20 research outputs found

    Attention modulates hemispheric differences in functional connectivity: Evidence from MEG recordings

    Get PDF
    The present study examined intrahemispheric functional connectivity during rest and dichotic listening in 8 male and 9 female healthy young adults measured with magnetoencephalography (MEG). Generalized synchronization within the separate hemispheres was estimated by means of the synchronization likelihood that is sensitive to linear as well as non-linear coupling of MEG signals. We found higher functional intrahemispheric connectivity of frontal and temporal areas within the right as compared to the left hemisphere in the lower and higher theta band during rest, and in the lower theta band during dichotic listening. In addition, higher synchronization in the lower theta band correlated with better task performance. In the upper alpha band, hemispheric differences in intrahemispheric connectivity of the frontal regions were found to be modulated by focused attention instructions. That is, attention to the right ear exaggerates the pattern of higher synchroniza

    Réorganisation fonctionnelle et structurale des cortex auditifs, visuels et associatifs chez les sourds profonds congénitaux ou prélinguaux

    Full text link
    En raison de l’utilisation d’un mode de communication totalement différent de celui des entendants, le langage des signes, et de l’absence quasi-totale d’afférences en provenance du système auditif, il y a de fortes chances que d’importantes modifications fonctionnelles et structurales s’effectuent dans le cerveau des individus sourds profonds. Les études antérieures suggèrent que cette réorganisation risque d’avoir des répercussions plus importantes sur les structures corticales situées le long de la voie visuelle dorsale qu’à l’intérieur de celles situées à l’intérieur de la voie ventrale. L’hypothèse proposée par Ungerleider et Mishkin (1982) quant à la présence de deux voies visuelles dans les régions occipitales, même si elle demeure largement acceptée dans la communauté scientifique, s’en trouve aussi relativement contestée. Une voie se projetant du cortex strié vers les régions pariétales postérieures, est impliquée dans la vision spatiale, et l’autre se projetant vers les régions du cortex temporal inférieur, est responsable de la reconnaissance de la forme. Goodale et Milner (1992) ont par la suite proposé que la voie dorsale, en plus de son implication dans le traitement de l’information visuo-spatiale, joue un rôle dans les ajustements sensori-moteurs nécessaires afin de guider les actions. Dans ce contexte, il est tout à fait plausible de considérer qu’un groupe de personne utilisant un langage sensori-moteur comme le langage des signes dans la vie de tous les jours, s’expose à une réorganisation cérébrale ciblant effectivement la voie dorsale. L’objectif de la première étude est d’explorer ces deux voies visuelles et plus particulièrement, la voie dorsale, chez des individus entendants par l’utilisation de deux stimuli de mouvement dont les caractéristiques physiques sont très similaires, mais qui évoquent un traitement relativement différent dans les régions corticales visuelles. Pour ce faire, un stimulus de forme définie par le mouvement et un stimulus de mouvement global ont été utilisés. Nos résultats indiquent que les voies dorsale et ventrale procèdent au traitement d’une forme définie par le mouvement, tandis que seule la voie dorsale est activée lors d’une tâche de mouvement global dont les caractéristiques psychophysiques sont relativement semblables. Nous avons utilisé, subséquemment, ces mêmes stimulations activant les voies dorsales et ventrales afin de vérifier quels pourraient être les différences fonctionnelles dans les régions visuelles et auditives chez des individus sourds profonds. Plusieurs études présentent la réorganisation corticale dans les régions visuelles et auditives en réponse à l’absence d’une modalité sensorielle. Cependant, l’implication spécifique des voies visuelles dorsale et ventrale demeure peu étudiée à ce jour, malgré plusieurs résultats proposant une implication plus importante de la voie dorsale dans la réorganisation visuelle chez les sourds. Suite à l’utilisation de l’imagerie cérébrale fonctionnelle pour investiguer ces questions, nos résultats ont été à l’encontre de cette hypothèse suggérant une réorganisation ciblant particulièrement la voie dorsale. Nos résultats indiquent plutôt une réorganisation non-spécifique au type de stimulation utilisé. En effet, le gyrus temporal supérieur est activé chez les sourds suite à la présentation de toutes nos stimulations visuelles, peu importe leur degré de complexité. Le groupe de participants sourds montre aussi une activation du cortex associatif postérieur, possiblement recruté pour traiter l’information visuelle en raison de l’absence de compétition en provenance des régions temporales auditives. Ces résultats ajoutent aux données déjà recueillies sur les modifications fonctionnelles qui peuvent survenir dans tout le cerveau des personnes sourdes, cependant les corrélats anatomiques de la surdité demeurent méconnus chez cette population. Une troisième étude se propose donc d’examiner les modifications structurales pouvant survenir dans le cerveau des personnes sourdes profondes congénitales ou prélinguales. Nos résultats montrent que plusieurs régions cérébrales semblent être différentes entre le groupe de participants sourds et celui des entendants. Nos analyses ont montré des augmentations de volume, allant jusqu’à 20%, dans les lobes frontaux, incluant l’aire de Broca et d’autres régions adjacentes impliqués dans le contrôle moteur et la production du langage. Les lobes temporaux semblent aussi présenter des différences morphométriques même si ces dernières ne sont pas significatives. Enfin, des différences de volume sont également recensées dans les parties du corps calleux contenant les axones permettant la communication entre les régions temporales et occipitales des deux hémisphères.Due to the use of a mode of communication completely different from hearing people, Due to [the use of] a communication mode completely different from hearing people, the sign language and the absence of afferences from the auditory system, it is likely that significant functional and structural changes take place in the brains of profoundly deaf individuals. Previous studies suggest this reorganization may have greater impact on cortical structures located along the dorsal visual pathway than within the regions located inside the ventral pathway. The hypothesis, widely accepted by the scientific community, proposed by Ungerleider and Mishkin (1982) for the presence of two visual pathways in the occipital regions is also fairly contested. According to this hypothesis, one stream projecting from the striate cortex to the posterior parietal regions is involved in spatial vision and a second stream projecting to regions of the inferior temporal cortex underlying form recognition. Goodale and Milner (1992) subsequently proposed that the dorsal pathway, in addition to its involvement in the processing of visuospatial information, takes part in the necessary sensorymotor adjustments to guide actions. In this context, it is plausible to consider that a group of people using sensorimotor language (e.g., sign language) in their everyday life, the cerebral reorganization is more suited to target the dorsal pathway. The first objective of the study is to explore both visual pathways, especially the dorsal pathway, in hearing subjects by the use of two similar motion stimuli that evoke different types of processing. This was done with a form-from-motion stimuli and a global motion stimuli. Our results indicate that both dorsal and ventral pathways process forms defined by motion, while only the dorsal pathway is activated during a task of global motion whose psychophysical characteristics are relatively similar. Subsequently, we used these stimuli to activate the dorsal and ventral stream to investigate functional differences in the visual and auditory brain regions in profoundly deaf individuals. Several studies show cortical reorganization in the visual and auditory areas in response to the absence of a sensory modality. However, few studies have explored the specific involvement of dorsal and ventral visual streams, despite several results suggesting greater involvement of the dorsal pathway in visual reorganization with the deaf population. Following the use of functional brain imaging to investigate these issues, our results differed from the hypothesis suggesting a reorganization specifically targeting the dorsal pathway. Rather, our results indicate a non-specific reorganization to the different types of stimulations used. Indeed, the superior temporal gyrus was activated with the deaf following the presentation of our visual stimuli, regardless of their complexity. The group of deaf participants also showed activation of the posterior association cortex, possibly recruited to process visual information in the absence of competition from the temporal auditory regions. These results add to data already collected on the functional changes that may occur throughout the brains of deaf people, however, the anatomical correlates of deafness remains unknown in this population. A third study aimed to explore the structural changes occurring in the brains of prelingual and congenital profoundly deaf. Our results show that several brain regions appear to be different between the groups of participants composed of the deaf and hearing. Our analysis showed volume increases of up to 20% in the frontal lobe, including Broca's area and adjacent regions involved in motor control and language production. The temporal lobes also presented some morphometric differences even if they are not significant. Though not significant, the temporal lobes also presented some morphometric differences. Finally, differences in volume were also found in parts of the corpus callosum considered to carry fibers connecting the temporal and occipital lobes of both hemispheres

    Functional and structural connectivity of reading networks in the adult brain

    Get PDF
    Language processing draws upon many distributed regions in the brain. Reading in particular is a skill that emerges from the interaction between brain regions involved in phonological and orthographical processing. This project examined the reading network in adults (18-35 years old) with and without developmental dyslexia. Each participant was assessed on a comprehensive battery of standardised neuropsychological tests, which assessed IQ, reading accuracy and comprehension, spelling, phonological processing, working memory, grammatical understanding, motor coordination, and expressive and receptive language skills. In addition, each participant underwent a non-invasive MRI scan, during which structural and functional images were acquired. More specifically, T1-weighted and diffusion-weighted images were acquired to assess structural networks in the brain, whereas a simple reading task and resting-state fMRI were acquired to assess the functional networks involved in reading. Individuals with dyslexia were found to show reduced activation and reduced connectivity in regions typically associated with skilled reading. Moreover, results suggested that they rely on more effortful processing and attentional mechanisms instead to compensate for their reading difficulties. All in all, results indicated that individuals with developmental dyslexia had abnormal functional and structural brain networks related to reading performance, as well as other functions, such as working memory. These findings suggest that for successful reading remediation, it is important to focus on the integration of phonology with orthography, as well as with working memory. Literacy problems such as developmental dyslexia are thus better characterised as a complex disorder with multiple deficits rather than by a single phonological deficit

    Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia

    Get PDF
    The concept of locally specialized functions dominates research on higher brain function and its disorders. Locally specialized functions must be complemented by processes that coordinate those functions, however, and impairment of coordinating processes may be central to some psychotic conditions. Evidence for processes that coordinate activity is provided by neurobiological and psychological studies of contextual disambiguation and dynamic grouping. Mechanisms by which this important class of cognitive functions could be achieved include those long-range connections within and between cortical regions that activate synaptic channels via NMDA-receptors, and which control gain through their voltage-dependent mode of operation. An impairment of these mechanisms is central to PCP-psychosis, and the cognitive capabilities that they could provide are impaired in some forms of schizophrenia. We conclude that impaired cognitive coordination due to reduced ion flow through NMDA-channels is involved in schizophrenia, and we suggest that it may also be involved in other disorders. This perspective suggests several ways in which further research could enhance our understanding of cognitive coordination, its neural basis, and its relevance to psychopathology

    Developmental hemispheric asymmetry of interregional metabolic correlation of the auditory cortex in deaf subjects

    No full text
    The functional connectivity of the auditory cortex might be altered in deaf subjects due to the loss of auditory input. We studied the developmental changes of functional connectivity of the primary auditory cortex (A1) in deaf children, deaf adults, and normal hearing adults by examining interregional metabolic correlation with F-18-FDG PET. The mean activity of FDG uptake in the cytoarchitectonically defined A1 region served as a covariate in the interregional and interhemispheric correlation analysis. A1 metabolic rate was correlated with that of the ipsilateral superior temporal lobe in both normal and deaf subjects. This correlated area was larger in deaf children than in deaf or normal hearing adults. Concerning the functional connectivity of A1, a hemispheric asymmetry was found in that the extent of interregional correlation was clearly larger in the right than in the left hemisphere. This asymmetry was particularly pronounced in the younger deaf children. Both extent and asymmetry of the functional connectivity of A1 subsided with age. Contrary to this, a correlation between the left and the right primary auditory cortices was absent in younger deaf children but became apparent as they grew older. (C) 2003 Elsevier Science (USA). All rights reserved

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF

    Augmentation of Brain Function: Facts, Fiction and Controversy. Volume III: From Clinical Applications to Ethical Issues and Futuristic Ideas

    Get PDF
    The final volume in this tripartite series on Brain Augmentation is entitled “From Clinical Applications to Ethical Issues and Futuristic Ideas”. Many of the articles within this volume deal with translational efforts taking the results of experiments on laboratory animals and applying them to humans. In many cases, these interventions are intended to help people with disabilities in such a way so as to either restore or extend brain function. Traditionally, therapies in brain augmentation have included electrical and pharmacological techniques. In contrast, some of the techniques discussed in this volume add specificity by targeting select neural populations. This approach opens the door to where and how to promote the best interventions. Along the way, results have empowered the medical profession by expanding their understanding of brain function. Articles in this volume relate novel clinical solutions for a host of neurological and psychiatric conditions such as stroke, Parkinson’s disease, Huntington’s disease, epilepsy, dementia, Alzheimer’s disease, autism spectrum disorders (ASD), traumatic brain injury, and disorders of consciousness. In disease, symptoms and signs denote a departure from normal function. Brain augmentation has now been used to target both the core symptoms that provide specificity in the diagnosis of a disease, as well as other constitutional symptoms that may greatly handicap the individual. The volume provides a report on the use of repetitive transcranial magnetic stimulation (rTMS) in ASD with reported improvements of core deficits (i.e., executive functions). TMS in this regard departs from the present-day trend towards symptomatic treatment that leaves unaltered the root cause of the condition. In diseases, such as schizophrenia, brain augmentation approaches hold promise to avoid lengthy pharmacological interventions that are usually riddled with side effects or those with limiting returns as in the case of Parkinson’s disease. Brain stimulation can also be used to treat auditory verbal hallucination, visuospatial (hemispatial) neglect, and pain in patients suffering from multiple sclerosis. The brain acts as a telecommunication transceiver wherein different bandwidth of frequencies (brainwave oscillations) transmit information. Their baseline levels correlate with certain behavioral states. The proper integration of brain oscillations provides for the phenomenon of binding and central coherence. Brain augmentation may foster the normalization of brain oscillations in nervous system disorders. These techniques hold the promise of being applied remotely (under the supervision of medical personnel), thus overcoming the obstacle of travel in order to obtain healthcare. At present, traditional thinking would argue the possibility of synergism among different modalities of brain augmentation as a way of increasing their overall effectiveness and improving therapeutic selectivity. Thinking outside of the box would also provide for the implementation of brain-to-brain interfaces where techniques, proper to artificial intelligence, could allow us to surpass the limits of natural selection or enable communications between several individual brains sharing memories, or even a global brain capable of self-organization. Not all brains are created equal. Brain stimulation studies suggest large individual variability in response that may affect overall recovery/treatment, or modify desired effects of a given intervention. The subject’s age, gender, hormonal levels may affect an individual’s cortical excitability. In addition, this volume discusses the role of social interactions in the operations of augmenting technologies. Finally, augmenting methods could be applied to modulate consciousness, even though its neural mechanisms are poorly understood. Finally, this volume should be taken as a debate on social, moral and ethical issues on neurotechnologies. Brain enhancement may transform the individual into someone or something else. These techniques bypass the usual routes of accommodation to environmental exigencies that exalted our personal fortitude: learning, exercising, and diet. This will allow humans to preselect desired characteristics and realize consequent rewards without having to overcome adversity through more laborious means. The concern is that humans may be playing God, and the possibility of an expanding gap in social equity where brain enhancements may be selectively available to the wealthier individuals. These issues are discussed by a number of articles in this volume. Also discussed are the relationship between the diminishment and enhancement following the application of brain-augmenting technologies, the problem of “mind control” with BMI technologies, free will the duty to use cognitive enhancers in high-responsibility professions, determining the population of people in need of brain enhancement, informed public policy, cognitive biases, and the hype caused by the development of brain- augmenting approaches
    corecore