting Eq. (3.62) equal to 0 and solving for the signal estimate ŝ yields

ŝ =
aH0 R−1

nn

aH0 R−1
nna0

x (3.63)

Recalling from Eq. (3.1) that the array output is given by y = wHx, the weight

vector which maximizes the likelihood that the array output y corresponds to the

signal estimate ŝ is given by

wML =
R−1
nna0

aH0 R−1
nna0

(3.64)

3.3.6 Minimum Variance Distortionless Response

The minimum variance distortionless response (MVDR), also known as the Capon

beamformer [57], seeks minimize the signal variance while requiring a distortionless

signal response in a prescribed direction. The array manifold vector corresponding

to the prescribed direction θ0 is a0 as described by Eq. (3.5) and the distortionless

constraint, as given in Eq. (2.25), is wHa0 = 1. Rewriting the array output described

in Eq (3.1) under the distortionless constraint yields

y = s+ wHu . (3.65)
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Given that E{y} = s and s is uncorrelated with the undesired signals and noise, the

signal variance is given by

σ2
y = E{y2} − E{y}2

= E{(s+ wHu)∗(s+ wHu)} − |s|2

= E{|s|2}+ E{s∗wHu}+ E{suHw}+ E{wHuuHw} − |s|2

= |s|2 + 0 + 0 + E{wHuuHw} − |s|2

= wHRuuw

= σ2
u .

(3.66)

The method of Lagrange [58] can be employed to determine a weight vector w which

minimizes the signal variance under the distortionless constraint. First, define the

following cost function

J(w) = σ2
u + λ(1−wHa0)

= wHRuuw + λ(1−wHa0) ,

(3.67)

where λ is a Lagrange multiplier. Setting the cost function gradient with respect to

the weight vector wH equal to 0 yields

∇wHJ(w) = Ruuwmvdr − λa0 = 0 , (3.68)

which when solved for the weight vector results in

wmvdr = λR−1
uua0 . (3.69)
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To determine the Lagrange multiplier λ, recall the distortionless constraint given in

Eq. (2.25). Solving for the weight vector w yields

w =
1

aH0
. (3.70)

Substituting Eq. (3.70) into Eq. (3.69) and solving for λ yields

λ =
1

aH0 R−1
uua0

. (3.71)

Finally, Eq. (3.71) is substituted back into Eq. (3.69) to give the MVDR beamforming

weight equation,

wmvdr =
R−1
uua0

aH0 R−1
uua0

. (3.72)

Eq (3.72) is predicated on the assumption that noise statistics are known or can

be estimated in the absence of the signal of interest. If the noise environment is not

available without the signal of interest, than Ruu must be replaced with Rxx. Van

Trees [44] distinguishes the latter case from the former, calling it the Minimum Power

Distortionless Response (MPDR). Hence, the MPDR weight vector is given by

wmpdr =
R−1
xxa0

aH0 R−1
x a0

. (3.73)

He specifies that the MVDR and MPDR beamformers are often interchanged in the

literature. Simulation results in Section 3.4.2 present the MPDR beamformer.

3.3.7 Linearly Constrained Minimum Variance

The Linearly Constrained Minimum Variance (LCMV) beamformer expands on the

MVDR beamformer, allowing for additional constraints on top of the distortionless

constraint given in Eq. (2.25). Van Trees [44] outlines several types of constraints

including directional constraints, derivative constraints, and eigenvector constraints.
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Directional constraints have been explored in Sections 2.4 and 3.3.6 and are utilized

in the simulation results in Section 3.4.2.

Distortionless constraints and null constraints are both examples of directional

constraints, which constrains the array factor response to 1 or 0 for a given direction.

The LCMV constraint equations are given by

wHC = gH , (3.74)

where

C =

[
a1 a2 · · · aM

]
(3.75)

and

gH =

[
g∗1 g∗2 · · · g∗M

]
. (3.76)

This matches the constraints in Eq. (2.27). The vectors in C are the array manifold

vectors an corresponding to the given constraint direction θn. The elements of g are

the corresponding desired array factor responses. For the purposes of this derivation,

it is assumed that the first constraint is distortionless.

As with the MVDR beamformer, the LCMV beamformer seeks to minimize the

signal variance σ2
u under the constraints given in Eq. (3.74). Following the sequence

outlined in Section 3.3.6, a cost function containing the noise power and given con-

straints can be defined as

J(w) = σ2
u + (gH −wHC)λ

= wHRuuw + (gH −wHC)λ ,

(3.77)

71



where λ is now a vector of Lagrange multipliers. Again, the optimum weight vector

can be found by setting the cost function gradient with respect to the weight vector

wH equal to 0, as given by

∇wHJ(w) = Ruuwlcmv −Cλ = 0 . (3.78)

Solving for the weight vector yields

wlcmv = R−1
uuCλ . (3.79)

To determine the Lagrange multiplier vector λ, first solve the constraint equations

given in Eq. (3.74) for w as given by

w = (CH)−1g . (3.80)

Then substitute w into Eq. (3.79) to give

λ = (CHR−1
uuC)−1g . (3.81)

Lastly, substitute Eq. (3.81) into Eq. (3.79) to give the LCMV beamforming weight

equation,

wlcmv = R−1
uuC(CHR−1

uuC)−1g . (3.82)

As in Section 3.3.6, Van Trees [44] denotes the case when Ruu is to be replaced with

Rxx as the Linearly Constrained Minimum Power (LCMP) beamformer, which is

given by

wlcmp = R−1
xxC(CHR−1

xxC)−1g . (3.83)

Simulation results in Section 3.4.2 present the LCMP beamformer for which the first

constraint is distortionless and the remaining constraints assign nulls.
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The LCMV beamformer simplifies to the MVDR beamformer when g = 1 and

C = a0, as given by

wmvdr = R−1
uuC(CHR−1

uuC)−1g

= R−1
uua0(aH0 R−1

uua0)−1

=
R−1
uua0

aH0 R−1
uua0

.

(3.84)

3.4 Algorithm Comparison

A summary of the governing equations for adaptive algorithms is given in Table 3.2.

Because several of the algorithms derived in the previous section are identical to each

other in form, only one of a given form is listed in the table. Algorithms of the

form w = µR−1
uua0 include the MMSE from Section 3.3.1 and Maximum SINR from

Section 3.3.4. Algorithms of the form w = R−1
xx a0

aH0 R−1
xx a0

include the ML from Section 3.3.5

and MVDR/MPDR from Section 3.3.6. The LMCV and LMCP algorithms are of the

form w = R−1
xxC(CHR−1

xxC)−1g. Algorithms of a given form differ in implementation

solely on the definition of the covariance matrix.

The first primary distinction between the equations given in Table 3.2 is with

regards to iterative versus statistically optimum algorithms. The LMS and RLS algo-

rithms both iterate to an optimum solution based on learning parameters (µ, λ), the

current sample of the array vector x(k), and an estimate of the desired sample d(k).

Their derivations were developed in an effort to avoid the costly inversion of the co-

variance matrix R. Rather than requiring a look direction, the iterative algorithms

require an estimate of the signal of interest.

The remaining algorithms are considered statistically optimum and, despite a

varying number and type of constraints, are of the Wiener Filter form. As described

in Section 3.3.1, assuming that the signal of interest is uncorrelated with the undesired

noise and interferers, the cross covariance vector reduces to the array manifold vector
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Table 3.2: Adaptive Algorithm Equations

Algorithm Description Equation

LMS
Error Sample e(k) = d(k)−wH(k)x(k)

Weight Vector w(k + 1) = w(k) + µe(k)x∗(k)

RLS

Error Sample e(k) = d(k)−wH(k − 1)x(k)

Gain Vector g(k) = λ−1P(k−1)x(k)
1+λ−1xH(k)P(k−1)x(k)

Weight Vector w(k) = w(k − 1) + g(k)e∗(k)

Covariance Inverse P(k) = λ−1P(k − 1)− λ−1g(k)xH(k)P(k − 1)

Applebaum Weight Vector w = µR−1
uua0

MPDR Weight Vector w = R−1
xx a0

aH0 R−1
xx a0

LCMP Weight Vector w = R−1
xxC(CHR−1

xxC)−1g

times a scalar, as given in Eq. (3.25). In this case, the Wiener Filter given in Eq. (3.24)

reduces to the Applebaum form. Each statistically optimum algorithm requires the

covariance matrix inverse and the desired steering direction, but differ in the definition

of the scalar and whether additional constraints are required.

The aforementioned statistically optimum adaptive algorithms were developed

with the intention of detecting point targets [59] and rely on strong spatial correlation

between receive signals. Coherent signals from different angles of arrival (AOA) will

also degrade performance. A quadratic weight vector constraint can be levied on

the LCMV beamformer to prevent signal cancellation in the presence of a coherent

interferer [60]. Algorithm performance is also sensitive to errors in the look direction.

The Robust Capon Beamformer [61] seeks to address this sensitivity by allowing the

look direction of the distortionless constraint to reside within an error ellipsoid.

Many applications, such as weather radar, rely on distributed targets rather than

point targets. Yoshikawa [59] presents an iterative MMSE approach which provides

reasonable estimation of radar variables. Nai [57] discusses an adaptive beamspace

74



processing algorithm, which employs an adaptive algorithm behind a set of deter-

ministic beams. It is operationally similar to the Capon beamformer, but translated

from element space to beamspace. Additionally, clutter returns for airborne radar

degrade sensitivity often masking weak targets in the presence of strong scatterers.

The LCMV algorithm with appropriately selected null locations can provide atten-

uation of clutter returns. The sparse LCMV beamformer given in [62] provides a

method for determining the appropriate constraints to suppress ground clutter based

on minimization of the MSE while searching a limited number of degrees of freedom.

3.4.1 Computational Complexity

This section seeks to compare the computational costs of the algorithms presented

in Section 3.3. For the purposes of this section, algorithmic complexity is taken to

be the number of arithmetic operations required for a given algorithm to compute

the weight vector, or in the case of the iterative algorithms, to reach steady state.

This analysis does not account for memory requirements, although that is a common

cost metric [8]. Optimization techniques that exploit matrix topology, such as QR

Decomposition [13], [63], are also not accounted for in these estimates. However,

assuming that a given optimization technique provides the same improvement for all

algorithms to which the technique applies, the relative costs given herein should still

be useful.

Table 3.3 summarizes the estimated computation cost for the various adaptive

algorithm forms presented in this chapter, where N is the number of array elements,

S is the number of samples in the reference waveform for the iterative algorithms, K

is the number of samples used to estimate the covariance matrix for the statistically

optimum algorithms, and M is the number of constraints for the LCMV and LCMP

algorithms. Estimated costs are based on the assumption that multiplication of an

N×M matrix with an M×P matrix has a computational complexity ofO(NMP ) [64]
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Table 3.3: Adaptive Algorithm Computational Complexity

Equation Form Complexity

e(k) = d(k)−wH(k)x(k)
O (3NS)

w(k + 1) = w(k) + µe(k)x∗(k)

e(k) = d(k)−wH(k − 1)x(k)

O (5N2S + 5NS)
g(k) = λ−1P(k−1)x(k)

1+λ−1xH(k)P(k−1)x(k)

w(k) = w(k − 1) + g(k)e∗(k)

P(k) = λ−1
(
I− g(k)xH(k)

)
P(k − 1)

wopt = µR−1a0 O (N3 +N2K +N2 +N)

w = R−1a0

aH0 R−1a0
O (N3 +N2K +N2 + 2N)

w = R−1C(CHR−1C)−1g
O(N3 +N2K +N2M + ...

NM2 +M3 +M2 +NM)

and inversion of an N × N matrix has a computational complexity of O(N3) [54].

Costs for individual operations, summarized in Tables 3.4 and 3.5 for the iterative

algorithms and the statistically optimum algorithms respectively, are combined to

determine the values given in Table 3.3.

In calculating the computational cost of the iterative algorithms, it was assumed

that the algorithm requires the entire waveform estimate to converge to the optimum

weight vector. Therefore, operational costs given in Table 3.4 are scaled by the

number of waveform samples S for the total algorithm cost reported in Table 3.3.

Additionally, the cost of adding twoN×1 vectors is taken to be the same as computing

their inner product. For the purposes of comparing the algorithms of interest, this

distinction is inconsequential as it is clear that the statistically optimum algorithms

scale at a rate of N3 while the RLS algorithm scales at N2 and LMS at N . For very

large arrays, iterative algorithms will be more practical. The LMS algorithm is the

simplest, but offers the least accurate estimate of the covariance matrix. The RLS

algorithm provides a compromise between cost and accuracy.
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Table 3.4: Iterative Algorithm Operation Cost

Term Description Cost

wH(k)x(k)
1×N Vector times N × 1 Vector O (N)

wH(k − 1)x(k)

e(k)x∗(k)
Scalar times N × 1 Vector O (N)

e∗(k)g(k)

w(k) + µe(k)x∗(k)
N × 1 Vector plus N × 1 Vector O (N)

w(k − 1) + g(k)e∗(k)

P(k − 1)x(k) N ×N Matrix times N × 1 Vector O (N2)

λ−1 [P(k − 1)x(k)] Scalar times N × 1 Vector O (N)

xH(k) [P(k − 1)x(k)] 1×N Vector times N × 1 Vector O (N)

g(k)xH(k) N × 1 Vector times 1×N Vector O (N2)

I− g(k)xH(k) N ×N Matrix minus N ×N Matrix O (N2)[
I− g(k)xH(k)

]
P(k − 1) N ×N Matrix times N ×N Matrix O (N2)

λ−1
[(

I− g(k)xH(k)
)
P(k − 1)

]
Scalar times N ×N Matrix O (N2)

77



Table 3.5: Statistically Optimum Algorithm Operation Cost

Term Description Cost

R̂(k) = x(k)xH(k) N × 1 Vector times 1×N Vector O (N2)

R̂ = 1
K

∑K
k=1 R̂(k) K Covariance Matrix Samples O (N2K)

R̂−1 Inverse of an N ×N Matrix O (N3)

R̂−1a0 N ×N Matrix times N × 1 Vector O (N2)

µ
[
R̂−1a0

]
Scalar times N × 1 Vector O (N)

aH0

[
R̂−1a0

]
1×N Vector times N × 1 Vector O (N)

R̂−1C N ×N Matrix times N ×M Matrix O (N2M)

CH
[
R̂−1C

]
M ×N Matrix times N ×M Matrix O (NM2)(

CHR̂−1C
)−1

Inverse of an M ×M Matrix O (M3)[(
CHR̂−1C

)−1
]

g M ×M Matrix times M × 1 Vector O (M2)[
R̂−1C

] [(
CHR̂−1C

)−1

g

]
N ×M Matrix times M × 1 Vector O (NM)
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3.4.2 Simulations

Simulation results of the reported algorithms are presented below. The aperture

consists of a 16-element ULA of isotropic elements with half wavelength spacing.

The simulation signal environment includes signals from various sources at various

power levels in the presence of noise. Each signal is a spatially correlated vector of

noise. The signal of interest is incident at θ = 27◦ at a SNR of 0 dB. Interferers were

placed at θ = -15◦, 48◦ and -30◦ at SNR’s of 10.4 dB, 13.6 dB, and 0 dB respectively.

These are denoted with dashed vertical black lines. Additional nulls were prescribed

at θ = -38◦ and θ = 44◦ for the LCMP algorithm and are denoted with solid vertical

black lines.
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Figure 3.6: Simulated Patterns - Iterative Algorithms

The normalized patterns from the iterative algorithms are given in Figure 3.6.

The RLS algorithm provides deeper nulls as compared to the LMS algorithm but

results in higher sidelobes at almost everywhere else. The LMS algorithm does not

appear to respond to either of the two weaker interferers at θ = -30◦ or θ = -15◦. Both

algorithms provide an accurate main beam position at θ = 27◦.
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Figure 3.7: Simulated Patterns - Statistical Optimum Algorithms

Figure 3.7 show the statistically optimum patterns. The Applebaum pattern was

computed using Ruu, which includes the environment noise and interferers. The

MPDR and LCMP patterns utilize Rxx, which contain the signal of interest as well

as environment noise and interferers. The Applebaum pattern effectively isolates all

three interferers regardless of strength. The MPDR and LCMP patterns struggle

with placing a null for the θ = -30◦ interferer. Additionally, the LCMP pattern

shows noticeable inaccuracy in the null position for the θ = -15◦. The LCMP pattern

effectively implements the prescribed nulls at θ = -38◦ and 44◦.
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Chapter 4

Wideband Digital Beamforming on an RFSoC

Analog phase shifters have conventionally provided a narrowband method for col-

limating signals. However, with the increasing speed of ADCs, DACs, and digital

processors, all-digital systems have become realistic. As discussed in [29], digitizing

signals at the element level of the array enables unprecedented capabilities. The devel-

opment of the RF system-on-a-chip (RFSoC), which supports multiple-GHz sample

rates, has enabled the integration of fully digital direct-sampling phased array sys-

tems. This chapter provides demonstrated operation of an 8-element fully digital

sub-Nyquist-sampled wideband receive array utilizing an RFSoC with and without

equalization.

Current literature [18], [13], [19], [65] provides several examples demonstrating

sample rates of 1–4 GHz in various system architectures. However, most incorporate

direct conversion rather than direct sampling. The authors in [18] demonstrate a

multi-beam digital beamformer which employs direct sampling of 1 GHz, 100 MHz

bandwidth quadratic-amplitude modulation (QAM) signals using an ADC sample

rate of 4 GSPS. In [13], a minimum-variance distortionless response (MVDR) beam-

former is digitally implemented on an RFSoC with ADCs operating at 125 MHz.

Its system architecture incorporates an RF Downconverter with 8 MHz passband.

The authors in [19] demonstrate a 16-element phased array with ADCs operating

at 2 GSPS which facilitates an 800 MHz bandwidth. However, at a carrier fre-

quency of 28 GHz, narrowband beamforming was sufficient. Beamforming measure-

ments summarized in [65] utilize the Integrated Multi-use Phased Array Common Tile

(IMPACT) [20] which supports an instantaneous bandwidth of about 500 MHz. In
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this paper, beamforming for a tightly coupled dipole array (TCDA) is demonstrated

at 3.5 GHz, 4.9 GHz, and 9.5 GHz, without mention of test signal bandwidth. The au-

thors in [66] present narrowband measurements and discuss a wideband beamforming

engine with equalization.

The demonstrated 1.6 GHz system bandwidth at a sample rate of 4 GHz pre-

sented in this dissertation utilizes the fill digital bandwidth (80% Nyquist Zone),

which is not the case in most of the papers surveyed. Additionally, sub-Nyquist di-

rect sampling of the incident waveform was not incorporated in any of the surveyed

architectures, which can potentially mitigate the need for external downconversion

hardware. Lastly, although wideband digital equalization was demonstrated theoret-

ically [66], experimental measured results were lacking. This dissertation contributes

to the engineering community wideband digital beamforming demonstrations with

equalization using an RFSoC.

Uncalibrated and calibrated results are presented. Section 4.1 introduces the

RFSoC testbed and provides simulated and measured results. An overview of the

fractional-sample delay filter bank and its embedded system implementation are pro-

vided. Hardware, firmware, and software details of the research testbed are provided

as well. Section 4.2 presents derivations for least-squares equalizer synthesis tech-

niques and their implementation with the wideband beamformer. Wideband channel

characterization and chamber measurements are a provided, demonstrating wideband

digital beamforming with equalization.

4.1 Uncalibrated Wideband Digital Beamforming

This section presents uncalibrated operation of an 8-element fully digital sub-Nyquist-

sampled wideband receive array utilizing an RFSoC. The incident waveform is a

1.6 GHz linear chirp signal centered at 3 GHz. Array sensor signals are directly sam-

pled by 4 GSPS ADCs such that the chirp waveform is centered in the second Nyquist
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zone, and upon sampling folds into the first Nyquist zone. Signal compensation is

applied at complex baseband following the digital downconverter (DDC).

Section 4.1.1 covers the design of finite impulse response (FIR) fractional-sample

delay filters for an embedded system. An overview of the wideband beamforming

testbed is provided in Section 4.1.2, including the hardware, firmware, and software.

Section 4.2.3 presents the results of simulations, over-the-wire (OTW) bench testing,

and over-the-air (OTA) far-field anechoic chamber measurements. Comparisons be-

tween narrowband and wideband beamsteering measurements are presented as well

as measured versus simulated wideband beamsteering performance.

4.1.1 True Time Delay Units

This section discusses digital true time delay (TTD) units and their application to

wideband beamforming. TTD units can be implemented digitally through a combi-

nation of integer and fractional-sample delays. While integer-sample delays can be

trivially implemented by shifting digital signal samples, fractional-sample delays re-

quire a digital filter. This section provides a design method for fractional-sample delay

FIR filter synthesis and discusses considerations for embedded system applications.

4.1.1.1 Ideal Fractional-Sample Delay Filter

The ideal fractional-sample delay filter has a frequency response with unity gain and

linear phase, as prescribed by the time shift property of the Fourier transform. Thus,

the ideal frequency response for a delay ta, is given by

Hd(F ) = e−j2πFta , (4.1)

where the magnitude and phase responses are |Hd(F )| = 1 and ∠Hd(F ) = −2πFta,

respectively. Different fractional-sample delays correspond to different phase slopes.
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Because a digital FIR filter is composed of discrete filter taps, the filter has a

discrete time domain representation with sample frequency Fs. This results in a

periodic frequency domain representation with period Fs. Thus, Eq. (4.1) is rewritten

to be periodic, as given by

Hd(f) =
∞∑

k=−∞

Hd1/Ts
(f + kFs), |f | ≤

Fs

2
, (4.2)

where one period is described by

Hd1/Ts
(F ) = e−j2πFta , |F | ≤ Fs

2
. (4.3)

The corresponding set of filter taps can be computed by taking the inverse discrete-

time Fourier transform, given in Eq. (4.4), of the desired periodic frequency response.

hd[n] , Ts

∫
1/Ts

Hd1/Ts
(f)ej2πfnTsdf . (4.4)

Substituting Eq. (4.3) into Eq. (4.4) yields the following relation,

hd[n] = Ts

∫
1/Ts

e−j2πftaej2πfnTsdf

= Ts

∫
1/Ts

ej2πf(nTs−ta)df

=
Ts

j2π(nTs − ta)
ej2πf(nTs−ta)

∣∣∣∣ 1
2Ts

− 1
2Ts

=
1

π(n− ta
Ts

)

ejπ(n− ta
Ts

) − e−jπ(n− ta
Ts

)

2i

=
sin(π(n− ta

Ts
))

π(n− ta
Ts

)

, sinc

(
π

(
n− ta

Ts

))
.

(4.5)
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As the resulting sinc response is both infinite and non-causal, it is not possible to

implement the ideal fractional-sample delay filter.

4.1.1.2 Approximate Fractional-Sample Delay Filter

In order to design a finite, causal approximation, the ideal response must be appro-

priately truncated and shifted. In general, merely truncating the response to some

finite length llen produces undesirable ripple in the frequency domain. A symmetric

window function improves the ripple response appreciably at the acceptable cost of a

small reduction in magnitude. Although many window functions exist, a Blackman

window was utilized for the fractional-sample delay filter bank in this demonstration.

It is recommended to select an odd filter length given the majority of the sinc func-

tion energy is concentrated near the center of the response. Additionally, limiting the

fractional-sample delay to −0.5 < ta
Ts
< 0.5 minimizes filter asymmetry.

To achieve causality, the finite windowed sinc response must shifted such that the

first sample corresponds to n = 0. This is accomplished by shifting the response to

the right by llen−1
2

, assuming an odd length llen. Thus, the final taps for a ta-delay filter

with odd length llen, designed to operate on a signal sampled at frequency F s = 1
Ts

,

are given by

hd[n] = w[n]sinc

(
π

(
n− ta

Ts

− llen − 1

2

))
, (4.6)

where w[n] is some window function, in this case a Blackman window, of length llen

and n is subject to the constraint 0 ≤ n ≤ llen − 1.

4.1.1.3 Filter Length

Considerations must be made for embedded system implementations given limited

system resources. Figure 4.1 provides a comparison of the magnitude response and

group delay for 1
2
-sample delay filters of various lengths. As longer filters provide
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Figure 4.1: Filter Length Comparison: 1
2 -Sample Delay, 16-bit Fixed-Point

increased bandwidth, one must to ensure sufficient hardware resources to maintain

accuracy in high digital bandwidth applications.

4.1.1.4 Fixed-Point Quantization

FIR filters are typically implemented using fixed-point numerical representation rather

than floating point due to computational efficiency. Figure 4.2 shows degradation in

the frequency response due to different fixed-point precisions for a 49-tap 1
2
-sample

delay filter. Black traces show the float point response. Subsequent traces show the

16-bit, 14-bit, and 12-bit responses, respectively. Reduced coefficient precisions cause

increased ripple.
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Figure 4.2: Fixed-Point Precision Comparison: 1
2 -Sample Delay, 49-Taps
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4.1.1.5 Fractional-Sample Delay Resolution

In real-time applications, filter coefficients are typically pre-computed for a finite set

of prescribed delays rather than computed in real-time. Figure 4.3 shows an example

filter bank with a 1
6
-sample resolution. The filter bank consists of six 49-tap filters with
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Figure 4.3: Filter Bank: 1
6 -Sample Resolution, 49-Tap, 16-bit Fixed-Point

16-bit fixed-point coefficients. The set of filter coefficients defined for a 0-fractional-

sample delay results in an integer-sample delay equivalent to the filter group delay.

This ensures that the fractional-sample filter bank group delay is applied regardless of

whether a nonzero fractional-sample delay is required for a given steering operation.

Quantization lobes due to finite fractional-sample delay resolution degrade system

SNR [67]. In this dissertation, phase shifter quantization was used as a baseline for

TTD unit quantization analysis. Common digitally-controlled analog phase shifters

have 6 control bits, providing a resolution of 360◦

26 = 5.625◦. This provides a maximum

time shift resolution given by

tres =
φres

360◦
Tfhigh

=
Tfhigh

26
, (4.7)

where fhigh is the highest frequency in the signal of interest and Tfhigh
is its corre-

sponding period. Thus, the fractional-sample resolution can be defined as mres = tres

Ts
,

where Ts is the sample period. The fractional-sample resolution which maintains, at
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minimum, an equivalent resolution using TTD units as a 6-bit phase shifter for a sig-

nal whose highest frequency is Fhigh = 3.8 GHz directly sampled at Fs = 4 GHz,

is given by

mres =
Tfhigh

26 Ts

=
4GHz

26 3.8GHz
≈ 0.0165 samp . (4.8)

Thus, the desired resolution is about 1
60

-sample, or that the filter bank would contain

60 separate sets of coefficients.

4.1.2 Uncalibrated RFSoC Testbed

An image of the wideband beamforming research testbed mounted in OU’s far-field

anechoic chamber is given in Figure 4.4. The case at the base of the black high

density polyethylene (HDPE) frame is a Pentek 3U VPX chassis which houses the

Xilinx RFSoC. Eight MMCX-to-SMA cables provide RF interfaces from the antenna

elements to the RFSoC ADC channels for receive operation. The channel 1 DAC

provides an analog RF interface for the beamformer output following the digital

upconverter (DUC). Beamformer control is applied through a Secure Shell (SSH)

connection to the Petalinux operating system (OS) running on the RFSoC real-time

processor.

The upper chassis frame supports the linear array and the phase-amplitude con-

trol (PAC) board. The PAC board consists of eight analog channels, each providing

6-bit amplitude and phase control at 0.5 dB and 5.625◦ resolution respectively. Used

for beamsteering experiments throughout OU’s Radar Innovations Laboratory (RIL),

the PAC board is used in this testbed to facilitate baseline narrowband beamsteer-

ing measurements provided in Section 4.1.3. A USB battery box and Raspberry Pi

provide power and control to the PAC board.
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Figure 4.4: Research Testbed Mounted in Far-Field Anechoic Chamber

4.1.2.1 Antenna Array

The antenna aperture shown in Figure 4.5 is a wideband Vivaldi array developed for

demonstration of the RFSoC wideband beamformer. Specifically designed for this

research endeavor, the 8-element horizontally polarized linear array supports better

than a 2 GHz bandwidth centered at 3 GHz, providing at least a 66% fractional band-

width. This high fractional bandwidth precludes the use of narrowband beamsteering.

The digital beamformer was designed to utilize 80% of the Nyquist zone, providing a

1.6 GHz bandwidth at a sample frequency of 4 GHz.

Figure 4.5: Wideband Vivaldi Array used in the Testbed in Figure 4.4
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4.1.2.2 RFSoC Hardware

The research testbed is constructed around the Pentek Quartz Model 5950. This is a

3U OpenVPX carrier card which integrates Pentek’s Model 6001 QuartzXM eXpress

Module and provides MMCX RF interfaces to the eight 4 GSPS ADC’s and eight

6.4 GSPS DAC’s. The eXpress Module integrates the Xilinx Zynq UltraScale+ RF-

SoC and houses additional resources such as DDR4 Random Access Memory (RAM)

and power management. The Model 5950 board is housed in the Pentek VPX chassis

shown in Figure 4.4, which provides power conversion, cooling, and interface access

via the Pentek Rear Transition Module (RTM).

4.1.2.3 RFSoC Firmware

The Xilinx RFSoC is built upon an FPGA fabric allowing for extensive customiza-

tion. Pentek provided the Vivado project for their FPGA Design Kit (FDK), which

enables operation directly out of the box. This firmware incorporates the Xilinx real-

time processor and RF data converter IP cores, and the necessary logic for various

interfaces on the Pentek hardware including 100 GigE UDP, PCI Express, and DDR4

RAM. It also supports direct recording of RF ADC data. Much of this interface logic

was subsequently removed as it is not required for the beamforming testbed.

The functional block diagram for the FPGA image is provided in Figure 4.6. As

discussed in Sections 4.1.1 and 2.7, sub-Nyquist-sampled true time delay beamform-

ing requires an integer-sample delay, fractional-sample delay, and phase shifter for

channel compensation. Xilinx’s RF data converter IP core provides user control of

the ADC and DAC, and subsequently DDC and DUC, resources. In the DDC for a

given channel, the sampled signal, represented by real-valued samples at 4 GSPS, is

decimated by a factor of 2 and frequency shifted to complex baseband. The decimated

spectrum at complex baseband is represented by complex-valued samples at 2 GSPS.
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Figure 4.6: Wideband Beamformer Functional Block Diagram

The DDC provides an integer-sample delay of up to seven samples as well as phase

offset control of the digital mixer’s numerically controlled oscillator (NCO). This

allows the integer-sample delay and relative phase shift to be implemented through

software control of the DDC for single beam applications rather than through custom

FPGA firmware. Fractional-sample delays are implemented via instantiation of FIR

filters. The conjugate-symmetric fractional-sample delay filter is implemented via

real-valued coefficients allowing for independent filtering of the I and Q data streams.

Finally, the compensated channel signals are summed in the adder and passed to the

DUC, which interpolates by a factor of 2 and frequency shifts the beamformer output

to the carrier frequency for transmission via the DAC interface.

Fractional-Sample Filter Bank Implementation In order to utilize the full

digital bandwidth, the fractional-sample filter bank was designed to process multiple

samples in parallel. While the complex baseband spectrum is represented by complex-

valued samples at 2 GSPS, the fractional-sample filter bank is designed to operate

at 250 MHz. This requires parallel processing of eight samples for both the I and Q

data streams for each of the eight channels.
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Figure 4.7: Interleaved FIR Filter Diagram

Figure 4.7 shows an interleaved real-valued FIR filter implementation which pro-

cesses eight samples per clock cycle. In order to maintain data throughput without

decimation, the filter must compute an output sample for each possible buffer offset.

This necessitates resources for eight simultaneous filter instantiations. For each clock

cycle, data in a given row is shifted eight samples to the right to make room for the

next input sample set. The greyed-out samples represent registers which hold current

input samples not required for the corresponding output sample but which must be

stored for the upcoming clock cycle. This architecture requires eight multipliers per

filter tap to produce eight output samples per clock cycle. Two interleaved filter in-

stantiations are required for each of the eight channels, requiring 128 multipliers per

fractional-sample delay filter tap.

Due to timing issues during FPGA place and route, the fractional-sample delay

filter length was set to 13 taps, requiring 1664 DSP units for the fractional-sample

delay filter banks. Although difficult to determine from the uncalibrated wideband

measurements presented in Section 4.1.3.3, this results in some degradation at the
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band edges. Filter coefficients utilized 16-bit fixed point precision and were computed

for eight fractional-sample delay steps providing 0.125-sample resolution.

Figure 4.8: Wideband Beamformer Vivado Block Design

Resource Utilization The Vivado FPGA project Block Design is given in Fig-

ure 4.8. Much of the original Pentek FDK has been removed to facilitate routing of

the beamformer. Various components of interest are outlined, such as the real-time

processor, RF IP core, custom beamformer, and clock domain crosser. Device utiliza-

tion is provided in Table 4.1 and the design layout is given in Figure 4.9. The primary

resource of interest is DSP utilization, requiring 1664 DSPs for the fractional-sample

delay filter banks, 128 DSPs for the gain buffers, 240 DSPs for the 10-tap complex

coefficient output compensation filter, and 3 for miscellaneous applications. A dis-

cussion on the output compensation filter is provided in Section 4.1.3.2.

Table 4.1: Uncalibrated Wideband Beamformer FPGA Resource Utilization

Resource Utilization Available %

LUT 63808 425280 15.0
LUTRAM 3215 213600 1.5

FF 106831 850560 12.6
BRAM 28 1080 2.6
DSP 2035 4272 47.6
IO 35 347 10.1

BUFG 8 696 1.2
MMCM 1 8 12.5

The custom designed Vivado HLS block in Figure 4.8 was developed in C++ using

Vivado HLS, and contains the fractional-sample delay filter bank and summation

93



Figure 4.9: Wideband Beamformer Design Layout

node. Vivado HLS provides an environment which facilitates rapid development of

register transfer logic (RTL) designs using higher level programming languages such

as C and C++. HLS allows the user to dictate how hardware resources are allocated

when implementing functional operations. This provides the ability to parallel loop

iterations, pipeline data flow, and control how arrays are managed in memory or

registers. As discussed in the previous section, parallel resource allocation is necessary

to support the required data rates.

4.1.2.4 RFSoC Software

The Pentek Model 5950 also included a Board Support Package (BSP), which pro-

vides a series of example programs and an application programming interface (API)

to the lower level FPGA logic. Because the example programs were written to inter-

face with Pentek’s default FDK FPGA project, much of which is stripped away to

make room for the beamformer design, the example program was modified to remove
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calls to hardware which is no longer present. A custom program was written which

memory maps the beamformer IP core, computes the necessary steering commands,

and provides control data to the DDC, gain buffers, and fractional-sample delay filter

bank.

4.1.3 Uncalibrated Results

This section presents simulated and measured results of the uncalibrated beamformer

performance. For reference, a comparison of ideal wideband and narrowband array

factors can be found in Figure 2.9 in Section 2.3.3. Results are provided as follows.

Section 4.1.3.1 shows simulation results for ideal and measured channel waveforms.

Section 4.1.3.2 discusses bench level OTW measurements which facilitated beam-

former implementation and demonstrated the need for an output compensation filter.

Following the completion of bench testing, far-field chamber OTA measurements were

captured for several steering locations for both narrowband and wideband operating

modes. These are presented and discussed in Section 4.1.3.3.

4.1.3.1 Simulation Results Uncalibrated

Early in development, a Matlab model was developed to explore various performance

parameters. This allowed for comparisons of fractional-sample delay filter lengths,

fixed point resolutions, and fractional-sample delay resolutions. Bit-accuracy was in-

corporated to aid in the HLS development of beamformer firmware, allowing for the

generation of test vectors for use with the HLS testbench. Using Pentek FDK support

for chirp generation and digital RF data capture, a chirp waveform spanning 80% of

the Nyquist zone was externally looped back to each ADC channel, allowing for fre-

quency response characterization. This captured data was fed into the Matlab model

to estimate the expected uncalibrated response of the RFSoC wideband beamformer.
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Figure 4.10: Wideband Matlab Simulation Results Steered to θst = 15◦, Left: Ideal Input

Channel Data, Right: Measured Channel Data

Figure 4.10 shows a comparison of simulation results when sourced with ideal channel

data and measured channel data.

4.1.3.2 Over-the-Wire Results

Bench testing revealed appreciable gain variation in the RFSoC frequency response.

OTW measurements were taken using a network analyzer capturing the gain response

of the wideband beamformer. The network analyzer source port fed an 8-1 splitter

which served as the simultaneous signal source to each ADC channel. The RFSoC

channel 1 DAC was connected to the sink port of the network analyzer and configured

to operate in the second Nyquist one. In this setting, the output signal is mixed

with the sample frequency in order to shift signal energy into the second Nyquist

zone at the expense of the first. Bench testing demonstrated the effectiveness of

the beamformer prior to OTA measurements, effectively collimating a beam from an

arbitrary distribution of channel delays.

Initial results showing the network analyzer magnitude response are shown in Fig-

ure 4.11. The gold trace shows the initial sweep, which captured what is effectively the

mainbeam response to a boresight signal. In this configuration, each channel delay is

approximately equal. A set of arbitrary cables was characterized and then distributed

amongst the channel paths. The blue sweep shows the uncompensated response due
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Figure 4.11: Arbitrary Delay OTW Bench Test

to the arbitrary cable delays. The magenta trace shows the final sweep taken after

updating the beamformer with the appropriate compensation delays. This shows

strong agreement with the initial boresight sweep indicating effective beamsteering.

Figure 4.12: Arbitrary Delay OTW Bench Test with Output Compensation

Of note is the strong frequency dependence of the magnitude response. Initial

OTA results revealed additional effects on the magnitude frequency response which
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Figure 4.13: Beamforming Testbed Mounted in Far-field Anechoic Chamber

compounded the effects shown in Figure 4.11. A complex-valued output filter was

synthesized and implemented to flatten out the magnitude response over frequency.

Figure 4.12 shows the magnitude response of the RFSoC beamformer with the out-

put compensation filter, in which the lower frequencies are reduced. This output

compensation filter was used in the final system OTA measurements presented in the

following section.

4.1.3.3 Over-the-Air Results

OTA results were measured in OU’s far-field anechoic chamber, shown in Figure 4.13.

Measurements were taken for three test cases, narrowband measurements using OU’s

PAC board, narrowband measurements using the RFSoC, and wideband measure-

ments using the RFSoC. For each operating mode, the main beam was steered to 15◦,

30◦, and 45◦ at the center frequency of 3 GHz.
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Figure 4.14: Narrowband Measurements using OU’s PAC Board
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Figure 4.15: Narrowband Measurements using RFSoC Digital Beamforming
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Figure 4.16: Wideband Measurements using RFSoC Digital Beamforming
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Figure 4.17: Simulation Results using Measured Channel Data

Narrowband measurements acquired using OU’s PAC board, shown in Figure 4.14,

provide a baseline for the RFSoC results. The RFSoC beamformer implementation

supports narrowband beamsteering via phase control of the digital mixer’s NCO.
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These results are shown in Figure 4.15. Although the main beam position and shape

match generally well between PAC board and RFSoC narrowband measurements,

nulls are substantially more defined in Figure 4.14 indicating that the PAC board is

well calibrated. Appreciable RFSoC channel-to-channel errors degrade sidelobe per-

formance, as predicted in Figure 4.10. Both narrowband test cases show appreciable

beam squint over the measurement bandwidth.

Uncalibrated wideband antenna patterns are provided in Figure 4.16. Mainbeam

accuracy is maintained throughout the signal bandwidth despite degraded sidelobe

performance. Although demonstration of wideband channel equalization is part of

future work, measured channel data was incorporated into Matlab simulations. Sim-

ulated results are provided in Figure 4.17 and show reasonable agreement with Fig-

ure 4.16. Similar sidelobe patterns indicate that effective wideband equalization will

substantially improve sidelobe performance.

4.2 Least-Squares Digital Equalizers

Because accurate array performance relies on matched channel behavior [4], substan-

tial inter-channel magnitude and phase errors present in most practical phased array

systems often preclude uncalibrated operation. Frequency-varying amplitude and

dispersive phase behavior [68], which varies in general between channels, inhibit the

coherent summation of element signals, degrading performance characteristics such as

main beam steering position and null depth. This is of particular concern in adaptive

beamforming applications, which seek to place deep, spatially accurate nulls based

on current element signals samples [69].

Given that many narrowband systems implement channel compensation via at-

tenuators and phase shifters [5], simple adjustments to channel control signals are

commonly sufficient to mitigate inter-channel imbalances for such applications. This

assumes that channel variations are steady enough over the narrow instantaneous
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bandwidth to be corrected by a constant shift in attenuator and phase commands,

effectively a 1-tap complex-coefficient finite impulse response (FIR) filter. As instan-

taneous bandwidth is often configurable within a larger system bandwidth, a series of

frequency-dependent compensation values is often required, often stored in a lookup

table (LUT). System bandwidth may be partitioned into several frequency bins such

that compensation values can be represented by zeroth or first order approximations,

reducing calibration table memory requirements.

In contrast, wideband applications require higher fidelity compensation over the

band of interest. As the channel frequency responses for most practical systems

have appreciable frequency dependence, zeroth or first order approximations fail to

accurately represent channel characteristics. FIR filters have been shown to effectively

compensate over a prescribed bandwidth and can be implemented at the element level

in fully digital architectures [29].

The authors in [70] demonstrate an equalization approach for both deterministic

and adaptive applications. They provide adaptive nulling demonstrations with in-

stantaneous bandwidths of 1 MHz, a considerable achievement given the technology

available at the publication of this seminal work. The deterministic approach was

leveraged in [69] to determine the impact of equalization on adaptive digital beam-

forming (ADBF) for a 4-element array. Channel data was represented at 125 MHz,

consisting of a 124 MHz chirp. Using measured channel data in the frequency domain,

the authors in [71] synthesize channel equalizers for a bandwidth of about 500 MHz

sampled at 1.5 GHz. Verification was ultimately carried out in the MATLAB en-

vironment. Wideband calibration is implemented using the time reversal technique

in [72] and demonstrated [68] for a 16-element array with 500 MHz of instantaneous

bandwidth sampled at 1.333 GHz. Antenna patterns at various discrete frequencies

are provided at multiple steering angles.
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This section applies the equalizer techniques discussed in [69], [70], and [71]

to the uncalibrated 8-element RFSoC-based sub-Nyquist-sampled wideband beam-

former [73]. For reference, ADC channels operate at 4 GSPS on a 1.6 GHz band-

width captured using a wideband Vivaldi array which supports better than 2 GHz of

bandwidth centered at 3 GHz. The beamformer output is provided through a DAC

for chamber measurement. At the center of the testbed is the Pentek Quartz Model

5950, a 3U OpenVPX carrier card which integrates a Xilinx Zynq UltraScale+ RF-

SoC, providing MMCX RF interfaces to the eight ADCs and eight DACs. Pentek

factory software and firmware provided the necessary functionality for waveform gen-

eration and RF data capture and a solid base on which to design and implement the

equalizer and beamformer.

This section is organized as follows. The relevant background, including channel

characterization, equalizer synthesis techniques, equalizer performance assessments,

and fractional-sample delay filter bank implementation, is presented in Section 4.2.1.

An overview of the wideband equalizer and calibrated beamformer testbed is pro-

vided in Section 4.2.2, discussing equalizer design decisions and implementation of

a wideband configurable complex-coefficient FIR filter bank. Section 4.2.3 provides

simulation results and far-field anechoic chamber measurements for various steering

directions and system configurations.

4.2.1 Equalizer Formulation and Design Approach

This section discusses the theory behind the equalizer synthesis techniques explored

herein and the design approach for the wideband beamformer demonstrated in Sec-

tion 4.2.3. Wideband equalization is implemented via configurable complex-coefficient

FIR filters synthesized using measured channel characterization data. This approach
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assumes a linear system response, and although extensive work in nonlinear equaliza-

tion (NLEQ) [74], [75] and digital pre-distortion (DPD) [76], [77] explores techniques

for addressing nonlinear system responses, they are not discussed or applied within.

Section 4.2.1.1 discusses capture of channel characterization data. Filter synthesis

techniques are presented in Section 4.2.1.2, which include filter synthesis from an

arbitrary frequency response. Section 4.2.1.3 discusses equalizer performance metrics

used to quantify equalizer performance sensitivity to group delay and filter length.

Lastly, to support true time delay (TTD) beamsteering [10], Section 4.2.1.4 discusses

integration of the fractional-sample delay filter bank with the synthesized equalizers.

4.2.1.1 Characterization Data Capture

High accuracy in channel characterization is paramount for effective equalizer imple-

mentation. Characterization can be accomplished either in the frequency domain [72]

or the time domain [69], [71]. The channel response to a series of continuous wave

(CW) tones uniformly distributed across the system bandwidth provides a frequency

domain estimate of the channel characteristics. Alternatively, if time domain channel

data can be captured directly, the response to a reference waveform can serve to char-

acterize channel behavior. This requires the selection and generation of a reference

waveform with which to excite the channel under test. Although several waveforms

have been utilized for channel characterization, which may be dependent on the spe-

cific system application, the intent is that all frequencies within the band of interest

are uniformly excited [69].

Pentek factory firmware support for waveform capture and generation was integral

to channel characterization efforts. Figure 4.18 shows a block diagram describing

the relevant firmware components for channel characterization. Factory firmware was

modified with the addition of the two AXI4-Stream components shown in Figure 4.18,

enabling internal digital loopback of the reference waveform. The channel 1 DAC

serves as the external reference source, looped back through an 8-to-1 splitter to the

103



8 ADCs. RF data was captured concurrently for all channels, recording several chirp

pulses for characterization. A linear frequency modulated (LFM) chirp waveform

spanning 90% of the Nyquist zone served as the reference waveform in this application.

The chirp generator within the Pentek RFSoC firmware was configured to output a

1.8 GHz chirp at 4 GSPS centered in the second Nyquist zone. This provided adequate

spectral coverage of the 1.6 GHz bandwidth received from the 3 GHz centered array

during system operation.

Figure 4.18: RFSoC Channel Characterization Block Diagram: External loopback provides

the reference waveform to all 8 channels simultaneously, Internal loopback allows for capture

of the reference waveform

Notably, this characterization method neglects the inter-channel differences within

the aperture as well as mutual coupling affects. Additional work would center on cap-

turing aperture characteristics by routing the reference waveform over the air through

the antenna chamber, potentially characterizing mutual coupling behavior at various

azimuth angles. Characterization of the radiation path and chamber hardware would

be required to appropriately de-embed these effects from channel characterization.

Measured characterization data is represented as M -length column vectors con-

taining the time domain samples. The internally looped back reference waveform is

represented by the column vector y = [y0, y1, · · · , yM−1]T. The channel response data
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is stored in a series of column vectors xc = [x0, x1, · · · , xM−1]T where the subscript c

denotes the channel number. These are summarized in Table 4.2. A Hann window

was applied to the initial and final 2.5% of each vector.

Table 4.2: Channel Characterization Variables

Variable Description

y Time Domain Reference Waveform Vector
xc Time Domain Channel Response Vector

4.2.1.2 Equalizer Filter Synthesis

This section outlines two methods for synthesizing equalizer FIR filter coefficients

utilizing the reference waveform and channel characterization data. Frequency do-

main synthesis is discussed in Section 4.2.1.2 and time domain synthesis is discussed

in Section 4.2.1.2. Both techniques utilize a least squares approach to minimize the

mean error between the equalizer output and the reference waveform. Section 4.2.1.2

discusses the importance of appropriately delaying the reference waveform prior to

filter synthesis. By accounting for the group delay associated with the equalizer FIR

filter, the reference waveform is time-aligned with the equalizer output, drastically im-

proving performance. Section 4.2.1.3 discusses a few metrics for quantifying equalizer

performance.

Frequency Domain Synthesis This approach seeks to synthesize a channel equal-

izer FIR filter using a given frequency response [71]. A filter whose frequency response

most closely approximates the desired response Hdes is synthesized using arbitrary

frequency response filter synthesis [71], [78], [79], etc. This desired response is that

which compensates the given channel frequency response to match that of the ref-

erence waveform, as defined by HdesHx = Hy. The variables Hx and Hy are the
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channel and reference waveform frequency responses respectively. Solving for the

desired equalizer frequency response Hdes yields

Hdes =
Hy

Hx

. (4.9)

As part of equalizer design for the RFSoC, consider seminal design techniques for

digital filters. Filter synthesis of the arbitrary frequency response Hdes is achievable

using the inverse discrete Fourier transform (IDFT) [35], which is defined as

hn ,
1

N

N−1∑
k=0

Hke
j 2π
N
kn, n ∈ [0, N − 1] . (4.10)

This can be rewritten in matrix form, as given by h = C−1H, where H is an N -

length column vector of frequency domain Hk values, h is an N -length column vector

of time domain hn values, and C is an N ×N Fourier transform kernel matrix whose

elements are given by e−j
2π
N
kn, or alternatively,

C =



1 1 · · · 1

1 e−j
2π
N · · · e−j(N−1) 2π

N

...
...

. . .
...

1 e−j(N−1) 2π
N · · · e−j(N−1)2 2π

N


. (4.11)

The indices k and n index the rows and columns respectively.

This approach is inefficient as the number of filter taps will be equivalent to the

number of specified frequency points. Hence, either the frequency response will have

poor resolution or the FIR filter will be prohibitively long. One can approximate the

desired frequency response by reducing the filter length to No yielding the overdeter-

mined system given by

H ≈ Coho , (4.12)
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where ho is an No-length column vector of time domain hn values and Co is an N ×No

kernel matrix consisting of the first No columns of C

Eq. (4.12) can be approximately solved using the method of ordinary least squares,

as given by

min
ho

||Coho −H||, (4.13)

the closed form solution of which can be written as

ho = (CH
o Co)−1CH

o H . (4.14)

One can apply a frequency-dependent weighting function to prioritize particular

sub-bands within the spectrum. An N -length weighting vector can be incorporated

in the form of an N ×N diagonal matrix W. To apply the weight vector, Eq. (4.12)

is rewritten as

W1/2H ≈W1/2Coho , (4.15)

whose normal equation is given by

CH
o WCoho = CH

o WH . (4.16)

The solution to the normal equation is given by

ho = (CH
o WCo)−1CH

o WH (4.17)

and is known as the weighted least squares.

Substituting the desired frequency response Hdes, as defined in Eq. (4.9), for the

arbitrary response H yields the filter coefficients ho = heq whose frequency response

closely approximates the desired response. Thus, frequency domain equalizer synthe-

sis is given by

heq = (CH
o WCo)−1CH

o WHdes . (4.18)
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Table 4.3 summarizes the relevant variables for frequency domain synthesis.

Table 4.3: Frequency Domain Synthesis Variables

Variable Description

Hy Frequency Domain Reference Waveform Vector
Hx Frequency Domain Channel Response Vector

Hdes Frequency Domain Desired Channel Response Vector
Co Reduced DFT Kernel Matrix
W Diagonal Weighting Matrix
heq Equalizer Coefficient Vector

Time Domain Synthesis Equalizer filter coefficients can also be synthesized di-

rectly using time domain samples. Key features of the equalization procedure outlined

in [70] are applied to our RFSoC-based wideband beamformer. In brief, this procedure

utilizes the least squares approach to identify a weight vector which closely converts

time domain samples of the channel characterization data to those of the reference

waveform, as given by

ydes ≈ Xweq , (4.19)

but rather than downsampling, the entire data vector is used to synthesize the equal-

izer.

The column vector ydes is of length N = (M + L− 1) where M is the number of

time domain samples in the reference waveform and channel characterization data

and L is the equalizer filter length. It contains time domain samples of the reference

waveform y zero-padded by L− 1 such that

ydes =

[
y0, y1, · · · , yM−1, 0, · · · , 0

]T

. (4.20)

The column vector weq is of length L and contains the equalizer filter coefficients heq

in reverse order such that wl = h(L−1)−l where l = 0, 1 · · · , L− 1.

Eq. (4.19) implements a convolution between the channel characterization data

x = [x0, x1, · · · , xM−1]T and the unknown weight vector weq = [hL−1, hL−2, · · · , h0]T.
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Thus, the matrix X is of size N × L and contains time domain samples of the char-

acterization data for the given channel such that each row consists of L sequential

samples. To capture the full convolution, xch is zero-padded with L− 1 zeros at the

beginning and end of the array, as given by

X =



0 0 · · · 0 x0

0 0 · · · x0 x1

...
...

. . .
...

...

0 0 · · · xL−4 xL−3

0 x0 · · · xL−3 xL−2

x0 x1 · · · xL−2 xL−1

...
...

. . .
...

...

xM−L xM−L+1 · · · xM−2 xM−1

xM−L+1 xM−L+2 · · · xM−1 0

xM−L+2 xM−L+3 · · · 0 0

...
...

. . .
...

...

xM−2 xM−1 · · · 0 0

xM−1 0 · · · 0 0



. (4.21)

As Eq. (4.19) is of the same form as Eq. (4.12), the ordinary least squares method,

given in Eq. (4.13), can be used to solve for w. The solution is given by

weq = (XHX)−1XHydes . (4.22)

Table 4.3 summarizes the relevant variables for frequency domain synthesis.

Table 4.4: Time Domain Synthesis Variables

Variable Description

ydes Time Domain Reference Waveform Vector
X Time Domain Channel Response Matrix

weq Reversed Equalizer Coefficient Vector
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Prescribed Group Delay Time alignment between the reference waveform and

equalizer output, briefly discussed in [70], is of particular importance in equalizer

design, as ignoring the filter’s group delay degrades performance considerably. Ap-

plying the appropriate delay to the reference waveform ensures that filter synthesis

seeks a filter with a practical group delay. This reference waveform delay will be

referred to as the equalizer’s prescribed group delay ∆mg, specified in samples and

not necessarily an integer. As has been described, a delay can be induced in the time

domain through a combination of integer-sample and fractional-sample delays or the

frequency domain by adjusting the reference waveform’s phase slope. Performance

metrics discussed in Section 4.2.1.3 are used to examine the dependence of equalizer

performance on prescribed group delay, providing an opportunity for optimization.

In frequency domain synthesis, discussed in Section 4.2.1.2, the reference wave-

form is incorporated in Eq. (4.9). A delayed desired response is given as Hdes,d =
Hy,d

Hx

where Hy,d is the frequency domain response of the reference waveform delayed

by ∆mg samples. Substituting this into Eq. (4.18) yields the corresponding equal-

izer heq,d. Similarly, a delayed time domain reference waveform vector ydes,d is sub-

stituted into Eq. (4.22) to determine the corresponding weight vector weq,d.

The governing equations for frequency and time domain equalizer synthesis, given

in Eqs. (4.18) and (4.22), can be expanded for simultaneous processing of several

delays. A prescribed group delay range of ∆mg ∈ {0, L} samples specified with some

fractional-sample step size δmg provides D = L
δmg

+ 1 delay steps to explore. The

reference waveform vectors associated with each delay are concatenated to form a

reference matrix as given by

Hdes,∆ ,

[
Hdes,0 Hdes,1 · · · Hdes,D

]
(4.23)
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for frequency domain synthesis and

Ydes,∆ ,

[
ydes,0 ydes,1 · · · ydes,D

]
(4.24)

for time domain synthesis. Substituting Eqs. (4.23) and (4.24) into Eqs. (4.18)

and (4.22), respectively, yields

heq,∆ = (CH
o WCo)−1CH

o WHdes,∆ (4.25)

and

Weq,∆ = (XHX)−1XHYdes,∆ . (4.26)

The columns of heq,∆ and Weq,∆ contain the sets of filter coefficients corresponding

to each prescribed group delay. Recall that columns of Weq,∆ contain the equalizer

coefficients in reverse order.

4.2.1.3 Equalizer Performance

A numerical metric for equalizer performance provides an efficient method for select-

ing from various equalizer options, whether it be from different synthesis techniques

or different prescribed group delays. This section discusses two methods for quanti-

fying equalizer effectiveness, the Channel Pair Cancellation Ratio (CPCR) [80] and

the residual tracking error [70].

Channel Pair Cancellation Ratio This metric is defined as the ratio of the

equalizer output power to the residual power, as given by

CPCR ,
Pxout

Pxres

. (4.27)
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The signal power in the column vector s of length N can be computed by normalizing

the inner product sHs by the vector length, described by

Ps ,
sHs

N
. (4.28)

The output signal vector xout is the result of filtering the channel characteri-

zation data with the synthesized equalizer, as given by xout = xch ∗ heq, where the

symbol ∗ denotes linear convolution. The residual signal vector xres is defined as

the difference between the desired signal vector and output signal vector, as given

by xres = ydes − xout. Thus, the discrete signal CPCR is given by

CPCR =
xout

Hxout

xres
Hxres

. (4.29)

Low residual power indicates better agreement between the output signal vector and

the reference signal vector resulting in a higher CPCR.

Residual Tracking Error Alternatively, the residual tracking error, which can

be determined using QR decomposition [55], also provides an indicator of equalizer

performance. QR decomposition can be used to efficiently compute the least squares

solution in real-time embedded systems. We redefine the least squares equations given

in Eqs. (4.15) and (4.19) in terms of residual error matrices E and update them to

include the reference waveform matrices given in Eqs. (4.23) and (4.24) such that

Efreq = W1/2Hdes,∆ −W1/2Coheq,∆ (4.30)

and

Etime = Ydes,∆ −XWeq,∆ . (4.31)
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To begin, define, for a given system of equations E = Y −XW, the extended

matrix Z =

[
X Y

]
. QR decomposition decomposes Z into a unitary matrix Q and

an upper triangle matrix R such that

ZHZ =

XHX XHY

YHX YHY

 = RHQHQR = RHR . (4.32)

Several methods exist for computing the QR decomposition, such as the Householder

transformations [81], the Gram-Schmidt process [82], or Givens rotations [83], which

are useful for implementing QR decomposition in an embedded system. The matrix R

can be partitioned as described by

R =

U V

0 T

 . (4.33)

Given that R is an upper triangle matrix, the matrices U and T are also both

upper triangle. Thus, computing the matrix inverse U−1, necessary to determine the

least squares solution given by W = U−1V, is of considerably lower complexity. The

smallest residual error, which can be computed for the dth delay as given by

|Edd|2 =
d∑
c=1

|Tcd|2 , (4.34)

indicates the most effective equalizer. Table 4.5 provides the dimensions for the

relevant matrices for a filter of length L, zero-padded time domain vectors of length

N , and D prescribed group delays.

Table 4.5: QR Decomposition Matrix Dimensions

Matrix Dimension Matrix Dimension

X N × L R (L+D)× (L+D)
W L×D U L× L
Y N ×D V L×D
Z (L+D)× (L+D) T D ×D
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4.2.1.4 TTD Fractional-Sample Delay Integration

As described in [84], wideband beamforming is achieved through the use of true time

delay (TTD) beamsteering, which can be digitally implemented through a combi-

nation of integer-sample delays and fractional-sample delays [71]. Thus, a channel

specific fractional-sample delay filter bank which compensates the particular chan-

nel frequency response enables calibrated wideband beamforming. Two methods are

considered for fractional-sample delay filter integration with the equalizer.

One option requires independent synthesis of the channel equalizer and fractional-

sample delay filter bank and relies on the cascade property of FIR filters [36]. Thus,

equalizer filter coefficients of length Leq for a given channel are convolved with each set

of coefficients of length Ldel in the fractional-sample delay filter bank. This generates

a bank of channel specific equalized fractional-delay filters of length Leq + Ldel − 1,

as given by

hm,d = heq,m ∗ hdel,d , (4.35)

where heq,m and hdel,d represent the filter coefficients for the mth channel equalizer

and dth fractional-sample delay respectively. This method requires allocation of the

limited filter resources between the equalizer filter and the fractional-sample delay

filter.

Alternatively, by adjusting the prescribed group delay, the fractional-sample delay

can be synthesized directly into the equalizer. By selecting a block of prescribed group

delays spanning an integer-sample at the appropriate fractional-sample resolution, one

synthesizes a calibrated fractional-sample delay filter bank. This mitigates the need

to distribute limited system resources between independent requirements. Equalizer

synthesis results and measured chamber results discussed in Sections 4.2.2 and 4.2.3,

respectively, utilize this prescribed group delay approach.
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4.2.2 Calibrated RFSoC Testbed

Figure 4.19 shows the calibrated testbed mounted in OU’s far-field anechoic cham-

ber. For reference mixed-signal processing is accomplished on Pentek hardware which

houses a Xilinx RFSoC and interfaces with a wideband Vivaldi antenna array. Re-

ceived signals are sampled in the second Nyquist zone by ADCs at 4 GSPS and

digitally downconverted to complex baseband where they are decimated by a factor

or two, processed, and combined. The combined signal is interpolated by a factor

of two, digitally upconverted, and sourced by the DAC at 4 GSPS, whose analog

output is measured in the anechoic chamber. It is important to note that internal

issues with the RFSoC hardware rendered channels 7 and 8 unusable for equalization.

The RFSoC equalizer design presented herein supports equalization and beamform-

ing for all 8 channels, but only channels 1 to 6 interface to the Vivaldi aperture for

measurements presented in Section 4.2. The two edge elements are terminated.

Figure 4.19: Research Testbed Mounted in our Far-Field Anechoic Chamber
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4.2.2.1 Channel Characterization

As mentioned in Section 4.2.1.1, the first step in equalizer design is accurate channel

characterization. Measured characterization data for channels 1 to 6 is shown in

Figure 4.20. The top row shows the real and imaginary time domain data on the left

and right, respectively. The black traces show the Hann window function applied to

the first and last 2.5% of the time domain data prior to processing.

Frequency domain data is shown in the bottom row, with the magnitude and

phase on the left and right, respectively. To emphasize the dispersive channel effects,

phase data is presented as relative to the reference waveform. Specifically, traces

show the difference between the unwrapped phase of the channel response and that

of the reference waveform. Phase offsets are adjusted to 0◦ at f = 0 cyc
samp

. Given

that the reference waveform spans 90% of the Nyquist zone, phase behavior outside

the reference bandwidth of −0.45 ≤ f ≤ 0.45 is inconsequential given its low signal

energy.
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Figure 4.20: Channel 1–6 Characterization Data - Top Left: Real Time Domain, Top

Right: Imaginary Time Domain, Bottom Left: Magnitude Frequency Domain, Bottom

Right: Wrapped Phase Frequency Domain
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The appreciable frequency dependence in both magnitude and phase of each chan-

nel is readily apparent. Notably, dispersive effects can be seen in the phase plots

necessitating higher fidelity compensation as compared to narrowband adjustments.

Also apparent is a frequency-dependent ripple of about 1–2 dB and 10◦ due to mis-

matched interfaces of the commercial-off-the-shelf (COTS) hardware. As will be

shown, equalizer fidelity is not sufficient to correct for this ripple behavior, at least

not as constrained by the RFSoC resources.

4.2.2.2 Channel Equalization

Channel characterization data shown in Figure 4.20 was processed using both fre-

quency and time domain filter synthesis equations discussed in Section 4.2.1. RFSoC

FPGA resources used in this demonstration enabled time closure for a 15-tap filter

bank with 1
8
-sample step size without much optimization. Resource utilization is

discussed further in Section 4.2.2.3.

Equalizer frequency response data for all eight channels are provided in Fig-

ure 4.21. Although only channels 1 to 6 are utilized in the measurements provided

in Section 4.2.3, data for channels 7 and 8 are provided here for reference. As both

these channels show appreciably degraded performance in both magnitude and phase,

there were not utilized in the measured results. In this figure, magnitude is shown

in the left and relative unwrapped phase data is shown on the right. Dark blue

traces correspond to the characterization data given in Figure 4.20, corresponding

to Hx in Eq. (4.9) and X in Eq. (4.19). The red-orange traces show the desired

equalizer frequency response Hdes. The yellow and green traces show the equalizer

frequency response from frequency and time domain synthesis respectively. Note the

strong agreement between the two synthesis techniques, as well as with the desired

frequency response Hdes.

The purple and cyan traces show the result of filtering channel characterization

data with each equalizer. A flat magnitude and phase response shows good agreement
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Figure 4.21: Channel Equalizer Magnitude and Unwrapped Phase Delta: Dark Blue -

Channel Characterization Data, Red-Orange: Desired Filter Response, Yellow: Frequency

Domain Synthesis Filter Response, Green: Time Domain Synthesis Filter Response, Purple:

Frequency Domain Synthesis Filter Output, Cyan: Time Domain Synthesis Filter Output,

Black: Window Function for Frequency Domain Synthesis

between the equalizer outputs and the reference waveform, although the frequency

ripple present within the channel characterization data is also present at the equalizer

outputs.

Equalizer Latency Optimization As mentioned in Section 4.2.1.3, equalizer ef-

fectiveness is a function of its latency, which can be adjusted by delaying the reference
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waveform prior to filter synthesis. Figure 4.22 shows the CPCRs and residual track-

ing errors, on the top and bottom, respectively, as a function of prescribed group

delay ∆mg. Equalizers were synthesized using Eqs. (4.25) and (4.26) for a series of

prescribed group delays ranging from 0 samples to the instantiated filter length L = 15

at a step size of 1
8
-sample. Frequency domain synthesis results are given in the left

column while time domain synthesis results are given in the right column. The op-

timum delay appears around ∆mg ≈ 8 samples, but varies from channel to channel

and between each synthesis technique. A delay of 0 samples results in particularly

poor performance.
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Figure 4.22: Equalizer Performance: Top Row - Frequency Domain Synthesis, Bottom Row

- Time Domain Synthesis, Left Column - CPCR, Right Column - Residual Tracking Error

When incorporating the fractional-sample delay filter bank with 1
8
-sample step

size, one desires the optimum block of 8 sets of coefficients, providing the necessary

fractional-sample delay range. Because all six channels were fairly well-behaved, the

block with the highest total CPCR, or the lowest residual tracking error, was selected.

Namely, CPCR for a each channel was averaged over each potential block of 8 delays

and the block for which the cumulative mean CPCR, summed over all channels, was
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greatest was selected. The resulting delay blocks, denoted by the vertical bands in

Figure 4.22, different depending on synthesis technique. Also of note is the slight

variation between frequency domain synthesis CPCR and residual tracking error. As

this difference is minute, the CPCR block was selected for implementation.

The channel 6 filter bank frequency response for both synthesis techniques is shown

in Figure 4.23, along with the equalizer output for each delay. Phase data shows the

increased group delay for each delay step while magnitude data shows little variation

within the band of interest. Agreement between the two synthesis techniques can be

seen most easily in the pairs of phase data for each step. Additionally, there is very

strong agreement between equalized output data for each filter bank as all 16 outputs

virtually eclipse each other.
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Figure 4.23: Equalizer/Fractional-Sample Delay Filter Bank

Equalizer Filter Length Equalizer performance is also dependent on filter length,

which is often constrained by system resources. The CPCR for channel 3 with various

filter lengths is shown in Figure 4.24. The left plot shows CPCR versus prescribed

group delay ∆mg, similar to the top row of Figure 4.22. Each curve represents a dif-

ferent filter length and shows the CPCR with ∆mg ∈ {0−L} where L is the current

filter length. The right plot shows the maximum CPCR for each filter length. Al-

though dependent on the given channel characteristics, a point of diminishing returns

is shown around a filter length of 10–15 taps. Here, the CPCR response flattens out,
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plateauing near 52 dB. It is expected that a more dispersive channel will require a

longer filter to achieve this point of diminishing returns.

0 5 10 15 20

Prescribed Group Delay (samp)

0

10

20

30

40

50

60

C
P

C
R

 (
d

B
)

Swept CPCR

0 5 10 15 20

Filter Length (taps)

0

10

20

30

40

50

60

C
P

C
R

 (
d

B
)

Max CPCR

Figure 4.24: Channel 3 CPCR for Various Filter Lengths: Left - CPCR vs. Prescribed

Group Delay, Right CPCR vs. Filter Length

For this specific characterization data, simulations show an improvement in CPCR

of about 5 and 10 dB around 40 taps and 70 taps respectively. At these lengths,

filter fidelity becomes capable of compensating the frequency ripple from system mis-

matches. This is not explored further for two reasons. First, the required filter

lengths are impractical under our resource constraints. Second, the ripple in the

channel characterization data is due to mismatches between the RFSoC DAC and

ADCs under the characterization configuration outlined in Figure 4.18. For chamber

measurements, the ADCs interface with the aperture elements, resulting in different

mismatch characteristics.

Time/Frequency Domain Synthesis Comparison Both frequency domain syn-

thesis and time domain synthesis yield strong results. Equalizer output results using

frequency domain synthesis are shown in Figure 4.25 and output results using time

domain synthesis are shown in Figure 4.26. Both figures show effective equalization

of the channel characterization data given in Figure 4.20. Although there is little
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discernable difference the plots of Figures 4.25 and 4.26, the difference in CPCR be-

tween frequency domain synthesis and time domain synthesis is given in Figure 4.27.
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Figure 4.25: Channel 1–6 Equalizer Response Using Frequency Domain Synthesis - Top

Left: Real Time Domain, Top Right: Imaginary Time Domain, Bottom Left: Magnitude

Frequency Domain, Bottom Right: Wrapped Phase Frequency Domain

Negative traces indicate superior performance from time domain synthesis than

from frequency domain synthesis, which is seen for any delay greater than one sample.

It should be noted that this difference is quite small and almost vanishes near the

optimum prescribed group delay of ∆mg ≈ 9 samples. Given that the difference

between the two synthesis techniques decreases with increasing delay ∆mg, instances

for which filter length is more limited may see a slight benefit from utilizing time

domain synthesis over frequency domain synthesis.

Time Domain Synthesis Down-Sampling The computational burden of solving

the time domain synthesis equation given in Eq. (4.26) can be reduced by downsam-

pling the rows of Ydes,∆ and X. Although this may not be pertinent for the equalizer
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Figure 4.26: Channel 1–6 Equalizer Response Using Time Domain Synthesis - Top Left: Real

Time Domain, Top Right: Imaginary Time Domain, Bottom Left: Magnitude Frequency

Domain, Bottom Right: Wrapped Phase Frequency Domain
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Figure 4.27: CPCR Delta between Frequency Domain and Time Domain Synthesis

design herein, it is relevant for embedded system design in which processing power

is limited. This was the approach of the authors in [70] in which they demonstrate

adaptive equalization through real-time implementation of time domain synthesis.

Note that for a reference matrix Ydes,∆ in which the prescribed group delay

∆mg ∈ [0, 1, · · · , L− 1], the distribution of time domain samples in the reference
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matrix follows the same form as the channel characterization matrix X. By taking

the Lth row of each of these matrices, beginning with row L, Eq. (4.26) reduces to

that described in [69] and [70], where

X =


x0 x1 · · · xL−1

xL xL+1 · · · x2L−1

...
...

. . .
...

 (4.36)

and

Ydes,∆ =


y0 y1 · · · yL−1

yL yL+1 · · · y2L−1

...
...

. . .
...

 . (4.37)

A comparison of the downsampled equalizer to the implemented equalizer reveals

a small reduction in CPCR. However, as long as the number of rows M remains such

M > 5L, equalizer performance will be nearly optimum, as known within the classic

RMB algorithm [51]. In this case, downsampling the rows such that M = 5L reduced

CPCR by less than 1 dB. It should also be noted that the orientation of columns

in Ydes,∆ places a delay of L− 1 samples in the first column and a delay of 0 samples

on the right. This is the reverse of the convention employed in Eq. (4.24) in which

the smallest delay is in the first column.

4.2.2.3 Complex Coefficient Filter Implementation

In the uncalibrated beamformer, individual channel compensation relies on a pair of

real-valued fractional-sample delay filter instantiations, each operating independently

on the I or Q complex baseband signal samples such that

xout,r = httd ∗ xch,r (4.38)
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and

xout,i = httd ∗ xch,i , (4.39)

where xch,r and xch,i represent the I and Q data streams respectively. Given that a

channel equalizer operating on complex baseband signal samples generally does not

have conjugate symmetry, a complex-valued coefficient filter is required.

This can be implemented using four real-valued convolutions, as given by

x1 = hr ∗ xch,r , (4.40)

x2 = hi ∗ xch,i , (4.41)

x3 = hr ∗ xch,i , (4.42)

and

x4 = hi ∗ xch,r . (4.43)

The real and imaginary output components are given by

xout,r = x1 − x2 (4.44)

and

xout,i = x3 + x4 (4.45)

respectively. This doubles the number of multipliers required to implement a given

filter length, often a constraining system resource. It is important to note that by

computing the real and imaginary outputs after the accumulate step in the convo-

lutions given in Eqs. (4.40) - (4.43), FIR convolution resources can be instantiated

independent from the each other, simplifying FPGA routing.
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By leveraging Karatsuba multiplication [85], a complex coefficient filter can be

implemented using three real-valued convolutions, at the cost of some pre- and post-

arithmetic, as given by

x1 = hr ∗ xch,r , (4.46)

x2 = hi ∗ xch,i , (4.47)

and

x3 = (hr + hi) ∗ (xch,r + xch,i) . (4.48)

The real and imaginary output components are given by

xout,r = x1 − x2 (4.49)

and

xout,i = x3 − x1 − x2 . (4.50)

One must ensure sufficient bit allocation to account for the bit growth associated with

the summations in Eqs. (4.48) - (4.50).

Table 4.6: Calibrated Wideband Beamformer FPGA Resource Utilization

Resource Utilization Available %

LUT 78237 425280 18.4
LUTRAM 3199 213600 1.5

FF 124249 850560 14.6
BRAM 62 1080 5.7
DSP 3008 4272 70.4
IO 35 347 10.1

BUFG 7 696 1.0
MMCM 1 8 12.5

Each channel compensation filter utilizes three instantiations of the interleaved

filter design given in Section 4.1.2.3, corresponding to Eqs. (4.46) - (4.48). The inter-

leaved implementation requires eight separate filter instantiations to process samples

at 2 GSPS at a clock rate of 500 MHz. Thus, the RFSoC DSP requirements for
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Figure 4.28: Wideband Beamformer Design Layout for the RFSoC

the implementation of a 15-tap complex coefficient FIR beamformer consists of three

multipliers per tap, eight filter instantiations per channel, and eight channels totaling

2880 multipliers. The FPGA floorplan is provided in Figure 4.28, showing the layout

of the routed FPGA design. Table 4.6 provides resource utilization. Of note is the

DSP usage rate of 70.4%. The gain/attenuator block in each channel, shown in the

block diagram given in Figure 4.6, utilizes 16 DSPs in order to simultaneously process

eight IQ samples. This results in a total of 3008 DSPs for the wideband beamformer.

4.2.3 Calibrated Results

This section discusses simulated and measured data demonstrating equalizer perfor-

mance. Simulated results provided a high degree of confidence prior to entering the
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far-field anechoic chamber. Chamber measurements demonstrate broadband perfor-

mance at various steering angles for uncalibrated and calibrated configurations.

4.2.3.1 Simulation Results Calibrated

Prior to chamber measurements, equalizer performance was verified in Matlab. To

generate an estimate of the uncalibrated antenna response, measured channel char-

acterization data was provided to a bit-accurate wideband antenna model. The bore-

sight response is shown in the left plot of Figure 4.29, which shows reasonable agree-

ment with the measured uncalibrated boresight pattern shown in the left plot of

Figure 4.31. The calibrated simulation antenna pattern was generated by passing

channel characterization data through the synthesized channel equalizer filter bank.

The resulting, via time domain synthesis, is shown in the right plot of Figure 4.29.

The effects of the characterization data frequency ripple can be seen in this plot near

the nulls.
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Figure 4.29: Equalizer Simulation Results: Left - Uncalibrated Data, Right - Compensated

Data

4.2.3.2 Chamber Measurements

This section presents chamber measurement results for the equalized wideband digi-

tal beamformer, shown in OU’s far-field anechoic chamber in Figure 4.19. Azimuth
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patterns consist of ±60◦ sweeps at 0.5◦ increments. At each angular step, a fre-

quency sweep was taken from 2.2–3.8 GHz at 10 MHz steps. Patterns were captured

for three system configurations: uncalibrated wideband beamforming, equalized wide-

band beamforming via frequency domain synthesis, equalized wideband beamforming

via time domain synthesis. For each configuration, the beamformer was commanded

to steer to θst = 0◦, -15◦, -30◦, and -45◦. Frequency cuts are presented as well.

Amplitude Post-Processing The raw boresight pattern for the 6-element Vivaldi

array is shown in the left plot of Figure 4.30. This pattern was captured with the

aperture elements connected to a broadband power splitter. Main beam amplitude

varies over frequency due to the chamber probe and Vivaldi aperture effects. To

compensate, a frequency-dependent response was extracted along the main beam of

the raw boresight pattern and its inverse applied as a correction factor across each

azimuth angle in the pattern. The result is shown in the right plot of Figure 4.30.

All subsequent plots incorporate this correction factor.
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Figure 4.30: Vivaldi Aperture Boresight Pattern: Left - Raw Data, Right - Post-Processed

Data

Compensated Results Frequency cuts for the uncalibrated response, equalized

response via frequency domain synthesis, and equalized response via time domain

synthesis for θst = 0◦, -15◦, -30◦, and -45◦ are shown in Figures 4.32, 4.34, 4.36,
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and 4.38, respectively. The blue traces show the uncalibrated response and the red-

orange and yellow traces show the equalized response for frequency and time do-

main synthesis respectively. The corresponding two-dimensional patterns showing

the antenna pattern as a function of both azimuth angle and frequency are shown in

Figures 4.31, 4.33, 4.35, and 4.37. Frequency cuts span the 1.6 GHz bandwidth at

200 MHz steps. Of note is the steering error in the uncalibrated response, which is

consistently off by about 3◦ up until the higher end of the band, when all configura-

tions shift to the right. Sidelobe behavior is consistently improved in the calibrated

patterns as compared to the uncalibrated response, indicating an improvement in

channel coherency. There is a drop in gain towards the center of the band, despite

the amplitude correction just discussed, likely due to mismatch between the aper-

ture elements and RFSoC ADCs, effects which are not accounted for in the channel

characterization data or amplitude post-processing.
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Figure 4.31: Antenna Patterns for θst = 0◦: Left - Uncalibrated, Center - Frequency Domain

Synthesized Equalizer, Right - Time Domain Synthesized Equalizer
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Figure 4.32: Frequency Cuts for θst = 0◦: Blue - Uncalibrated, Red-Orange: Frequency

Domain Synthesis Equalization, Yellow - Time Domain Synthesis Equalization
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Figure 4.33: Antenna Patterns for θst = -15◦: Left - Uncalibrated, Center - Frequency

Domain Synthesized Equalizer, Right - Time Domain Synthesized Equalizer
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Figure 4.34: Frequency Cuts for θst = -15◦: Blue - Uncalibrated, Red-Orange: Frequency

Domain Synthesis Equalization, Yellow - Time Domain Synthesis Equalization
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Figure 4.35: Antenna Patterns for θst = -30◦: Left - Uncalibrated, Center - Frequency

Domain Synthesized Equalizer, Right - Time Domain Synthesized Equalizer
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Figure 4.36: Frequency Cuts for θst = -30◦: Blue - Uncalibrated, Red-Orange: Frequency

Domain Synthesis Equalization, Yellow - Time Domain Synthesis Equalization
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Figure 4.37: Antenna Patterns for θst = -45◦: Left - Uncalibrated, Center - Frequency

Domain Synthesized Equalizer, Right - Time Domain Synthesized Equalizer
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Figure 4.38: Frequency Cuts for θst = -45◦: Blue - Uncalibrated, Red-Orange: Frequency

Domain Synthesis Equalization, Yellow - Time Domain Synthesis Equalization
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4.2.3.3 Future Efforts

Notable factors which contribute to sub-optimal behavior include the following. First,

mismatch between the antenna elements and ADCs results in ripple across the system

bandwidth which is not captured in the channel characterization data and can not

be compensated at the practical equalizer lengths of this RFSoC. If this mismatch is

significant enough to impact the lower order phase response, which is compensated by

the equalizer, there will disagreement between the synthesis results and the realized

channel response. Second, system characterization disregarded the effects of mutual

coupling, which is particularly influential in the Vivaldi aperture due to its reliance on

mutual coupling to meet performance metrics. The authors in [68] explore this further

by fitting their measurements to an array model in which they include coupling terms

between adjacent elements. By solving for the coupling terms using their measured

data, they successfully modeled a reasonable approximation to their measurements.

Sidelobe behavior and null depth in their measurements show similarities to these

captured herein.
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Chapter 5

Conclusion

In conclusion, despite their many advantages, there are many challenges associated

with the design, fabrication, and operation of phased array systems. The contin-

ued improvement of ADC and DAC sample rates and their integration with FPGA

fabrics into a compact package is revolutionizing the phased array design space. By

instantiating channel equalization with fractional-sample delays, digital wideband

beamforming mitigates bandwidth limitations due to beam squint and pulse distor-

tion. This enables phased array support for novel wideband communication and radar

waveforms, improving communication data rates and radar operating characteristics.

This dissertation contributes the development and demonstration of a wideband digi-

tal beamformer on an RFSoC and provides an in-depth examination of beamforming

and equalization theory.

Chapter 2 revisits phased array processing, providing an overview of phased array

systems and revisiting spatial and time domain Fourier processing. Classical beam-

forming for narrowband and wideband systems is examined along with a comparison

between the two. A method for null formation and the physical limitations of null

effectiveness are discussed. Arbitrary beamshaping enables the synthesis of arbitrary

beam patterns, including frequency-invariant antenna responses. Lastly, the justifi-

cations for and implications of sub-Nyquist-sampled beamforming are discussed in

detail. Included are illustrative simulation results for various system architectures.

Chapter 3 revisits adaptive array processing. Using the given mathematical system

representation, derivations for several adaptive filtering techniques and their appli-

cations to phased array processing are provided. These include the LMS and RLS
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iterative algorithms as well as statistically optimum MMSE, ML, MVDR, and LCMV

algorithms. As the statistically optimum methods rely on the system statistics for

operation, a method for acquiring an estimate of the covariance matrix is given. The

RMB rule provides a method to determine how much data is required for an accu-

rate representation. For the statistically optimum algorithms, distinctions are made

between whether or not an estimate of the noise environment is available without the

signal of interest. Lastly, comparisons of complexity and performance are provided.

Simulated results as well as details on algorithm computational complexity are given.

Chapter 4 presents demonstrations of wideband digital beamforming on an RF-

SoC. Uncalibrated TTD beamforming is implemented digitally through a fractional-

sample delay filter bank. A derivation for a fractional-sample delay filter and trade-

offs between performance and system resources are provided. Details are given on

the RFSoC testbed including the antenna array as well system hardware, firmware,

and software. An interleaved firmware architecture for FIR filter implementation,

which maintains full digital bandwidth, is also provided. Measured results showing

wideband and narrowband RFSoC measurements demonstrate the effectiveness of

the TTD implementation. Calibrated measurements are given as well. Least-squares

equalization techniques are explored in detail for both frequency domain synthesis

and time domain synthesis. Details for reconfigurable complex-coefficient FIR filter

required for the equalizer implementation are provided along with calibrated mea-

surement results.

Additional work would explore characterization methods which capture aperture

effects, both for inter-element variations and mutual coupling characteristics. Incor-

porating mutual coupling, especially for wideband apertures which commonly rely on

high mutual coupling to achieve performance metrics, would improve system perfor-

mance. A lack of channel amplification reduced the ENOB considerably, degrading

the manifestation of nulls in the measured pattern. In addition to improving SNR,

incorporating amplification may also provide the opportunity to explore NLEQ on
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the testbed. The complex-coefficient channel compensation filters can be updated

to demonstrate many different applications such as the arbitrary beamshaping previ-

ously discussed.

The wideband beamformer presented herein serves as a stepping stone towards the

holy grail of fully digital RFSoC-based phased array systems. Relevant performance

metrics and capabilities demonstrated in this body of work match or exceed those

available in the current literature, as it is the first RFSoC-based TTD beamformer at

full digital bandwidth, the first example of RFSoC-based sub-Nyquist beamforming,

and the first wideband digital equalizer implemented on an RFSoC. These results

serve as an indicator of future capabilities of digital phased array systems in the next

several years. The continued improvement of data converter sample rates will enable

increased system bandwidths and direct sampling of waveforms at higher carrier fre-

quencies, simplifying the analog hardware design. This will also result in increased

challenges associated with the real-time processing of the resulting quantities of dig-

ital data, synchronization across multiple devices, thermal management of highly

concentrated processing power, and effective system calibration. The next decade

will provide the solutions to many of the challenges associated with all-digital phased

array systems, reducing system costs and increasing performance metrics.
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Appendix A

Matlab Code - Linear Array Model

% -------------------------------------------------------------------

% Uniform Linear Array True Time Delay Model

%

% Model a ULA with TTD filter for wideband beamforming

% -------------------------------------------------------------------

clear

% Simulation Settings

% -------------------

% Angle Settings

azAngSteer = -50; % Azimuth Steering Angle

azAngTest = -50; % Signal Incident Angle (if numAng == 1)

% Assert to use Measured Channel Data

useMeas = 0;

useEQ = 0;

% Plot Settings

numAng = 721; % Number of Azimuth Angles 721

numFreqPlt = 500; % Min Number of Frequency Points 500

% Simulation Selection
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useFP = 0; % Assert to use fixed point

packSamp = 0; % Assert to process in sample packs

genHLSFile = 0; % Assert to Create HLS Files

% System Parameters

numElem = 6; % Number of Elements

numFiltTTD = 8; % Number of TTD Filters

% TTD Filter Length

numEffTaps = 17;

% Waveform Parameters

scale = 0.125;

tPls = .2e-6; % Pulse Length (s)

selWave = 1; % Waveform Select (1. Chirp, 2. Carrier Tone)

selWin = 2; % Window Select (1. None, 2. Hanning)

windPerc = 0.1; % Windowed Percentage

ampVar = 0; % Assert to include amplitude variation

tMsPls = sapPerDat*(numSampMeas-1);

% Frequency Parameters

% --------------------

sampFreqTx = 40e9; % Oversampled Incident Sample Rate

sampFreqRx = 4e9; % Receiver Sample Frequency (Hz)

sampFreqDnRx = sampFreqRx/2; % Receiver Sample Frequency (Hz)

freqBW = 1600e6; % Signal Bandwidth
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% -------------------------------------------------------------------

c = 3e8; % Speed of Light (m/s)

elemSep = 0.05;

% Sample Period

sampPerRx = 1/sampFreqRx;

sampPerTx = 1/sampFreqTx;

% Data Stream Length

tData = (1+padPer)*tPls;

tMsData = (1+padPer)*tMsPls;

% Embedded System Processing

% ------------------------------

fp = fp_sett(numRxSamp);

F = fimath(’OverflowAction’,’Saturate’);

% Filter Bank Synthesis

% ------------------------------

[ttdBank_fp,~] = ...

fd_filt_bank_exp([numTaps,numEffTaps],numFiltTTD,fp,useEQ);

% -------------------------------------------------------------------

% Frequency Vector Constants

% -------------------------------------------------------------------

freqSprPerc = 1;

% Determine Frequencies
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freqSt = freqCent - freqSprPerc*(freqBW/2);

freqEnd = freqCent + freqSprPerc*(freqBW/2);

% Determine Frequencies

freqStAct = freqCent - freqBW/2;

freqEndAct = freqCent + freqBW/2;

% Determine Aliased Frequencies

freqCentAl = ...

abs(freqCent - floor(nyqZone/2)*sampFreqRx) - sampFreqRx/4;

freqStAl = freqCentAl - freqSprPerc*(freqBW/2);

freqEndAl = freqCentAl + freqSprPerc*(freqBW/2);

% -------------------------------------------------------------------

% Beamforming Calculations

% -------------------------------------------------------------------

sampPerRxDn = 2*sampPerRx;

% Steering Sample and Phase Shifts

timeDel = (elemSep*sin((pi/180)*azAngSteer)/c)*(0:numElem-1);

sampDel = timeDel./sampPerRxDn;

sampDel = sampDel - min(sampDel);

% Quantize

sampDelQnt = round(sampDel*numFiltTTD)/numFiltTTD;

% Integer and Fractional Sample Delays

sampDelInt = floor(sampDelQnt);

sampDelFrc = sampDelQnt - sampDelInt;
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% Quantized Correction Phase (Bandpass Sampling)

phsCorrCyc = (floor(nyqZone/2)-0.25)*sampDel*2;

phsCorrRad = 2*pi*phsCorrCyc;

phsCorrDeg = 360*phsCorrCyc;

phsCorrRadWr = wrapToPi(phsCorrRad);

phsCorrQnt = wrapTo180(phsCorrDeg);

phsCorrQntDeg = wrapTo180((180/pi)*phsCorrQnt);

phsCorrCycWr = wrapTo180(360*phsCorrCyc)/360;

% -------------------------------------------------------------------

% Impinging Plane Wave Model

%

% Model as individual channel streams with appropriate delay based on

% azimuth angle. Construct array of channel streams for each azimuth

% angle.

% -------------------------------------------------------------------

% Specify Azimuth Angle Vector

% ----------------------------

if numAng == 1

azAng = azAngTest;

else

azAng = -90:180/(numAng-1):90;

% azAng = -60:120/(numAng-1):60;

end

% Angle Index

[~,indAngSteer] = min(abs(azAng-azAngSteer));
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[~,indAngTest] = min(abs(azAng-azAngTest));

% ----------------------------

% Create Transmit Waveform

% ------------------------

% Waveform 1 - Chirp

% Complex Baseband Vector (volts)

% adjust amplitude to demonstrate direction of spectrum

if ampVar

ampVect = ones(numPlsSamp,1) + (tVectPls - tPls/2)/(4*tPls);

else

ampVect = ones(numPlsSamp,1); %#ok<*UNRCH>

end

% For Waveform

switch selWave

case 1

chirpRate = freqBW/tPls;

phaseArg = (-freqBW/2)*tVectPls + (chirpRate/2)*tVectPls.^2;

chirpVectBB = 0.04*txWind.*ampVect.*exp(1i*2*pi*phaseArg);

case 2

chirpVectBB = 0.04*sin(2*pi*1e8*tVectPls);

otherwise

warning(’Invalid Transmit Window - Assume no window’)

end

% Upconvert to Carrier - real signal (volts)

chirpVectCarr = ...

scale*(real(chirpVectBB).*cos(2*pi*freqCent*tVectPls) + ...
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imag(chirpVectBB).*sin(2*pi*freqCent*tVectPls));

% -------------------------------------------------------------------

% Create Arrays of Delayed Waveforms for Azimuth Angles

% -------------------------------------------------------------------

% Initialize Arrays

planeWaves = zeros(numTxSamp,numElem,numAng);

planeMsWaves = zeros(numMsTxSamp,numElem,numAng);

for angNum = 1:numAng

% Waveform Delays (sec)

% element delay

elemDelInd = elemSep*sin((pi/180)*(-azAng(angNum)))/c;

% delay vector

elemDel = (elemDelInd)*(0:numElem-1);

if elemDelInd < 0

elemDel = elemDel - min(elemDel);

end

for elemNum = 1:numElem

planeWaves(:,elemNum,angNum) = chanEn(elemNum)*...

wf_delay(txPlsVect,elemDel(elemNum),..

numTxSamp,sampFreqTx);

planeMsWaves(:,elemNum,angNum) = chanEn(elemNum)*...

wf_delay(txMsPlsVect(:,elemNum),elemDel(elemNum),...

numMsTxSamp,sampFreqTx);

end

end
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% -------------------------------------------------------------------

% Uniform Linear Array Model

%

% Shift channels per TTD filter and Phase Shifter Adjustments

% -------------------------------------------------------------------

% Element Pattern

% ---------------

if incPatt == 1

elemPatt = cos((pi/180)*shiftdim(azAng,-1));

elemPatt(elemPatt<1e-9) = 1e-9;

else

elemPatt = ones(1,1,numAng);

end

elemPattAll = repmat(elemPatt,numTxSamp,numElem,1);

planeWavesAnt = elemPattAll.*planeWaves;

elemPattAll = repmat(elemPatt,numMsTxSamp,numElem,1);

planeMsWavesAnt = elemPattAll.*planeMsWaves;

% Analog-Digital Converter

% ------------------------

sampVectInt = (tVectRx./sampPerTx);

% Linear interpolate Rx Planewave

rxPlaneWave = interp1(sampVectTx,planeWavesAnt,sampVectInt);

sampVectMsInt = (tVectMsRx./sampPerTx);

% Linear interpolate Rx Planewave
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rxMsPlaneWave = interp1(sampVectMsTx,planeMsWavesAnt,sampVectMsInt);

% True Time Delay Filter Bank

% ---------------------------

% if useEQ==1

% first EQ filter, second effective frac filter

% final length is sum(numTaps-3);

ttdBank = double(ttdBank_fp);

numTapAll = size(ttdBank,1);

fracDelVect = 0:1/(numFiltTTD):1-1/(numFiltTTD);

fltInd = zeros(numElem,1);

ttdCoefs = zeros(length(ttdBank(:,1)),numElem);

for elemNum = 1:numElem

[~,fltInd(elemNum)] = ...

find(abs(fracDelVect - sampDelFrc(elemNum)) < 0.00001);

ttdCoefs(:,elemNum) = ttdBank(:,fltInd(elemNum),elemNum);

if useFP == 1

ttdCoefs_fp(:,elemNum) = ttdBank_fp(:,fltInd(elemNum),elemNum);

end

end

% Print Parameters

% ------------------------------
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propDel = elemSep*sin((pi/180)*azAngSteer)/c;

filtRes = sampPerRx/numFiltTTD;

phsI = real(exp(1i*phsCorrQnt));

phsQ = imag(exp(1i*phsCorrQnt));

if useFP == 1

phsI_fp = fi(phsI,fp.phs.s,fp.phs.w,fp.phs.w-fp.phs.i);

phsQ_fp = fi(phsQ,fp.phs.s,fp.phs.w,fp.phs.w-fp.phs.i);

end

compCoef = compCoef/(max(abs(compCoef)));

compCoef_fp = ...

fi(compCoef,fp.flt.s,fp.flt.w,fp.flt.w-fp.flt.i,’fimath’,fp.F);

% Digital Downconversion

% -------------------------------------------------------------------

sigIdBB = zeros(numRxDnSamp,numElem,numAng);

sigMsBB = zeros(numMsRxDnSamp,numElem,numAng);

for angNum = 1:numAng

for elemNum = 1:numElem

% Matlab Implementation

% ---------------------------------------------------------------

% Frequency Shift with phase correction

temp = rxPlaneWave(:,elemNum,angNum).*...

exp(1i*((-pi/2)*sampVectRx + phsCorrQnt(elemNum)));
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% Image Reject

temp = conv(imgRejCoef,temp);

% Down-sample

sigIdBB(:,elemNum,angNum) = temp(1:2:numRxSamp);

% Frequency Shift with phase correction

temp = rxMsPlaneWave(:,elemNum,angNum).*...

exp(1i*((-pi/2)*sampVectMsRx + phsCorrQnt(elemNum)));

% Image Reject

temp = conv(imgRejCoef,temp);

% Down-sample

sigMsBB(:,elemNum,angNum) = temp(1:2:numMsRxSamp);

end

end

if useMeas == 1

sigBB = sigMsBB;

numRxDnSamp = numMsRxDnSamp;

numRxSamp = numMsRxSamp;

sampVectRx = sampVectMsRx;

else

sigBB = sigIdBB;

end
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% Cast to Fixed-Point

% -------------------------------------------------------------------

if useFP == 1

sigBBI = real(sigBB);

sigBBQ = imag(sigBB);

% cast to unsigned fixed point with no integer bits

sigBBI_fp = ...

fi(sigBBI,fp.dataIn12.s,fp.dataIn12.w,fp.dataIn12.w-fp.dataIn12.i);

sigBBQ_fp = ...

fi(sigBBQ,fp.dataIn12.s,fp.dataIn12.w,fp.dataIn12.w-fp.dataIn12.i);

end

% Signal Compensation

% -------------------------------------------------------------------

for angNum = 1:numAng

% Matlab Implementation

% -----------------------------------------------------------------

for elemNum = 1:numElem

% Course Delay

sigCrsDel(:,elemNum) = [zeros(sampDelInt(elemNum),1);

sigBB(1:end-sampDelInt(elemNum),elemNum,angNum)];

% Fractional Delay

temp = conv(ttdCoefs(:,elemNum),sigCrsDel(:,elemNum));

sigTTD(:,elemNum,angNum) = temp(1:numRxDnSamp);
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sigCompI(:,elemNum,angNum) = real(sigTTD(:,elemNum,angNum));

sigCompQ(:,elemNum,angNum) = imag(sigTTD(:,elemNum,angNum));

end

sigSumIPre(:,angNum) = squeeze(sum(sigCompI(:,:,angNum),2));

sigSumQPre(:,angNum) = squeeze(sum(sigCompQ(:,:,angNum),2));

sigSumI(:,angNum) = sigSumIPre(:,angNum);

sigSumQ(:,angNum) = sigSumQPre(:,angNum);

% Fixed-Point Implementation

% -----------------------------------------------------------------

if useFP == 1

for elemNum = 1:numElem

% Course Delay

sigCrsDelI_fp(:,elemNum) = [zeros(sampDelInt(elemNum),1);

sigBBI_fp(1:end-sampDelInt(elemNum),elemNum,angNum)];

sigCrsDelQ_fp(:,elemNum) = [zeros(sampDelInt(elemNum),1);

sigBBQ_fp(1:end-sampDelInt(elemNum),elemNum,angNum)];

sigCrsDel_fp(:,elemNum) = ...

complex(sigCrsDelI_fp(:,elemNum),sigCrsDelQ_fp(:,elemNum));

temp = conv(ttdCoefs_fp(:,elemNum),sigCrsDel_fp(:,elemNum));

sigTTD_fp(:,angNum) = temp(1:numRxDnSamp);

acc_fp2(:,elemNum,angNum) = ...

fi(sigTTD_fp(:,angNum),fp.acc.s,fp.acc.w,fp.acc.w-fp.acc.i);
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accI_fp2 = real(acc_fp2);

accQ_fp2 = imag(acc_fp2);

numPack = ceil(numRxDnSamp/numInSampClk);

if packSamp

extra = numInSampClk*numPack - numRxDnSamp;

chanBufPackI = sigCrsDelI_fp(:,elemNum);

chanBufPackQ = sigCrsDelQ_fp(:,elemNum);

chanBufPackI(end+1:end+extra,:,:) = 0;

chanBufPackQ(end+1:end+extra,:,:) = 0;

filtBufIPack_fp = ...

fi(zeros(bufLen,1),fp.dataIn12.s,fp.dataIn12.w,...

fp.dataIn12.w-fp.dataIn12.i);

filtBufQPack_fp = ...

fi(zeros(bufLen,1),fp.dataIn12.s,fp.dataIn12.w,...

fp.dataIn12.w-fp.dataIn12.i);

for packNum = 1:numPack

filtBufIPack_fp(1:bufLen-numSampIQ) = ...

filtBufIPack_fp(numSampIQ+1:bufLen);

filtBufQPack_fp(1:bufLen-numSampIQ) = ...

filtBufQPack_fp(numSampIQ+1:bufLen);
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filtBufIPack_fp(bufLen-numSampIQ+1:bufLen) = ...

chanBufPackI((packNum-1)*numInSampClk+1:...

numInSampClk*packNum);

filtBufQPack_fp(bufLen-numSampIQ+1:bufLen) = ...

chanBufPackQ((packNum-1)*numInSampClk+1:...

numInSampClk*packNum);

conv1Pack_fp(:,packNum,elemNum) = ...

conv(filtBufIPack_fp,real(ttdCoefs_fp(:,elemNum)),’valid’);

conv2Pack_fp(:,packNum,elemNum) = ...

conv(filtBufQPack_fp,imag(ttdCoefs_fp(:,elemNum)),’valid’);

conv3Pack_fp(:,packNum,elemNum) = ...

conv((filtBufIPack_fp+filtBufQPack_fp), ...

(real(ttdCoefs_fp(:,elemNum))+ ...

imag(ttdCoefs_fp(:,elemNum))),’valid’);

accIPack_fp = conv1Pack_fp(:,packNum,elemNum) - ...

conv2Pack_fp(:,packNum,elemNum);

accQPack_fp = conv3Pack_fp(:,packNum,elemNum) - ...

conv1Pack_fp(:,packNum,elemNum) - ...

conv2Pack_fp(:,packNum,elemNum);

accIPack_fp2 = ...

fi(accIPack_fp,fp.acc.s,fp.acc.w,fp.acc.w-fp.acc.i);

accQPack_fp2 = ...

fi(accQPack_fp,fp.acc.s,fp.acc.w,fp.acc.w-fp.acc.i);

filtBufIPacked_fp(:,packNum,elemNum) = filtBufIPack_fp;
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filtBufQPacked_fp(:,packNum,elemNum) = filtBufQPack_fp;

accIPacked_fp2(:,packNum,elemNum) = accIPack_fp2;

accQPacked_fp2(:,packNum,elemNum) = accQPack_fp2;

end

filtBufI_fp3(:,elemNum) = ...

reshape(filtBufIPacked_fp(:,:,elemNum),[bufLen*numPack,1]);

filtBufQ_fp3(:,elemNum) = ...

reshape(filtBufQPacked_fp(:,:,elemNum),[bufLen*numPack,1]);

accI_fp3(:,elemNum) = ...

reshape(accIPacked_fp2(:,:,elemNum),[numSampIQ*numPack,1]);

accQ_fp3(:,elemNum) = ...

reshape(accQPacked_fp2(:,:,elemNum),[numSampIQ*numPack,1]);

filtBufI_fp4 = filtBufI_fp3(1:numRxDnSamp,:);

filtBufQ_fp4 = filtBufQ_fp3(1:numRxDnSamp,:);

accI_fp4 = accI_fp3(1:numRxDnSamp,:);

accQ_fp4 = accQ_fp3(1:numRxDnSamp,:);

end

end

if packSamp

accI_fp5 = accI_fp4;

accQ_fp5 = accQ_fp4;

else

accI_fp5 = accI_fp2(:,:,angNum);

accQ_fp5 = accQ_fp2(:,:,angNum);

end
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% Summation

sigSumIPre_fp(:,angNum) = squeeze(sum(accI_fp5,2));

sigSumQPre_fp(:,angNum) = squeeze(sum(accQ_fp5,2));

sigSumIPre_fp2(:,angNum) = ...

fi(sigSumIPre_fp(:,angNum),fp.sout.s,...

fp.sout.w,fp.sout.w-fp.sout.i);

sigSumQPre_fp2(:,angNum) = ...

fi(sigSumQPre_fp(:,angNum),fp.sout.s,...

fp.sout.w,fp.sout.w-fp.sout.i);

if packSamp

% Buffer Length

numTapTot = numInSampClk + length(compCoef_fp) - 1;

bufOutLen = numTapTot;

preSumBufPackI_fp = sigSumIPre_fp2(:,angNum);

preSumBufPackQ_fp = sigSumQPre_fp2(:,angNum);

preSumBufPackI_fp(end+1:end+extra,:,:) = 0;

preSumBufPackQ_fp(end+1:end+extra,:,:) = 0;

preBufIPack_fp = fi(zeros(bufOutLen,1),fp.dataIn12.s,...

fp.dataIn12.w,fp.dataIn12.w-fp.dataIn12.i);

preBufQPack_fp = fi(zeros(bufOutLen,1),fp.dataIn12.s,...

fp.dataIn12.w,fp.dataIn12.w-fp.dataIn12.i);
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for packNum = 1:numPack

preBufIPack_fp(1:bufOutLen-numSampIQ) = ...

preBufIPack_fp(numSampIQ+1:bufOutLen);

preBufQPack_fp(1:bufOutLen-numSampIQ) = ...

preBufQPack_fp(numSampIQ+1:bufOutLen);

preBufIPack_fp(bufOutLen-numSampIQ+1:bufOutLen) = ...

preSumBufPackI_fp((packNum-1)*numInSampClk+1:...

numInSampClk*packNum);

preBufQPack_fp(bufOutLen-numSampIQ+1:bufOutLen) = ...

preSumBufPackQ_fp((packNum-1)*numInSampClk+1:...

numInSampClk*packNum);

conv1Pack_fp = conv(preBufIPack_fp,real(compCoef_fp),’valid’);

conv2Pack_fp = conv(preBufQPack_fp,imag(compCoef_fp),’valid’);

conv3Pack_fp = conv((preBufIPack_fp+preBufQPack_fp),...

(real(compCoef_fp)+imag(compCoef_fp)),’valid’);

sigSumPackI_fp = conv1Pack_fp - conv2Pack_fp;

sigSumPackQ_fp = conv3Pack_fp - conv1Pack_fp - conv2Pack_fp;

sigSumPackI_fp2 = ...

fi(sigSumPackI_fp,fp.acc.s,fp.acc.w,fp.acc.w-fp.acc.i);

sigSumPackQ_fp2 = ...

fi(sigSumPackQ_fp,fp.acc.s,fp.acc.w,fp.acc.w-fp.acc.i);

preBufIPacked_fp(:,packNum) = preBufIPack_fp;

preBufQPacked_fp(:,packNum) = preBufQPack_fp;
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sigSumIPacked_fp2(:,packNum) = sigSumPackI_fp2;

sigSumQPacked_fp2(:,packNum) = sigSumPackQ_fp2;

end

preBufI_fp3 = reshape(preBufIPacked_fp,[bufOutLen*numPack,1]);

preBufQ_fp3 = reshape(preBufQPacked_fp,[bufOutLen*numPack,1]);

sigSumI_fp3 = reshape(sigSumIPacked_fp2,[numSampIQ*numPack,1]);

sigSumQ_fp3 = reshape(sigSumQPacked_fp2,[numSampIQ*numPack,1]);

preBufI_fp4 = preBufI_fp3(1:numRxDnSamp);

preBufQ_fp4 = preBufQ_fp3(1:numRxDnSamp);

sigSumI_fp4 = sigSumI_fp3(1:numRxDnSamp);

sigSumQ_fp4 = sigSumQ_fp3(1:numRxDnSamp);

end

sigSumI_fp5 = sigSumIPre_fp2(:,angNum);

sigSumQ_fp5 = sigSumQPre_fp2(:,angNum);

sigSumI(:,angNum) = double(sigSumI_fp5);

sigSumQ(:,angNum) = double(sigSumQ_fp5);

end

sigSum(:,angNum) = sigSumI(:,angNum) + 1i*sigSumQ(:,angNum);

end

% Digital Upconversion

% -------------------------------------------------------------------
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for angNum = 1:numAng

% Up-sample

rxOutUp(:,angNum) = ...

reshape([sigSum(:,angNum),zeros(numRxDnSamp,1)].’,[numRxSamp,1]);

% Image Reject

temp = conv(rxOutUp(:,angNum),scOut*imgRejCoef);

rxOutUpFilt(:,angNum) = temp(1:numRxSamp);

% Frequency Shift

rxOut(:,angNum) = ...

real(rxOutUpFilt(:,angNum).*exp(1i*(pi/2)*sampVectRx));

end

% -------------------------------------------------------------------

sigCompF.comp = fftshift(fft(rxOut,numRxSamp,1),1);
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